Модальная логика
Модальная логика — это разновидность логики, используемая для представления утверждений о необходимости и возможности . Он играет важную роль в философии и смежных областях как инструмент для понимания таких понятий, как знание , обязательство и причинно-следственная связь . Например, в эпистемической модальной формула логике может использоваться для представления утверждения, что известно. В деонтической модальной логике та же самая формула может представлять следующее: является моральным долгом. Модальная логика рассматривает выводы, к которым приводят модальные утверждения. Например, большинство эпистемических модальных логик рассматривают формулу как тавтология , отражающая принцип, согласно которому только истинные утверждения могут считаться знанием. Однако эта формула не является тавтологией в деонтической модальной логике, поскольку то, что должно быть истинным, может быть ложным.
Модальные логики — это формальные системы , включающие унарные операторы, такие как и , представляющий возможность и необходимость соответственно. Например, модальная формула можно прочитать как «возможно " пока можно прочитать как «обязательно ". В стандартной реляционной семантике модальной логики формулам присваиваются значения истинности относительно возможного мира . Значение истинности формулы в одном возможном мире может зависеть от значений истинности других формул в других доступных возможных мирах . В частности, верно в мире, если верно в некотором доступном возможном мире, в то время как верно в мире, если верно в каждом доступном возможном мире. Существует множество систем доказательств, которые являются надежными и полными в отношении семантики, которую можно получить, ограничивая отношение доступности. Например, деонтическая модальная логика D является правильной и полной, если требуется, чтобы отношение доступности было последовательным .
Хотя интуиция, лежащая в основе модальной логики, восходит к античности, первые модальные аксиоматические системы были разработаны К.И. Льюисом в 1912 году. Стандартная реляционная семантика возникла в середине двадцатого века в работах Артура Прайора , Яакко Хинтикки и Сола Крипке . Недавние разработки включают альтернативную топологическую семантику, такую как семантика соседства , а также применения реляционной семантики за пределами ее первоначальной философской мотивации. [1] К таким приложениям относятся теория игр , [2] морально - правовая теория , [2] веб-дизайн , [2] теория множеств на основе мультивселенной , [3] и социальная эпистемология . [4]
Синтаксис модальных операторов
[ редактировать ]Модальная логика отличается от других видов логики тем, что в ней используются модальные операторы, такие как и . Первое обычно читается вслух как «необходимо» и может использоваться для представления таких понятий, как моральное или юридическое обязательство , знание , историческая неизбежность и другие. Последнее обычно читается как «возможно» и может использоваться для представления таких понятий, как разрешение , способность , совместимость с доказательствами . Хотя правильно составленные формулы модальной логики включают в себя немодальные формулы, такие как , он также содержит модальные, такие как , , , и так далее.
Таким образом, язык Базовую логику высказываний можно рекурсивно определить следующим образом.
- Если атомная формула, то представляет собой формулу .
- Если представляет собой формулу , затем тоже.
- Если и представляют собой формулы , затем тоже.
- Если представляет собой формулу , затем тоже.
- Если представляет собой формулу , затем тоже.
Модальные операторы можно добавить к другим видам логики, введя правила, аналогичные пунктам 4 и 5 выше. Модальная логика предикатов - один из широко используемых вариантов, который включает такие формулы, как . В системах модальной логики, где и являются двойниками , можно рассматривать как сокращение от , что устраняет необходимость в отдельном синтаксическом правиле для его введения. Однако отдельные синтаксические правила необходимы в системах, где два оператора не являются взаимоопределяемыми.
Общие варианты обозначений включают такие символы, как и в системах модальной логики, используемых для представления знаний и и в тех, которые используются для представления веры. Эти обозначения особенно распространены в системах, которые одновременно используют несколько модальных операторов. Например, комбинированная эпистемико-деонтическая логика могла бы использовать формулу читать как «Я знаю, что P разрешено». Системы модальной логики могут включать бесконечное число модальных операторов, отличающихся индексами, т.е. , , , и так далее.
Семантика
[ редактировать ]Реляционная семантика
[ редактировать ]Основные понятия
[ редактировать ]Стандартная семантика модальной логики называется реляционной семантикой . При таком подходе истинность формулы определяется относительно точки, которую часто называют возможным миром . Для формулы, содержащей модальный оператор, ее значение истинности может зависеть от того, что истинно в других доступных мирах. Таким образом, реляционная семантика интерпретирует формулы модальной логики, используя модели, определяемые следующим образом. [5]
- — Реляционная модель это кортеж где:
- это набор возможных миров
- является бинарным отношением на
- — это функция оценки, которая присваивает истинностное значение каждой паре атомарной формулы и мира (т. е. где представляет собой набор атомарных формул)
Набор часто называют Вселенной . Бинарное отношение называется отношением доступности , и оно контролирует, какие миры могут «видеть» друг друга, чтобы определить, что является правдой. Например, означает, что мир доступен из мира . То есть положение дел , известное как это реальная возможность для . Наконец, функция называется функцией оценки . Он определяет, какие атомарные формулы верны в каких мирах.
Затем мы рекурсивно определяем истинность формулы в мире в модели :
- если только
- если только
- если только и
- iff для каждого элемента из , если затем
- если для некоторого элемента из , он утверждает, что и
Согласно этой семантике, необходима формула относительно мира если оно справедливо в каждом мире, доступном из . Это возможно , если оно удерживается в каком-то мире, доступном из . Таким образом, возможность зависит от отношения доступности. , что позволяет нам выразить относительную природу возможности. Например, мы могли бы сказать, что, учитывая наши законы физики, люди не могут путешествовать быстрее скорости света, но при других обстоятельствах это было бы возможно. Используя отношение доступности, мы можем перевести этот сценарий следующим образом: во всех мирах, доступных нашему собственному миру, люди не могут путешествовать со скоростью, превышающей скорость света, но в одном из этих доступных миров существует другой мир. доступный из этих миров, но недоступный из нашего собственного, где люди могут путешествовать быстрее скорости света.
Рамки и завершенность
[ редактировать ]Выбора отношения доступности иногда может быть достаточно, чтобы гарантировать истинность или ложность формулы. Например, рассмотрим модель отношение доступности которого является рефлексивным . Поскольку отношение рефлексивно, мы будем иметь это для любого независимо от того, какая функция оценки используется. По этой причине модальные логики иногда говорят о фреймах , которые являются частью реляционной модели, исключающей функцию оценки.
- — Реляционный фрейм это пара где представляет собой набор возможных миров, является бинарным отношением на .
Различные системы модальной логики определяются с использованием условий кадра . Рамка называется:
- рефлексивно , если w R w для каждого w в G
- симметрично , если w R u влечет u R w , для всех w и u в G
- транзитивно если wR u и u R q вместе подразумевают w R q для всех w , u , q в G. ,
- серийен , если для каждого w в G существует такой u в G , что wR u .
- Евклидово , если для любых u , t и w из и wRu wRt следует uRt ( по симметрии из этого также следует tRu , а также tRt и uRu )
Логика, вытекающая из этих условий кадра:
- К := нет условий
- Д := серийный
- Т := рефлексивный
- B := рефлексивный и симметричный
- S4 := рефлексивный и транзитивный
- S5 := рефлексивный и евклидов
Евклидово свойство наряду с рефлексивностью приводит к симметрии и транзитивности. (Свойство Евклида также можно получить из симметрии и транзитивности.) Следовательно, если отношение доступности R рефлексивно и евклидово, R доказуемо симметрично и транзитивно также . Следовательно, для моделей S5 R является отношением эквивалентности , поскольку R рефлексивно, симметрично и транзитивно.
Мы можем доказать, что эти фреймы создают тот же набор допустимых предложений, что и фреймы, в которых все миры могут видеть все другие миры W ( т. е . где R — «тотальное» отношение). Это дает соответствующий модальный граф , который является полностью полным ( т. е . больше ребер (отношений) добавлять нельзя). Например, в любой модальной логике, основанной на условиях кадра:
- тогда и только тогда, когда для некоторого элемента u из G выполняется равенство и W R U.
Если мы рассмотрим кадры, основанные на общем отношении, мы можем просто сказать, что
- тогда и только тогда, когда для некоторого элемента u из G выполняется равенство .
тривиально верно, Мы можем исключить пункт о доступности из последнего условия, потому что в таких полных структурах для всех w и u что w R u . Но это не обязательно должно быть так во всех кадрах S5, которые все еще могут состоять из множества частей, полностью связанных между собой, но все же отсоединенных друг от друга.
Все эти логические системы также могут быть определены аксиоматически, как показано в следующем разделе. Например, в S5 аксиомы , и (соответствующие симметрии , транзитивности и рефлексивности соответственно) выполняются, тогда как по крайней мере одна из этих аксиом не выполняется в каждой из других, более слабых логик.
Топологическая семантика
[ редактировать ]Модальная логика также интерпретировалась с использованием топологических структур. Например, Внутренняя семантика интерпретирует формулы модальной логики следующим образом.
— Топологическая модель это кортеж где является топологическим пространством и — это функция оценки, которая отображает каждую атомарную формулу в некоторое подмножество . Основная внутренняя семантика интерпретирует формулы модальной логики следующим образом:
- если только
- если только
- если только и
- если для некоторых у нас есть и то, и другое а также это для всех
Топологические подходы включают в себя реляционные, допуская ненормальную модальную логику . Дополнительная структура, которую они обеспечивают, также позволяет прозрачно моделировать определенные концепции, такие как доказательства или обоснования своих убеждений. Топологическая семантика широко используется в последних работах по формальной эпистемологии и имеет предшественников в более ранних работах, таких как Дэвида Льюиса и Анжелики Кратцер логика контрфактуалов .
Аксиоматические системы
[ редактировать ]Первые формализации модальной логики были аксиоматическими . были предложены многочисленные вариации с очень разными свойствами. С тех пор, как К.И. Льюис начал работать в этой области в 1912 году, Хьюз и Крессвелл Например, (1996) описывают 42 нормальные и 25 ненормальных модальных логик. Земан (1973) описывает некоторые системы, которые Хьюз и Крессвелл опускают.
Современные методы лечения модальной логики начинаются с дополнения исчисления высказываний двумя унарными операциями, одна из которых обозначает «необходимость», а другая — «возможность». Обозначение К.И. Льюиса , широко используемое с тех пор, обозначает «обязательно p » с помощью префикса «box» (□ p ), область действия которого определяется круглыми скобками. Аналогично, префикс «ромб» (◇ p ) означает «возможно p ». Подобно кванторам в логике первого порядка , «необходимо p » (□ p ) не предполагает, что диапазон квантификации (множество доступных возможных миров в семантике Крипке ) не пуст, тогда как «возможно p » (◇ p ) часто неявно предполагает (т. е. множество доступных возможных миров непусто). Независимо от обозначений, каждый из этих операторов можно определить через другой в классической модальной логике:
- □ p (обязательно p ) эквивалентно ¬◇¬ p («невозможно, чтобы не- p »)
- ◇ p (возможно p ) эквивалентно ¬□¬ p («не обязательно не- p »)
Следовательно, □ и ◇ образуют двойственную пару операторов.
Во многих модальных логиках операторы необходимости и возможности удовлетворяют следующим аналогам законов де Моргана из булевой алгебры :
- «Не обязательно, что Х » логически эквивалентно «Возможно , что не Х ».
- «Невозможно, чтобы Х » логически эквивалентно «Необходимо , чтобы не Х ».
Какие именно аксиомы и правила необходимо добавить к исчислению высказываний, чтобы создать пригодную для использования систему модальной логики, является вопросом философского мнения, часто движимого теоремами, которые человек хочет доказать; или, в информатике, это вопрос того, какую вычислительную или дедуктивную систему нужно моделировать. Многие модальные логики, известные под общим названием нормальные модальные логики , включают в себя следующее правило и аксиому:
- N , Правило необходимости : если p является теоремой / тавтологией (любой системы/модели, вызывающей N ), то □ p также является теоремой (т. е. ).
- K , Аксиома распределения : □( p → q ) → (□ p → □ q ).
Самая слабая нормальная модальная логика , названная « K » в честь Саула Крипке , представляет собой просто исчисление высказываний, □, правилом N и аксиомой K. дополненное K слаб в том смысле, что он не может определить, может ли предложение быть необходимым, а лишь условно необходимым. То есть, это не теорема K о том, что если □ p истинно, то □□ p истинно, т. е. что необходимые истины «необходимо необходимы». Если подобные затруднения считать надуманными и искусственными, то этот недостаток К не является большим. В любом случае разные ответы на такие вопросы дают разные системы модальной логики.
Добавление аксиом к K порождает другие известные модальные системы. нельзя доказать В K , что если « p необходимо», то p истинно. Аксиома T исправляет этот недостаток:
- T , Аксиома рефлексивности : □ p → p (Если p необходим, то p имеет место.)
T выполняется в большинстве, но не во всех модальных логиках. Земан (1973) описывает несколько исключений, таких как S1. 0 .
Другие известные элементарные аксиомы:
- 4 :
- Б :
- Д :
- 5 :
В результате получаются системы (аксиомы выделены жирным шрифтом, системы — курсивом):
- K := K + N
- Т := К + Т
- S4 := Т + 4
- S5 := Т + 5
- Д := К + Д .
От K до S5 образуют вложенную иерархию систем, составляющую ядро нормальной модальной логики . Но конкретные правила или наборы правил могут подходить для конкретных систем. Например, в деонтической логике (Если должно быть так, что p , то допускается, что p ) кажется уместным, но нам, вероятно, не следует включать это . Фактически, поступить так — значит совершить натуралистическую ошибку (т. е. заявить, что то, что естественно, также и хорошо, утверждая, что если p имеет место, то p должно быть разрешено).
Обычно используемая система S5 просто делает необходимыми все модальные истины. Например, если p возможно, то «необходимо», чтобы p было возможно. Кроме того, если р необходим, то необходимо, чтобы р был необходим. Были сформулированы и другие системы модальной логики, отчасти потому, что S5 не описывает все виды интересующей модальности.
Структурная теория доказательства
[ редактировать ]Секвенциальные исчисления и системы естественной дедукции были разработаны для нескольких модальных логик, но оказалось трудно совместить общность с другими особенностями, ожидаемыми от хороших структурных теорий доказательства , такими как чистота (теория доказательств не вводит экстралогические понятия, такие как метки). ) и аналитичность (логические правила поддерживают четкое представление об аналитическом доказательстве ). Более сложные исчисления были применены к модальной логике для достижения общности.
Методы принятия решения
[ редактировать ]Аналитические таблицы представляют собой наиболее популярный метод принятия решений для модальной логики. [6]
Модальная логика в философии
[ редактировать ]Алетическая логика
[ редактировать ]Модальности необходимости и возможности называются алетическими модальностями. Их также иногда называют специальными модальностями, от латинского вида . Модальная логика была сначала разработана для работы с этими концепциями и только потом была распространена на другие. По этой причине или, возможно, из-за их известности и простоты необходимость и возможность часто небрежно рассматриваются как предмет модальной логики. Более того, легче понять смысл релятивизации необходимости, например, юридической, физической, номологической , эпистемической и т. д., чем релятивизации других понятий.
В классической модальной логике высказывание называется
- возможно , если оно не обязательно ложно (независимо от того, истинно оно на самом деле или действительно ложно);
- необходимо , если оно не является ложным (т. е. истинным и обязательно истинным);
- условный , если он не обязательно ложен и не обязательно истинен (т. е. возможен, но не обязательно истинен);
- невозможно, если оно не является возможно истинным (т. е. ложным и обязательно ложным).
Поэтому в классической модальной логике понятие возможности или необходимости может считаться основным, тогда как другие понятия определяются в его терминах в духе двойственности Де Моргана . Интуиционистская модальная логика рассматривает возможность и необходимость как несовершенно симметричные.
Например, предположим, что, идя в магазин, мы проходим мимо дома Фридриха и видим, что свет выключен. На обратном пути наблюдаем, что они включились.
- «Кто-то или что-то включило свет» необходимо .
- «Фридрих включил свет», «Сосед Фридриха Макс включил свет» и «Грабитель по имени Адольф ворвался в дом Фридриха и включил свет» являются случайными .
- Все вышеперечисленные утверждения возможны .
- Невозможно, чтобы Сократ ( который умер более двух тысяч лет назад) включил свет.
(Конечно, эта аналогия не применяет алетическую модальность по -настоящему строгим образом; для этого пришлось бы аксиоматически сделать такие утверждения, как «человеческие существа не могут воскреснуть из мертвых», «Сократ был человеком, а не бессмертный вампир», и «мы не принимали галлюциногенные препараты, которые заставляли нас ложно верить, что свет включен», до бесконечности . Абсолютная уверенность в истинности или лжи существует только в смысле логически построенных абстрактных понятий, таких как «это невозможно». нарисовать треугольник с четырьмя сторонами» и «все холостяки не женаты».)
Для тех, у кого возникают трудности с представлением о том, что что-то возможно, но не истинно, значение этих терминов может стать более понятным, если подумать о множественных «возможных мирах» (в смысле Лейбница ) или «альтернативных вселенных»; что-то «необходимое» истинно во всех возможных мирах, что-то «возможное» истинно по крайней мере в одном возможном мире. Эта «возможная семантика мира» формализуется семантикой Крипке .
Физическая возможность
[ редактировать ]Что-то физически или экономически возможно, если это разрешено законами физики . [ нужна ссылка ] Например, считается, что современная теория допускает существование атома с атомным номером 126. [7] даже если таких атомов не существует. Напротив, хотя логически возможно ускориться сверх скорости света , [8] современная наука утверждает, что это физически невозможно для материальных частиц или информации. [9]
Метафизическая возможность
[ редактировать ]Философы [ ВОЗ? ] спорят, обладают ли объекты свойствами, независимыми от тех, которые диктуются научными законами. Например, может быть метафизически необходимо, как некоторые сторонники физикализма , чтобы все мыслящие существа имели тела. думали [10] и может ощутить течение времени . Сол Крипке утверждал, что у каждого человека обязательно есть родители: любой, у кого разные родители, не будет одним и тем же человеком. [11]
Метафизическая возможность считалась более ограничивающей, чем голая логическая возможность. [12] (т.е. метафизически возможно меньше вещей, чем логически). Однако его точная связь (если таковая имеется) с логической или физической возможностью является предметом споров. Философы [ ВОЗ? ] также расходятся во мнениях относительно того, необходимы ли метафизические истины просто «по определению», или они отражают некоторые основные глубокие факты о мире, или что-то совершенно другое.
Эпистемическая логика
[ редактировать ]Эпистемические модальности (от греческого episteme — знание) касаются определенности предложений. Оператор □ переводится как «x уверен, что…», а оператор ◇ переводится как «Насколько известно x, может быть правдой, что…». В обычной речи как метафизические, так и эпистемические модальности часто выражаются схожими словами; следующие контрасты могут помочь:
Человек, Джонс, мог бы разумно сказать и то, и другое : (1) «Нет, невозможно существование снежного человека ; я в этом совершенно уверен»; и (2) «Конечно, снежные люди могут существовать». Под (1) Джонс подразумевает, что, учитывая всю доступную информацию, не остается сомнений в том, существует ли снежный человек. Это эпистемическое утверждение. В пункте (2) он делает метафизическое заявление о том, что возможно существование снежного человека , хотя на самом деле это не так : не существует физической или биологической причины, по которой большие, лишенные перьев, двуногие существа с густой шерстью не могли бы существовать в лесах Северной Америки. (независимо от того, делают они это или нет). Точно так же фраза «возможно, что человек, читающий это предложение, будет иметь рост четырнадцати футов и будет называться Чад» является метафизически верным (такой человек не сможет каким-либо образом помешать сделать это из-за его роста и имени), но не алетически истинным, если только вы соответствуете этому описанию, и оно не является эпистемически верным, если известно, что людей ростом четырнадцать футов никогда не существовало.
С другой стороны, Джонс мог бы сказать: (3) «Возможно , что гипотеза Гольдбаха верна; но также возможно , что она ложна», а также (4) «если она истинна , то она обязательно истинна, а не возможно, ложь». Здесь Джонс имеет в виду, что эпистемически возможно , что она истинна или ложна, насколько ему известно (гипотеза Гольдбаха не была доказана ни истинной, ни ложной), но если бы существовало доказательство (до сих пор не открытое), то оно показало бы, что это невозможно логически , чтобы гипотеза Гольдбаха была ложной — не могло быть никакого набора чисел, который бы ее нарушал. Логическая возможность — это форма алетической возможности; (4) утверждает, что возможно (т. е., логически говоря), чтобы математическая истина была ложной, но (3) делает только утверждение о том, возможно ли это, насколько известно Джонсу (т. е., говоря о уверенность), что математическое утверждение либо истинно, либо ложно, и, таким образом, Джонс снова не противоречит сам себе. Стоит отметить, что Джонс не обязательно прав: возможно (эпистемически), что Гипотеза Гольдбаха одновременно верна и недоказуема.
Эпистемические возможности также влияют на реальный мир в отличие от метафизических возможностей. мир Метафизические возможности связаны с тем, каким мог бы быть , но эпистемические возможности связаны с тем, каким мир может быть (насколько нам известно). Предположим, например, что я хочу знать, брать ли перед уходом зонтик или нет. Если вы скажете мне: «Вполне возможно, что на улице идет дождь» – в смысле эпистемической возможности – тогда это повлияет на то, возьму я зонтик или нет. Но если вы просто скажете мне, что « на улице может идти дождь» – в смысле метафизической возможности – тогда мне не станет лучше от этого модального просветления.
Некоторые особенности эпистемической модальной логики являются предметом дискуссий. Например, если x знает, что p , знает ли x , что он знает, что p ? Другими словами, должно ли □ P → □□ P быть аксиомой в этих системах? Хотя ответ на этот вопрос неясен, [13] существует по крайней мере одна аксиома, которая обычно включается в эпистемическую модальную логику, поскольку она минимально верна для всех нормальных модальных логик (см. раздел об аксиоматических системах ):
- K , Аксиома распределения : .
Был поставлен вопрос о том, следует ли считать эпистемическую и алетическую модальности отличными друг от друга. Критика утверждает, что нет реальной разницы между «истиной в мире» (алетической) и «истиной в сознании человека» (эпистемической). [14] Исследование не обнаружило ни одного языка, в котором бы формально различались алетическая и эпистемическая модальности, например, посредством грамматического наклонения . [15]
Временная логика
[ редактировать ]Темпоральная логика — это подход к семантике выражений с временем , то есть выражений с уточнениями «когда». Некоторые выражения, такие как «2 + 2 = 4», истинны всегда, тогда как временные выражения, такие как «Джон счастлив», верны только иногда.
В темпоральной логике временные конструкции трактуются с точки зрения модальностей, где стандартным методом формализации разговоров о времени является использование двух пар операторов, одного для прошлого и одного для будущего (P будет просто означать «это имеет место в настоящий момент»). что П’). Например:
- Ф П : Иногда бывает так, что П
- Г. П .: Всегда будет так, что П.
- П.П .: Когда-то было, что П.
- Х.П .: Всегда было так, что П.
Тогда есть как минимум три модальные логики, которые мы можем разработать. Например, мы можем оговорить, что
- = P имеет место в некоторый момент времени t
- = P имеет место в каждый момент времени t
Или мы можем обменять эти операторы, чтобы иметь дело только с будущим (или прошлым). Например,
- = Ф П
- = Г П
или,
- = P и/или F P
- = P и GP
Операторы F и G могут показаться изначально чуждыми, но они создают нормальные модальные системы . F P — то же самое, ¬G ¬P что . Мы можем объединить вышеуказанные операторы для формирования сложных операторов. Например, P P → □ P P говорит (эффективно): «Все, что прошло и истинно, необходимо» .
Кажется разумным сказать, что, возможно, завтра пойдет дождь, а возможно, и не будет; с другой стороны, поскольку мы не можем изменить прошлое, если верно, что вчера шел дождь, то не может быть правдой и то, что вчера дождя не было. Кажется, что прошлое «фиксировано» или необходимо, в отличие от будущего. Иногда это называют случайной необходимостью . Но если прошлое «фиксировано», и все, что есть в будущем, в конечном итоге окажется в прошлом, то кажется правдоподобным сказать, что будущие события тоже необходимы.
Подобным же образом проблема будущих контингентов рассматривает семантику утверждений о будущем: истинно ли сейчас одно из утверждений «Завтра будет морское сражение» или «Завтра морское сражение не будет»? Рассмотрение этого тезиса привело Аристотеля к отказу от принципа двувалентности утверждений о будущем.
Дополнительные бинарные операторы также имеют отношение к темпоральной логике (см. Линейная темпоральная логика ).
Версии темпоральной логики можно использовать в информатике для моделирования компьютерных операций и доказательства о них теорем. В одной из версий ◇ P означает «в будущем в ходе вычислений возможно, что состояние компьютера будет таким, что P будет истинным»; □ P означает «во всех будущих моментах вычислений P будет истинным». В другой версии ◇ P означает «на следующем этапе вычислений P может быть истинным»; □ P означает «на следующем этапе вычислений P будет истинным». Они отличаются выбором отношения доступности . (P всегда означает «P истинно в текущем состоянии компьютера».) Эти два примера включают недетерминированные или не до конца понятные вычисления; существует множество других модальных логик, специализирующихся на различных типах анализа программ. Каждый из них естественным образом приводит к несколько разным аксиомам.
Деонтическая логика
[ редактировать ]Точно так же разговоры о морали или об обязанностях и нормах в целом, по-видимому, имеют модальную структуру. Разница между «Вы должны сделать это» и «Вы можете сделать это» во многом похожа на разницу между «Это необходимо» и «Это возможно». Такая логика называется деонтической , от греческого «долг».
В деонтических логиках обычно отсутствует аксиома T, семантически соответствующая рефлексивности отношения доступности в семантике Крипке : в символах . Интерпретируя □ как «обязательно», T неформально говорит, что каждое обязательство истинно. Например, если обязательно не убивать других (т.е. убийство морально запрещено), то Т подразумевает, что люди на самом деле не убивают других. Следствие, очевидно, неверно.
Вместо этого, используя семантику Крипке , мы говорим, что, хотя наш собственный мир не реализует всех обязательств, доступные ему миры реализуют (т. е. T сохраняется в этих мирах). Эти миры называются идеализированными . P является обязательным по отношению к нашему собственному миру, если во всех идеализированных мирах, доступных нашему миру, P имеет место. Хотя это была одна из первых интерпретаций формальной семантики, в последнее время она подверглась критике. [16]
Еще один принцип, который часто (по крайней мере традиционно) принимается как деонтический принцип, — это D , , что соответствует серийности (или расширяемости или неограниченности) отношения доступности. Это воплощение кантовской идеи о том, что «должное подразумевает возможное». (Очевидно, что слово «можно» можно интерпретировать в различных смыслах, например, в моральном или алетическом смысле.)
Интуитивные задачи с деонтической логикой
[ редактировать ]Когда мы пытаемся формализовать этику с помощью стандартной модальной логики, мы сталкиваемся с некоторыми проблемами. Предположим, что у нас есть предложение К : вы украли немного денег, и другое: Q : вы украли небольшую сумму денег. Теперь предположим, что мы хотим выразить мысль: «Если вы украли немного денег, это должна быть небольшая сумма денег». Есть два вероятных кандидата,
- (1)
- (2)
Но (1) и K вместе влекут за собой □ Q , что говорит о том, что должно быть так, что вы украли небольшую сумму денег. Это, конечно, неправильно, потому что вообще не следовало ничего воровать. И (2) тоже не работает: если правильное представление «если вы украли немного денег, это должна быть небольшая сумма» — это (2), то правильное представление (3) «если вы украли немного денег, тогда это должна быть большая сумма" . Теперь предположим (что кажется разумным), что вам не следует ничего красть или . Но тогда мы можем сделать вывод с помощью и ( противоположность ); поэтому предложение (3) следует из нашей гипотезы (конечно, та же логика показывает и предложение (2)). Но это не может быть правильным, и это неправильно, когда мы используем естественный язык. Сказать кому-то, что ему не следует воровать, конечно, не означает, что ему следует украсть большие суммы денег, если он действительно занимается воровством. [17]
Доксастическая логика
[ редактировать ]Доксастическая логика касается логики убеждений (некоторого набора агентов). Термин «доксастик» происходит от древнегреческого слова «докса» , что означает «вера». Обычно в доксастической логике используется □, часто записываемый как «B», для обозначения «Считается, что», или, применительно к конкретному агенту s, «S считает, что».
Метафизические вопросы
[ редактировать ]В наиболее распространенной интерпретации модальной логики рассматриваются « логически возможные миры». Если утверждение истинно во всех возможных мирах , то это необходимая истина. Если утверждение истинно в нашем мире, но не верно во всех возможных мирах, то это контингентная истина. Утверждение, которое истинно в некотором возможном мире (не обязательно нашем), называется возможной истиной.
В рамках этой «идиомы возможных миров», чтобы утверждать, что существование снежного человека возможно, но не реально, говорят: «Существует некоторый возможный мир, в котором существует снежный человек; но в реальном мире снежный человек не существует». Однако неясно, к чему нас обязывает это утверждение. Действительно ли мы утверждаем о существовании возможных миров, столь же реальных, как и наш реальный мир, но не реальных? Саул Крипке считает, что термин «возможный мир» — это своего рода неправильное употребление, что термин «возможный мир» — это всего лишь полезный способ визуализации концепции возможности. [18] По его мнению, предложения «вы могли бы выбросить 4 вместо 6» и «есть возможный мир, в котором вы выпали 4, но в реальном мире вы выпали 6» не являются существенно разными утверждениями и не обязывают нас к существованию возможного мира. [19] Дэвид Льюис , с другой стороны, прославился тем, что стиснул зубы, утверждая, что все просто возможные миры так же реальны, как и наш собственный, и что то, что отличает наш мир от реального, это просто то, что это действительно наш мир – этот мир. [20] Эта позиция является основным принципом « модального реализма ». Некоторые философы отказываются поддерживать какую-либо версию модального реализма, считая ее онтологически экстравагантной, и предпочитают искать различные способы перефразировать эти онтологические обязательства. Роберт Адамс считает, что «возможные миры» лучше рассматривать как «мировые истории» или непротиворечивые наборы предложений. Таким образом, вполне возможно, что у вас выпала 4, если такое положение дел можно связно описать. [21]
Ученые-компьютерщики обычно выбирают весьма специфическую интерпретацию модальных операторов, специализированную для конкретного типа анализируемых вычислений. Вместо «всех миров» у вас могут быть «все возможные следующие состояния компьютера» или «все возможные будущие состояния компьютера».
Дальнейшие применения
[ редактировать ]Модальная логика начала использоваться в таких областях гуманитарных наук, как литература, поэзия, искусство и история. [22] [23] В философии религии модальная логика обычно используется в аргументах в пользу существования Бога . [24]
История
[ редактировать ]Основные идеи модальной логики восходят к античности. Аристотель разработал модальную силлогистику в книге I своей «Первой аналитики» (гл. 8–22), которую Теофраст пытался улучшить. [25] В работе Аристотеля есть также отрывки, такие как знаменитый аргумент о морском сражении в §9 «De Interpretatione» , которые теперь рассматриваются как предвосхищение связи модальной логики с потенциальностью и временем. В эллинистический период логики Диодор Кронос , Филон Диалектик и стоик Хрисипп разработали модальную систему, которая учитывала взаимоопределяемость возможности и необходимости, приняли аксиому Т (см. ниже ) и объединили элементы модальной логики и темпоральной логики в пытается решить пресловутый Главный Аргумент . [26] Самая ранняя формальная система модальной логики была разработана Авиценной , который в конечном итоге разработал теорию « временно- модальной» силлогистики. [27] Модальная логика как самосознающий субъект во многом обязана трудам схоластов , в частности Уильяма Оккама и Джона Дунса Скота , которые рассуждали неформально модально, главным образом для анализа высказываний о сущности и акциденции .
В 19 веке Хью Макколл внес новаторский вклад в модальную логику, но не нашел большого признания. [28] К.И. Льюис основал современную модальную логику в серии научных статей, начиная с 1912 года с «Импликации и алгебры логики». [29] [30] Льюису пришлось изобрести модальную логику и, в частности, строгую импликацию на том основании, что классическая логика допускает парадоксы материальной импликации, такие как принцип, согласно которому ложность подразумевает любое предложение . [31] Кульминацией этой работы стала его книга «Символическая логика» 1932 года (совместно с Ч. Лэнгфордом ). [32] который представил пять систем от S1 до S5 .
После Льюиса модальной логике в течение нескольких десятилетий уделялось мало внимания. Николас Решер утверждал, что это произошло потому, что Бертран Рассел отверг это предложение. [33] Однако Ян Дейнозка выступил против этой точки зрения, заявив, что модальная система, которую Дейнозка называет «MDL», описана в работах Рассела, хотя Рассел действительно считал, что концепция модальности «происходит из смешения пропозиций с пропозициональными функциями », как он писал в Анализ материи . [34]
Рут К. Баркан (позже Рут Баркан Маркус Льюиса ) разработала первые аксиоматические системы количественной модальной логики — расширения первого и второго порядка S2 , S4 и S5 . [35] [36] [37] Артур Норман Прайор предупредил ее, чтобы она хорошо подготовилась к дебатам о количественной модальной логике с Уиллардом Ван Орманом Куайном из-за предвзятости в отношении модальной логики. [38]
Современная эра модальной семантики началась в 1959 году, когда Сол Крипке (тогда ему было всего лишь 18 лет, студент Гарвардского университета ) представил теперь стандартную семантику Крипке для модальных логик. Их обычно называют семантикой «возможных миров». Крипке и А. Н. Приор ранее довольно долго переписывались. Семантика Крипке в основном проста, но доказательства облегчаются с помощью семантических таблиц или аналитических таблиц , как объяснил Э. У. Бет .
А. Н. Прайор создал современную темпоральную логику , тесно связанную с модальной логикой, в 1957 году, добавив модальные операторы [F] и [P], означающие «в конечном итоге» и «ранее». Воган Пратт представил динамическую логику в 1976 году. В 1977 году Амир Пнуэли предложил использовать темпоральную логику для формализации поведения постоянно работающих параллельных программ . Разновидности темпоральной логики включают пропозициональную динамическую логику (PDL), (пропозициональную) линейную темпоральную логику (LTL), логику дерева вычислений (CTL), логику Хеннесси-Милнера и T . [ нужны разъяснения ]
Математическая структура модальной логики, а именно булевых алгебр, дополненных унарными операциями (часто называемых модальными алгебрами ), начала появляться после доказательства JCC McKinsey в 1941 году того, что S2 и S4 разрешимы. [39] и достиг полного расцвета в работах Альфреда Тарского и его ученика Бьярни Йонссона (Йонссон и Тарский, 1951–52). Эта работа показала, что и S5 являются моделями внутренней алгебры , собственным расширением булевой алгебры, первоначально разработанным для отражения свойств внутренних операторов и операторов замыкания топологии S4 . В текстах по модальной логике обычно упоминается лишь ее связь с изучением булевых алгебр и топологии . Подробный обзор истории формальной модальной логики и связанной с ней математики см. в Robert Goldblatt (2006). [40]
См. также
[ редактировать ]- Отношение доступности
- Концептуальная необходимость
- Теория аналога
- Дэвид Келлог Льюис
- De dicto и de re
- Логика описания
- Доксастическая логика
- Динамическая логика
- Энтимема
- Вывод о свободном выборе
- Гибридная логика
- Внутренняя алгебра
- Логика интерпретации
- Семантика Крипке
- Метафизическая необходимость
- Модальный глагол
- Мультимодальная логика
- Многозначная логика
- Семантика соседства
- Логика доказуемости
- Обычная модальная логика
- Логика релевантности
- Строгое условное
- Двумерность
Примечания
[ редактировать ]- ^ Блэкберн, Патрик; де Рийке, Мартен; Венема, Иде (2001). Модальная логика . Кембриджские трактаты по теоретической информатике. Издательство Кембриджского университета. ISBN 9780521527149 .
- ^ Перейти обратно: а б с ван Бентем, Йохан (2010). Модальная логика для непредвзятости (PDF) . ЦСЛИ. S2CID 62162288 . Архивировано из оригинала (PDF) 19 февраля 2020 года.
- ^ Хэмкинс, Джоэл (2012). «Теоретико-множественная мультивселенная». Обзор символической логики . 5 (3): 416–449. arXiv : 1108.4223 . дои : 10.1017/S1755020311000359 . S2CID 33807508 .
- ^ Балтаг, Александру; Кристофф, Зоя; Рендсвиг, Расмус; Сметс, Соня (2019). «Динамическая эпистемическая логика распространения и прогнозирования в социальных сетях» . Студия Логика . 107 (3): 489–531. дои : 10.1007/s11225-018-9804-x . S2CID 13968166 .
- ^ Фиттинг и Мендельсон. Модальная логика первого порядка . Kluwer Academic Publishers, 1998. Раздел 1.6.
- ^ Девушка 2014 .
- ^ «Пресс-релиз: Подтверждение сверхтяжелого элемента 114: ступенька на пути к острову стабильности» . Национальная лаборатория Лоуренса Беркли . 24 сентября 2009 г.
- ^ Фейнберг, Г. (1967). «Возможность частиц быстрее света». Физический обзор . 159 (5): 1089–1105. Бибкод : 1967PhRv..159.1089F . дои : 10.1103/PhysRev.159.1089 . См. также более позднюю статью Фейнберга: Phys. Ред. Д 17, 1651 г. (1978 г.)
- ^ Эйнштейн, Альберт (30 июня 1905 г.). «К электродинамике движущихся тел» . Анналы физики . 17 (10): 891–921. Бибкод : 1905АнП...322..891Е . дои : 10.1002/andp.19053221004 .
- ^ Столяр, Даниэль. «Физикализм» . Стэнфордская энциклопедия философии . Проверено 16 декабря 2014 г.
- ^ Саул Крипке Именование и необходимость Издательство Гарвардского университета, 1980, стр. 113.
- ^ Томсон, Джудит и Алекс Бирн (2006). Содержание и модальность: темы философии Роберта Сталнакера . Оксфорд: Издательство Оксфордского университета. п. 107. ИСБН 9780191515736 . Проверено 16 декабря 2014 г.
- ^ см . Слепое зрение и подсознательное восприятие негативных эмпирических данных
- ^ Эшенредер, Эрин; Сара Миллс; Тао Нгуен (30 сентября 2006 г.). Уильям Фроули (ред.). Выражение модальности . Выражение когнитивных категорий. Мутон де Грюйтер. стр. 8–9. ISBN 978-3-11-018436-5 . Проверено 3 января 2010 г.
- ^ Нуйц, Ян (ноябрь 2000 г.). Эпистемическая модальность, язык и концептуализация: когнитивно-прагматическая перспектива . Когнитивная обработка человека. Джон Бенджаминс Паблишинг Ко. с. 28. ISBN 978-90-272-2357-9 .
- ^ См., например, Ханссон, Свен (2006). «Идеальные миры — принятие желаемого за действительное в деонтической логике». Студия Логика . 82 (3): 329–336. дои : 10.1007/s11225-006-8100-3 . S2CID 40132498 .
- ^ Теда Сайдера Логика философии , неизвестная страница. http://tedsider.org/books/lfp.html
- ^ Крипке, Саул. Именование и необходимость . (1980; Гарвардский университет), стр. 43–5.
- ^ Крипке, Саул. Именование и необходимость . (1980; Гарвардский университет), стр. 15–6.
- ^ Дэвид Льюис, О множественности миров (1986; Блэквелл).
- ^ Адамс, Роберт М. Теории действительности . Ноус, Vol. 8, № 3 (сентябрь 1974 г.), особенно стр. 225–31.
- ^ См. [1] и [2]
- ^ Эндрю Х. Миллер, «Жизнь незапланированная в реалистической фантастике», Representations 98, весна 2007 г., Регенты Калифорнийского университета, ISSN 0734-6018 , стр. 118–134.
- ^ Стейси, Грегори Р.П. (август 2023 г.). «Модальные онтологические аргументы» . Философский компас . дои : 10.1111/phc3.12938 .
- ^ Бобзиен, Сюзанна. «Древняя логика» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии .
- ^ Бобзиен, С. (1993). «Модальная логика Хрисиппа и ее связь с Филоном и Диодором», в книге K. Doering & Th. Эберт (редакторы), Dialektiker und Stoiker , Штутгарт, 1993, стр. 63–84.
- ^ История логики: арабская логика , Британская энциклопедия .
- ^ Лукас М. Вербургт (2020). «Спор Венна-Макколла в природе » . История и философия логики . 41 (3): 244–251. дои : 10.1080/01445340.2020.1758387 . S2CID 219928989 . Здесь: стр.244.
- ^ Льюис, CI (1912). «Импликация и алгебра логики». Разум , 21 (84): 522–531.
- ^ Балларин, Роберта. «Современные истоки модальной логики» . Стэнфордская энциклопедия философии . Проверено 30 августа 2020 г.
- ^ Льюис, CI (1917). «Вопросы материального характера». Журнал философии, психологии и научных методов , 14 : 350–356.
- ^ Кларенс Ирвинг Льюис и Купер Гарольд Лэнгфорд (1932). Символическая логика (1-е изд.). Дуврские публикации.
- ^ Решер, Николас (1979). «Рассел и модальная логика». У Джорджа Робертса (ред.). Том Мемориала Бертрана Рассела . Лондон: Джордж Аллен и Анвин. п. 146.
- ^ Дейнозка, Ян (1990). «Онтологические основы теории модальности Рассела» (PDF) . Эркеннтнис . 32 (3): 383–418. дои : 10.1007/bf00216469 . S2CID 121002878 . Проверено 22 октября 2012 г. ; цитата взята из Рассел, Бертран (1927). Анализ материи . стр. 173 .
- ^ Рут К. Баркан (март 1946 г.). «Функциональное исчисление первого порядка, основанное на строгой импликации». Журнал символической логики . 11 (1): 1–16. дои : 10.2307/2269159 . JSTOR 2269159 . S2CID 250349611 .
- ^ Рут К. Баркан (декабрь 1946 г.). «Теорема о дедукции в функциональном исчислении первого порядка, основанном на строгой импликации». Журнал символической логики . 11 (4): 115–118. дои : 10.2307/2268309 . JSTOR 2268309 . S2CID 31880455 .
- ^ Рут К. Баркан (март 1947 г.). «Идентичность индивидуумов в строгом функциональном исчислении второго порядка». Журнал символической логики . 12 (1): 12–15. дои : 10.2307/2267171 . JSTOR 2267171 . S2CID 43450340 .
- ^ Рут Баркан Маркус , Модальности: философские очерки , Oxford University Press, 1993, px.
- ^ МакКинси, JCC (1941). «Решение проблемы принятия решений для систем Льюиса S2 и S4 с применением к топологии». Дж. Симб. Бревно . 6 (4): 117–134. дои : 10.2307/2267105 . JSTOR 2267105 . S2CID 3241516 .
- ^ Роберт Голдбалт, Математическая модальная логика: взгляд на ее эволюцию
Ссылки
[ редактировать ]- В эту статью включены материалы из Бесплатного онлайн-словаря по информатике используемые с разрешения GFDL , .
- Баркан-Маркус, Рут JSL 11 (1946) и JSL 112 (1947) и «Модальность», OUP, 1993, 1995.
- Бет, Эверт В., 1955. « Семантическое следствие и формальная выводимость », Объявления Королевской Нидерландской академии искусств и наук, Отдел литературы, NR Том 18, № 13, 1955, стр. 309–42. Перепечатано в журнале Яакко Интикка (редактор) «Философия математики», Oxford University Press, 1969 (методы доказательства семантических таблиц).
- Бет, Эверт В., « Формальные методы: введение в символическую логику и изучение эффективных операций в арифметике и логике », Д. Рейдель, 1962 (методы доказательства семантических таблиц).
- Блэкберн, П.; ван Бентем, Дж .; и Уолтер, Фрэнк; Ред. (2006) Справочник по модальной логике . Северная Голландия.
- Блэкберн, Патрик; де Рийке, Мартен; и Венема, Иде (2001) Модальная логика . Издательство Кембриджского университета. ISBN 0-521-80200-8
- Chagrov, Aleksandr; and Zakharyaschev, Michael (1997) Modal Logic . Oxford University Press. ISBN 0-19-853779-4
- Челлас, Б.Ф. (1980) Модальная логика: введение . Издательство Кембриджского университета. ISBN 0-521-22476-4
- Крессвелл, MJ (2001) «Модальная логика» в Гобле, Лу; Ред., «Руководство Блэквелла по философской логике» . Бэзил Блэквелл: 136–58. ISBN 0-631-20693-0
- Фиттинг, Мелвин; и Мендельсон Р.Л. (1998) Модальная логика первого порядка . Клювер. ISBN 0-7923-5335-8
- Джеймс Гарсон (2006) Модальная логика для философов . Издательство Кембриджского университета. ISBN 0-521-68229-0 . Подробное введение в модальную логику с описанием различных систем вывода и особым подходом к использованию диаграмм для облегчения понимания.
- Гирле, Род (2000) Модальная логика и философия . Акумен (Великобритания). ISBN 0-7735-2139-9 . Доказательство деревьями опровержений . Хорошее введение в различные интерпретации модальной логики.
- Гирле, Род (2014). Модальная логика и философия (2-е изд.). Тейлор и Фрэнсис. ISBN 978-1-317-49217-7 .
- Голдблатт, Роберт (1992) «Логика времени и вычислений», 2-е изд., Конспект лекций CSLI № 7. Издательство Чикагского университета.
- —— (1993) Математика модальности , Конспект лекций CSLI № 43. Издательство Чикагского университета.
- —— (2006) « Математическая модальная логика: взгляд на ее эволюцию », в Габбае, DM; и Вудс, Джон; Ред., Справочник по истории логики, Vol. 6 . Эльзевир Б.В.
- Горе, Раджив (1999) «Табличные методы для модальной и временной логики» в Д'Агостино, М.; Габбай, Д.; Хенле, Р.; и Посегга, Дж.; Ред., Справочник по табличным методам . Клювер: 297–396.
- Хьюз, Дж. Э., и Крессвелл, М. Дж. (1996) Новое введение в модальную логику . Рутледж. ISBN 0-415-12599-5
- Йонссон Б. и Тарский А. , 1951–52, «Булева алгебра с операторами I и II», Американский журнал математики 73 : 891–939 и 74 : 129–62.
- Крахт, Маркус (1999) Инструменты и методы модальной логики , Исследования по логике и основам математики № 142. Северная Голландия.
- Леммон, Э.Дж. (совместно со Скоттом, Д. ) (1977) Введение в модальную логику , серия американских философских ежеквартальных монографий, вып. 11 (Кристер Сегерберг, ред. серии). Бэзил Блэквелл.
- Льюис, CI (с Лэнгфордом, CH ) (1932). Символическая логика . Репринт Дувра, 1959 год.
- Прайор, А.Н. (1957) Время и модальность . Издательство Оксфордского университета.
- Снайдер, Д. Пол «Модальная логика и ее приложения», Van Nostand Reinhold Company, 1971 (методы дерева доказательств).
- Земан, Дж. Дж. (1973) Модальная логика. Рейдель. Использует польскую нотацию .
- «История логики» , Britannica Online .
Дальнейшее чтение
[ редактировать ]- Рут Баркан Маркус, Модальности , Oxford University Press, 1993.
- Д.М. Габбай, А. Куруц, Ф. Вольтер и М. Захарьящев, Многомерная модальная логика: теория и приложения , Elsevier, Исследования по логике и основам математики, том 148, 2003 г., ISBN 0-444-50826-0 . [Охватывает многие разновидности модальной логики, например, временную, эпистемическую, динамическую, описательную, пространственную с единой точки зрения с акцентом на аспекты информатики, например, разрешимость и сложность.]
- Андреа Боргини, Критическое введение в метафизику модальности , Нью-Йорк: Bloomsbury, 2016.
Внешние ссылки
[ редактировать ]- Интернет-энциклопедия философии :
- « Модальная логика: современный взгляд » – Йохан ван Бентем .
- « Модальная логика Рудольфа Карнапа » – М. Дж. Крессвелл.
- Стэнфордская энциклопедия философии :
- « Модальная логика » — Джеймс Гарсон .
- « Современные истоки модальной логики » – Роберта Балларин.
- « Логика доказуемости » — Ринеке Вербрюгге .
- Эдвард Н. Залта , 1995, « Основные понятия модальной логики » .
- Джон Маккарти , 1996, « Модальная логика » .
- Molle — средство проверки Java для экспериментов с модальной логикой.
- Субер, Питер, 2002, « Библиография модальной логики » .
- Список логических систем Список многих модальных логик с источниками, составленный Джоном Халлеком.
- Достижения в модальной логике. Международная конференция, проводимая два раза в год, и серия книг по модальной логике.
- S4prover Табличное доказательство для логики S4.
- « Некоторые замечания по логике и топологии » – Ричард Мут; раскрывает топологическую семантику модальной логики S4.
- LoTREC Самый общий доказательный модуль модальной логики от IRIT/Тулузского университета.