Jump to content

Литий-ионный аккумулятор

(Перенаправлено с Литий-ионный )

Литий-ионный аккумулятор
Литий-ионный аккумулятор 3,6 В от Nokia 3310. мобильного телефона
Удельная энергия 100–265 Вт⋅ч/кг (360–950 кДж/кг) [1] [2]
Плотность энергии 250–693 Вт⋅ч/л (900–2490 Дж/см) 3 ) [3] [4]
Удельная мощность в. 250–340 Вт/кг [1]
Charge/discharge efficiency80–90%[5]
Energy/consumer-price7.6 Wh/US$ (US$132/kWh)[6]
Self-discharge rate0.35% to 2.5% per month depending on state of charge[7]
Cycle durability400–1,200 cycles[8]
Nominal cell voltage3.6 / 3.7 / 3.8 / 3.85 V, LiFePO4 3.2 V, Li4Ti5O12 2.3 V

Литий -ионный или литий-ионный аккумулятор — это тип перезаряжаемой батареи , в которой используется обратимая интеркаляция лития. + ионы в твердые тела с электронной проводимостью для хранения энергии. По сравнению с другими коммерческими аккумуляторами , литий-ионные аккумуляторы характеризуются более высокой удельной энергией , более высокой плотностью энергии , более высокой энергоэффективностью , более длительным циклическим и календарным сроком службы . Также следует отметить резкое улучшение свойств литий-ионных аккумуляторов после их появления на рынке в 1991 году: за следующие 30 лет их объемная плотность энергии увеличилась в три раза, а стоимость снизилась в десять раз. [9]

Существует как минимум 12 различных химических составов литий-ионных батарей; см. « Список типов батарей ».

Изобретение и коммерциализация литий-ионных аккумуляторов, возможно, оказали одно из величайших последствий среди всех технологий в истории человечества . [10] as recognized by the 2019 Nobel Prize in Chemistry.More specifically, Li-ion batteries enabled portable consumer electronics, laptop computers, cellular phones, and electric cars, or what has been called the e-mobility revolution.[11] Он также находит широкое применение в сетевых хранилищах энергии , а также в военных и аэрокосмических приложениях.

Lithium-ion cells can be manufactured to optimize energy or power density.[12] Handheld electronics mostly use lithium polymer batteries (with a polymer gel as an electrolyte), a lithium cobalt oxide (LiCoO
2
) cathode material, and a graphite anode, which together offer high energy density.[13][14] Lithium iron phosphate (LiFePO
4
), lithium manganese oxide (LiMn
2
O
4
spinel, or Li
2
MnO
3
-based lithium-rich layered materials, LMR-NMC), and lithium nickel manganese cobalt oxide (LiNiMnCoO
2
or NMC) may offer longer life and a higher discharge rate. NMC and its derivatives are widely used in the electrification of transport, one of the main technologies (combined with renewable energy) for reducing greenhouse gas emissions from vehicles.[15]

M. Stanley Whittingham conceived intercalation electrodes in the 1970s and created the first rechargeable lithium-ion battery, based on a titanium disulfide cathode and a lithium-aluminum anode, although it suffered from safety problems and was never commercialized.[16] John Goodenough expanded on this work in 1980 by using lithium cobalt oxide as a cathode.[17] The first prototype of the modern Li-ion battery, which uses a carbonaceous anode rather than lithium metal, was developed by Akira Yoshino in 1985 and commercialized by a Sony and Asahi Kasei team led by Yoshio Nishi in 1991.[18] M. Stanley Whittingham, John Goodenough, and Akira Yoshino were awarded the 2019 Nobel Prize in Chemistry for their contributions to the development of lithium-ion batteries.

Lithium-ion batteries can be a safety hazard if not properly engineered and manufactured because they have flammable electrolytes that, if damaged or incorrectly charged, can lead to explosions and fires. Much progress has been made in the development and manufacturing of safe lithium-ion batteries.[19] Lithium-ion solid-state batteries are being developed to eliminate the flammable electrolyte. Improperly recycled batteries can create toxic waste, especially from toxic metals, and are at risk of fire. Moreover, both lithium and other key strategic minerals used in batteries have significant issues at extraction, with lithium being water intensive in often arid regions and other minerals used in some Li-ion chemistries potentially being conflict minerals such as cobalt.[not verified in body] Both environmental issues have encouraged some researchers to improve mineral efficiency and find alternatives such as Lithium iron phosphate lithium-ion chemistries or non-lithium-based battery chemistries like iron-air batteries.

Research areas for lithium-ion batteries include extending lifetime, increasing energy density, improving safety, reducing cost, and increasing charging speed,[20][21] among others. Research has been under way in the area of non-flammable electrolytes as a pathway to increased safety based on the flammability and volatility of the organic solvents used in the typical electrolyte. Strategies include aqueous lithium-ion batteries, ceramic solid electrolytes, polymer electrolytes, ionic liquids, and heavily fluorinated systems.[22][23][24][25]

History

[edit]

Research on rechargeable Li-ion batteries dates to the 1960s; one of the earliest examples is a CuF
2
/Li battery developed by NASA in 1965. The breakthrough that produced the earliest form of the modern Li-ion battery was made by British chemist M. Stanley Whittingham in 1974, who first used titanium disulfide (TiS
2
) as a cathode material, which has a layered structure that can take in lithium ions without significant changes to its crystal structure. Exxon tried to commercialize this battery in the late 1970s, but found the synthesis expensive and complex, as TiS
2
is sensitive to moisture and releases toxic H
2
S
gas on contact with water. More prohibitively, the batteries were also prone to spontaneously catch fire due to the presence of metallic lithium in the cells. For this, and other reasons, Exxon discontinued the development of Whittingham's lithium-titanium disulfide battery.[26]

In 1980, working in separate groups Ned A. Godshall et al.,[27][28][29] and, shortly thereafter, Koichi Mizushima and John B. Goodenough, after testing a range of alternative materials, replaced TiS
2
with lithium cobalt oxide (LiCoO
2
, or LCO), which has a similar layered structure but offers a higher voltage and is much more stable in air. This material would later be used in the first commercial Li-ion battery, although it did not, on its own, resolve the persistent issue of flammability.[26]

These early attempts to develop rechargeable Li-ion batteries used lithium metal anodes, which were ultimately abandoned due to safety concerns, as lithium metal is unstable and prone to dendrite formation, which can cause short-circuiting. The eventual solution was to use an intercalation anode, similar to that used for the cathode, which prevents the formation of lithium metal during battery charging. A variety of anode materials were studied. In 1980, Rachid Yazami demonstrated reversible electrochemical intercalation of lithium in graphite,[30][31] a concept originally proposed by Jürgen Otto Besenhard in 1974 but considered unfeasible due to unresolved incompatibilities with the electrolytes then in use.[26][32][33] In fact, Yazami's work was itself limited to a solid electrolyte (polyethylene oxide), because liquid solvents tested by him and before co-intercalated with Li+ ions into graphite, causing the graphite to crumble.

In 1985, Akira Yoshino at Asahi Kasei Corporation discovered that petroleum coke, a less graphitized form of carbon, can reversibly intercalate Li-ions at a low potential of ~0.5 V relative to Li+ /Li without structural degradation.[34] Its structural stability originates from the amorphous carbon regions in petroleum coke serving as covalent joints to pin the layers together. Although the amorphous nature of petroleum coke limits capacity compared to graphite (~Li0.5C6, 0.186 Ah g–1), it became the first commercial intercalation anode for Li-ion batteries owing to its cycling stability.

in 1987, Akira Yoshino patented what would become the first commercial lithium-ion battery using an anode of "soft carbon" (a charcoal-like material) along with Goodenough's previously reported LiCoO2 cathode and a carbonate ester-based electrolyte. This battery is assembled in a discharged state, which makes its manufacturing safer and cheaper. In 1991, using Yoshino's design, Sony began producing and selling the world's first rechargeable lithium-ion batteries. The following year, a joint venture between Toshiba and Asashi Kasei Co. also released their lithium-ion battery.[26]

Significant improvements in energy density were achieved in the 1990s by replacing the soft carbon anode first with hard carbon and later with graphite. In 1990, Jeff Dahn and two colleagues at Dalhousie University (Canada) reported reversible intercalation of lithium ions into graphite in the presence of ethylene carbonate solvent (which is solid at room temperature and is mixed with other solvents to make a liquid), thus finding the final piece of the puzzle leading to the modern lithium-ion battery.[35]

In 2010, global lithium-ion battery production capacity was 20 gigawatt-hours.[36] By 2016, it was 28 GWh, with 16.4 GWh in China.[37] Global production capacity was 767 GWh in 2020, with China accounting for 75%.[38] Production in 2021 is estimated by various sources to be between 200 and 600 GWh, and predictions for 2023 range from 400 to 1,100 GWh.[39]

In 2012, John B. Goodenough, Rachid Yazami and Akira Yoshino received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the lithium-ion battery; Goodenough, Whittingham, and Yoshino were awarded the 2019 Nobel Prize in Chemistry "for the development of lithium-ion batteries".[40] Jeff Dahn received the ECS Battery Division Technology Award (2011) and the Yeager award from the International Battery Materials Association (2016).

In April 2023, CATL announced that it would begin scaled-up production of its semi-solid condensed matter battery that produces a then record 500 Wh/kg. They use electrodes made from a gelled material, requiring fewer binding agents. This in turn shortens the manufacturing cycle. One potential application is in battery-powered airplanes.[41][42][43] Another new development of lithium-ion batteries are flow batteries with redox-targeted solids,that use no binders or electron-conducting additives, and allow for completely independent scaling of energy and power.[44]

Design

[edit]
Cylindrical Panasonic 18650 lithium-ion cell before closing.
Lithium-ion battery monitoring electronics (over-charge and deep-discharge protection)
Left: AA alkaline battery. Right: 18650 lithium ion battery

Generally, the negative electrode of a conventional lithium-ion cell is graphite made from carbon. The positive electrode is typically a metal oxide or phosphate. The electrolyte is a lithium salt in an organic solvent.[45] The negative electrode (which is the anode when the cell is discharging) and the positive electrode (which is the cathode when discharging) are prevented from shorting by a separator.[46] The electrodes are connected to the powered circuit through two pieces of metal called current collectors.[47]

The negative and positive electrodes swap their electrochemical roles (anode and cathode) when the cell is charged. Despite this, in discussions of battery design the negative electrode of a rechargeable cell is often just called "the anode" and the positive electrode "the cathode".

In its fully lithiated state of LiC6, graphite correlates to a theoretical capacity of 1339 coulombs per gram (372 mAh/g).[48] The positive electrode is generally one of three materials: a layered oxide (such as lithium cobalt oxide), a polyanion (such as lithium iron phosphate) or a spinel (such as lithium manganese oxide).[49] More experimental materials include graphene-containing electrodes, although these remain far from commercially viable due to their high cost.[50]

Lithium reacts vigorously with water to form lithium hydroxide (LiOH) and hydrogen gas. Thus, a non-aqueous electrolyte is typically used, and a sealed container rigidly excludes moisture from the battery pack. The non-aqueous electrolyte is typically a mixture of organic carbonates such as ethylene carbonate and propylene carbonate containing complexes of lithium ions.[51] Ethylene carbonate is essential for making solid electrolyte interphase on the carbon anode,[52] but since it is solid at room temperature, a liquid solvent (such as propylene carbonate or diethyl carbonate) is added.

The electrolyte salt is almost always[citation needed] lithium hexafluorophosphate (LiPF
6
), which combines good ionic conductivity with chemical and electrochemical stability. The hexafluorophosphate anion is essential for passivating the aluminum current collector used for the positive electrode. A titanium tab is ultrasonically welded to the aluminum current collector.Other salts like lithium perchlorate (LiClO
4
), lithium tetrafluoroborate (LiBF
4
), and lithium bis(trifluoromethanesulfonyl)imide (LiC
2
F
6
NO
4
S
2
) are frequently used in research in tab-less coin cells, but are not usable in larger format cells,[53] often because they are not compatible with the aluminum current collector. Copper (with a spot-welded nickel tab) is used as the current collector at the negative electrode.

Current collector design and surface treatments may take various forms: foil, mesh, foam (dealloyed), etched (wholly or selectively), and coated (with various materials) to improve electrical characteristics.[47]

Depending on materials choices, the voltage, energy density, life, and safety of a lithium-ion cell can change dramatically. Current effort has been exploring the use of novel architectures using nanotechnology to improve performance. Areas of interest include nano-scale electrode materials and alternative electrode structures.[54]

Electrochemistry

[edit]

The reactants in the electrochemical reactions in a lithium-ion cell are the materials of the electrodes, both of which are compounds containing lithium atoms. Although many thousands of different materials have been investigated for use in lithium-ion batteries, only a very small number are commercially usable. All commercial Li-ion cells use intercalation compounds as active materials.[55] The negative electrode is usually graphite, although silicon is often mixed in to increase the capacity. The solvent is usually lithium hexafluorophosphate, dissolved in a mixture of organic carbonates. A number of different materials are used for the positive electrode, such as LiCoO2, LiFePO4, and lithium nickel manganese cobalt oxides.

During cell discharge the negative electrode is the anode and the positive electrode the cathode: electrons flow from the anode to the cathode through the external circuit. An oxidation half-reaction at the anode produces positively charged lithium ions and negatively charged electrons. The oxidation half-reaction may also produce uncharged material that remains at the anode. Lithium ions move through the electrolyte; electrons move through the external circuit toward the cathode where they recombine with the cathode material in a reduction half-reaction. The electrolyte provides a conductive medium for lithium ions but does not partake in the electrochemical reaction. The reactions during discharge lower the chemical potential of the cell, so discharging transfers energy from the cell to wherever the electric current dissipates its energy, mostly in the external circuit.

During charging these reactions and transports go in the opposite direction: electrons move from the positive electrode to the negative electrode through the external circuit. To charge the cell the external circuit has to provide electrical energy. This energy is then stored as chemical energy in the cell (with some loss, e. g., due to coulombic efficiency lower than 1).

Both electrodes allow lithium ions to move in and out of their structures with a process called insertion (intercalation) or extraction (deintercalation), respectively.

As the lithium ions "rock" back and forth between the two electrodes, these batteries are also known as "rocking-chair batteries" or "swing batteries" (a term given by some European industries).[56][57]

The following equations exemplify the chemistry (left to right: discharging, right to left: charging).

The negative electrode half-reaction for the graphite is[58][59]

The positive electrode half-reaction in the lithium-doped cobalt oxide substrate is

The full reaction being

The overall reaction has its limits. Overdischarging supersaturates lithium cobalt oxide, leading to the production of lithium oxide,[60] possibly by the following irreversible reaction:

Overcharging up to 5.2 volts leads to the synthesis of cobalt (IV) oxide, as evidenced by x-ray diffraction:[61]

The transition metal in the positive electrode, cobalt (Co), is reduced from Co4+
to Co3+
during discharge, and oxidized from Co3+
to Co4+
during charge.

The cell's energy is equal to the voltage times the charge. Each gram of lithium represents Faraday's constant/6.941, or 13,901 coulombs. At 3 V, this gives 41.7 kJ per gram of lithium, or 11.6 kWh per kilogram of lithium. This is a bit more than the heat of combustion of gasoline but does not consider the other materials that go into a lithium battery and that make lithium batteries many times heavier per unit of energy.

Note that the cell voltages involved in these reactions are larger than the potential at which an aqueous solutions would electrolyze.

Discharging and charging

[edit]

During discharge, lithium ions (Li+
) carry the current within the battery cell from the negative to the positive electrode, through the non-aqueous electrolyte and separator diaphragm.[62]

During charging, an external electrical power source applies an over-voltage (a voltage greater than the cell's own voltage) to the cell, forcing electrons to flow from the positive to the negative electrode. The lithium ions also migrate (through the electrolyte) from the positive to the negative electrode where they become embedded in the porous electrode material in a process known as intercalation.

Energy losses arising from electrical contact resistance at interfaces between electrode layers and at contacts with current collectors can be as high as 20% of the entire energy flow of batteries under typical operating conditions.[63]

The charging procedures for single Li-ion cells, and complete Li-ion batteries, are slightly different:

  • A single Li-ion cell is charged in two stages:[64][65]
  1. Constant current (CC)
  2. Constant voltage (CV)
  • A Li-ion battery (a set of Li-ion cells in series) is charged in three stages:
  1. Constant current
  2. Balance (only required when cell groups become unbalanced during use)
  3. Constant voltage

During the constant current phase, the charger applies a constant current to the battery at a steadily increasing voltage, until the top-of-charge voltage limit per cell is reached.

During the balance phase, the charger/battery reduces the charging current (or cycles the charging on and off to reduce the average current) while the state of charge of individual cells is brought to the same level by a balancing circuit until the battery is balanced. Balancing typically occurs whenever one or more cells reach their top-of-charge voltage before the other(s), as it is generally inaccurate to do so at other stages of the charge cycle. This is most commonly done by passive balancing, which dissipates excess charge via resistors connected momentarily across the cell(s) to be balanced. Active balancing is less common, more expensive, but more efficient, returning excess energy to other cells (or the entire pack) through the means of a DC-DC converter or other circuitry. Some fast chargers skip this stage. Some chargers accomplish the balance by charging each cell independently. This is often performed by the battery protection circuit/battery management system (BPC or BMS) and not the charger (which typically provides only the bulk charge current, and does not interact with the pack at the cell-group level), e.g., e-bike and hoverboard chargers. In this method, the BPC/BMS will request a lower charge current (such as EV batteries), or will shut-off the charging input (typical in portable electronics) through the use of transistor circuitry while balancing is in effect (to prevent over-charging cells). Balancing most often occurs during the constant voltage stage of charging, switching between charge modes until complete. The pack is usually fully charged only when balancing is complete, as even a single cell group lower in charge than the rest will limit the entire battery's usable capacity to that of its own. Balancing can last hours or even days, depending on the magnitude of the imbalance in the battery.

During the constant voltage phase, the charger applies a voltage equal to the maximum cell voltage times the number of cells in series to the battery, as the current gradually declines towards 0, until the current is below a set threshold of about 3% of initial constant charge current.

Periodic topping charge about once per 500 hours. Top charging is recommended to be initiated when voltage goes below 4.05 V/cell. [dubiousdiscuss]

Failure to follow current and voltage limitations can result in an explosion.[66][67]

Charging temperature limits for Li-ion are stricter than the operating limits. Lithium-ion chemistry performs well at elevated temperatures but prolonged exposure to heat reduces battery life. Li‑ion batteries offer good charging performance at cooler temperatures and may even allow "fast-charging" within a temperature range of 5 to 45 °C (41 to 113 °F).[68][better source needed] Charging should be performed within this temperature range. At temperatures from 0 to 5 °C charging is possible, but the charge current should be reduced. During a low-temperature (under 0 °C) charge, the slight temperature rise above ambient due to the internal cell resistance is beneficial. High temperatures during charging may lead to battery degradation and charging at temperatures above 45 °C will degrade battery performance, whereas at lower temperatures the internal resistance of the battery may increase, resulting in slower charging and thus longer charging times.[68][better source needed]

A lithium-ion battery from a laptop computer

Batteries gradually self-discharge even if not connected and delivering current. Li-ion rechargeable batteries have a self-discharge rate typically stated by manufacturers to be 1.5–2% per month.[69][70]

The rate increases with temperature and state of charge. A 2004 study found that for most cycling conditions self-discharge was primarily time-dependent; however, after several months of stand on open circuit or float charge, state-of-charge dependent losses became significant. The self-discharge rate did not increase monotonically with state-of-charge, but dropped somewhat at intermediate states of charge.[71] Self-discharge rates may increase as batteries age.[72] In 1999, self-discharge per month was measured at 8% at 21 °C, 15% at 40 °C, 31% at 60 °C.[73] By 2007, monthly self-discharge rate was estimated at 2% to 3%, and 2[7]–3% by 2016.[74]

By comparison, the self-discharge rate for NiMH batteries dropped, as of 2017, from up to 30% per month for previously common cells[75] to about 0.08–0.33% per month for low self-discharge NiMH batteries, and is about 10% per month in NiCd batteries.[citation needed]

Cathode

[edit]

There are three classes of commercial cathode materials in lithium-ion batteries: (1) layered oxides, (2) spinel oxides and (3) oxoanion complexes. All of them were discovered by John Goodenough and his collaborators.[76]

Layered Oxides

[edit]

LiCoO2 was used in the first commercial lithium-ion battery made by Sony in 1991. The layered oxides have a pseudo-tetrahedral structure comprising layers made of MO6 octahedra separated by interlayer spaces that allow for two-dimensional lithium-ion diffusion.[citation needed] The band structure of LixCoO2 allows for true electronic (rather than polaronic) conductivity. However, due to an overlap between the Co4+ t2g d-band with the O2- 2p-band, the x must be >0.5, otherwise O2 evolution occurs. This limits the charge capacity of this material to ~140 mA h g−1.[76]

Several other first-row (3d) transition metals form layered LiMO2 salts. Some of them can be directly prepared from lithium oxide and M2O3 (e.g. for M=Ti, V, Cr, Co, Ni), while others (M= Mn or Fe) can be prepared by ion exchange from NaMO2. LiVO2, LiMnO2 and LiFeO2 suffer from structural instabilities (including mixing between M and Li sites) due to a low energy difference between octahedral and tetrahedral environments for the metal ion M. For this reason, they are not used in lithium-ion batteries.[76] However, Na+ and Fe3+ have sufficiently different sizes that NaFeO2 can be used in sodium-ion batteries.[77]

Similarly, LiCrO2 shows reversible lithium (de)intercalation around 3.2 V with 170–270 mAh/g.[78] However, its cycle life is short, because of disproportionation of Cr4+ followed by translocation of Cr6+ into tetrahedral sites.[79] On the other hand, NaCrO2 shows a much better cycling stability.[80] LiTiO2 shows Li+ (de)intercalation at a voltage of ~1.5 V, which is too low for a cathode material.

These problems leave LiCoO
2
and LiNiO
2
as the only practical layered oxide materials for lithium-ion battery cathodes. The cobalt-based cathodes show high theoretical specific (per-mass) charge capacity, high volumetric capacity, low self-discharge, high discharge voltage, and good cycling performance. Unfortunately, they suffer from a high cost of the material.[81] For this reason, the current trend among lithium-ion battery manufacturers is to switch to cathodes with higher Ni content and lower Co content.[82]

In addition to a lower (than cobalt) cost, nickel-oxide based materials benefit from the two-electron redox chemistry of Ni: in layered oxides comprising nickel (such as nickel-cobalt-manganese NCM and nickel-cobalt-aluminium oxides NCA), Ni cycles between the oxidation states +2 and +4 (in one step between +3.5 and +4.3 V),[83][76] cobalt- between +2 and +3, while Mn (usually >20%) and Al (typically, only 5% is needed)[84] remain in +4 and 3+, respectively. Thus increasing the Ni content increases the cyclable charge. For example, NCM111 shows 160 mAh/g, while LiNi0.8Co0.1Mn0.1O2 (NCM811) and LiNi0.8Co0.15Al0.05O2 (NCA) deliver a higher capacity of ~200 mAh/g.[85]

It is worth mentioning so-called "lithium-rich" cathodes, that can be produced from traditional NCM (LiMO2, where M=Ni, Co, Mn) layered cathode materials upon cycling them to voltages/charges corresponding to Li:M<0.5. Under such conditions a new semi-reversible redox transition at a higher voltage with ca. 0.4-0.8 electrons/metal site charge appears. This transition involves non-binding electron orbitals centered mostly on O atoms. Despite significant initial interest, this phenomenon did not result in marketable products because of the fast structural degradation (O2 evolution and lattice rearrangements) of such "lithium-rich" phases.[86]

Cubic oxides (spinels)

[edit]

LiMn2O4 adopts a cubic lattice, which allows for three-dimensional lithium-ion diffusion.[87] Manganese cathodes are attractive because manganese is less expensive than cobalt or nickel. The operating voltage of Li-LiMn2O4 battery is 4 V, and ca. one lithium per two Mn ions can be reversibly extracted from the tetrahedral sites, resulting in a practical capacity of <130 mA h g–1. However, Mn3+ is not a stable oxidation state, as it tends to disporportionate into insoluble Mn4+ and soluble Mn2+.[81][88] LiMn2O4 can also intercalate more than 0.5 Li per Mn at a lower voltage around +3.0 V. However, this results in an irreversible phase transition due to Jahn-Teller distortion in Mn3+:t2g3eg1, as well as disproportionation and dissolution of Mn3+.

An important improvement of Mn spinel are related cubic structures of the LiMn1.5Ni0.5O4 type, where Mn exists as Mn4+ and Ni cycles reversibly between the oxidation states +2 and +4.[76] This materials show a reversible Li-ion capacity of ca. 135 mAh/g around 4.7 V. Although such high voltage is beneficial for increasing the specific energy of batteries, the adoption of such materials is currently hindered by the lack of suitable high-voltage electrolytes.[89] In general, materials with a high nickel content are favored in 2023, because of the possibility of a 2-electron cycling of Ni between the oxidation states +2 and +4.

LiV2O4 (lithium vanadium oxide) operates as a lower (ca. +3.0 V) voltage than LiMn2O4, suffers from similar durability issues, is more expensive, and thus is not considered of practical interest.[90]

Oxoanionic/olivins

[edit]

Around 1980 Manthiram discovered, that oxoanions (molybdates and tungstates in that particular case) cause a substantial positive shift in the redox potential of the metal-ion compared to oxides.[91] In addition, these oxoanionic cathode materials offer better stability/safety than the corresponding oxides. On the other hand, unlike the aforementioned oxides, oxoanionic cathodes suffer from poor electronic conductivity, which stems primarily from a long distance between redox-active metal centers, which slows down the electron transport. This necessitates the use of small (<200 nm) cathode particles and coatng each particle with a layer of electroncally-conducting carbon to overcome its low electrical conductivity.[92] This further reduces the packing density of these materials.

Although numerous oxoanions (sulfate, phosphate, silicate) / metal (Mn, Fe, Co, Ni) cation combinations have been studied since, LiFePO4 is the only one, that reached the market. As of 2023, LiFePO
4
is the primary candidate for large-scale use of lithium-ion batteries for stationary energy storage (rather than electric vehicles) due to its low cost, excellent safety, and high cycle durability. For example, Sony Fortelion batteries have retained 74% of their capacity after 8000 cycles with 100% discharge.[93]

Positive electrode
TechnologyCompanyTarget applicationBenefit
Lithium nickel manganese cobalt oxide
NMC, LiNixMnyCozO2
Imara Corporation, Nissan Motor,[94][95] Microvast Inc., LG Chem,[96] Northvolt[97]Electric vehicles, power tools, grid energy storageGood specific energy and specific power density
Lithium nickel cobalt aluminium oxide
NCA, LiNiCoAlO2
Panasonic,[96] Saft Groupe S.A.[98] Samsung[99]Electric vehicles, power tools, grid energy storageHigh specific energy, good life span
Lithium nickel cobalt manganese aluminum oxide
NCMA, LiNi
0.89
Co
0.05
Mn
0.05
Al
0.01
O
2
LG Chem,[100] Hanyang University[101]Electric vehicles, grid energy storageGood specific energy, improved long-term cycling stability, faster charging
Lithium manganese oxide
LMO, LiMn2O4
LG Chem,[102] NEC, Samsung,[103] Hitachi,[104] Nissan/AESC,[105] EnerDel[106]Hybrid electric vehicle, cell phone, laptop
Lithium iron phosphate
LFP, LiFePO4
University of Texas/Hydro-Québec,[107] Phostech Lithium Inc., Valence Technology, A123Systems/MIT[108][109]Electric vehicles, Segway Personal Transporter, power tools, aviation products, automotive hybrid systems, PHEV conversionsmoderate density (2 A·h outputs 70 amperes) High safety compared to Cobalt / Manganese systems. Operating temperature >60 °C (140 °F)
Lithium cobalt oxide
LCO, LiCoO2
Sony first commercial production[110][111]Broad use, laptopHigh specific energy

Anode

[edit]

Negative electrode materials are traditionally constructed from graphite and other carbon materials, although newer silicon-based materials are being increasingly used (see Nanowire battery). In 2016, 89% of lithium-ion batteries contained graphite (43% artificial and 46% natural), 7% contained amorphous carbon (either soft carbon or hard carbon), 2% contained lithium titanate (LTO) and 2% contained silicon or tin-based materials.[112]

These materials are used because they are abundant, electrically conducting and can intercalate lithium ions to store electrical charge with modest volume expansion (~10%).[113] Graphite is the dominant material because of its low intercalation voltage and excellent performance. Various alternative materials with higher capacities have been proposed, but they usually have higher voltages, which reduces energy density.[114] Low voltage is the key requirement for anodes; otherwise, the excess capacity is useless in terms of energy density.

Negative electrode
TechnologyEnergy densityDurabilityCompanyTarget applicationComments
Graphite260 Wh/kgTeslaThe dominant negative electrode material used in lithium-ion batteries, limited to a capacity of 372 mAh/g.[48]Low cost and good energy density. Graphite anodes can accommodate one lithium atom for every six carbon atoms. Charging rate is governed by the shape of the long, thin graphene sheets that constitute graphite. While charging, the lithium ions must travel to the outer edges of the graphene sheet before coming to rest (intercalating) between the sheets. The circuitous route takes so long that they encounter congestion around those edges.[115]
Lithium titanate
LTO, Li4Ti5O12
Toshiba, AltairnanoAutomotive (Phoenix Motorcars), electrical grid (PJM Interconnection Regional Transmission Organization control area,[116] United States Department of Defense[117]), bus (Proterra)Improved output, charging time, durability (safety, operating temperature −50–70 °C (−58–158 °F)).[118]
Hard carbonEnerg2[119]Home electronicsGreater storage capacity.
Tin/cobalt alloySonyConsumer electronics (Sony Nexelion battery)Larger capacity than a cell with graphite (3.5 Ah 18650-type cell).
Silicon/carbon730 Wh/L
450 Wh/kg
Amprius[120]Smartphones, providing 5000 mAh capacityUses < 10% with silicon nanowires combined with graphite and binders. Energy density: ~74 mAh/g.

Another approach used carbon-coated 15 nm thick crystal silicon flakes. The tested half-cell achieved 1200 mAh/g over 800 cycles.[121]

As graphite is limited to a maximum capacity of 372 mAh/g[48] much research has been dedicated to the development of materials that exhibit higher theoretical capacities and overcoming the technical challenges that presently encumber their implementation. The extensive 2007 Review Article by Kasavajjula et al.[122]summarizes early research on silicon-based anodes for lithium-ion secondary cells. In particular, Hong Li et al.[123] showed in 2000 that the electrochemical insertion of lithium ions in silicon nanoparticles and silicon nanowires leads to the formation of an amorphous Li-Si alloy. The same year, Bo Gao and his doctoral advisor, Professor Otto Zhou described the cycling of electrochemical cells with anodes comprising silicon nanowires, with a reversible capacity ranging from at least approximately 900 to 1500 mAh/g.[124]

Diamond-like carbon coatings can increase retention capacity by 40% and cycle life by 400% for lithium based batteries.[125]

To improve the stability of the lithium anode, several approaches to installing a protective layer have been suggested.[126] Silicon is beginning to be looked at as an anode material because it can accommodate significantly more lithium ions, storing up to 10 times the electric charge, however this alloying between lithium and silicon results in significant volume expansion (ca. 400%),[113] which causes catastrophic failure for the cell.[127] Silicon has been used as an anode material but the insertion and extraction of can create cracks in the material. These cracks expose the Si surface to an electrolyte, causing decomposition and the formation of a solid electrolyte interphase (SEI) on the new Si surface (crumpled graphene encapsulated Si nanoparticles). This SEI will continue to grow thicker, deplete the available , and degrade the capacity and cycling stability of the anode.

In addition to carbon- and silicon- based anode materials for lithium-ion batteries, high-entropy metal oxide materials are being developed. These conversion (rather than intercalation) materials comprise an alloy (or subnanometer mixed phases) of several metal oxides performing different functions. For example, Zn and Co can act as electroactive charge-storing species, Cu can provide an electronically conducting support phase and MgO can prevent pulverization.[128]

Electrolyte

[edit]

Liquid electrolytes in lithium-ion batteries consist of lithium salts, such as LiPF
6
, LiBF
4
or LiClO
4
in an organic solvent, such as ethylene carbonate, dimethyl carbonate, and diethyl carbonate.[129] A liquid electrolyte acts as a conductive pathway for the movement of cations passing from the negative to the positive electrodes during discharge. Typical conductivities of liquid electrolyte at room temperature (20 °C (68 °F)) are in the range of 10 mS/cm, increasing by approximately 30–40% at 40 °C (104 °F) and decreasing slightly at 0 °C (32 °F).[130] The combination of linear and cyclic carbonates (e.g., ethylene carbonate (EC) and dimethyl carbonate (DMC)) offers high conductivity and solid electrolyte interphase (SEI)-forming ability. Organic solvents easily decompose on the negative electrodes during charge. When appropriate organic solvents are used as the electrolyte, the solvent decomposes on initial charging and forms a solid layer called the solid electrolyte interphase,[131] which is electrically insulating, yet provides significant ionic conductivity. The interphase prevents further decomposition of the electrolyte after the second charge. For example, ethylene carbonate is decomposed at a relatively high voltage, 0.7 V vs. lithium, and forms a dense and stable interface.[132] Composite electrolytes based on POE (poly(oxyethylene)) provide a relatively stable interface.[133][134] It can be either solid (high molecular weight) and be applied in dry Li-polymer cells, or liquid (low molecular weight) and be applied in regular Li-ion cells. Room-temperature ionic liquids (RTILs) are another approach to limiting the flammability and volatility of organic electrolytes.[135]

Recent advances in battery technology involve using a solid as the electrolyte material. The most promising of these are ceramics.[136] Solid ceramic electrolytes are mostly lithium metal oxides, which allow lithium-ion transport through the solid more readily due to the intrinsic lithium. The main benefit of solid electrolytes is that there is no risk of leaks, which is a serious safety issue for batteries with liquid electrolytes.[137] Solid ceramic electrolytes can be further broken down into two main categories: ceramic and glassy. Ceramic solid electrolytes are highly ordered compounds with crystal structures that usually have ion transport channels.[138] Common ceramic electrolytes are lithium super ion conductors (LISICON) and perovskites. Glassy solid electrolytes are amorphous atomic structures made up of similar elements to ceramic solid electrolytes but have higher conductivities overall due to higher conductivity at grain boundaries.[139] Both glassy and ceramic electrolytes can be made more ionically conductive by substituting sulfur for oxygen. The larger radius of sulfur and its higher ability to be polarized allow higher conductivity of lithium. This contributes to conductivities of solid electrolytes are nearing parity with their liquid counterparts, with most on the order of 0.1 mS/cm and the best at 10 mS/cm.[140] An efficient and economic way to tune targeted electrolytes properties is by adding a third component in small concentrations, known as an additive.[141] By adding the additive in small amounts, the bulk properties of the electrolyte system will not be affected whilst the targeted property can be significantly improved. The numerous additives that have been tested can be divided into the following three distinct categories: (1) those used for SEI chemistry modifications; (2) those used for enhancing the ion conduction properties; (3) those used for improving the safety of the cell (e.g. prevent overcharging).[citation needed]

Electrolyte alternatives have also played a significant role, for example the lithium polymer battery. Polymer electrolytes are promising for minimizing the dendrite formation of lithium. Polymers are supposed to prevent short circuits and maintain conductivity.[126]

The ions in the electrolyte diffuse because there are small changes in the electrolyte concentration. Linear diffusion is only considered here. The change in concentration c, as a function of time t and distance x, is

In this equation, D is the diffusion coefficient for the lithium ion. It has a value of 7.5×10−10 m2/s in the LiPF
6
electrolyte. The value for ε, the porosity of the electrolyte, is 0.724.[142]

Formats

[edit]
Nissan Leaf's lithium-ion battery pack

Lithium-ion batteries may have multiple levels of structure. Small batteries consist of a single battery cell. Larger batteries connect cells in parallel into a module and connect modules in series and parallel into a pack. Multiple packs may be connected in series to increase the voltage.[143]

Cells

[edit]

Li-ion cells are available in various form factors, which can generally be divided into four types:[144]

  • Small cylindrical (solid body without terminals, such as those used in most e-bikes and most electric vehicle battery and older laptop batteries); they typically come in standard sizes.
  • Large cylindrical (solid body with large threaded terminals)
  • Flat or pouch (soft, flat body, such as those used in cell phones and newer laptops; these are lithium-ion polymer batteries.[145]
  • Rigid plastic case with large threaded terminals (such as electric vehicle traction packs)

Cells with a cylindrical shape are made in a characteristic "swiss roll" manner (known as a "jelly roll" in the US), which means it is a single long "sandwich" of the positive electrode, separator, negative electrode, and separator rolled into a single spool. The result is encased in a container. One advantage of cylindrical cells is faster production speed. One disadvantage can be a large radial temperature gradient at high discharge rates.

The absence of a case gives pouch cells the highest gravimetric energy density; however, many applications require containment to prevent expansion when their state of charge (SOC) level is high,[146] and for general structural stability. Both rigid plastic and pouch-style cells are sometimes referred to as prismatic cells due to their rectangular shapes.[147] Three basic battery types are used in 2020s-era electric vehicles: cylindrical cells (e.g., Tesla), prismatic pouch (e.g., from LG), and prismatic can cells (e.g., from LG, Samsung, Panasonic, and others).[14]

Lithium-ion flow batteries have been demonstrated that suspend the cathode or anode material in an aqueous or organic solution.[148][149]

As of 2014, the smallest Li-ion cell was pin-shaped with a diameter of 3.5 mm and a weight of 0.6 g, made by Panasonic.[150] A coin cell form factor is available for LiCoO2 cells, usually designated with a "LiR" prefix.[151][152]

Batteries may be equipped with temperature sensors, heating/cooling systems, voltage regulator circuits, voltage taps, and charge-state monitors. These components address safety risks like overheating and short circuiting.[153]

Uses

[edit]

Lithium ion batteries are used in a multitude of applications from consumer electronics, toys, power tools and electric vehicles.[154]

More niche uses include backup power in telecommunications applications. Lithium-ion batteries are also frequently discussed as a potential option for grid energy storage,[155] although as of 2020, they were not yet cost-competitive at scale.[156]

Performance

[edit]
Specific energy density100 to 250 W·h/kg (360 to 900 kJ/kg)[157]
Volumetric energy density250 to 680 W·h/L (900 to 2230 J/cm3)[2][158]
Specific power density300 to 1500 W/kg (at 20 seconds and 285 W·h/L)[1][failed verification]

Because lithium-ion batteries can have a variety of positive and negative electrode materials, the energy density and voltage vary accordingly.

The open-circuit voltage is higher than in aqueous batteries (such as lead–acid, nickel–metal hydride and nickel–cadmium).[159][failed verification] Internal resistance increases with both cycling and age,[160] although this depends strongly on the voltage and temperature the batteries are stored at.[161] Rising internal resistance causes the voltage at the terminals to drop under load, which reduces the maximum current draw. Eventually, increasing resistance will leave the battery in a state such that it can no longer support the normal discharge currents requested of it without unacceptable voltage drop or overheating.

Batteries with a lithium iron phosphate positive and graphite negative electrodes have a nominal open-circuit voltage of 3.2 V and a typical charging voltage of 3.6 V. Lithium nickel manganese cobalt (NMC) oxide positives with graphite negatives have a 3.7 V nominal voltage with a 4.2 V maximum while charging. The charging procedure is performed at constant voltage with current-limiting circuitry (i.e., charging with constant current until a voltage of 4.2 V is reached in the cell and continuing with a constant voltage applied until the current drops close to zero). Typically, the charge is terminated at 3% of the initial charge current. In the past, lithium-ion batteries could not be fast-charged and needed at least two hours to fully charge. Current-generation cells can be fully charged in 45 minutes or less. In 2015 researchers demonstrated a small 600 mAh capacity battery charged to 68 percent capacity in two minutes and a 3,000 mAh battery charged to 48 percent capacity in five minutes. The latter battery has an energy density of 620 W·h/L. The device employed heteroatoms bonded to graphite molecules in the anode.[162] Recent advancements show that single-walled carbon nanotubes (SWCNTs) enhance the mechanical strength, electrical connectivity, and capacity retention of the electrodes, maintaining active particles' electrical and electrochemical activity during cycles. This also results in a shorter charging time for a silicon anode battery with SWCNTs, with the time needed falling to less than 15 minutes to charge from 10% to 90% capacity. [163] [164] [165]

Performance of manufactured batteries has improved over time. For example, from 1991 to 2005 the energy capacity per price of lithium-ion batteries improved more than ten-fold, from 0.3 W·h per dollar to over 3 W·h per dollar.[166] In the period from 2011 to 2017, progress has averaged 7.5% annually.[167] Overall, between 1991 and 2018, prices for all types of lithium-ion cells (in dollars per kWh) fell approximately 97%.[168] Over the same time period, energy density more than tripled.[168]Efforts to increase energy density contributed significantly to cost reduction.[169] Energy density can also be increased by improvements in the chemistry if the cell, for instance, by full or partial replacement of graphite with silicon. Silicon anodes enhanced with graphene nanotubes to eliminate the premature degradation of silicon open the door to reaching record-breaking battery energy density of up to 350 Wh/kg and lowering EV prices to be competitive with ICEs.[170]

Differently sized cells with similar chemistry can also have different energy densities. The 21700 cell has 50% more energy than the 18650 cell, and the bigger size reduces heat transfer to its surroundings.[158]

Round-trip efficiency

[edit]

The table below shows the result of an experimental evaluation of a "high-energy" type 3.0 Ah 18650 NMC cell in 2021, round-trip efficiency which compared the energy going into the cell and energy extracted from the cell from 100% (4.2v) SoC to 0% SoC (cut off 2.0v). A roundtrip efficiency is the percent of energy that can be used relative to the energy that went into charging the battery.[171]

C rateefficiencyestimated charge efficiencyestimated discharged efficiency
0.286%93%92%
0.482%92%90%
0.681%91%89%
0.877%90%86%
1.075%89%85%
1.273%89%83%

Characterization of a cell in a different experiment in 2017 reported round-trip efficiency of 85.5% at 2C and 97.6% at 0.1C[172]

Lifespan

[edit]

The lifespan of a lithium-ion battery is typically defined as the number of full charge-discharge cycles to reach a failure threshold in terms of capacity loss or impedance rise. Manufacturers' datasheet typically uses the word "cycle life" to specify lifespan in terms of the number of cycles to reach 80% of the rated battery capacity.[173] Simply storing lithium-ion batteries in the charged state also reduces their capacity (the amount of cyclable Li+) and increases the cell resistance (primarily due to the continuous growth of the solid electrolyte interface on the anode). Calendar life is used to represent the whole life cycle of battery involving both the cycle and inactive storage operations. Battery cycle life is affected by many different stress factors including temperature, discharge current, charge current, and state of charge ranges (depth of discharge).[174][175] Batteries are not fully charged and discharged in real applications such as smartphones, laptops and electric cars and hence defining battery life via full discharge cycles can be misleading. To avoid this confusion, researchers sometimes use cumulative discharge[174] определяется как общий объем заряда (Ач), доставленный аккумулятором в течение всего срока его службы или эквивалентных полных циклов, [175] который представляет собой сумму частичных циклов как частей полного цикла зарядки-разрядки. На деградацию аккумулятора во время хранения влияют температура и уровень заряда аккумулятора (SOC), а сочетание полного заряда (100% SOC) и высокой температуры (обычно > 50 °C) может привести к резкому падению емкости и выделению газа. [176] Multiplying the battery cumulative discharge by the rated nominal voltage gives the total energy delivered over the life of the battery. From this one can calculate the cost per kWh of the energy (including the cost of charging).

В течение срока службы батареи постепенно деградируют, что приводит к снижению емкости (а в некоторых случаях к снижению рабочего напряжения элементов) из-за различных химических и механических изменений в электродах. [177]

В литий-ионных батареях происходит несколько процессов деградации: некоторые во время езды на велосипеде, некоторые во время хранения, а некоторые постоянно: [178] [179] [177] Деградация сильно зависит от температуры: деградация при комнатной температуре минимальна, но увеличивается для батарей, хранящихся или используемых в условиях высокой температуры (обычно > 35 °C) или низкой температуры (обычно < 5 °C). [180] Высокий уровень заряда также ускоряет потерю емкости . [181] Частая чрезмерная зарядка (> 90 %) и чрезмерная разрядка (< 10 %) также могут ускорить потерю емкости .

В ходе исследования ученые предоставили 3D-изображения и анализ моделей, чтобы выявить основные причины, механизмы и потенциальные способы смягчения проблемной деградации батарей в течение циклов зарядки . Они обнаружили, что «увеличение растрескивания частиц и потеря контакта между частицами и доменом углеродной связи коррелируют с деградацией клеток» и указывают на то, что «неоднородность реакции внутри толстого катода, вызванная несбалансированной электронной проводимостью, является основной причиной деградация батареи при езде на велосипеде». [182] [183] [ необходимы дополнительные ссылки ]

Наиболее распространенные механизмы деградации литий-ионных аккумуляторов включают в себя: [184]

  1. Восстановление органического карбонатного электролита на аноде, что приводит к увеличению границы раздела твердых электролитов (SEI), где Что + ионы необратимо захватываются, т.е. теряются запасы лития. Это проявляется в увеличении омического сопротивления и уменьшении заряда Ач. При постоянной температуре толщина пленки SEI (и, следовательно, устойчивость SEI и потеря цикличности Что + ) увеличивается как квадратный корень из времени, проведенного в заряженном состоянии. Количество циклов не является полезным показателем для характеристики этого пути разложения. При высоких температурах или при наличии механических повреждений восстановление электролита может протекать взрывно.
  2. Металлическое литиевое покрытие также приводит к потере запасов лития (циклический заряд Ач), а также к внутреннему короткому замыканию и возгоранию батареи. Когда во время цикла начинается нанесение литиевого покрытия, это приводит к увеличению наклона потери емкости за цикл и увеличению сопротивления за цикл. Этот механизм деградации становится более заметным во время быстрой зарядки и низких температур.
  3. Потеря (отрицательных или положительных) электроактивных материалов из-за растворения (например, Мин. 3+ виды), растрескивание, шелушение, отслоение или даже простое регулярное изменение объема во время езды на велосипеде. Это проявляется как снижение заряда и мощности (повышенное сопротивление). Материалы как положительных, так и отрицательных электродов подвержены разрушению из-за объемной деформации повторяющихся циклов (де)литиирования.
  4. Структурная деградация катодных материалов, таких как Что + 2+ катионное смешение в богатых никелем материалах. Это проявляется как «насыщение электрода», потеря циклируемого заряда Ач и как «снижение напряжения».
  5. Прочие материальные разрушения. Отрицательный медный токоотвод особенно склонен к коррозии/растворению при низком напряжении элемента. Связующее ПВДФ также разлагается, вызывая отслоение электроактивных материалов и потерю циклируемого заряда Ач.
Обзор взаимосвязи между факторами эксплуатационного стресса (причинами деградации), соответствующими механизмами старения, режимом старения и их влиянием на старение литий-ионных аккумуляторов.

Они показаны на рисунке справа. Переход от одного основного механизма деградации к другому проявляется в виде перегиба (изменения наклона) на графике зависимости производительности от числа циклов. [184]

Большинство исследований старения литий-ионных аккумуляторов проводились при повышенных (50–60 °C) температурах, чтобы быстрее завершить эксперименты. При таких условиях хранения полностью заряженные никель-кобальт-алюминиевые и литий-железофосфатные элементы теряют ок. 20% от их циклического заряда за 1–2 года. Считается, что вышеупомянутое старение анода является наиболее важным путем деградации в этих случаях. С другой стороны, катоды на основе марганца в этих условиях демонстрируют более быструю деградацию (около 20–50%), что, вероятно, связано с дополнительным механизмом растворения ионов Mn. [179] При 25 °C деградация литий-ионных батарей, по-видимому, идет по тому же пути, что и деградация при 50 °C, но с вдвое меньшей скоростью. [179] Другими словами, исходя из ограниченных экстраполированных экспериментальных данных, ожидается, что литий-ионные батареи безвозвратно потеряют ок. 20% заряда, который можно использовать в цикле, за 3–5 лет или 1000–2000 циклов при 25 °C. [184] Литий-ионные батареи с титанатными анодами не страдают от роста SEI и служат дольше (>5000 циклов), чем графитовые аноды. Однако в полных клетках другие механизмы деградации (т.е. растворение Мин. 3+ и В 2+ / Что + обмен местами, разложение связующего ПВДФ и отслоение частиц) проявляются через 1000–2000 дней, а использование титанатного анода на практике не улучшает полную долговечность элемента.

Подробное описание деградации

[ редактировать ]

Более подробное описание некоторых из этих механизмов представлено ниже:

  1. Отрицательный (анодный) слой SEI, пассивирующее покрытие, образованное продуктами восстановления электролита (например, этиленкарбоната , диметилкарбоната , но не пропиленкарбоната ), необходим для обеспечения Li + ионная проводимость, предотвращая при этом перенос электронов (и, следовательно, дальнейшее восстановление растворителя). В типичных условиях эксплуатации отрицательный слой SEI достигает фиксированной толщины после первых нескольких зарядов (циклов формирования), что позволяет устройству работать годами. Однако при повышенных температурах или из-за механического отделения отрицательного SEI это экзотермическое восстановление электролита может протекать бурно и привести к взрыву в результате нескольких реакций. [178] Литий-ионные аккумуляторы склонны к снижению емкости в течение сотен [185] до тысяч циклов. При формировании SEI расходуются ионы лития, что снижает общую эффективность заряда и разряда материала электрода. [186] В качестве продукта разложения в электролит можно добавлять различные добавки, образующие SEI, чтобы способствовать образованию более стабильного SEI, который остается селективным для прохождения ионов лития, блокируя при этом электроны. [187] Циклическая работа элементов при высокой температуре или на высоких скоростях может способствовать деградации литий-ионных батарей, отчасти из-за деградации SEI или литиевого покрытия. [188] Зарядка литий-ионных аккумуляторов выше 80% может значительно ускорить деградацию аккумулятора. [189] [190] [191] [192]

    В зависимости от электролита и присадок, [193] Обычные компоненты слоя SEI, который образуется на аноде, включают смесь оксида лития, фторида лития и семикарбонатов (например, алкилкарбонатов лития). При повышенных температурах алкилкарбонаты в электролите разлагаются на нерастворимые соединения, такие как Li.
    2
    СО
    3
    , что увеличивает толщину пленки. Это увеличивает импеданс ячейки и уменьшает циклическую емкость. [180] Газы, образующиеся при разложении электролита, могут увеличивать внутреннее давление элемента и представлять собой потенциальную угрозу безопасности в сложных условиях, таких как мобильные устройства. [178] При температуре ниже 25 °C нанесение металлического лития на аноды и последующая реакция с электролитом приводят к потере пригодного к циклированию лития. [180] Длительное хранение может вызвать постепенное увеличение толщины пленки и потерю емкости. [178] Зарядка при напряжении более 4,2 В может инициировать Li + нанесение покрытия на анод, вызывающее необратимую потерю емкости.

    Механизмы разложения электролитов включают гидролиз и термическое разложение. [178] При таких низких концентрациях, как 10 частей на миллион, вода начинает катализировать ряд продуктов разложения, которые могут повлиять на электролит, анод и катод. [178] ЛиПФ
    6
    участвует в равновесной реакции с LiF и PF
    5
    . В типичных условиях равновесие лежит далеко влево. Однако присутствие воды приводит к образованию значительного количества LiF, нерастворимого электроизолирующего продукта. LiF связывается с поверхностью анода, увеличивая толщину пленки. [178] ЛиПФ
    6
    гидролиз дает PF
    5
    , сильная кислота Льюиса , которая реагирует с веществами, богатыми электронами, такими как вода. ПФ
    5
    реагирует с водой с образованием плавиковой кислоты (HF) и оксифторида фосфора . Оксифторид фосфора, в свою очередь, реагирует с образованием дополнительного HF и дифторгидроксифосфорной кислоты . HF превращает жесткую пленку SEI в хрупкую. На катоде карбонатный растворитель со временем может диффундировать к катодному оксиду, выделяя тепло и потенциально вызывая термический разгон. [178] Разложение солей электролита и взаимодействие между солями и растворителем начинаются уже при 70 °C. Значительное разложение происходит при более высоких температурах. При 85 °C продукты переэтерификации , такие как диметил-2,5-диоксагексанкарбоксилат (DMDOHC), образуются в результате реакции EC с DMC. [178]

    Аккумуляторы выделяют тепло при зарядке или разрядке, особенно при больших токах. Большие аккумуляторные блоки, например, используемые в электромобилях, обычно оснащены системами терморегулирования, которые поддерживают температуру от 15 °C (59 °F) до 35 °C (95 °F). [194] Температура чехла и цилиндрической ячейки линейно зависит от тока разряда. [195] Плохая внутренняя вентиляция может привести к повышению температуры. Для больших батарей, состоящих из нескольких ячеек, неравномерная температура может привести к неравномерной и ускоренной деградации. [196] Напротив, календарная жизнь LiFePO
    4
    ячейки не подвержены воздействию состояний с высоким зарядом. [197] [198]

    Положительный слой SEI в литий-ионных батареях изучен гораздо меньше, чем отрицательный SEI. Считается, что он обладает низкой ионной проводимостью и проявляется в увеличении межфазного сопротивления катода при циклическом и календарном старении. [178] [179] [177]
  2. Литиевое покрытие — это явление, при котором определенные условия приводят к образованию и отложению металлического лития на поверхности анода батареи, а не к его внедрению в структуру анодного материала. Низкие температуры, перезарядка и высокая скорость зарядки могут усугубить это явление. [199] [200] В этих условиях ионы лития могут неравномерно интеркалироваться в материал анода и образовывать на поверхности слои ионов лития в виде дендритов . Дендриты представляют собой крошечные игольчатые структуры, которые могут накапливаться и пробивать сепаратор, в результате чего короткое замыкание может привести к выходу из-под контроля температуры . [178] Этот каскад быстрой и неконтролируемой энергии может привести к вздутию батареи, повышенному нагреву, возгоранию и/или взрывам. [201] Кроме того, этот дендритный рост может привести к побочным реакциям с электролитом и превратить свежий литий в электрохимически инертный мертвый литий. [199] Более того, рост дендритов, вызванный литиевым покрытием, может ухудшить литий-ионную батарею и привести к снижению эффективности цикла и угроз безопасности. Некоторые способы смягчения литиевого покрытия и роста дендритов заключаются в контроле температуры, оптимизации условий зарядки и улучшении используемых материалов. [202] Что касается температуры, идеальная температура зарядки находится в диапазоне от 0 °C до 45 °C, но идеальна и комнатная температура (от 20 °C до 25 °C). [203] Достижения в области инновационных материалов требуют большого количества исследований и разработок в области выбора электролита и повышения стойкости анода к гальваническому покрытию. Одним из таких инновационных материалов могло бы стать добавление в электролит других соединений, таких как фторэтиленкарбонат (FEC), для образования богатого LiF SEI. [204] Другой новый метод — покрыть сепаратор защитным экраном, который по существу «убивает» ионы лития, прежде чем он сможет сформировать эти дендриты. [205]
  3. Некоторые катоды, содержащие марганец, могут разлагаться по механизму разложения Хантера, что приводит к растворению и восстановлению марганца на аноде. [178] По механизму Хантера для LiMn
    2

    4
    , плавиковая кислота катализирует потерю марганца посредством диспропорционирования поверхностного трехвалентного марганца с образованием четырехвалентного марганца и растворимого двухвалентного марганца: [178]
    2Mn 3+ → Мн 2+ + Мн 4+
    Потеря материала шпинели приводит к снижению производительности. Уже при температуре 50 °C начинается Mn. 2+ осаждение на аноде металлического марганца с теми же эффектами, что и литий и меднение. [180] Циклическое прохождение теоретических плато максимального и минимального напряжения разрушает кристаллическую решетку из-за искажения Яна-Теллера , которое происходит, когда Mn 4+ снижается до Mn 3+ во время выписки. [178] Хранение батареи, заряженной до напряжения более 3,6 В, инициирует окисление электролита на катоде и вызывает образование слоя SEI на катоде. Как и в случае с анодом, чрезмерное образование SEI образует изолятор, что приводит к снижению емкости и неравномерному распределению тока. [178] Хранение при напряжении менее 2 В приводит к медленной деградации LiCoO.
    2
    и LiMn
    2

    4
    катода, выделение кислорода и необратимая потеря емкости. [178]
  4. Разряд ниже 2 В также может привести к растворению медного анодного токосъёмника и, таким образом, к катастрофическому внутреннему короткому замыканию при перезарядке.

Рекомендации

[ редактировать ]

Стандарт IEEE 1188–1996 рекомендует заменять литий-ионные аккумуляторы в электромобиле, когда их зарядная емкость падает до 80 % номинального значения. [207] В дальнейшем мы будем использовать потерю мощности на 20% в качестве точки сравнения между различными исследованиями. Тем не менее, отметим, что линейная модель деградации (постоянный % потери заряда за цикл или за календарное время) не всегда применима и что «точка перегиба», наблюдаемая как изменение наклона и связанная с часто наблюдается смена основного механизма деградации. [208]

Безопасность

[ редактировать ]

Проблема безопасности литий-ионных аккумуляторов была осознана еще до того, как эти аккумуляторы были впервые коммерчески выпущены в 1991 году. Две основные причины возгораний и взрывов литий-ионных аккумуляторов связаны с процессами на отрицательном электроде (катоде). При нормальном заряде батареи ионы лития интеркалируются в графит. Однако, если заряд происходит слишком быстро (или при слишком низкой температуре), металлический литий начинает осаждаться на аноде, и образующиеся дендриты могут проникнуть в сепаратор батареи, вызвать внутреннее короткое замыкание элемента, что приведет к возникновению высокого электрического тока. нагрев и розжиг. При другом механизме взрывная реакция между материалом шихты анода (LiC 6 ) и растворителем (жидким органическим карбонатом) происходит даже при разомкнутой цепи, при условии, что температура анода превышает определенный порог выше 70 °С. [209]

В настоящее время все авторитетные производители используют как минимум два устройства безопасности во всех своих литий-ионных батареях формата 18650 или больше: устройство прерывания тока (CID) и устройство положительного температурного коэффициента (PTC). УИС состоит из двух металлических дисков, находящихся в электрическом контакте друг с другом. Когда давление внутри ячейки увеличивается, расстояние между двумя дисками также увеличивается, и они теряют электрический контакт друг с другом, тем самым прекращая прохождение электрического тока через батарею. Устройство ПТК изготовлено из электропроводящего полимера. Когда ток, проходящий через устройство PTC, увеличивается, полимер нагревается, и его электрическое сопротивление резко возрастает, тем самым уменьшая ток через батарею. [210]

Опасность пожара

[ редактировать ]

Литий-ионные аккумуляторы могут представлять угрозу безопасности, поскольку они содержат легковоспламеняющийся электролит и в случае повреждения могут оказаться под давлением. Слишком быстрая зарядка аккумуляторной батареи может вызвать короткое замыкание , что приведет к перегреву, взрывам и пожарам. [211] Возгорание литий-ионного аккумулятора может возникнуть из-за (1) термического воздействия, например, плохого охлаждения или внешнего возгорания, (2) неправильного использования электрического тока, например, перезаряда или внешнего короткого замыкания, (3) механического воздействия, например, проникновения или аварии, или ( 4) внутреннее короткое замыкание, например, из-за производственного брака или старения. [212] [213] Из-за этих рисков стандарты тестирования более строгие, чем стандарты для кислотно-электролитных батарей, требующие как более широкого диапазона условий испытаний, так и дополнительных испытаний для конкретных батарей, а также существуют ограничения на транспортировку, налагаемые регулирующими органами по безопасности. [66] [214] [215] Некоторые компании отзывали аккумуляторы, в том числе отзыв Samsung Galaxy Note 7 2016 года из-за возгорания аккумулятора. [216] [217]

Литий-ионные аккумуляторы имеют легковоспламеняющийся жидкий электролит. [218] Неисправный аккумулятор может стать причиной серьезного пожара . [211] Неисправные зарядные устройства могут повлиять на безопасность аккумулятора, поскольку они могут разрушить схему защиты аккумулятора. При зарядке при температуре ниже 0 °C отрицательный электрод элементов покрывается чистым литием, что может поставить под угрозу безопасность всей батареи.

Короткое замыкание аккумулятора приведет к его перегреву и возможному возгоранию. [219] Дым от термического разгона в литий-ионном аккумуляторе легковоспламеняем и токсичен. [220] Энергия огня (электрическая + химическая) в элементах из оксида кобальта составляет от 100 до 150 кДж/( А·ч ), большая часть которой химическая. [ ненадежный источник? ] [221]

Примерно в 2010 году в энергосистемах некоторых самолетов вместо других химических элементов были использованы большие литий-ионные батареи; по состоянию на январь 2014 г. На пассажирском самолете Boeing 787, представленном в 2011 году, произошло как минимум четыре серьезных возгорания литий-ионных аккумуляторов или задымление, что не привело к катастрофам, но могло привести к этому. [222] [223] Рейс 6 авиакомпании UPS Airlines разбился в Дубае из-за самопроизвольного возгорания полезного груза, состоящего из аккумуляторов.

Для снижения пожароопасности исследовательские проекты направлены на разработку негорючих электролитов. [ нужна ссылка ]

Повреждение и перегрузка

[ редактировать ]

Если литий-ионный аккумулятор поврежден, раздавлен или подвергнут более высокой электрической нагрузке без защиты от перезаряда, могут возникнуть проблемы. Внешнее короткое замыкание может спровоцировать взрыв аккумулятора. [224] Подобные инциденты могут произойти, когда литий-ионные аккумуляторы не утилизируются по соответствующим каналам, а выбрасываются вместе с другими отходами. То, как с ними обращаются компании по переработке отходов, может повредить их и вызвать пожары, что, в свою очередь, может привести к крупномасштабным пожарам. В 2023 году на швейцарских предприятиях по переработке мусора было зафиксировано двенадцать таких пожаров. [225]

При перегреве или перезарядке литий-ионные аккумуляторы могут выйти из строя и разорваться. [226] [227] Во время термического выхода из-под контроля процессы внутренней деградации и окисления могут поддерживать температуру элемента выше 500 °C, что может привести к возгоранию вторичных горючих материалов, а также в крайних случаях привести к утечке, взрыву или возгоранию. [228] Чтобы снизить эти риски, многие литий-ионные элементы (и аккумуляторные блоки) содержат отказоустойчивую схему, которая отключает батарею, когда ее напряжение выходит за пределы безопасного диапазона 3–4,2 В на элемент. [111] [75] или при перезарядке или разрядке. Этим проблемам подвержены литиевые аккумуляторные блоки, независимо от того, изготовлены ли они производителем или конечным пользователем и не имеют эффективных схем управления батареями. Плохо спроектированные или реализованные схемы управления батареями также могут вызвать проблемы; трудно быть уверенным в том, что какая-либо конкретная схема управления аккумулятором реализована правильно.

Пределы напряжения

[ редактировать ]

Литий-ионные элементы подвержены нагрузкам в диапазонах напряжений, выходящих за пределы безопасных, от 2,5 до 3,65/4,1/4,2 или 4,35 В (в зависимости от компонентов элемента). Превышение этого диапазона напряжения приводит к преждевременному старению и угрозе безопасности из-за реактивных компонентов в элементах. [229] При длительном хранении небольшое потребление тока схемой защиты может разрядить батарею до уровня ниже ее напряжения отключения; обычные зарядные устройства могут оказаться бесполезными, поскольку система управления батареями (BMS) может сохранить запись об «отказе» этой батареи (или зарядного устройства). Многие типы литий-ионных элементов нельзя безопасно заряжать при температуре ниже 0 °C. [230] поскольку это может привести к нанесению лития на анод элемента, что может вызвать такие осложнения, как внутренние пути короткого замыкания. [ нужна ссылка ]

Требуются другие функции безопасности. [ кем? ] в каждой ячейке: [111]

  • Сепаратор отключения (при перегреве)
  • Отрывной язычок (для внутреннего сброса давления)
  • Вентиляция (сброс давления в случае сильного газовыделения)
  • Тепловое прерывание (перегрузка по току/перезарядка/воздействие окружающей среды)

Эти функции необходимы, поскольку отрицательный электрод во время использования выделяет тепло, а положительный электрод может производить кислород. Однако эти дополнительные устройства занимают пространство внутри ячеек, добавляют точки отказа и могут необратимо вывести из строя ячейку при активации. Кроме того, эти особенности увеличивают затраты по сравнению с никель-металлогидридными батареями , для которых требуется только устройство рекомбинации водорода и кислорода и клапан резервного давления. [75] Загрязнения внутри ячеек могут вывести из строя эти защитные устройства. Кроме того, эти функции не могут быть применены ко всем типам элементов, например, призматические сильноточные элементы не могут быть оснащены вентиляционным отверстием или тепловым прерывателем. Сильноточные элементы не должны выделять чрезмерное тепло или кислород, чтобы не произошел сбой, возможно, серьезный. Вместо этого они должны быть оснащены внутренними термопредохранителями, которые срабатывают до того, как анод и катод достигнут предела своей температуры. [231]

Замена материала положительного электрода из оксида лития-кобальта в литий-ионных батареях на литий-металлофосфат, такой как литий-железо-фосфат (LFP), увеличивает количество циклов, срок хранения и безопасность, но снижает емкость. По состоянию на 2006 год эти более безопасные литий-ионные батареи в основном использовались в электромобилях и других аккумуляторах большой емкости, где безопасность имеет решающее значение. [232] В 2016 году система хранения энергии на базе LFP была выбрана для установки в лодже Пайюнь на горе Нефрит (Юшань) (самый высокий домик на Тайване ). По состоянию на июнь 2024 года система все еще работала безопасно. [233]

Напоминает

[ редактировать ]

около 10 миллионов аккумуляторов Sony, использовавшихся в ноутбуках Dell , Sony , Apple , Lenovo , Panasonic , Toshiba , Hitachi , Fujitsu и Sharp В 2006 году было отозвано . Было обнаружено, что батареи подвержены внутреннему загрязнению металлическими частицами во время производства. В некоторых случаях эти частицы могут пробить сепаратор, вызвав опасное короткое замыкание. [234]

Литий-кобальтовая батарея Boeing 787 Japan Airlines, загоревшаяся в 2013 году
Транспортный класс 9А: Литиевые батареи

По оценкам ИАТА более миллиарда литий-металлических и литий-ионных аккумуляторов. , ежегодно перевозится [221] Некоторые виды литиевых батарей могут быть запрещены к перевозке на борту самолетов из-за опасности возгорания. [235] [236] Некоторые почтовые администрации ограничивают авиаперевозку (в том числе EMS ) литиевых и литий-ионных батарей как отдельно, так и установленных в оборудовании.

Негорючий электролит

[ редактировать ]

В 2023 году в большинстве коммерческих литий-ионных аккумуляторов использовались алкилкарбонатные растворители для обеспечения образования границы раздела твердого электролита на отрицательном электроде. Поскольку такие растворители легко воспламеняются, проводятся активные исследования по замене их негорючими растворителями или добавлению средств пожаротушения . Еще одним источником опасности является гексафторфосфат -анион, который необходим для пассивации коллектора отрицательного тока, изготовленного из алюминия . Гексафторфосфат реагирует с водой и выделяет летучий и токсичный фторид водорода . Попытки заменить гексафторфосфат оказались менее успешными.

Цепочка поставок

[ редактировать ]
Цепочка поставок электромобилей включает добычу и переработку сырья, а также производственные процессы, в ходе которых производятся аккумуляторы и другие компоненты для электромобилей .

В 1990-е годы Соединенные Штаты были крупнейшим в мире производителем литиевых минералов, на долю которых приходилось 1/3 общего объема производства. К 2010 году Чили сменила США на лидирующих позициях по добыче полезных ископаемых благодаря разработке литиевых рассолов в Салар-де-Атакама . К 2024 году Австралия и Китай присоединились к Чили и вошли в тройку крупнейших горнодобывающих компаний. Производство литий-ионных аккумуляторов также сильно сконцентрировано: в 2024 году 60% будет приходиться на Китай. [237]

Воздействие на окружающую среду

[ редактировать ]

Добыча лития, никеля и кобальта, производство растворителей и побочных продуктов горнодобывающей промышленности представляют значительную опасность для окружающей среды и здоровья. [238] [239] [240] Извлечение лития может быть фатальным для водных организмов из-за загрязнения воды. [241] Известно, что он вызывает загрязнение поверхностных и питьевых вод, проблемы с дыханием, деградацию экосистем и ущерб ландшафту. [238] Это также приводит к нерациональному потреблению воды в засушливых регионах (1,9 миллиона литров на тонну лития). [238] Массовое образование побочных продуктов при экстракции лития также создает нерешенные проблемы, такие как большое количество отходов магния и извести. [242]

Добыча лития ведется в Северной и Южной Америке, Азии, Южной Африке, Австралии и Китае. [243]

Кобальт для литий-ионных аккумуляторов в основном добывается в Конго (см. также Горнодобывающая промышленность Демократической Республики Конго ).

Производство килограмма литий-ионной батареи требует около 67 мегаджоулей (МДж) энергии. [244] [245] Потенциал глобального потепления от производства литий-ионных батарей сильно зависит от источника энергии, используемого в горнодобывающей и производственной деятельности, и его трудно оценить, но одно исследование 2019 года оценило выбросы в 73 кг CO2-экв/кВтч. [246] Эффективная переработка может значительно снизить выбросы углекислого газа от производства. [247]

Твердые отходы и переработка

[ редактировать ]

Литий-ионные аккумуляторные элементы, включающие железо, медь, никель и кобальт, считаются безопасными для мусоросжигательных заводов и свалок . [248] [ нужна ссылка ] Эти металлы могут быть переработаны . [249] [250] обычно путем сжигания других материалов, [251] но добыча полезных ископаемых, как правило, остается дешевле, чем переработка; [252] переработка может стоить 3 доллара за кг, [253] а в 2019 году переработке подвергалось менее 5% литий-ионных батарей. [254] С 2018 года значительно увеличен выход вторичной переработки, а извлечение лития, марганца, алюминия, органических растворителей электролита и графита возможно в промышленных масштабах. [255] Самый дорогой металл, участвующий в строительстве элемента, — кобальт. Литий дешевле, чем другие используемые металлы, и редко перерабатывается. [251] но переработка может предотвратить будущий дефицит. [249]

Накопление отходов аккумуляторов представляет собой техническую проблему и опасность для здоровья. [256] Поскольку производство литий-ионных аккумуляторов сильно влияет на воздействие электромобилей на окружающую среду, разработка эффективных способов переработки отходов имеет решающее значение. [254] Утилизация — это многоэтапный процесс, который начинается с хранения батарей перед утилизацией, затем следует ручное тестирование, разборка и, наконец, химическое разделение компонентов батареи. Повторное использование батареи предпочтительнее полной переработки, поскольку затрачивается меньше энергии в этом процессе . Поскольку эти батареи гораздо более реактивны, чем классические автомобильные отходы, такие как резина покрышек, складирование использованных батарей сопряжено со значительными рисками. [257]

Пирометаллургическое восстановление

[ редактировать ]

Пирометаллургический метод использует высокотемпературную печь для восстановления компонентов оксидов металлов в батарее до сплава Co, Cu, Fe и Ni. Это наиболее распространенный и коммерчески признанный метод переработки, который можно комбинировать с другими аналогичными батареями для повышения эффективности плавки и улучшения термодинамики . Металлические токосъемники облегчают процесс плавки, позволяя плавить целые элементы или модули одновременно. [258] Продуктом этого метода является совокупность металлического сплава, шлака и газа. При высоких температурах полимеры, используемые для скрепления элементов батареи, сгорают, и металлический сплав может быть разделен гидрометаллургическим процессом на отдельные компоненты. Шлак может быть дополнительно очищен или использован в цементной промышленности. Этот процесс относительно безопасен, а экзотермическая реакция сгорания полимера снижает требуемую входную энергию. Однако при этом пластики, электролиты и соли лития будут потеряны. [259]

Гидрометаллургическая рекультивация металлов

[ редактировать ]

Этот метод предполагает использование водных растворов для удаления с катода нужных металлов. Самый распространенный реагент — серная кислота . [260] Факторы, влияющие на скорость выщелачивания, включают концентрацию кислоты, время, температуру, соотношение твердой и жидкой фаз и восстановитель . [261] Экспериментально доказано, что H 2 O 2 действует как восстановитель, ускоряя скорость выщелачивания за счет реакции: [ нужна ссылка ]

2 LiCoO 2 (тв) + 3 H 2 SO 4 + H 2 O 2 → 2 CoSO 4 (водн.) + Li 2 SO 4 + 4 H 2 O + O 2

После выщелачивания металлы можно экстрагировать посредством реакций осаждения , контролируемых изменением уровня pH раствора. Кобальт, самый дорогой металл, можно затем восстановить в форме сульфата, оксалата, гидроксида или карбоната. [75] Совсем недавно методы переработки экспериментировали с прямым воспроизведением катода из выщелоченных металлов. В этих процедурах предварительно измеряются концентрации различных выщелоченных металлов, чтобы они соответствовали целевому катоду, а затем непосредственно синтезируются катоды. [262]

Однако основные проблемы этого метода заключаются в том, что требуется большой объем растворителя и высокая стоимость нейтрализации. Хотя батарею легко измельчить, смешивание катода и анода в начале усложняет процесс, поэтому их тоже придется разделить. К сожалению, нынешняя конструкция аккумуляторов делает этот процесс чрезвычайно сложным, и в аккумуляторной системе с замкнутым контуром трудно отделить металлы. Измельчение и растворение могут происходить в разных местах. [263]

Прямая переработка

[ редактировать ]

Прямая переработка — это удаление катода или анода из электрода, их восстановление и последующее повторное использование в новой батарее. Смешанные оксиды металлов можно добавлять в новый электрод с минимальным изменением морфологии кристаллов. Этот процесс обычно включает добавление нового лития для восполнения потерь лития в катоде из-за деградации в результате циклирования. Катодные полосы получают из разобранных аккумуляторов, затем замачивают в НМП и подвергают обработке ультразвуком для удаления лишних отложений. Перед отжигом его обрабатывают гидротермально раствором, содержащим LiOH/Li 2 SO 4 . [264]

Этот метод чрезвычайно эффективен для батарей на основе некобальта, поскольку сырье не составляет основную часть стоимости. Прямая переработка позволяет избежать трудоемких и дорогостоящих этапов очистки, что отлично подходит для недорогих катодов, таких как LiMn 2 O 4 и LiFePO 4 . Для этих более дешевых катодов большая часть затрат, затраченной энергии и углеродного следа связана с производством, а не с сырьем. [265] Экспериментально показано, что прямая переработка может воспроизвести свойства, аналогичные исходному графиту.

Недостаток способа заключается в состоянии вышедшего из строя аккумулятора. В случае, когда батарея относительно исправна, прямая переработка может дешево восстановить ее свойства. Однако для аккумуляторов с низким уровнем заряда прямая переработка может оказаться нерентабельной. Процесс также должен быть адаптирован к конкретному составу катода, и, следовательно, процесс должен быть настроен для одного типа батареи за раз. [266] Наконец, в эпоху быстрого развития аккумуляторных технологий конструкция аккумулятора сегодня может стать нежелательной через десять лет, что сделает прямую переработку неэффективной.

Разделение физических материалов

[ редактировать ]

Физическое разделение извлеченных материалов путем механического дробления и использования физических свойств различных компонентов, таких как размер частиц, плотность, ферромагнетизм и гидрофобность. Медный, алюминиевый и стальной корпус можно восстановить путем сортировки. Оставшиеся материалы, называемые «черной массой», состоящие из никеля, кобальта, лития и марганца, требуют вторичной обработки для восстановления. [267]

Биологическая регенерация металлов

[ редактировать ]

Для биологической регенерации металлов или биовыщелачивания в процессе используются микроорганизмы для селективного расщепления оксидов металлов. Затем переработчики смогут восстановить эти оксиды для производства наночастиц металлов. Хотя биовыщелачивание успешно применяется в горнодобывающей промышленности, этот процесс все еще находится на стадии зарождения в сфере переработки отходов, и существует множество возможностей для дальнейших исследований. [267]

Влияние на права человека

[ редактировать ]

Добыча сырья для литий-ионных аккумуляторов может представлять опасность для местного населения, особенно коренного населения, проживающего на суше. [268]

Кобальт, добываемый в Демократической Республике Конго, часто добывается рабочими, использующими ручные инструменты с минимальными мерами предосторожности, что приводит к частым травмам и смертельным случаям. [269] Загрязнение от этих шахт подвергло людей воздействию токсичных химикатов, которые, по мнению представителей здравоохранения, вызывают врожденные дефекты и проблемы с дыханием. [270] Правозащитники утверждали, и журналистские расследования подтвердили это: [271] [272] что детский труд . на этих шахтах используется [273]

Исследование отношений между компаниями по добыче лития и коренными народами в Аргентине показало, что государство, возможно, не защищало право коренных народов на свободное предварительное и осознанное согласие , и что добывающие компании обычно контролировали доступ сообщества к информации и устанавливали условия для обсуждения проекты и распределение выгод. [274]

Разработка литиевого рудника Такер-Пасс в Неваде, США, вызвала протесты и судебные иски со стороны нескольких коренных племен, которые заявили, что им не было предоставлено свободное предварительное и осознанное согласие и что проект угрожает культурным и священным местам. [275] Связи между добычей ресурсов и пропавшими без вести и убитыми женщинами из числа коренного населения также побудили местные сообщества выразить обеспокоенность тем, что проект создаст риски для женщин из числа коренного населения. [276] Протестующие оккупируют место предполагаемой шахты с января 2021 года. [277] [278]

Исследовать

[ редактировать ]

Исследователи активно работают над улучшением удельной мощности, безопасности, долговечности цикла (жизни батареи), времени перезарядки, стоимости, гибкости и других характеристик, а также методов исследования и использования этих батарей. Полностью твердотельные батареи исследуются как прорыв в технологических барьерах. В настоящее время ожидается, что твердотельные аккумуляторы станут наиболее перспективными батареями следующего поколения, и различные компании работают над их популяризацией.

См. также

[ редактировать ]
  1. ^ Перейти обратно: а б с «Перезаряжаемые литий-ионные аккумуляторы OEM» . Panasonic.com. Архивировано из оригинала 13 апреля 2010 года . Проверено 23 апреля 2010 г.
  2. ^ Перейти обратно: а б «Panasonic разрабатывает новые литий-ионные элементы 18650 повышенной емкости; применение сплава на основе кремния в аноде» . greencarcongress.com. Архивировано из оригинала 12 июля 2014 года . Проверено 31 января 2011 г.
  3. ^ «NCR18650B» (PDF) . Панасоник. Архивировано из оригинала (PDF) 17 августа 2018 года . Проверено 7 октября 2016 г.
  4. ^ «NCR18650GA» (PDF) . Архивировано (PDF) из оригинала 8 марта 2021 года . Проверено 2 июля 2017 г.
  5. ^ Валён, Ларс Оле; Обувьсмит, Марк И. (1–2 ноября 2007 г.). Влияние рабочих циклов PHEV и HEV на производительность аккумулятора и аккумуляторного блока (PDF) . Материалы конференции по подключаемым к сети шоссейным электромобилям. Архивировано из оригинала (PDF) 26 марта 2009 года.
  6. ^ «Цены на аккумуляторные батареи падают в среднем до 132 долларов за киловатт-час, но растущие цены на сырье начинают кусаться» . Bloomberg New Energy Finance. 30 ноября 2021 года. Архивировано из оригинала 6 января 2022 года . Проверено 6 января 2022 г.
  7. ^ Перейти обратно: а б Редондо-Иглесиас, Эдуардо; Венет, Паскаль; Пелисье, Серж (2016). «Измерение обратимых и необратимых потерь емкости литий-ионных аккумуляторов» . Конференция IEEE по силовым установкам и движению транспортных средств (VPPC) 2016 г. п. 7. дои : 10.1109/VPPC.2016.7791723 . ISBN  978-1-5090-3528-1 . S2CID   22822329 . Архивировано из оригинала 28 апреля 2021 года . Проверено 20 октября 2017 г.
  8. Типы и характеристики аккумуляторов для HEV. Архивировано 20 мая 2015 г. в Wayback Machine ThermoAnalytics, Inc., 2007. Проверено 11 июня 2010 г.
  9. ^ Электролиты на основе ионной жидкости для натрий-ионных аккумуляторов: настройки свойств для улучшения электрохимических характеристик катода из слоистого оксида на основе марганца. 2019. Прикладные материалы и интерфейсы ACS. Л.Г. Чагас, С. Джонг, И. Хаса, С. Пассерини. doi: 10.1021/acsami.9b03813.
  10. ^ Литий-ионный аккумулятор: современное состояние и перспективы. 2018. Renew Sust Energ Ред. 89/292-308. Г. Зуби, Р. Дюфо-Лопес, М. Карвалью, Г. Пасаоглу. doi: 10.1016/j.rser.2018.03.002.
  11. ^ «Революция электронной мобильности: литий-ионные аккумуляторы, питающие транспортную отрасль - Evolute» . 29 сентября 2023 года. Архивировано из оригинала 27 октября 2023 года . Проверено 27 октября 2023 г.
  12. ^ Лейн, Майкл Дж.; Брэндон, Джеймс; Кендрик, Эмма (декабрь 2019 г.). «Стратегии проектирования литий-ионных элементов высокой мощности и высокой энергии» . Батареи . 5 (4): 64. doi : 10.3390/batteries5040064 . Коммерческие литий-ионные элементы теперь оптимизированы либо для высокой плотности энергии, либо для высокой плотности мощности. В конструкции ячейки существует компромисс между энергопотреблением и потребностями в энергии.
  13. ^ Могер, А; Жюльен, CM (28 июня 2017 г.). «Критический обзор литий-ионных аккумуляторов: безопасны ли они? Экологичны?» (PDF) . Ионика . 23 (8): 1933–1947. дои : 10.1007/s11581-017-2177-8 . S2CID   103350576 . Архивировано (PDF) из оригинала 2 марта 2023 года . Проверено 26 июля 2019 г.
  14. ^ Перейти обратно: а б Марк Эллис, Сэнди Манро (4 июня 2020 г.). Сэнди Манро о доминировании Tesla в области аккумуляторных технологий (видео). E означает электрический. Событие происходит в 3:53–5:50. Архивировано из оригинала 7 июля 2022 года . Проверено 29 июня 2020 г. - через YouTube.
  15. ^ Чжан, Рунсен; Фухимори, Шиничиро (19 февраля 2020 г.). «Роль электрификации транспорта в сценариях смягчения последствий глобального изменения климата» . Письма об экологических исследованиях . 15 (3): 034019. Бибкод : 2020ERL....15c4019Z . дои : 10.1088/1748-9326/ab6658 . hdl : 2433/245921 . ISSN   1748-9326 . S2CID   212866886 .
  16. ^ «Бингемтонский профессор признан за исследования в области энергетики» . Исследовательский фонд Государственного университета Нью-Йорка . Архивировано из оригинала 30 октября 2017 года . Проверено 10 октября 2019 г.
  17. ^ «Нобелевская премия по химии 2019» . Нобелевская премия . Нобелевский фонд . 2019. Архивировано из оригинала 21 мая 2020 года . Проверено 1 января 2020 г.
  18. ^ «Ёсио Ниси» . Национальная инженерная академия . Архивировано из оригинала 11 апреля 2019 года . Проверено 12 октября 2019 г.
  19. ^ Чен, Юйцин; Кан, Юцюн; Чжао, Юн; Ван, Ли; Лю, Цзилий; Ли, Яньси; Лян, Чжэн; Он, Сянмин; Ли, Син; Таваджохи, Насер; Ли, Баохуа (2021). «Обзор проблем безопасности литий-ионных аккумуляторов: проблемы, стратегии и стандарты тестирования» . Журнал энергетической химии . 59 : 83–99. Бибкод : 2021JEnCh..59...83C . дои : 10.1016/j.jechem.2020.10.017 . S2CID   228845089 .
  20. ^ Эфтехари, Али (2017). «Литий-ионные аккумуляторы с высокой емкостью». ACS Устойчивая химия и инженерия . 5 (3): 2799–2816. doi : 10.1021/acssuschemeng.7b00046 .
  21. ^ «Рост стоимости лития угрожает сетевому хранению энергии — новости» . eepower.com . Архивировано из оригинала 9 июня 2022 года . Проверено 2 ноября 2022 г.
  22. ^ Хопкинс, Джина (16 ноября 2017 г.). «Смотреть: порезы и погружения не останавливают появление новых литий-ионных аккумуляторов — будущее» . Будущее . Архивировано из оригинала 10 июля 2018 года . Проверено 10 июля 2018 г.
  23. ^ Чавла, Н.; Бхарти, Н.; Сингх, С. (2019). «Последние достижения в области негорючих электролитов для повышения безопасности литий-ионных аккумуляторов» . Батареи . 5:19 . doi : 10.3390/batteries5010019 .
  24. ^ Яо, XL; Се, С.; Чен, К.; Ван, QS; Сан, Дж.; Ван, QS; Сан, Дж. (2004). «Сравнительное исследование триметилфосфита и триметилфосфата как добавок к электролиту в литий-ионных аккумуляторах». Журнал источников энергии . 144 : 170–175. дои : 10.1016/j.jpowsour.2004.11.042 .
  25. ^ Фергус, JW (2010). «Керамические и полимерные твердые электролиты для литий-ионных аккумуляторов». Журнал источников энергии . 195 (15): 4554–4569. Бибкод : 2010JPS...195.4554F . дои : 10.1016/j.jpowsour.2010.01.076 .
  26. ^ Перейти обратно: а б с д Ли, Мэтью; Лу, Джун; Чен, Чжунвэй; Амин, Халил (14 июня 2018 г.). «30 лет литий-ионным аккумуляторам» . Продвинутые материалы . 30 (33): 1800561. Бибкод : 2018AdM....3000561L . дои : 10.1002/adma.201800561 . ISSN   0935-9648 . ОСТИ   1468617 . ПМИД   29904941 . S2CID   205286653 .
  27. ^ Годшалл, Северная Каролина; Рейстрик, ID; Хаггинс, Р.А. (1980). «Термодинамические исследования тройных катодных материалов литий-переходный металл-кислород». Бюллетень исследования материалов . 15 (5): 561. doi : 10.1016/0025-5408(80)90135-X .
  28. ^ Годшалл, Нед А. (17 октября 1979 г.) «Электрохимическое и термодинамическое исследование тройных литий-переходных металлооксидных катодных материалов для литиевых батарей: Li 2 MnO 4 шпинель , LiCoO 2 и LiFeO 2 », презентация на 156-м заседании Электрохимическое общество, Лос-Анджелес, Калифорния.
  29. ^ Годшалл, Нед А. (18 мая 1980 г.) Электрохимическое и термодинамическое исследование тройных катодных материалов литий-переходный металл-кислород для литиевых батарей . доктор философии Диссертация, Стэнфордский университет
  30. ^ Международное совещание по литиевым батареям, Рим, 27–29 апреля 1982 г., CLUP Ed. Милан, Аннотация №23
  31. ^ Язами, Р.; Тузен, П. (1983). «Обратимый графит-литиевый отрицательный электрод для электрохимических генераторов». Журнал источников энергии . 9 (3): 365–371. Бибкод : 1983JPS.....9..365Y . дои : 10.1016/0378-7753(83)87040-2 .
  32. ^ Безенхард, Дж. О.; Эйхингер, Г. (1976). «Литиевые элементы высокой плотности энергии». Журнал электроаналитической химии и межфазной электрохимии . 68 : 1–18. дои : 10.1016/S0022-0728(76)80298-7 .
  33. ^ Эйхингер, Г.; Безенхард, Дж. О. (1976). «Литиевые элементы высокой плотности энергии». Журнал электроаналитической химии и межфазной электрохимии . 72 : 1–31. дои : 10.1016/S0022-0728(76)80072-1 .
  34. ^ Ёсино А., Санечика К. и Накадзима Т. Аккумуляторная батарея. Патент Японии 1989293 (1985 г.).
  35. ^ Фонг, Р.; фон Сакен, У.; Дан, Джефф (1990). «Исследование интеркаляции лития в углерод с использованием неводных электрохимических ячеек». Дж. Электрохим. Соц . 137 (7): 2009–2013. Бибкод : 1990JElS..137.2009F . дои : 10.1149/1.2086855 .
  36. ^ «Литий-ионные аккумуляторы для мобильных и стационарных аккумуляторов» . Европейская комиссия . Архивировано (PDF) из оригинала 14 июля 2019 г. Мировое производство литий-ионных аккумуляторов в 2010 г. составило около 20 ГВтч (~ 6,5 млрд евро).
  37. ^ «Переход с литий-ионных аккумуляторов может оказаться сложнее, чем вы думаете» . 19 октября 2017 года. Архивировано из оригинала 19 октября 2017 года . Проверено 20 октября 2017 г.
  38. ^ Мюррей, Кэмерон (8 марта 2022 г.). «К 2030 году Европа и США сократят долю Китая на рынке мощностей по производству литий-ионных аккумуляторов примерно на 10%» . Новости хранения энергии . Архивировано из оригинала 8 марта 2022 года . Проверено 8 марта 2022 г.
  39. ^ Национальный проект литиевых батарей (PDF) (Отчет). Министерство энергетики США. Октябрь 2020. с. 12. Архивировано (PDF) из оригинала 28 июля 2021 года . Проверено 1 августа 2021 г.
  40. ^ «Нобелевская премия по химии 2019» . Нобелевский фонд. Архивировано из оригинала 8 декабря 2019 года . Проверено 4 июня 2023 г.
  41. ^ Хэнли, Стив (21 апреля 2023 г.). «Батарея конденсированного состояния от CATL нацелена на электрические самолеты» . ЧистаяТехника. Архивировано из оригинала 30 апреля 2023 года . Проверено 30 апреля 2023 г.
  42. ^ «Китайская компания CATL представляет конденсационную батарею для питания гражданских самолетов» . Рейтер. 19 апреля 2023 года. Архивировано из оригинала 30 апреля 2023 года . Проверено 30 апреля 2023 г.
  43. ^ Уорик, Грэм (19 апреля 2023 г.). «Китайская компания CATL нацелена на энергоемкую батарею в электрических самолетах» . Информационные рынки. Авиационная неделя. Архивировано из оригинала 30 апреля 2023 года . Проверено 30 апреля 2023 г.
  44. ^ Проточные батареи с твердотельными ускорителями энергии. 2022. J Electrochem Sci Eng. 12/4, 731-66. Ю.В. Толмачев, С.В. Стародубцева. дои: 10.5599/jese.1363.
  45. ^ Зильберберг, М. (2006). Химия: молекулярная природа материи и изменений , 4-е изд. Нью-Йорк (Нью-Йорк): McGraw-Hill Education. п. 935, ISBN   0077216504 .
  46. ^ Ли, Ао; Юэнь, Энтони Чун Инь; Ван, Вэй; Де Качиньо Кордейру, Иван Мигель; Ван, Ченг; Чен, Тимоти Бо Юань; Чжан, Цзинь; Чан, Цин Нянь; Йео, Гуань Хэн (январь 2021 г.). «Обзор сепараторов литий-ионных аккумуляторов в целях повышения безопасности и подходов к моделированию» . Молекулы . 26 (2): 478. doi : 10,3390/molecules26020478 . ISSN   1420-3049 . ПМК   7831081 . ПМИД   33477513 .
  47. ^ Перейти обратно: а б «Обзор токосъемников для литий-ионных аккумуляторов» .
  48. ^ Перейти обратно: а б с Г. Шао и др.: Полимерный SiOC, интегрированный с графеновым аэрогелем в качестве высокостабильного анода литий-ионной батареи ACS Appl. Матер. Интерфейсы 2020, 12, 41, 46045–46056
  49. ^ Теккерей, ММ; Томас, Джо; Уиттингем, MS (2011). «Наука и применение смешанных проводников для литиевых батарей». Вестник МРС . 25 (3): 39–46. дои : 10.1557/mrs2000.17 . S2CID   98644365 .
  50. ^ Эль-Кади, Махер Ф.; Шао, Юаньлун; Канер, Ричард Б. (июль 2016 г.). «Графен для аккумуляторов, суперконденсаторов и не только». Материалы обзоров природы . 1 (7): 16033. Бибкод : 2016NatRM...116033E . дои : 10.1038/natrevmats.2016.33 .
  51. ^ Паспорт безопасности: Литий-ионные батареи National Power Corp. Архивировано 26 июня 2011 г. в Wayback Machine (PDF) . tek.com; Tektronix Inc., 7 мая 2004 г. Проверено 11 июня 2010 г.
  52. ^ Возвращение к загадке этиленкарбоната-пропиленкарбоната с характеристикой операндо. 2022. Интерфейсы Adv Mater. 9/8, 7. Т. Мелин, Р. Лундстрем, Э. Дж. Берг. дои: 10.1002/admi.202101258.
  53. ^ Сюй, Кан (1 октября 2004 г.). «Неводные жидкие электролиты для литиевых аккумуляторов». Химические обзоры . 104 (10): 4303–4418. дои : 10.1021/cr030203g . ПМИД   15669157 .
  54. ^ Джойс, К.; Трейи, Л.; Бауэр, С.; Доган, Ф.; Воги, Дж. (2012). «Металлические медные связующие для кремниевых электродов литий-ионных аккумуляторов» . Журнал Электрохимического общества . 159 (6): 909–914. дои : 10.1149/2.107206jes .
  55. ^ «Анод против катода: в чем разница?» . Биологика. Архивировано из оригинала 25 мая 2023 года . Проверено 25 мая 2023 г.
  56. ^ Гийомар, Доминик; Тараскон, Жан-Мари (1994). «Кресло-качалка или литий-ионные аккумуляторные батареи». Продвинутые материалы . 6 (5): 408–412. Бибкод : 1994AdM.....6..408G . дои : 10.1002/adma.19940060516 . ISSN   1521-4095 .
  57. ^ Мегахед, Сид; Скросати, Бруно (1994). «Литий-ионные аккумуляторные батареи». Журнал источников энергии . 51 (1–2): 79–104. Бибкод : 1994JPS....51...79M . дои : 10.1016/0378-7753(94)01956-8 .
  58. ^ Бергвелд, HJ; Круйт, WS; Ноттен, PHL (2002). Системы управления батареями: проектирование путем моделирования . Спрингер . стр. 107–108, 113. ISBN.  978-94-017-0843-2 .
  59. ^ Дхамеджа, С (2001). Аккумуляторные системы электромобилей . Ньюнес Пресс . п. 12. ISBN  978-075-06991-67 .
  60. ^ Чой, ХК; Юнг, Ю.М.; Нода, И.; Ким, С.Б. (2003). «Исследование механизма электрохимической реакции лития с CoO методами двумерной спектроскопии мягкого рентгеновского поглощения (2D XAS), 2D Raman и 2D гетероспектрального XAS-рамановского корреляционного анализа». Журнал физической химии Б. 107 (24): 5806–5811. дои : 10.1021/jp030438w .
  61. ^ Аматуччи, Г.Г. (1996). " СоО
    2
    , конечный член Ли
    х
    СоО
    2
    Твердый раствор». Журнал Электрохимического общества . 143 (3): 1114–1123. doi : 10.1149/1.1836594 .
  62. ^ Линден, Дэвид и Редди, Томас Б. (ред.) (2002). Справочник по батареям, 3-е издание . МакГроу-Хилл, Нью-Йорк. глава 35. ISBN   0-07-135978-8 .
  63. ^ Чжай, К; и др. (2016). «Межфазное электромеханическое поведение на шероховатых поверхностях» (PDF) . Письма по экстремальной механике . 9 : 422–429. Бибкод : 2016ExML....9..422Z . дои : 10.1016/j.eml.2016.03.021 . hdl : 1959.4/unsworks_60452 . Архивировано (PDF) из оригинала 19 апреля 2021 года . Проверено 31 августа 2020 г.
  64. ^ Чунг, ХК (2021). «Профили заряда и разряда перепрофилированных аккумуляторов LiFePO 4 на основе стандарта UL 1974» . Научные данные . 8 (1): 165. Бибкод : 2021НатСД...8..165С . дои : 10.1038/s41597-021-00954-3 . ПМЦ   8253776 . ПМИД   34215731 .
  65. ^ Ву, Сяоган; Ху, Чен; Ду, Джиюй; Сунь, Джинлэй (2015). «Многоступенчатый метод зарядки литий-ионного аккумулятора CC-CV» . Математические проблемы в технике . 2015 : 1–10. дои : 10.1155/2015/294793 . ISSN   1024-123X .
  66. ^ Перейти обратно: а б Швебер, Билл (4 августа 2015 г.). «Литиевые батареи: плюсы и минусы» . ГлобалСпец . Архивировано из оригинала 16 марта 2017 года . Проверено 15 марта 2017 г.
  67. ^ «Обзор конструкции: усовершенствованное зарядное устройство для аккумуляторов электромобилей, старший проектный проект ECE 445» . 090521courses.ece.illinois.edu . Архивировано из оригинала 4 мая 2013 года.
  68. ^ Перейти обратно: а б «Литий-ионные аккумуляторные батареи. Техническое руководство» (PDF) . Архивировано из оригинала (PDF) 11 апреля 2009 года.
  69. ^ Sanyo: Обзор литий-ионных аккумуляторов . Архивировано 3 марта 2016 года на Wayback Machine , скорость саморазряда составляет 2% в месяц.
  70. ^ Sanyo: Энергетическая спецификация Хардинга . Архивировано 27 декабря 2015 года на Wayback Machine , скорость саморазряда составляет 0,3% в месяц.
  71. ^ Циммерман, А.Х. (2004). «Потери саморазряда в литий-ионных элементах». Журнал IEEE по аэрокосмическим и электронным системам . 19 (2): 19–24. дои : 10.1109/MAES.2004.1269687 . S2CID   27324676 .
  72. ^ Вайкер, Фил (1 ноября 2013 г.). Системный подход к управлению литий-ионными батареями . Артех Хаус. п. 214. ИСБН  978-1-60807-659-8 .
  73. ^ Абэ, Х.; Мурай, Т.; Загиб, К. (1999). «Анод из углеродного волокна, выращенный из паровой фазы, для цилиндрических литий-ионных аккумуляторных батарей». Журнал источников энергии . 77 (2): 110–115. Бибкод : 1999JPS....77..110A . дои : 10.1016/S0378-7753(98)00158-X . S2CID   98171072 .
  74. ^ Веттер, Матиас; Люкс, Стефан (2016). «Аккумуляторные батареи со специальной ссылкой на литий-ионные батареи» (PDF) . Хранение энергии . Институт Фраунгофера систем солнечной энергии ISE. п. 205. дои : 10.1016/B978-0-12-803440-8.00011-7 . ISBN  9780128034408 . Архивировано (PDF) из оригинала 21 октября 2017 года . Проверено 20 октября 2017 г.
  75. ^ Перейти обратно: а б с Уинтер и Бродд 2004 , с. 4259
  76. ^ Перейти обратно: а б с д и Мантирам, Арумугам (25 марта 2020 г.). «Размышления о химии катода литий-ионных аккумуляторов» . Природные коммуникации . 11 (1): 1550. Бибкод : 2020NatCo..11.1550M . дои : 10.1038/s41467-020-15355-0 . ISSN   2041-1723 . ПМК   7096394 . ПМИД   32214093 .
  77. ^ Окада, С. и Ямаки, Дж.-И. (2009). Катоды без редких металлов на основе железа. Литий-ионные аккумуляторные батареи, К. Одзава (ред.). https://onlinelibrary.wiley.com/doi/10.1002/9783527629022.ch4 Архивировано 5 октября 2023 г. в Wayback Machine.
  78. ^ Электрохимические характеристики катодного материала CrOx для литиевых батарей с высокой плотностью энергии. 2023. Int J Electrochem Sci. 18/2, 44. Д. Лю, С. Му, Р. Го, Цзюй Се, Г. Инь, П. Цзо. doi: 10.1016/j.ijoes.2023.01.020.
  79. ^ Индустриализация слоистых оксидных катодов для литий-ионных и натрий-ионных батарей: сравнительная перспектива. 2020. Энергетические технологии. 8/12, 13. Дж. Дарга, Дж. Лэмб, А. Мантирам. дои: 10.1002/ente.202000723.
  80. ^ К. Кубота, С. Кумакура, Ю. Йода, К. Куроки, С. Комаба, Adv. Энергетическая Материя. 2018, 81703415
  81. ^ Перейти обратно: а б Нитта, Наоки; У, Фэйсян; Ли, Чон Тэ; Юшин, Глеб (2015). «Материалы для литий-ионных аккумуляторов: настоящее и будущее» . Материалы сегодня . 18 (5): 252–264. дои : 10.1016/j.mattod.2014.10.040 .
  82. ^ Фергус, Джеффри (2010). «Последние разработки в области катодных материалов для литий-ионных аккумуляторов». Журнал источников энергии . 195 (4): 939–954. Бибкод : 2010JPS...195..939F . дои : 10.1016/j.jpowsour.2009.08.089 .
  83. ^ Одзуку Т., Уэда А. и Нагаяма М. Электрохимия и структурная химия LiNiO 2 (R3m) для вторичных литиевых элементов на 4 В. Дж. Электрохим. Соц. 140, 1862–1870 (1993).
  84. ^ В. Ли, Э.М. Эриксон, А. Мантирам, Nat. Энергия 5 (2020) 26–34
  85. ^ Слоистые оксидные катоды с высоким содержанием никеля для литий-ионных батарей: механизмы отказа и стратегии модификации. 2023. J Хранение энергии. 58/. С. Чжэн, З. Цай, Дж. Сунь, Дж. Хэ, В. Рао, Дж. Ван и др. дои: 10.1016/j.est.2022.106405; В. Ли, Э.М. Эриксон, А. Мантирам, Nat. Энергия 5 (2020) 26–34
  86. ^ Се, Ин (2022). «Слоистые оксиды с высоким содержанием лития: структура, емкость и механизмы затухания напряжения и стратегии решения» . Партикуология . 61 (4): 1–10. дои : 10.1016/j.partic.2021.05.011 . S2CID   237933219 .
  87. ^ «Литий-ионные аккумуляторы» . Сигма Олдрич . Архивировано из оригинала 5 января 2016 года . Проверено 5 ноября 2015 г.
  88. ^ Размышления о химии катода литий-ионной батареи. 2020. Природные коммуникации. 11/1, 9. А. Мантирам. дои: 10.1038/s41467-020-15355-0
  89. ^ Слоистые оксидные катоды с высоким содержанием никеля для литий-ионных батарей: механизмы отказа и стратегии модификации. 2023. J Хранение энергии. 58/. С. Чжэн, З. Цай, Дж. Сунь, Дж. Хэ, В. Рао, Дж. Ван и др. doi: 10.1016/j.est.2022.106405.
  90. ^ де Пиччиотто, Л.А. и Теккерей, М.М. Реакции вставки/извлечениялитий с LiV2O4. Матер. Рез. Бык. 20, 1409–1420 (1985)
  91. ^ Гопалакришнан, Дж. и Мантирам, А. Топохимически контролируемое водородное восстановление родственных шеелиту молибдатов редкоземельных металлов. Далтон Транс. 3, 668–672 (1981) из-за индуктивного эффекта
  92. ^ Эфтехари, Али (2017). «Нанокомпозиты LiFePO 4 /C для литий-ионных аккумуляторов». Журнал источников энергии . 343 : 395–411. Бибкод : 2017JPS...343..395E . дои : 10.1016/j.jpowsour.2017.01.080 .
  93. ^ «Преимущество литий-ионного фосфата железа (LFP) Sony» (PDF) . Архивировано из оригинала (PDF) 6 февраля 2015 года.
  94. ^ «Сайт корпорации Имара» . Имаракорп.com. Архивировано из оригинала 22 июля 2009 года . Проверено 8 октября 2011 г.
  95. ^ О'Делл, Джон (17 декабря 2008 г.). Молодая компания по производству аккумуляторов заявляет, что ее технология повышает производительность гибридных аккумуляторов Green Car Advisor ; Edmunds Inc. Проверено 11 июня 2010 г.
  96. ^ Перейти обратно: а б ЛеВайн, Стив (27 августа 2015 г.). «Tesla удерживает Panasonic, но назревает битва за превосходство в области аккумуляторов» . Кварц . Архивировано из оригинала 16 августа 2017 года . Проверено 19 июня 2017 г.
  97. ^ Пеплоу, Марк (13 декабря 2019 г.). «Northvolt строит будущее для более экологичных аккумуляторов» . Новости химии и техники . 97 (48). Архивировано из оригинала 13 июля 2020 года . Проверено 6 июля 2020 г.
  98. ^ Бломгрен, Джордж Э. (2016). «Развитие и будущее литий-ионных аккумуляторов» . Журнал Электрохимического общества . 164 : А5019–А5025. дои : 10.1149/2.0251701jes . S2CID   38044156 .
  99. ^ «Техническое описание Samsung INR18650-30Q» (PDF) . Архивировано (PDF) из оригинала 7 августа 2018 г. Проверено 10 февраля 2019 г.
  100. ^ Ян, Хикён (22 ноября 2022 г.). «LG Chem инвестирует более 3 миллиардов долларов в строительство катодного завода по производству аккумуляторов в США» . Рейтер . Архивировано из оригинала 25 июля 2023 года . Проверено 25 июля 2023 г.
  101. ^ Ким, Ун Хек; Куо, Лян-Инь; Кагазчи, Паям; Юн, Чонг С.; Сунь, Ян-Гук (25 января 2019 г.). «Четвертичный слоистый Ni-Rich NCMA катод для литий-ионных аккумуляторов» . ACS Energy Lett . 4 (2). Американское химическое общество: 576–582. doi : 10.1021/acsenergylett.8b02499 . S2CID   139505460 .
  102. ^ Йост, Кевин [ред.] (октябрь 2006 г.). Технические обзоры: CPI развивает новое направление в отношении литий-ионных аккумуляторов (PDF). aeionline.org; Автомобильная инженерия онлайн.
  103. ^ Фолькер, Джон (сентябрь 2007 г.). Литиевые батареи отправляются в путь. Архивировано 27 мая 2009 года в Wayback Machine . IEEE-спектр. Проверено 15 июня 2010 г.
  104. ^ Лавдей, Эрик (23 апреля 2010 г.). «Hitachi разрабатывает новый марганцевый катод, который может удвоить срок службы литий-ионных батарей» . Архивировано из оригинала 16 ноября 2018 года . Проверено 11 июня 2010 г.
  105. ^ Никкей (29 ноября 2009 г.). Отчет: Nissan на ходу с никель-марганцево-кобальтовым литий-ионным аккумулятором для развертывания в 2015 году. Архивировано 31 декабря 2010 года на конгрессе Wayback Machine Green Car Congress (блог). Проверено 11 июня 2010 г.
  106. ^ Техническая презентация EnerDel (PDF) . Корпорация ЭнерДел. 29 октября 2007 г.
  107. Элдер, Роберт и Зер, Дэн (16 февраля 2006 г.). Валенс подал в суд на патент UT Austin American-Statesman (любезно предоставлено юридической фирмой Bickle & Brewer).
  108. ^ Балкли, Уильям М. (26 ноября 2005 г.). «Новый тип аккумулятора обеспечивает большое напряжение по доступной цене» . День . п. Е6. Архивировано из оригинала 22 апреля 2016 года . Проверено 21 марта 2016 г.
  109. ^ A123Systems (2 ноября 2005 г.). A123Systems представляет новые литий-ионные аккумуляторные системы большей мощности и с более быстрой перезарядкой. Архивировано 18 апреля 2009 г. на конгрессе Wayback Machine Green Car Congress ; A123Systems (Пресс-релиз). Проверено 11 мая 2010 г.
  110. ^ «Ключевые слова для понимания устройств Sony Energy – ключевое слово 1991 г.» . Архивировано из оригинала 4 марта 2016 года.
  111. ^ Перейти обратно: а б с Техническое руководство по литий-ионным батареям (PDF) . Gold Peak Industries Ltd., ноябрь 2003 г. Архивировано из оригинала (PDF) 7 октября 2007 г.
  112. ^ Линзенманн, Фабиан; Прицль, Дэниел; Гастайгер, Хуберт А. (1 января 2021 г.). «Сравнение литирования и натриирования твердого углеродного анода с использованием импедансной спектроскопии in situ» . Журнал Электрохимического общества . 168 (1): 010506. Бибкод : 2021JElS..168a0506L . дои : 10.1149/1945-7111/abd64e . ISSN   0013-4651 . S2CID   234306808 .
  113. ^ Перейти обратно: а б Хейнер, CM; Чжао, X; Кунг, Х.Х. (1 января 2012 г.). «Материалы для литий-ионных аккумуляторов». Ежегодный обзор химической и биомолекулярной инженерии . 3 (1): 445–471. doi : 10.1146/annurev-chembioeng-062011-081024 . ПМИД   22524506 .
  114. ^ Эфтехари, Али (2017). «Анодные материалы низкого напряжения для литий-ионных аккумуляторов». Материалы для хранения энергии . 7 : 157–180. Бибкод : 2017EneSM...7..157E . дои : 10.1016/j.ensm.2017.01.009 .
  115. ^ «Исследователи Северо-Запада продвигают литий-ионные батареи с графен-кремниевым сэндвичем | Технология твердого тела» . Electroiq.com. Ноябрь 2011 г. Архивировано из оригинала 15 марта 2018 г. Проверено 3 января 2019 г.
    Чжао, X.; Хейнер, CM; Кунг, MC; Кунг, Х.Х. (2011). «Мощный Si-графеновый композитный электрод с возможностью размещения вакансий в плоскости для литий-ионных батарей» . Передовые энергетические материалы . 1 (6): 1079–1084. Бибкод : 2011AdEnM...1.1079Z . дои : 10.1002/aenm.201100426 . S2CID   98312522 .
  116. ^ «... Принятие первой аккумуляторной системы хранения энергии сетевого масштаба» (Пресс-релиз). Альтаир Нанотехнологии. 21 ноября 2008 г. Архивировано из оригинала 3 августа 2020 г. . Проверено 8 октября 2009 г.
  117. Озолс, Марти (11 ноября 2009 г.). Altair Nanotechnologies Power Partner — Военные. Архивировано 16 июля 2011 года в Wayback Machine . Systemagicmotives (личная страница) [ сомнительно обсудить ] . Проверено 11 июня 2010 г.
  118. ^ Готчер, Алан Дж. (29 ноября 2006 г.). «Презентация Альтаира ЭДТА» (PDF) . Альтаирнано.com. Архивировано из оригинала (PDF) 16 июня 2007 года.
  119. ^ Синтетический углеродный отрицательный электрод увеличивает емкость аккумулятора на 30 процентов | Обзор технологий Массачусетского технологического института . Technologyreview.com (2 апреля 2013 г.). Проверено 16 апреля 2013 года. Архивировано 4 апреля 2013 года в Wayback Machine.
  120. ^ Блейн, Лоз (14 февраля 2022 г.). «Amprius отгрузила первую партию аккумуляторов «самой высокой в ​​мире плотности»» . Новый Атлас . Архивировано из оригинала 14 февраля 2022 года . Проверено 14 февраля 2022 г.
  121. ^ Коксворт, Бен (22 февраля 2017 г.). «Силиконовые опилки – скоро появятся в аккумуляторе рядом с вами?» . newatlas.com . Архивировано из оригинала 25 февраля 2017 года . Проверено 26 февраля 2017 г.
  122. ^ Касавайюла, У.; Ван, К.; Эпплби, AJC. (2007). «Вставные аноды на основе нано- и объемного кремния для литий-ионных вторичных элементов». Журнал источников энергии . 163 (2): 1003–1039. Бибкод : 2007JPS...163.1003K . дои : 10.1016/j.jpowsour.2006.09.084 .
  123. ^ Ли, Х.; Хуанг, X.; Ченц, LC; Чжоу, Г.; Чжан, З. (2000). «Эволюция кристаллической структуры нано-кремниевого анода, вызванная введением и извлечением лития при комнатной температуре». Ионика твердого тела . 135 (1–4): 181–191. дои : 10.1016/S0167-2738(00)00362-3 .
  124. ^ Гао, Б.; Синха, С.; Флеминг, Л.; Чжоу, О. (2001). «Сплавообразование в наноструктурированном кремнии». Продвинутые материалы . 13 (11): 816–819. Бибкод : 2001AdM....13..816G . doi : 10.1002/1521-4095(200106)13:11<816::AID-ADMA816>3.0.CO;2-P .
  125. ^ Зия, Абдул Васи; Хусейн, Сайед Асад; Расул, Шахид; Бэ, Довон; Питчаймуту, Судхагар (ноябрь 2023 г.). «Прогресс в создании алмазоподобных углеродных покрытий для литиевых аккумуляторов» . Журнал хранения энергии . 72 : 108803. Бибкод : 2023JEnSt..7208803Z . дои : 10.1016/j.est.2023.108803 . S2CID   261197954 .
  126. ^ Перейти обратно: а б Гиришкумар, Г.; Макклоски, Б.; Лунц, AC; Суонсон, С.; Вилке, В. (2 июля 2010 г.). «Литий-воздушная батарея: перспективы и проблемы». Журнал физической химии . 1 (14): 2193–2203. дои : 10.1021/jz1005384 . ISSN   1948-7185 .
  127. ^ «Улучшенная конструкция анода для улучшения литий-ионных батарей» . Лаборатория Беркли: Национальная лаборатория Лоуренса Беркли . Архивировано из оригинала 4 марта 2016 года.
  128. ^ О. Маркес, М. Вальтер, Э. Тимофеева и К. Сегре, Батареи, 9 115 (2023). 10.3390/batteries9020115.
  129. ^ Юнеси, Реза; Вейт, Габриэль М.; Йоханссон, Патрик; Эдстрем, Кристина ; Вегге, Тейс (2015). «Соли лития для современных литиевых батарей: Li–metal, Li–O 2 и Li–S» . Энергетическая среда. Наука . 8 (7): 1905–1922. дои : 10.1039/c5ee01215e .
  130. ^ Вениге, Ниманн и др. (30 мая 1998 г.). Системы с жидким электролитом для усовершенствованных литиевых батарей. Архивировано 20 марта 2009 г. в Wayback Machine (PDF). cheric.org; Информационный центр химико-технологических исследований (КР). Проверено 11 июня 2010 г.
  131. ^ Бальбуэна, П.Б., Ван, YX (редакторы) (2004). Литий-ионные батареи: промежуточная фаза твердого электролита , Imperial College Press, Лондон. ISBN   1860943624 .
  132. ^ Фонг, Р.А. (1990). «Исследование интеркаляции лития в углероды с использованием неводных электрохимических ячеек». Журнал Электрохимического общества . 137 (7): 2009–2010. Бибкод : 1990JElS..137.2009F . дои : 10.1149/1.2086855 .
  133. ^ Сыздек, Дж.А.; Борковска, Р.; Пержина, К.; Тараскон, JM ; Вечорек, WAA (2007). «Новые композиционные полимерные электролиты с поверхностно-модифицированными неорганическими наполнителями». Журнал источников энергии . 173 (2): 712–720. Бибкод : 2007JPS...173..712S . дои : 10.1016/j.jpowsour.2007.05.061 .
  134. ^ Сыздек, Дж.А.; Арманд, М.; Марцинек, М.; Залевская, А.; Жуковская, Г.Ю.; Вечорек, WAA (2010). «Детальные исследования модификации наполнителей и их влияния на композиционные полимерные электролиты на основе полиоксиэтилена». Электрохимика Акта . 55 (4): 1314–1322. дои : 10.1016/j.electacta.2009.04.025 .
  135. ^ Райтер, Дж.; Надгерна, М.; Доминко, Р. (2012). «Графитовые и LiCo 1/3 Mn 1/3 Ni 1/3 O 2 электроды с пиперидиниевой ионной жидкостью и бис(фторсульфонил)имидом лития для литий-ионных аккумуляторов». Журнал источников энергии . 205 : 402–407. дои : 10.1016/j.jpowsour.2012.01.003 .
  136. ^ Может, Цао; Чжо-Бин, Ли; Сяо-Лян, Ван (2014). «Последние достижения в области неорганических твердых электролитов для литиевых батарей» . Границы энергетических исследований . 2 : 1–10. дои : 10.3389/fenrg.2014.00025 .
  137. ^ Зогг, Корнелия (14 июня 2017 г.). «Твердотельный электролит, способный конкурировать с жидкими электролитами для аккумуляторных батарей» . Физика.орг . Архивировано из оригинала 13 марта 2018 года . Проверено 24 февраля 2018 г.
  138. ^ Может, Цао; Чжо-Бин, Ли; Сяо-Лян, Ван (2014). «Последние достижения в области неорганических твердых электролитов для литиевых батарей» . Границы энергетических исследований . 2 : 2–4. дои : 10.3389/fenrg.2014.00025 .
  139. ^ Может, Цао; Чжо-Бин, Ли; Сяо-Лян, Ван (2014). «Последние достижения в области неорганических твердых электролитов для литиевых батарей» . Границы энергетических исследований . 2 :6–8. дои : 10.3389/fenrg.2014.00025 .
  140. ^ Тацумисаго, Масахиро; Нагао, Мотохиро; Хаяси, Акитоши (2013). «Недавние разработки сульфидных твердых электролитов и модификация интерфейса для полностью твердотельных литиевых перезаряжаемых батарей» . Журнал азиатских керамических обществ . 1 (1): 17. doi : 10.1016/j.jascer.2013.03.005 .
  141. ^ Харегевоин, Атетегеб Меаза; Вотанго, Аселефеч Сорса; Хван, Бин-Джо (8 июня 2016 г.). «Электролитные добавки для электродов литий-ионных аккумуляторов: прогресс и перспективы» . Энергетика и экология . 9 (6): 1955–1988. дои : 10.1039/C6EE00123H . ISSN   1754-5706 . Архивировано из оригинала 20 октября 2020 года . Проверено 19 октября 2020 г.
  142. ^ Саммерфилд, Дж. (2013). «Моделирование литий-ионной батареи». Журнал химического образования . 90 (4): 453–455. Бибкод : 2013JChEd..90..453S . дои : 10.1021/ed300533f .
  143. ^ Ли, Сан-Вон; Ли, Кён Мин; Чой, Юн-Гёль; Кан, Бонгку (ноябрь 2018 г.). «Модульная конструкция активного эквалайзера заряда для литий-ионного аккумуляторного блока» . Транзакции IEEE по промышленной электронике . 65 (11): 8697–8706. дои : 10.1109/TIE.2018.2813997 . ISSN   0278-0046 . S2CID   49536272 . Архивировано из оригинала 21 мая 2023 года . Проверено 5 июля 2023 г.
  144. ^ Андреа 2010 , с. 2.
  145. ^ «Как изготавливается литий-ионный карманный элемент в лаборатории?» . KIT Zentrum für Mediales Lernen. 6 июня 2018 г. Архивировано из оригинала 18 февраля 2020 г. . Проверено 1 февраля 2020 г. Лицензия Creative Commons с указанием авторства
  146. ^ Андреа 2010 , с. 234.
  147. ^ «Призматическая намотка ячеек» . Мичиганский университет . 25 июня 2015 г. Архивировано из оригинала 17 мая 2020 г. . Проверено 1 февраля 2020 г.
  148. ^ Ван, Ю.; Он, П.; Чжоу, Х. (2012). «Литий-редокс-проточные батареи на основе гибридных электролитов: на перекрестке между литий-ионными и окислительно-восстановительными проточными батареями». Передовые энергетические материалы . 2 (7): 770–779. Бибкод : 2012AdEnM...2..770W . дои : 10.1002/aenm.201200100 . S2CID   96707630 .
  149. ^ Ци, Чжаосян; Кениг, Гэри М. (15 августа 2016 г.). «Безуглеродная литий-ионная твердодисперсная окислительно-восстановительная пара с низкой вязкостью для проточных окислительно-восстановительных батарей» . Журнал источников энергии . 323 : 97–106. Бибкод : 2016JPS...323...97Q . дои : 10.1016/j.jpowsour.2016.05.033 .
  150. Panasonic представляет «самую маленькую» литий-ионную батарею в форме штыря. Архивировано 6 сентября 2015 г. в Wayback Machine , Telecompaper, 6 октября 2014 г.
  151. ^ Эрол, Салим (5 января 2015 г.). Анализ электрохимической импедансной спектроскопии и моделирование литий-кобальтовых/углеродных батарей (доктор философии) . Проверено 10 сентября 2018 г.
  152. ^ «Литий-ионная аккумуляторная батарея: серийный LIR2032» (PDF) . AA Portable Power Corp. Архивировано (PDF) из оригинала 9 мая 2018 г. . Проверено 10 сентября 2018 г.
  153. ^ Гудвинс, Руперт (17 августа 2006 г.). «Внутри аккумуляторной батареи ноутбука» . ЗДНет . Архивировано из оригинала 24 июля 2013 года . Проверено 6 июня 2013 г.
  154. ^ ОЭСР; Ведомство по интеллектуальной собственности Европейского Союза (17 марта 2022 г.). Незаконная торговля Опасные подделки Торговля контрафактными товарами, создающими риски для здоровья, безопасности и окружающей среды: Торговля контрафактными товарами, создающими риски для здоровья, безопасности и окружающей среды . Издательство ОЭСР. ISBN  978-92-64-59470-8 . Архивировано из оригинала 28 августа 2023 года . Проверено 10 июля 2023 г.
  155. ^ Гессен, Хольгер; Шимпе, Майкл; Куцевич, Даниэль; Йоссен, Андреас (11 декабря 2017 г.). «Литий-ионные аккумуляторы для энергосистемы — обзор конструкции системы хранения стационарных аккумуляторов, адаптированной для применения в современных электросетях» . Энергии . 10 (12): 2107. doi : 10.3390/en10122107 . ISSN   1996-1073 .
  156. ^ Грей, Клэр П.; Холл, Дэвид С. (декабрь 2020 г.). «Перспективы литий-ионных батарей и не только — видение до 2030 года» . Природные коммуникации . 11 (1): 6279. Бибкод : 2020NatCo..11.6279G . дои : 10.1038/s41467-020-19991-4 . ISSN   2041-1723 . ПМЦ   7722877 . ПМИД   33293543 .
  157. ^ «Обзор литий-ионных аккумуляторов» (PDF) . Панасоник. Январь 2007 г. Архивировано из оригинала (PDF) 7 ноября 2011 г. . Проверено 13 ноября 2013 г.
  158. ^ Перейти обратно: а б Куинн, Джейсон Б.; Вальдманн, Томас; Рихтер, Карстен; Каспер, Майкл; Вольфарт-Меренс, Маргрет (19 октября 2018 г.). «Энергетическая плотность цилиндрических литий-ионных элементов: сравнение коммерческих элементов 18650 и 21700» . Журнал Электрохимического общества . 165 (14): А3284–А3291. дои : 10.1149/2.0281814jes . S2CID   105193083 .
  159. ^ Зима и Бродд 2004 , с. 4258
  160. ^ Андреа 2010 , с. 12.
  161. ^ Стро, Дэниел-Иоан; Сверчинский, Мацей; Кар, Сорен Кнудсен; Теодореску, Ремус (22 сентября 2017 г.). «Деградационный характер литий-ионных аккумуляторов при календарном старении — случай увеличения внутреннего сопротивления» . Транзакции IEEE для промышленных приложений . 54 (1): 517–525. дои : 10.1109/TIA.2017.2756026 . ISSN   0093-9994 . S2CID   34944228 . Архивировано из оригинала 26 января 2022 года . Проверено 10 февраля 2022 г.
  162. ^ Терпен, Аарон (16 ноября 2015 г.). «Новая технология аккумулятора обеспечивает 10 часов работы в режиме разговора всего за 5 минут зарядки» . www.gizmag.com . Архивировано из оригинала 8 декабря 2015 года . Проверено 3 декабря 2015 г.
  163. ^ «Высокоэффективные аккумуляторы на основе графеновых нанотрубок для электромобилей» . Tuball.com . 21 мая 2021 г. Проверено 20 июня 2024 г.
  164. ^ Дресслер, РА; Дан, младший (март 2024 г.). «Оптимизация анодов на основе Si и SiO с одностенными углеродными нанотрубками для применений с высокой плотностью энергии» . Журнал Электрохимического общества . 171 (3): 030520. Бибкод : 2024JElS..171c0520D . дои : 10.1149/1945-7111/ad30dc . ISSN   1945-7111 .
  165. ^ Дресслер, РА; Дан, младший (28 марта 2024 г.). «Исследование механизмов отказа литий-ионных аккумуляторов с композитными отрицательными электродами из кремния и графита и проводящей добавкой одностенных углеродных нанотрубок» . Журнал Электрохимического общества . 171 (3): 030532. Бибкод : 2024JElS..171c0532D . дои : 10.1149/1945-7111/ad3398 . ISSN   0013-4651 .
  166. ^ Смит, Ной (16 января 2015 г.). «Приготовьтесь к жизни без нефти» . www.bloombergview.com . Архивировано из оригинала 11 июля 2015 года . Проверено 31 июля 2015 г.
  167. ^ Рэндалл, Том; Липперт, Джон (24 ноября 2017 г.). «Новые обещания Tesla нарушают законы аккумуляторов» . Bloomberg.com . Архивировано из оригинала 12 июня 2018 года . Проверено 13 февраля 2018 г.
  168. ^ Перейти обратно: а б Зиглер, Мика С.; Трансик, Джессика Э. (21 апреля 2021 г.). «Пересмотр темпов совершенствования технологии литий-ионных аккумуляторов и снижения затрат» . Энергетика и экология . 14 (4): 1635–1651. arXiv : 2007.13920 . дои : 10.1039/D0EE02681F . ISSN   1754-5706 . S2CID   220830992 .
  169. ^ Зиглер, Мика С.; Сон, Джухён; Трансик, Джессика Э. (9 декабря 2021 г.). «Определители снижения стоимости технологии литий-ионных аккумуляторов» . Энергетика и экология . 14 (12): 6074–6098. дои : 10.1039/D1EE01313K . hdl : 1721.1/145588 . ISSN   1754-5706 . S2CID   244514877 .
  170. ^ Predtechenskiy, Mikhail R.; Khasin, Alexander A.; Smirnov, Sergei N.; Bezrodny, Alexander E.; Bobrenok, Oleg F.; Dubov, Dmitry Yu.; Kosolapov, Andrei G.; Lyamysheva, Ekaterina G.; Muradyan, Vyacheslav E.; Saik, Vladimir O.; Shinkarev, Vasiliy V.; Chebochakov, Dmitriy S.; Galkov, Mikhail S.; Karpunin, Ruslan V.; Verkhovod, Timofey D. (1 July 2022). "New Perspectives in SWCNT Applications: Tuball SWCNTs. Part 2. New Composite Materials through Augmentation with Tuball" . Carbon Trends . 8 : 100176. Bibcode : 2022CarbT...800176P . doi : 10.1016/j.cartre.2022.100176 . ISSN  2667-0569 .
  171. ^ Бобанак, Ведран; Базис, Хрвое; Панджич, Хрвое (6 июля 2021 г.). «Определение односторонней энергоэффективности литий-ионной батареи: влияние скорости C и кулоновских потерь» (PDF) . IEEE EUROCON 2021 — 19-я Международная конференция по интеллектуальным технологиям . IEEE. стр. 385–389. дои : 10.1109/EUROCON52738.2021.9535542 . ISBN  978-1-6654-3299-3 . S2CID   237520703 . Архивировано (PDF) из оригинала 22 июня 2023 года . Проверено 22 июня 2023 г.
  172. ^ Шимпе, Майкл; Науманн, Майк; Труонг, Нам; Гессен, Хольгер К.; Сантанагопалан, Шрирам; Саксон, Арон; Йоссен, Андреас (8 ноября 2017 г.). «Оценка энергоэффективности стационарной системы хранения контейнеров с литий-ионными батареями посредством электротермического моделирования и детального анализа компонентов» . Прикладная энергетика . 210 (С): 211–229. дои : 10.1016/j.apenergy.2017.10.129 . ISSN   0306-2619 .
  173. ^ «ТЕХНИЧЕСКИЙ ЛИСТ Литий-ионной батареи Модель батареи: LIR18650 2600 мАч» (PDF) . Архивировано (PDF) из оригинала 3 мая 2019 года . Проверено 3 мая 2019 г.
  174. ^ Перейти обратно: а б Ван, Дж.; Лю, П.; Хикс-Гарнер, Дж.; Шерман, Э.; Сукиазян С.; Вербрюгге, М.; Татария, Х.; Массер, Дж.; Финамор, П. (2011). «Модель жизненного цикла элементов графит-LiFePO4». Журнал источников энергии . 196 (8): 3942–3948. Бибкод : 2011JPS...196.3942W . дои : 10.1016/j.jpowsour.2010.11.134 .
  175. ^ Перейти обратно: а б Саксена, С.; Хендрикс, К.; Пехт, М. (2016). «Циклическое тестирование и моделирование элементов графита/LiCoO2 в различных диапазонах заряда». Журнал источников энергии . 327 : 394–400. Бибкод : 2016JPS...327..394S . дои : 10.1016/j.jpowsour.2016.07.057 .
  176. ^ Сан, Ю.; Саксена, С.; Пехт, М. (2018). «Рекомендации по снижению номинальных характеристик литий-ионных аккумуляторов» . Энергии . 11 (12): 3295. дои : 10.3390/en11123295 . hdl : 1903/31442 .
  177. ^ Перейти обратно: а б с Хендрикс, К.; Уилльярд, Н.; Мэтью, С.; Пехт, М. (2016). «Анализ режимов, механизмов и последствий отказов (FMMEA) литий-ионных аккумуляторов» . Журнал источников энергии . 327 : 113–120. дои : 10.1016/j.jpowsour.2015.07.100 . .
  178. ^ Перейти обратно: а б с д и ж г час я дж к л м н тот п Фёлкер, Пол (22 апреля 2014 г.). «Анализ следов деградации компонентов литий-ионных аккумуляторов» . НИОКР . Архивировано из оригинала 28 апреля 2015 года . Проверено 4 апреля 2015 г.
  179. ^ Перейти обратно: а б с д Вермеер, Вильян (2022). «Комплексный обзор характеристик и моделирование старения литий-ионных аккумуляторов» . Транзакции IEEE по электрификации транспорта . 8 (2): 2205. doi : 10.1109/tte.2021.3138357 . S2CID   245463637 . .
  180. ^ Перейти обратно: а б с д Вальдманн, Т.; Вилка, М.; Каспер, М.; Флейшхаммер, М.; Вольфарт-Меренс, М. (2014). «Механизмы старения литий-ионных батарей, зависящие от температуры - патологоанатомическое исследование». Журнал источников энергии . 262 : 129–135. Бибкод : 2014JPS...262..129W . дои : 10.1016/j.jpowsour.2014.03.112 .
  181. ^ Ленг, Фэн; Тан, Шер Минг; Пехт, Майкл (6 августа 2015 г.). «Влияние температуры на скорость старения литий-ионной батареи, работающей при температуре выше комнатной» . Научные отчеты . 5 (1): 12967. Бибкод : 2015NatSR...512967L . дои : 10.1038/srep12967 . ПМЦ   4526891 . ПМИД   26245922 .
  182. ^ Уильямс, Сара К. П. «Исследователи уделяют особое внимание износу аккумуляторов» . Чикагский университет через techxplore.com . Архивировано из оригинала 2 февраля 2023 года . Проверено 18 января 2023 г.
  183. ^ Чжан, Минхао; Шушан, Мехди; Шоджаи, С. Али; Винярский, Бартломей; Лю, Чжао; Ли, Летиан; Пелапур, Ренгараджан; Шодиев, Аббос; Яо, Вэйлян; Ду, Жан-Мари; Ван, Шен; Ли, Исюань; Лю, Чаоюэ; Лемменс, Герман; Франко, Алехандро А.; Мэн, Ин Ширли (22 декабря 2022 г.). «Сочетание многомасштабного анализа изображений и компьютерного моделирования для понимания механизмов деградации толстого катода» . Джоуль . 7 : 201–220. дои : 10.1016/j.joule.2022.12.001 . ISSN   2542-4785 .
  184. ^ Перейти обратно: а б с Аттиа П.М., Биллс А., Планелла Ф.Б., Дечент П., Дос Рейс Г., Дубарри М., Гаспер П., Гилкрист Р., Гринбанк С., Хоуи Д., Лю О., Ху Э., Прегер Ю., Сони А., Шрипад С., Стефанопулу А.Г., Зульцер. V (10 июня 2022 г.). «Обзор-«Колени» в траекториях старения литий-ионных аккумуляторов». Журнал Электрохимического общества . 169 (6): 28. arXiv : 2201.02891 . Бибкод : 2022JElS..169f0517A . дои : 10.1149/1945-7111/ac6d13 . S2CID   245836782 . .
  185. ^ «Как продлить срок службы аккумулятора мобильного телефона» . phonedog.com . 7 августа 2011 года . Проверено 25 июля 2020 г.
  186. ^ Александр К. Сутман. (2011). Эксперименты по старению литий-ионных батарей и разработка алгоритмов для оценки срока службы. Опубликовано Университетом штата Огайо и OhioLINK.
  187. ^ Мэтью Б. Пинсон1 и Мартин З. Базант. Теория формирования SEI в аккумуляторных батареях: снижение емкости, ускоренное старение и прогноз срока службы. Массачусетский технологический институт, Кембридж, Массачусетс, 02139
  188. ^ «Новые данные показывают, что нагрев и быстрая зарядка ответственны за деградацию батареи в большей степени, чем возраст или пробег» . ЧистаяТехника . 16 декабря 2019 года. Архивировано из оригинала 27 апреля 2021 года . Проверено 20 декабря 2019 г.
  189. ^ «Как iOS 13 сэкономит заряд батареи вашего iPhone (не заряжая его полностью)» . www.howtogeek.com . 4 июня 2019 года. Архивировано из оригинала 7 апреля 2020 года . Проверено 12 января 2020 г.
  190. ^ Джери, Саймон. «Советы и рекомендации по зарядке аккумулятора для продления срока службы» . Технический советник . Архивировано из оригинала 12 января 2020 года . Проверено 12 января 2020 г.
  191. ^ Рейнольдс, Мэтт (4 августа 2018 г.). «Вот истина, лежащая в основе самых больших (и самых глупых) мифов о батареях» . Проводная Великобритания . Архивировано из оригинала 12 января 2020 года . Проверено 12 января 2020 г. - через www.wired.co.uk.
  192. ^ «Почему вам следует прекратить полностью заряжать свой смартфон прямо сейчас» . Новости и продукты электротехники . 9 ноября 2015 г. Архивировано из оригинала 12 января 2020 г. . Проверено 12 января 2020 г.
  193. ^ Сун, Вэньтао; Харлоу, Дж.; Логан, Э.; Хебекер, Х.; Кун, М; Молино, Л.; Джонсон, М.; Дан, Дж.; Мецгер, М. (2021). «Систематическое исследование добавок к электролитам в монокристаллических и бимодальных элементах LiNi0,8Mn0,1 Co0,1O2/графитовый пакет» . Журнал Электрохимического общества . 168 (9): 090503. Бибкод : 2021JElS..168i0503S . дои : 10.1149/1945-7111/ac1e55 . .
  194. ^ Жагемон, Жорис; Ван Мирло, Джоэри (октябрь 2020 г.). «Всесторонний обзор будущих систем терморегулирования для транспортных средств с аккумуляторной батареей» . Журнал хранения энергии . 31 : 101551. Бибкод : 2020JEnSt..3101551J . дои : 10.1016/j.est.2020.101551 . S2CID   219934100 . Архивировано из оригинала 24 февраля 2022 года . Проверено 28 ноября 2021 г.
  195. ^ Вальдманн, Т.; Бисле, Г.; Хогг, Б.-И.; Стампп, С.; Данцер, Массачусетс; Каспер, М.; Аксманн, П.; Вольфарт-Меренс, М. (2015). «Влияние конструкции элемента на температуру и температурные градиенты в литий-ионных элементах: исследование in Operando» . Журнал Электрохимического общества . 162 (6): А921. дои : 10.1149/2.0561506jes . .
  196. ^ Малабет, Эрнандо (2021). «Анализ электрохимической и посмертной деградации параллельно соединенных литий-ионных элементов с неравномерным распределением температуры» . Журнал Электрохимического общества . 168 (10): 100507. Бибкод : 2021JElS..168j0507G . дои : 10.1149/1945-7111/ac2a7c . S2CID   244186025 .
  197. ^ Андреа 2010 , с. 9.
  198. ^ Лиав, BY; Юнгст, Р.Г.; Нагасубраманиан, Г.; Кейс, Х.Л.; Даути, Д.Х. (2005). «Моделирование затухания емкости литий-ионных элементов». Журнал источников энергии . 140 (1): 157–161. Бибкод : 2005JPS...140..157L . дои : 10.1016/j.jpowsour.2004.08.017 .
  199. ^ Перейти обратно: а б Ченг, Синь-Бин; Чжан, Руй; Чжао, Чэнь-Цзы; Чжан, Цян (9 августа 2017 г.). «На пути к безопасному литий-металлическому аноду в аккумуляторных батареях: обзор» . Химические обзоры . 117 (15): 10403–10473. doi : 10.1021/acs.chemrev.7b00115 . ISSN   0009-2665 . ПМИД   28753298 . Архивировано из оригинала 5 ноября 2023 года . Проверено 5 ноября 2023 г.
  200. ^ Сюй, Ву; Ван, Цзюлин; Дин, Фэй; Чен, Силинь; Насыбулин Эдуард; Чжан, Яохуэй; Чжан, Цзи-Гуан (23 января 2014 г.). «Литий-металлические аноды для аккумуляторных батарей» . Энергетика и экология . 7 (2): 513–537. дои : 10.1039/C3EE40795K . ISSN   1754-5706 . Архивировано из оригинала 5 ноября 2023 года . Проверено 5 ноября 2023 г.
  201. ^ Лю, Пэйчжао; Лю, Синьцзянь; Цюй, Цзе; Чжао, Цзятэн; Хо, Ютао; Цюй, Чжиго; Рао, Чжунхао (1 октября 2020 г.). «Последние достижения в области термической безопасности литий-ионных аккумуляторов для хранения энергии» . Материалы для хранения энергии . 31 : 195–220. Бибкод : 2020EneSM..31..195L . дои : 10.1016/j.ensm.2020.06.042 . ISSN   2405-8297 . S2CID   225545635 .
  202. ^ Лей, Яньсян; Чжан, Цайпин; Гао, Ян; Ли, Тонг (1 октября 2018 г.). «Оптимизация зарядки литий-ионных аккумуляторов на основе скорости снижения емкости и потерь энергии» . Энергетическая процедура . Чистая энергия для более чистых городов. 152 : 544–549. Бибкод : 2018EnPro.152..544L . дои : 10.1016/j.egypro.2018.09.208 . ISSN   1876-6102 . S2CID   115875535 .
  203. ^ Бандхауэр, Тодд М.; Гаримелла, Шринивас ; Фуллер, Томас Ф. (25 января 2011 г.). «Критический обзор тепловых проблем в литий-ионных батареях» . Журнал Электрохимического общества . 158 (3): Р1. дои : 10.1149/1.3515880 . ISSN   1945-7111 . S2CID   97367770 .
  204. ^ Чжан, Сюэ-Цян; Ченг, Синь-Бин; Чен, Сян; Ян, Чонг; Чжан, Цян (март 2017 г.). «Добавки фторэтиленкарбоната для выравнивания отложений лития в литий-металлических батареях» . Передовые функциональные материалы . 27 (10). дои : 10.1002/adfm.201605989 . ISSN   1616-301X . S2CID   99575315 . Архивировано из оригинала 5 ноября 2023 года . Проверено 5 ноября 2023 г.
  205. ^ Чжан, Шэн С.; Фань, Сюлин; Ван, Чуньшэн (12 июня 2018 г.). «Предотвращение электрического короткого замыкания, связанного с дендритом лития, в аккумуляторных батареях путем покрытия сепаратора добавкой, уничтожающей литий» . Журнал химии материалов А. 6 (23): 10755–10760. дои : 10.1039/C8TA02804D . ISSN   2050-7496 . Архивировано из оригинала 5 ноября 2023 года . Проверено 5 ноября 2023 г.
  206. ^ Гельдаса Ф.Т., Кебеде М.А., Шура М.В., Хон Ф.Г. (2022). «Идентификация явлений деградации поверхности, механических повреждений и термической нестабильности катодных материалов NCM с высокой плотностью энергии для литий-ионных батарей: обзор» . РСК Прогресс . 12 (10): 5891–5909. Бибкод : 2022RSCAd..12.5891G . дои : 10.1039/d1ra08401a . ПМК   8982025 . ПМИД   35424548 .
  207. ^ Пан XX, Чжун С., Ван Юл, Ян В, Чжэн WZ, Сунь GZ (2022). «Обзор прогнозирования состояния здоровья и срока службы литий-ионных батарей». Химическая запись . 22 (10): e202200131. дои : 10.1002/tcr.202200131 . ПМИД   35785467 . S2CID   250282891 .
  208. ^ Ли А.Г., Вест AC, Прейндл М. (2022 г.). «На пути к унифицированной характеристике деградации литий-ионных аккумуляторов на нескольких уровнях с помощью машинного обучения: критический обзор». Прикладная энергетика . 316 : 9. Бибкод : 2022ApEn..31619030L . дои : 10.1016/j.apenergy.2022.119030 . S2CID   246554618 .
  209. ^ О разложении электролитов литий-ионных аккумуляторов на основе карбонатов, изученном с помощью инфракрасной спектроскопии Operando. 2018. J Electrochem Soc. 165/16, А4051-А7. Н. Сакиб, К.М. Ганим, А.Е. Шелтон, Дж.М. Портер. дои: 10.1149/2.1051816jes.
  210. ^ Проблемы безопасности и качества поддельных литий-ионных элементов. 2023. ACS Energy Lett. 8/6, 2831-9. Т. Джоши, С. Азам, Д. Хуарес-Роблес, Х. А. Дживараджан. doi: 10.1021/acsenergylett.3c00724.
  211. ^ Перейти обратно: а б Хислоп, Мартин (1 марта 2017 г.). «Прорыв в создании твердотельных аккумуляторов для электромобилей от изобретателя литий-ионных аккумуляторов Джона Гуденаф» . Новости энергетики Северной Америки . Американские энергетические новости. Архивировано из оригинала 12 ноября 2020 года . Проверено 15 марта 2017 г.
  212. ^ Бишоп, Роланд; Уиллстранд, Ола; Розенгрен, Макс (1 ноября 2020 г.). «Обращение с литий-ионными аккумуляторами в электромобилях: предотвращение опасных ситуаций и восстановление после них» . Огненная техника . 56 (6): 2671–2694. дои : 10.1007/s10694-020-01038-1 . ISSN   1572-8099 . S2CID   225315970 .
  213. ^ Бишоп, Роланд; Уиллстранд, Ола; Амон, Франсин; Розенгрен, Макс (2019). Пожарная безопасность литий-ионных аккумуляторов в автотранспортных средствах . RISE Исследовательские институты Швеции. ISBN  978-91-88907-78-3 . Архивировано из оригинала 11 января 2024 года . Проверено 5 октября 2021 г.
  214. ^ Миллсапс, К. (10 июля 2012 г.). Второе издание IEC 62133: Стандарт для вторичных элементов и батарей, содержащих щелочные или другие некислотные электролиты, находится на стадии окончательного рассмотрения. Архивировано 10 января 2014 г. в Wayback Machine . Получено с сайта Battery Power Online (10 января 2014 г.)
  215. ^ МЭК 62133. Вторичные элементы и батареи, содержащие щелочные или другие некислотные электролиты. Требования безопасности к портативным герметичным вторичным элементам и к батареям, изготовленным из них, для использования в портативных устройствах (изд. 2.0). Международная электротехническая комиссия. Декабрь 2012. ISBN.  978-2-83220-505-1 .
  216. ^ Квон, Джетро Маллен и Кей Джей (2 сентября 2016 г.). «Samsung отзывает Galaxy Note 7 по всему миру из-за проблемы с аккумулятором» . CNNMoney . Архивировано из оригинала 17 июня 2019 года . Проверено 13 сентября 2019 г.
  217. ^ «Отзыв Samsung Galaxy Note 7» . news.com.au. ​2 сентября 2016 г. Архивировано из оригинала 2 сентября 2016 г.
  218. ^ Канеллос, Майкл (15 августа 2006 г.). «Можно ли что-нибудь укротить пламя батареи?» . Cnet. Архивировано из оригинала 9 декабря 2013 года . Проверено 14 июня 2013 г.
  219. ^ Electrochem Commercial Power (9 сентября 2006 г.). «Инструкции по безопасности и обращению с литиевыми батареями Electrochem» (PDF) . Университет Рутгерса. Архивировано (PDF) из оригинала 20 июля 2011 года . Проверено 21 мая 2009 г.
  220. ^ Уиллстранд, Ола; Бишоп, Роланд; Бломквист, Пер; Темпл, Аластер; Андерсон, Йохан (2020). Токсичные газы от пожара в электромобилях . RISE Исследовательские институты Швеции. ISBN  978-91-89167-75-9 . Архивировано из оригинала 11 января 2024 года . Проверено 5 октября 2021 г.
  221. ^ Перейти обратно: а б Миколайчак, Селина ; Кан, Майкл; Уайт, Кевин и Лонг, Ричард Томас (июль 2011 г.). «Оценка опасности и использования литий-ионных батарей» (PDF) . Фонд исследований пожарной безопасности. стр. 76, 90, 102. Архивировано из оригинала (PDF) 13 мая 2013 года . Проверено 27 января 2013 г.
  222. Топхэм, Гвин (18 июля 2013 г.). «Пожар в Хитроу на Boeing Dreamliner 'начался из-за аккумуляторной батареи'». Архивировано 22 февраля 2017 года в Wayback Machine . Хранитель .
  223. ^ «Самолет Boeing 787 остановлен из-за проблемы с аккумулятором в Японии» . Новости Би-би-си . 14 января 2014 года. Архивировано из оригинала 16 января 2014 года . Проверено 16 января 2014 г.
  224. ^ Чен, Минъи; Лю, Цзяхао; Он, Япинг; Юэнь, Ричард; Ван, Цзянь (октябрь 2017 г.). «Исследование пожароопасности литий-ионных аккумуляторов при различном давлении». Прикладная теплотехника . 125 : 1061–1074. Бибкод : 2017AppTE.125.1061C . doi : 10.1016/j.applthermaleng.2017.06.131 . ISSN   1359-4311 .
  225. ^ Пьер Кормон (20 июня 2024 г.). «Литий-ионные аккумуляторы представляют серьезную опасность для переработчиков» . Франкоязычная компания . Федерация романских предприятий в Женеве . Проверено 30 июня 2024 г.
  226. ^ Спотниц, Р.; Франклин, Дж. (2003). «Злоупотребление мощными литий-ионными элементами». Журнал источников энергии . 113 (1): 81–100. Бибкод : 2003JPS...113...81S . дои : 10.1016/S0378-7753(02)00488-3 .
  227. ^ Финеган, ДП; Шил, М.; Робинсон, Дж. Б.; Тьяден, Б.; Хант, И.; Мейсон, Ти Джей; Милличамп, Дж.; Ди Мишель, М.; Предложение, ГДж; Хиндс, Г.; Бретт, DJL; Ширинг, PR (2015). «В оперативном режиме высокоскоростная томография литий-ионных аккумуляторов при тепловом разгоне» . Природные коммуникации . 6 : 6924. Бибкод : 2015NatCo...6.6924F . дои : 10.1038/ncomms7924 . ПМЦ   4423228 . ПМИД   25919582 .
  228. ^ Лознен, Стели; Болинтяну, Константин; Сварт, Январь (2017). Соответствие электротехнической продукции и техника безопасности . Бостон: Артех Хаус. стр. 192–196. ISBN  978-1-63081-011-5 .
  229. ^ Вяйринен, А.; Салминен, Дж. (2012). «Производство литий-ионных аккумуляторов». Журнал химической термодинамики . 46 : 80–85. Бибкод : 2012JChTh..46...80В . дои : 10.1016/j.jct.2011.09.005 .
  230. ^ «Основы зарядки литий-ионных аккумуляторов» . PowerStream Technologies. Архивировано из оригинала 28 апреля 2021 года . Проверено 4 декабря 2010 г.
  231. ^ Лю, Синцзян; Кусаваке, Хироаки; Кувадзима, Сабуро (июль 2001 г.). «Приготовление композитного гелевого электролита ПВДФ-ГФП/полиэтилен с функцией отключения для литий-ионной аккумуляторной батареи». Журнал источников энергии . 97–98: 661–663. Бибкод : 2001JPS....97..661L . дои : 10.1016/S0378-7753(01)00583-3 .
  232. ^ Крингли, Роберт X. (1 сентября 2006 г.). «Безопасность на последнем месте» . Нью-Йорк Таймс . Архивировано из оригинала 4 июля 2012 года . Проверено 14 апреля 2010 г.
  233. ^ Чунг, Сянь-Цзин (13 июня 2024 г.). «Долгосрочное использование автономной фотоэлектрической системы с системой хранения энергии на основе литий-ионных батарей в высоких горах: практический пример в домике Пайюнь на горе Джейд на Тайване» . Батареи . 10 (6): 202. arXiv : 2405.04225 . дои : 10.3390/batteries10060202 .
  234. Хейлз, Пол (21 июня 2006 г.). Ноутбук Dell взорвался на конференции в Японии . Спрашивающий . Проверено 15 июня 2010 г.
  235. ^ Бро, Пер и Леви, Сэмюэл К. (1994). Опасности, связанные с аккумулятором, и предотвращение несчастных случаев . Нью-Йорк: Пленум Пресс. стр. 15–16. ISBN  978-0-306-44758-7 . Архивировано из оригинала 11 января 2024 года . Проверено 29 декабря 2020 г. .
  236. ^ «TSA: Безопасное путешествие с аккумуляторами и устройствами» . Ца.гов. 1 января 2008 г. Архивировано из оригинала 4 января 2012 г.
  237. ^ Рестрепо Н., Урибе Дж. М., Гильен М. Ценовые пузыри на литиевых рынках по всему миру. Фронт Энерг. Рес. 2023;11:11 дои: 10.3389/fenrg.2023.1204179.
  238. ^ Перейти обратно: а б с Амуи, Рашид (февраль 2020 г.). «Краткий обзор сырьевых товаров: специальный выпуск о стратегическом сырье для аккумуляторов» (PDF) . Конференция ООН по торговле и развитию . 13 (UNCTAD/DITC/COM/2019/5). Архивировано (PDF) из оригинала 3 февраля 2021 года . Проверено 10 февраля 2021 г.
  239. ^ Применение оценки жизненного цикла к наноразмерным технологиям: литий-ионные аккумуляторы для электромобилей (отчет). Вашингтон, округ Колумбия: Агентство по охране окружающей среды США (EPA). 2013. EPA 744-R-12-001. Архивировано из оригинала 11 июля 2017 года . Проверено 9 июля 2017 года .
  240. ^ «Могут ли нанотехнологии улучшить производительность литий-ионных аккумуляторов» . Экологический лидер. 30 мая 2013 г. Архивировано из оригинала 21 августа 2016 г. Проверено 3 июня 2013 г.
  241. ^ Катвала, Амит. «Растущий экологический ущерб от нашей зависимости от литиевых батарей» . Проводной . Публикации Конде Наст. Архивировано из оригинала 9 февраля 2021 года . Проверено 10 февраля 2021 г.
  242. ^ Дрейпер, Роберт. «Этот металл лежит в основе современных технологий – какой ценой?» . Нэшнл Географик . № Февраль 2019 г. National Geographic Partners. Архивировано из оригинала 18 января 2019 года . Проверено 10 февраля 2021 г.
  243. ^ Франко, Алехандро (7 апреля 2015 г.). Литиевые аккумуляторные батареи: от основ к применению . Франко, Алехандро А. Кембридж, Великобритания: Elsevier Science. ISBN  9781782420989 . OCLC   907480930 .
  244. ^ «Насколько «зелен» литий?» . 16 декабря 2014 года. Архивировано из оригинала 20 июля 2016 года . Проверено 25 июля 2016 г.
  245. ^ «Европейская комиссия, Наука для экологической политики, выпуск новостей 303» (PDF) . Октябрь 2012 г. Архивировано (PDF) из оригинала 16 сентября 2018 г. Проверено 8 февраля 2018 г.
  246. ^ «Анализ воздействия литий-ионных батарей на климат и способы его измерения» (PDF) . Архивировано (PDF) из оригинала 22 января 2022 года . Проверено 18 декабря 2021 г.
  247. ^ Бухерт, Матиас (14 декабря 2016 г.). «Обновленные оценки жизненного цикла процесса переработки литий-ионных батарей LithoRec II» (PDF) . Архивировано (PDF) из оригинала 20 апреля 2019 г. Проверено 14 июня 2019 г.
  248. ^ Митчелл, Роберт Л. (22 августа 2006 г.). «Литий-ионные аккумуляторы: последняя гора отходов высоких технологий» . Компьютерный мир . Архивировано из оригинала 22 апреля 2022 года . Проверено 22 апреля 2022 г.
  249. ^ Перейти обратно: а б Ханиш, Кристиан; Дикманн, Ян; Штигер, Александр; Хазельридер, Вольфганг; Кваде, Арно (2015). «27». В Янь, Цзиньюэ; Кабеса, Луиза Ф.; Сиошанси, Рамтин (ред.). Справочник по экологически чистым энергетическим системам - переработка литий-ионных батарей (5-е изд. Хранение энергии). John Wiley & Sons, Ltd., стр. 2865–2888. дои : 10.1002/9781118991978.hces221 . ISBN  9781118991978 .
  250. ^ Ханиш, Кристиан. «Утилизация литий-ионных аккумуляторов» (PDF) . Презентация по переработке литий-ионных аккумуляторов . Лион Инжиниринг ГмбХ. Архивировано из оригинала (PDF) 26 февраля 2017 года . Проверено 22 июля 2015 г.
  251. ^ Перейти обратно: а б Моррис, Чарльз (27 августа 2020 г.). «Li-Cycle восстанавливает пригодные для использования аккумуляторные материалы из измельченных литий-ионных аккумуляторов» . chargeevs.com . Архивировано из оригинала 16 сентября 2020 года . Проверено 31 октября 2020 г. подвергайте их термической обработке — они сжигают пластик и электролит в батареях и не особо ориентированы на восстановление материала. Этим методом можно получить в основном кобальт, никель и медь. Литий-ионный аккумулятор немного сложнее свинцово-кислотного.
  252. ^ Камьямхане, Вайшнови. «Являются ли литиевые батареи экологически безопасными?» . Альтернативные энергетические ресурсы. Архивировано из оригинала 17 сентября 2011 года . Проверено 3 июня 2013 г.
  253. ^ «Исследования и разработки в области чрезвычайно быстрой зарядки автомобилей средней и большой грузоподъемности» (PDF) . НРЭЛ . 27–28 августа 2019 г. с. 6. Архивировано (PDF) из оригинала 18 октября 2020 г. Проверено 23 октября 2020 г. Некоторые участники заплатили 3 доллара за кг за переработку батарей по окончании срока их службы.
  254. ^ Перейти обратно: а б Джейкоби, Митч (14 июля 2019 г.). «Пришло время серьезно заняться переработкой литий-ионных аккумуляторов» . Новости химии и техники . Архивировано из оригинала 29 октября 2021 года . Проверено 29 октября 2021 г.
  255. ^ «АТЗ ВОРЛДВАЙД» . uacj-automobile.com . Архивировано из оригинала 11 июля 2019 года . Проверено 14 июня 2019 г.
  256. ^ Джейкоби, Митч (14 июля 2019 г.). «Пришло время серьезно заняться переработкой литий-ионных аккумуляторов» . Новости химии и техники . Архивировано из оригинала 29 октября 2021 года . Проверено 29 октября 2021 г. Масштабность надвигающейся ситуации с отработанными батареями заставляет исследователей искать экономически эффективные и экологически устойчивые стратегии борьбы с огромными запасами литий-ионных батарей, маячащими на горизонте. Кобальт, никель, марганец и другие металлы, обнаруженные в батареях, могут легко вытечь из корпуса закопанных батарей и загрязнить почву и грунтовые воды, угрожая экосистемам и здоровью человека... То же самое относится и к раствору солей фторида лития (LiPF6 является распространенным явлением). ) в органических растворителях, которые используются в электролите аккумуляторной батареи.
  257. ^ Даути, Дэниел Х.; Рот, Э. Питер (2012). «Общее обсуждение безопасности литий-ионных аккумуляторов». Интерфейс электрохимического общества . 21 (2): 37. Бибкод : 2012ECSIn..21b..37D . дои : 10.1149/2.f03122if . ISSN   1944-8783 .
  258. ^ Георги-Машлер, Т.; Фридрих, Б.; Вейхе, Р.; Хегн, Х.; Рутц, М. (1 июня 2012 г.). «Разработка процесса переработки литий-ионных аккумуляторов». Журнал источников энергии . 207 : 173–182. дои : 10.1016/j.jpowsour.2012.01.152 . ISSN   0378-7753 .
  259. ^ Льв, Вэйгуан; Ван, Чжунхан; Цао, Хунбин; Сунь, Юн; Чжан, И; Сунь, Чжи (11 января 2018 г.). «Критический обзор и анализ переработки отработанных литий-ионных батарей». ACS Устойчивая химия и инженерия . 6 (2): 1504–1521. doi : 10.1021/acssuschemeng.7b03811 . ISSN   2168-0485 .
  260. ^ Феррейра, Даниэль Альваренга; Прадос, Луиза Мартинс Циммер; Маюсте, Даниэль; Мансур, Марсело Борхес (1 февраля 2009 г.). «Гидрометаллургическое отделение алюминия, кобальта, меди и лития из отработанных литий-ионных аккумуляторов». Журнал источников энергии . 187 (1): 238–246. Бибкод : 2009JPS...187..238F . дои : 10.1016/j.jpowsour.2008.10.077 . ISSN   0378-7753 .
  261. ^ Он, Ли-По; Сунь, Шу-Ин; Сун, Син-Фу; Ю, Цзянь-Го (июнь 2017 г.). «Процесс выщелачивания ценных металлов из катода LiNi 1/3 Co 1/3 Mn 1/3 O 2 литий-ионных аккумуляторов». Управление отходами . 64 : 171–181. Бибкод : 2017WaMan..64..171H . дои : 10.1016/j.wasman.2017.02.011 . ISSN   0956-053X . ПМИД   28325707 .
  262. ^ Са, Кина; Грац, Эрик; Хилан, Джозеф А.; Ма, Сиджия; Апелиан, Диран; Ван, Ян (4 апреля 2016 г.). «Синтез разнообразных катодных материалов LiNixMnyCozO2 из потока восстановления литий-ионных батарей» . Журнал устойчивой металлургии . 2 (3): 248–256. Бибкод : 2016JSusM...2..248S . дои : 10.1007/s40831-016-0052-x . ISSN   2199-3823 . S2CID   99466764 .
  263. ^ «Компания по переработке литий-ионных аккумуляторов Li-Cycle завершает раунд серии C» . Конгресс зеленых автомобилей . 29 ноября 2020 г. Архивировано из оригинала 29 ноября 2020 г.
  264. ^ Ши, Ян; Чен, Ген; Лю, Фанг; Юэ, Сюцзюнь; Чен, Чжэн (26 июня 2018 г.). «Устранение композиционных и структурных дефектов деградированных частиц LiNixCoyMnzO2 для прямой регенерации высокопроизводительных катодов литий-ионных аккумуляторов». Энергетические письма ACS . 3 (7): 1683–1692. doi : 10.1021/acsenergylett.8b00833 . ISSN   2380-8195 . S2CID   139435709 .
  265. ^ Данн, Дженнифер Б.; Гейнс, Линда; Салливан, Джон; Ван, Майкл К. (30 октября 2012 г.). «Влияние переработки на энергопотребление от начала до конца и выбросы парниковых газов автомобильных литий-ионных аккумуляторов». Экологические науки и технологии . 46 (22): 12704–12710. Бибкод : 2012EnST...4612704D . дои : 10.1021/es302420z . ISSN   0013-936X . ПМИД   23075406 .
  266. ^ «Переработка отработанных батареек» . Энергия природы . 4 (4): 253. Апрель 2019 г. Бибкод : 2019NatEn...4..253. . дои : 10.1038/s41560-019-0376-4 . ISSN   2058-7546 . S2CID   189929222 .
  267. ^ Перейти обратно: а б Сье, Ребекка Э.; Уитакр, Дж. Ф. (февраль 2019 г.). «Изучение различных процессов переработки литий-ионных аккумуляторов» . Устойчивость природы . 2 (2): 148–156. Бибкод : 2019NatSu...2..148C . дои : 10.1038/s41893-019-0222-5 . ISSN   2398-9629 . S2CID   188116440 .
  268. ^ Агусдината, Дату Буюнг; Лю, Вэньцзюань; Икин, Халли; Ромеро, Уго (27 ноября 2018 г.). «Социально-экологические последствия добычи лития: к программе исследований» . Письма об экологических исследованиях . 13 (12): 123001. Бибкод : 2018ERL....13l3001B . дои : 10.1088/1748-9326/aae9b1 . ISSN   1748-9326 . S2CID   159013281 .
  269. ^ Муха, Лена; Садоф, Карли Домб; Франкель, Тодд К. (28 февраля 2018 г.). «Перспектива – Скрытые затраты на добычу кобальта» . Вашингтон Пост . ISSN   0190-8286 . Архивировано из оригинала 10 апреля 2019 года . Проверено 7 марта 2018 г.
  270. ^ Тодд К. Франкель (30 сентября 2016 г.). «КОБАЛЬТОВЫЙ ТРУБОПРОВОД: путь от смертоносных вырытых вручную мин в Конго к телефонам и ноутбукам потребителей» . Вашингтон Пост . Архивировано из оригинала 17 апреля 2019 года . Проверено 29 октября 2021 г.
  271. ^ Кроуфорд, Алекс. Познакомьтесь с 8-летним Дорсеном, который добывает кобальт, чтобы заставить ваш смартфон работать . Архивировано 7 сентября 2018 года на Wayback Machine . Sky News Великобритания . Проверено 7 января 2018 г.
  272. ^ Вы сейчас держите в руках продукт детского труда? (Видео) Архивировано 1 июля 2018 года в Wayback Machine . Sky News UK (28 февраля 2017 г.). Проверено 7 января 2018 г.
  273. ^ Франкель, Тодд К. (30 сентября 2016 г.). «Добыча кобальта для производства литий-ионных аккумуляторов сопряжена с высокими человеческими затратами» . Вашингтон Пост . Архивировано из оригинала 17 апреля 2019 года . Проверено 18 октября 2016 г.
  274. ^ Маркеджиани, Пиа; Моргера, Элиза; Паркс, Луиза (21 ноября 2019 г.). «Права коренных народов на природные ресурсы в Аргентине: проблемы оценки воздействия, согласия и справедливого и равноправного распределения выгод в случаях добычи лития» . Международный журнал по правам человека .
  275. ^ Прайс, Остин (лето 2021 г.). «Погоня за белым золотом» . Журнал острова Земли . Архивировано из оригинала 29 октября 2021 года . Проверено 29 октября 2021 г.
  276. ^ Чедвелл, Джери (21 июля 2021 г.). «Судья вынесет решение по ходатайству о запрете на прекращение работ на литиевой шахте Такер Пасс» . Это Рено . Архивировано из оригинала 29 октября 2021 года . Проверено 12 октября 2021 г.
  277. ^ «Литийно-золотая лихорадка: внутри гонки за электромобилями» . Нью-Йорк Таймс . 6 мая 2021 года. Архивировано из оригинала 6 мая 2021 года . Проверено 6 мая 2021 г.
  278. ^ «Одобрение строительства литиевого месторождения Такер-Пасс вызывает круглосуточные протесты» . Союзник Сьерра-Невады . 19 января 2021 года. Архивировано из оригинала 29 октября 2021 года . Проверено 16 марта 2021 г.

Источники

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 1cfebedcf28e758723d755a6321a3081__1722172860
URL1:https://arc.ask3.ru/arc/aa/1c/81/1cfebedcf28e758723d755a6321a3081.html
Заголовок, (Title) документа по адресу, URL1:
Lithium-ion battery - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)