Дискретное косинусное преобразование
В этой статье могут неверно цитироваться или искажаться многие источники. Пожалуйста, посетите страницу очистки для получения дополнительной информации. ( июль 2022 г. ) |
Дискретное косинусное преобразование ( ДКП ) выражает конечную последовательность точек данных в виде суммы косинусных функций, колеблющихся на разных частотах . DCT, впервые предложенный Насиром Ахмедом в 1972 году, представляет собой широко используемый метод преобразования при обработке сигналов и сжатии данных . Он используется в большинстве цифровых носителей , включая цифровые изображения (например, JPEG и HEIF ), цифровое видео (например, MPEG и H.26x ), цифровое аудио (например, Dolby Digital , MP3 и AAC ), цифровое телевидение (например, SDTV). , HDTV и VOD ), цифровое радио (например, AAC+ и DAB+ ) и кодирование речи (например, AAC-LD , Siren и Opus ). ДКП также важны для многих других приложений в науке и технике , таких как цифровая обработка сигналов , телекоммуникационные устройства, сокращение использования полосы пропускания сети и спектральные методы численного решения уравнений в частных производных .
ДКП — это преобразование Фурье, аналогичное дискретному преобразованию Фурье (ДПФ), но использующее только действительные числа . ДКП обычно связаны с коэффициентами ряда Фурье периодически и симметрично расширенной последовательности, тогда как ДПФ связаны с коэффициентами ряда Фурье только периодически расширенной последовательности. ДКП эквивалентны ДПФ примерно вдвое большей длины, работающие с реальными данными с четной симметрией (поскольку преобразование Фурье действительной и четной функции является действительным и четным), тогда как в некоторых вариантах входные или выходные данные сдвигаются на половину выборки. .
Существует восемь стандартных вариантов DCT, из которых четыре являются распространенными.Наиболее распространенным вариантом дискретного косинусного преобразования является ДКП типа II, который часто называют просто ДКП . Это был первоначальный DCT, впервые предложенный Ахмедом. Его обратное, ДКП типа III, соответственно, часто называют просто обратным ДКП или IDCT . Двумя связанными преобразованиями являются дискретное синусоидальное преобразование (ДСТ), которое эквивалентно ДПФ действительных и нечетных функций , и модифицированное дискретное косинусное преобразование (МДКП), основанное на ДКП перекрывающихся данных. Многомерные DCT (MD DCT) разработаны для распространения концепции DCT на многомерные сигналы. Для снижения вычислительной сложности реализации DCT было разработано множество быстрых алгоритмов. Одним из них является целочисленное ДКП (IntDCT), [1] целочисленное , приближение стандартного ДКП [2] : ix, xiii, 1, 141–304. используется в нескольких ISO/IEC и ITU-T . международных стандартах [1] [2]
Сжатие DCT, также известное как блочное сжатие, сжимает данные в наборы дискретных блоков DCT. [3] Размеры блоков DCT, включая 8x8 пикселей для стандартного DCT, и различные размеры целочисленных DCT от 4x4 до 32x32 пикселей. [1] [4] DCT обладает сильным свойством уплотнения энергии , [5] [6] способен достигать высокого качества при высоких коэффициентах сжатия данных . [7] [8] Однако артефакты блочного сжатия при применении сильного сжатия DCT могут появиться .
История
[ редактировать ]DCT был впервые разработан Насиром Ахмедом , Т. Натараджаном и К. Р. Рао во время работы в Университете штата Канзас . Концепция была предложена Национальному научному фонду в 1972 году. Изначально DCT предназначался для сжатия изображений . [9] [1] Ахмед разработал практический алгоритм DCT вместе со своими аспирантами Т. Раджем Натараджаном, Уиллсом Дитрихом и Джереми Фрайсом, а также своим другом доктором К. Р. Рао в Техасском университете в Арлингтоне в 1973 году. [9] Они представили свои результаты в статье в январе 1974 года под названием «Дискретное косинусное преобразование» . [5] [6] [10] В нем описывалось то, что сейчас называется DCT типа II (DCT-II), [2] : 51 а также обратное ДКП типа III (IDCT). [5]
С момента его появления в 1974 году были проведены значительные исследования DCT. [10] В 1977 году Вэнь-Сюн Чен вместе с К. Харрисоном Смитом и Стэнли К. Фраликом опубликовал статью, в которой представил быстрый алгоритм ДКП. [11] [10] Дальнейшие разработки включают статью М. Дж. Нарасимхи и А. М. Петерсона 1978 года и статью Б. Г. Ли 1984 года. [10] Эти исследовательские работы, а также оригинальная статья Ахмеда 1974 года и статья Чена 1977 года были процитированы Объединенной группой экспертов по фотографии в качестве основы для JPEG в 1992 году. алгоритма сжатия изображений с потерями [10] [12]
Дискретное синусоидальное преобразование (ДСТ) было получено на основе ДКП путем замены условия Неймана при x=0 на условие Дирихле . [2] : 35-36 DST было описано в статье DCT 1974 года Ахмедом, Натараджаном и Рао. [5] DST типа I (DST-I) позже был описан Анилом К. Джайном в 1976 году, а DST типа II (DST-II) был затем описан Х. Б. Кекрой и Дж. К. Соланкой в 1978 году. [13]
В 1975 году Джон А. Роуз и Гунер С. Робинсон адаптировали DCT для межкадрового с компенсацией движения видеокодирования . Они экспериментировали с DCT и быстрым преобразованием Фурье (FFT), разрабатывая межкадровые гибридные кодеры для обоих, и обнаружили, что DCT является наиболее эффективным из-за его меньшей сложности, способного сжимать данные изображения до 0,25 бит на пиксель. для сцены видеотелефона с качеством изображения, сравнимым с внутрикадровым кодером, требующим 2 бита на пиксель. [14] [15] В 1979 году Анил К. Джайн и Джасвант Р. Джайн продолжили разработку сжатия видео DCT с компенсацией движения. [16] [17] также называется компенсацией движения блока. [17] Это привело к тому, что в 1981 году Чен разработал практический алгоритм сжатия видео, названный DCT с компенсацией движения или адаптивным кодированием сцены. [17] DCT с компенсацией движения позже стал стандартным методом кодирования для сжатия видео, начиная с конца 1980-х годов. [18] [19]
Вариант DCT, модифицированное дискретное косинусное преобразование (MDCT), был разработан Джоном П. Принсеном, А.В. Джонсоном и Аланом Б. Брэдли в Университете Суррея в 1987 году. [20] после более ранней работы Принсена и Брэдли в 1986 году. [21] MDCT используется в большинстве современных форматов сжатия звука , таких как Dolby Digital (AC-3), [22] [23] MP3 (использующий гибридный алгоритм DCT- FFT ), [24] Расширенное кодирование звука (AAC), [25] и Ворбис ( Огг ). [26]
Насир Ахмед также разработал алгоритм DCT без потерь вместе с Гиридхаром Мандьямом и Нираджем Маготрой из Университета Нью-Мексико в 1995 году. Это позволяет использовать метод DCT для сжатия изображений без потерь. Это модификация исходного алгоритма DCT, включающая элементы обратного DCT и дельта-модуляции . Это более эффективный алгоритм сжатия без потерь, чем энтропийное кодирование . [27] DCT без потерь также известен как LDCT. [28]
Приложения
[ редактировать ]DCT — наиболее широко используемый метод преобразования при обработке сигналов . [29] и, безусловно, наиболее широко используемое линейное преобразование при сжатии данных . [30] Несжатые цифровые носители , а также сжатие без потерь предъявляют высокие требования к памяти и пропускной способности , что значительно снижается за счет метода сжатия с потерями DCT . [7] [8] возможность достижения степени сжатия данных от 8:1 до 14:1 для качества, близкого к студийному, [7] до 100:1 для контента приемлемого качества. [8] Стандарты сжатия DCT используются в цифровых медиа-технологиях, таких как цифровые изображения , цифровые фотографии , [31] [32] цифровое видео , [18] [33] потоковое мультимедиа , [34] цифровое телевидение , потоковое телевидение , видео по запросу (VOD), [8] цифровое кино , [22] видео высокой четкости (HD-видео) и телевидение высокой четкости (HDTV). [7] [35]
DCT, и в частности DCT-II, часто используется при обработке сигналов и изображений, особенно для сжатия с потерями, поскольку он обладает сильным свойством сжатия энергии . [5] [6] В типичных приложениях большая часть информации о сигнале имеет тенденцию концентрироваться в нескольких низкочастотных компонентах DCT. Для сильно коррелированных марковских процессов ДКП может приближаться к эффективности уплотнения преобразования Карунена-Лоэва (которая является оптимальной в смысле декорреляции). Как поясняется ниже, это связано с граничными условиями, заложенными в косинусных функциях.
ДКП широко используются при решении уравнений в частных производных , спектральными методами где различные варианты ДКП соответствуют немного отличающимся четным и нечетным граничным условиям на двух концах массива.
ДКП тесно связаны с полиномами Чебышева , а быстрые алгоритмы ДКП (ниже) используются в аппроксимации Чебышева произвольных функций сериями полиномов Чебышева, например, в квадратуре Кленшоу – Кертиса .
Общие приложения
[ редактировать ]DCT широко используется во многих приложениях, включая следующие.
- Обработка аудиосигнала — кодирование звука , сжатие аудиоданных (с потерями и без потерь), [36] объемный звук , [22] акустического эха и подавление обратной связи , распознавание фонем , подавление наложения временных интервалов (TDAC) [37]
- Цифровое аудио [1]
- Цифровое радио — цифровое аудиовещание (DAB+), [38] HD-радио [39]
- Обработка речи — кодирование речи [40] [41] распознавание речи , обнаружение голосовой активности (VAD) [37]
- Цифровая телефония — передача голоса по IP (VoIP), [40] мобильная телефония , видеотелефония , [41] телеконференции , видеоконференции [1]
- Биометрия — по отпечаткам пальцев ориентация , системы распознавания лиц , биометрические водяные знаки , биометрические водяные знаки на основе отпечатков пальцев, отпечатков ладоней . идентификация/распознавание [37]
- Компьютеры и Интернет — Всемирная паутина , социальные сети , [31] [32] Интернет-видео [42]
- пропускной способности сети Снижение использования [1]
- Бытовая электроника [37] — мультимедийные системы, [1] мультимедийные телекоммуникационные устройства, [1] потребительские устройства [42]
- Криптография — шифрование , стеганография , авторских прав. защита [37]
- Сжатие данных — кодирование с преобразованием , сжатие с потерями , сжатие без потерь. [36]
- кодирования Операции — квантование , перцепционное взвешивание, энтропийное кодирование , кодирование с переменным битрейтом. [1]
- Цифровые медиа [34] — цифровая дистрибуция [43]
- Обнаружение подделок [37]
- Геофизическая переходная электромагнетика (переходная ЭМ) [37]
- Изображения — художника , идентификация [37] измерение фокуса и размытости , [37] извлечение признаков [37]
- Форматирование цвета — форматирование яркости и различий в цвете, цветовые форматы (например, YUV444 и YUV411 ), операции декодирования , такие как обратная операция между форматами цвета дисплея ( YIQ , YUV , RGB ). [1]
- Цифровая обработка изображений — цифровые изображения , цифровые фотоаппараты , цифровая фотография , [31] [32] визуализация с высоким динамическим диапазоном (HDR-изображение) [44]
- Сжатие изображения [37] [45] — форматы файлов изображений , [46] многоракурсное сжатие изображения, изображения прогрессивная передача [37]
- Обработка изображений — цифровая обработка изображений , [1] анализ изображения , поиск изображения на основе содержимого , обнаружение углов , направленное блочное представление изображения , обнаружение краев , улучшение изображения , объединение изображений , сегментация изображения , интерполяция , шума изображения оценка уровня , зеркальное отображение, вращение, профиль едва заметного искажения (JND) , пространственно-временные маскирующие эффекты, фовеативная визуализация [37]
- Оценка качества изображения — показатель ухудшения качества на основе DCT (DCT QM). [37]
- Реконструкция изображения направленных текстур — автопроверка , восстановление изображения , закрашивание , визуальное восстановление. [37]
- Медицинская техника
- Электрокардиография (ЭКГ) — векторкардиография (ВКГ) [37]
- Медицинская визуализация — сжатие медицинских изображений, объединение изображений, водяные знаки, опухолей головного мозга . сжатия классификация [37]
- Распознавание образов [37]
- Извлечение области интереса (ROI) [37]
- Обработка сигналов — цифровая обработка сигналов , цифровые сигнальные процессоры (DSP), программное обеспечение DSP , мультиплексирование , сигнализация , сигналы управления, аналого-цифровое преобразование (АЦП), [1] компрессионная выборка пирамиды DCT , маскирование ошибок , понижающая дискретизация , повышающая дискретизация , оценка отношения сигнал/шум (SNR), трансмукс , фильтр Винера [37]
- Комплексный анализ функций кепстра [37]
- DCT- фильтрация [37]
- Наблюдение [37]
- автомобильных событий регистрации данных Камера [37]
- Видео
- Цифровое кино [45] — цифровая кинематография , цифровые кинокамеры , видеомонтаж , монтаж фильмов , [47] [48] Dolby Digital Звук [1] [22]
- Цифровое телевидение (ЦТВ) [7] — цифровое телевещание , [45] телевидение стандартной четкости (SDTV), телевидение высокой четкости (HDTV), [7] [35] HDTV Чипы кодера/декодера , ультра HDTV (UHDTV) [1]
- Цифровое видео [18] [33] — цифровой универсальный диск (DVD), [45] видео высокой четкости (HD) [7] [35]
- Видеокодирование — сжатие видео , [1] стандарты видеокодирования , [37] оценка движения , компенсация движения , межкадровое предсказание, векторы движения , [1] Кодирование 3D-видео , модель вероятности обнаружения локальных искажений (LDDP), обнаружение движущихся объектов , многоракурсное видеокодирование (MVC) [37]
- Обработка видео — анализ движения , анализ движения 3D-DCT, анализ видеоконтента , извлечение данных , [37] просмотр видео , [49] профессиональная видеопродукция [50]
- Водяные знаки — цифровые водяные знаки , водяные знаки изображений , водяные знаки видео, водяные знаки 3D-видео , обратимое сокрытие данных , обнаружение водяных знаков. [37]
- Беспроводная технология
- Мобильные устройства [42] — мобильные телефоны , смартфоны , [41] видеофоны [1]
- Радиочастотная (РЧ) технология — радиочастотная техника , апертурные решетки , [37] формирование луча , цифровые арифметические схемы , направленное зондирование , космическая съемка [51]
- Беспроводная сенсорная сеть (WSN) — беспроводные акустические сенсорные сети. [37]
Стандарты визуальных медиа
[ редактировать ]DCT-II — важный метод сжатия изображений. Он используется в стандартах сжатия изображений, таких как JPEG , и стандартах сжатия видео , таких как H.26x , MJPEG , MPEG , DV , Theora и Daala . Там двумерный DCT-II блоки вычисляются, а результаты квантоваются и энтропийно кодируются . В этом случае, обычно равен 8, и формула DCT-II применяется к каждой строке и столбцу блока. Результатом является массив коэффициентов преобразования 8 × 8, в котором элемент (вверху слева) представляет собой компонент постоянного тока (нулевая частота), а записи с возрастающими значениями вертикального и горизонтального индекса представляют более высокие вертикальные и горизонтальные пространственные частоты.
Целочисленное ДКП, целочисленное приближение ДКП, [2] [1] используется в расширенном кодировании видео (AVC), [52] [1] представленный в 2003 году, и высокоэффективное кодирование видео (HEVC), [4] [1] представлено в 2013 году. Целочисленное DCT также используется в формате высокоэффективного изображения (HEIF), который использует подмножество формата кодирования видео HEVC для кодирования неподвижных изображений. [4] AVC использует блоки 4 x 4 и 8 x 8. HEVC и HEIF используют блоки разных размеров от 4 x 4 до 32 x 32 пикселей . [4] [1] По состоянию на 2019 год [update], AVC на сегодняшний день является наиболее часто используемым форматом для записи, сжатия и распространения видеоконтента, его используют 91% разработчиков видео, за ним следует HEVC, который используют 43% разработчиков. [43]
Форматы изображений
[ редактировать ]Стандарт сжатия изображений | Год | Общие приложения |
---|---|---|
JPEG [1] | 1992 | Наиболее широко используемый стандарт сжатия изображений. [53] [54] и формат цифрового изображения . [46] |
JPEG-XR | 2009 | Спецификация документа Open XML |
ВебП | 2010 | Графический формат, поддерживающий сжатие цифровых изображений с потерями. Разработано Google . |
Высокоэффективный формат изображения (HEIF) | 2013 | Формат файла изображения , основанный на сжатии HEVC. Он улучшает сжатие по сравнению с JPEG, [4] и поддерживает анимацию с гораздо более эффективным сжатием, чем анимированный формат GIF . [55] |
ВВП | 2014 | На основе сжатия HEVC. |
JPEG XL [56] | 2020 | Бесплатный формат файлов растровой графики, поддерживающий сжатие как с потерями, так и без потерь. |
Видео форматы
[ редактировать ]Стандарт кодирования видео | Год | Общие приложения |
---|---|---|
H.261 [57] [58] | 1988 | Первый из семейства стандартов кодирования видео . Используется в основном в старых продуктах для видеоконференций и видеотелефонов . |
Движущийся JPEG (MJPEG) [59] | 1992 | QuickTime , монтаж видео , нелинейный монтаж , цифровые камеры |
MPEG-1 Видео [60] | 1993 | цифрового видео Распространение на компакт-диске или Интернет-видео. |
Видео MPEG-2 ( H.262 ) [60] | 1995 | Хранение и обработка цифровых изображений в приложениях вещания, цифровом телевидении , HDTV , кабельном, спутниковом, высокоскоростном Интернете , распространении DVD- видео. |
ДВ | 1995 | Видеокамеры , цифровые кассеты |
H.263 ( MPEG-4, часть 2 ) [57] | 1996 | Видеотелефония по коммутируемой телефонной сети общего пользования (PSTN), H.320 , цифровая сеть с интеграцией услуг (ISDN) [61] [62] |
Расширенное кодирование видео (AVC, H.264 , MPEG-4 ) [1] [52] | 2003 | Популярный HD-видео формат записи, сжатия и распространения , интернет-видео , YouTube , диски Blu-ray , HDTV трансляции , веб-браузеры , потоковое телевидение , мобильные устройства , потребительские устройства, Netflix , [42] видеотелефония , FaceTime [41] |
Теория | 2004 | Интернет-видео, веб-браузеры |
ВК-1 | 2006 | Windows Media, диски Blu-ray |
Apple ProRes | 2007 | Профессиональная видеосъемка. [50] |
ВП9 | 2010 | Видеокодек, разработанный Google , используемый в формате контейнера WebM с HTML5 . |
Высокоэффективное кодирование видео (HEVC, H.265 ) [1] [4] | 2013 | Преемник стандарта H.264 , имеющий существенно улучшенные возможности сжатия. |
Daala | 2013 | Формат исследовательского видео от Xiph.org |
АВ1 [63] | 2018 | Формат с открытым исходным кодом, основанный на VP10 ( , внутреннем преемнике VP9) Daala и Thor ; используется поставщиками контента, такими как YouTube [64] [65] и Нетфликс . [66] [67] |
Аудиостандарты MDCT
[ редактировать ]Общий звук
[ редактировать ]Кодирование речи
[ редактировать ]кодирования речи Стандарт | Год | Общие приложения |
---|---|---|
ААС-ЛД (LD-MDCT) [77] | 1999 | Мобильная телефония , передача голоса по IP (VoIP), iOS , FaceTime [41] |
Сирена [40] | 1999 | VoIP , широкополосное аудио , G.722.1 |
G.722.1 [78] | 1999 | VoIP, широкополосное аудио, G.722 |
G.729.1 [79] | 2006 | G.729 , VoIP, широкополосное аудио, [79] мобильная телефония |
ЕВРК-ВБ [38] : 31 , 478] | 2007 | Широкополосный звук |
Г.718 [80] | 2008 | VoIP, широкополосное аудио, мобильная телефония |
Г.719 [38] | 2008 | Телеконференции , видеоконференции , голосовая почта |
КЕЛЬТ [81] | 2011 | VoIP, [82] [83] мобильная телефония |
Расширенные голосовые услуги (EVS) [84] | 2014 | Мобильная телефония, VoIP, широкополосное аудио |
Многомерное ДКП
[ редактировать ]Многомерные DCT (MD DCT) имеют несколько применений, в основном 3-D DCT, такие как 3-D DCT-II, который имеет несколько новых приложений, таких как системы кодирования гиперспектральных изображений, [85] 3-D DCT-кодирование переменной временной длины, [86] кодирования видео , алгоритмы [87] адаптивное кодирование видео [88] и 3-D сжатие. [89] В связи с усовершенствованием аппаратного и программного обеспечения и внедрением нескольких быстрых алгоритмов необходимость использования MD DCT быстро возрастает. DCT-IV приобрел популярность благодаря своим приложениям для быстрого внедрения реальных банков многофазной фильтрации. [90] перекрывающееся ортогональное преобразование [91] [92] и косинус-модулированные вейвлет-базы. [93]
Цифровая обработка сигналов
[ редактировать ]DCT играет очень важную роль в цифровой обработке сигналов . Используя DCT, сигналы можно сжимать. ДКТ можно использовать в электрокардиографии для сжатия сигналов ЭКГ.
DCT широко реализован в процессорах цифровых сигналов (DSP), а также в программном обеспечении цифровой обработки сигналов. Многие компании разработали DSP на основе технологии DCT. DCT широко используются для таких приложений, как кодирование , декодирование видео, аудио, мультиплексирование , сигналы управления, передача сигналов и аналого-цифровое преобразование . DCT также широко используются в кодеров/декодеров телевидения высокой четкости (HDTV) чипах . [1]
Артефакты сжатия
[ редактировать ]Распространенной проблемой сжатия DCT в цифровых носителях являются артефакты блочного сжатия . [94] вызванные блоками DCT. [3] Алгоритм DCT может вызывать блочные артефакты при применении сильного сжатия. Поскольку DCT используется в большинстве стандартов кодирования цифровых изображений и видео (таких как форматы JPEG , H.26x и MPEG ), артефакты блочного сжатия на основе DCT широко распространены в цифровых носителях . В алгоритме DCT изображение (или кадр в последовательности изображений) делится на квадратные блоки, которые обрабатываются независимо друг от друга, затем берется DCT этих блоков и квантоваются полученные коэффициенты DCT . Этот процесс может вызвать артефакты блокировки, в первую очередь при высоких коэффициентах сжатия данных . [94] Это также может вызвать эффект « москитного шума », обычно встречающийся в цифровом видео (например, в форматах MPEG). [95]
Блоки DCT часто используются в глитч-арте . [3] Художница Роза Менкман использует артефакты сжатия на основе DCT в своих глитч-артах. [96] особенно блоки DCT, присутствующие в большинстве цифровых медиаформатов , таких как цифровые изображения JPEG и MP3 цифровой звук . [3] Другой пример — Jpegs немецкого фотографа Томаса Раффа , который намеренно использует артефакты JPEG в качестве основы стиля изображения. [97] [98]
Неофициальный обзор
[ редактировать ]Как и любое преобразование Фурье, дискретное косинусное преобразование (ДКП) выражает функцию или сигнал в виде суммы синусоид с разными частотами и амплитудами . Подобно дискретному преобразованию Фурье (ДПФ), ДКП работает с функцией в конечном числе дискретных точек данных. Очевидным различием между ДКП и ДПФ является то, что первый использует только косинусные функции, а второй использует как косинусы, так и синусы (в форме комплексных экспонент ). Однако это видимое различие является всего лишь следствием более глубокого различия: ДКП подразумевает отличные граничные условия от ДПФ или других связанных преобразований.
Преобразования, связанные с Фурье, которые работают с функцией в конечной области , такие как ДПФ, ДКП или ряд Фурье , можно рассматривать как неявно определяющие расширение этой функции за пределами области. То есть, как только вы напишете функцию как сумму синусоид, вы можете вычислить эту сумму в любой момент , даже для где оригинал не было указано. ДПФ, как и ряд Фурье, подразумевает периодическое расширение исходной функции. ДКП, как и косинусное преобразование , подразумевает четное расширение исходной функции.
Однако, поскольку ДКП работают с конечными последовательностями, возникают две проблемы , дискретными которые не применимы к непрерывному косинусному преобразованию. Во-первых, необходимо указать, является ли функция четной или нечетной как на левой, так и на правой границах области (т. е. на границах min -n и max- n в определениях ниже соответственно). Во-вторых, необходимо указать, в какой точке функция будет четной или нечетной. В частности, рассмотрим последовательность abcd из четырех равноотстоящих друг от друга точек данных и скажем, что мы указываем четную левую границу. Есть две разумные возможности: либо данные четны о выборке a , и в этом случае четное расширение равно dcbabcd , либо данные четны о точке на полпути между a и предыдущей точкой, и в этом случае четное расширение равно dcbaabcd ( а повторяется).
Этот выбор приводит ко всем стандартным вариантам DCT, а также дискретным синусоидальным преобразованиям (DST). Каждая граница может быть четной или нечетной (2 варианта на границу) и может быть симметричной относительно точки данных или точки на полпути между двумя точками данных (2 варианта на границу), всего 2 × 2 × 2 × 2 = 16. возможности. Половина этих возможностей, те, у которых левая граница четная, соответствуют 8 типам ДКП; другая половина — это 8 типов летнего времени.
Эти различные граничные условия сильно влияют на применение преобразования и приводят к уникальным полезным свойствам для различных типов ДКП. Наиболее непосредственно, при использовании преобразований Фурье для решения уравнений в частных производных спектральными методами граничные условия задаются непосредственно как часть решаемой задачи. Или, для MDCT (основанного на DCT типа IV), граничные условия тесно связаны с критически важным свойством MDCT по устранению наложения временных интервалов. Более тонким образом граничные условия отвечают за свойства «энергетической компактификации», которые делают ДКП полезными для сжатия изображений и звука, поскольку границы влияют на скорость сходимости любого ряда Фурье.
В частности, хорошо известно, что любые разрывы функции снижают скорость сходимости ряда Фурье, поэтому для представления функции с заданной точностью требуется больше синусоид. Тот же принцип определяет полезность ДПФ и других преобразований для сжатия сигнала; чем более гладкая функция, тем меньше членов в ее ДПФ или ДКП требуется для ее точного представления и тем больше ее можно сжать. (Здесь мы думаем о ДПФ или ДКП как о приближениях ряда Фурье или косинусного ряда функции соответственно, чтобы говорить о ее «гладкости».) Однако неявная периодичность ДПФ означает, что разрывы обычно возникают при границы: любой случайный сегмент сигнала вряд ли будет иметь одинаковое значение как на левой, так и на правой границах. (Аналогичная проблема возникает для DST, в котором нечетное левое граничное условие подразумевает разрыв для любой функции, которая не равна нулю на этой границе.) Напротив, ДКП, где обе границы ровны, всегда дает непрерывное расширение на границах (хотя наклон обычно прерывистый). Вот почему DCT и, в частности, DCT типов I, II, V и VI (типы, которые имеют две четные границы), обычно лучше подходят для сжатия сигнала, чем DFT и DST. На практике для таких приложений обычно предпочтительнее ДКП типа II, отчасти из соображений удобства вычислений.
Формальное определение
[ редактировать ]Формально дискретное косинусное преобразование представляет собой линейную обратимую функцию. (где обозначает набор действительных чисел ) или, что эквивалентно, обратимую N × N. матрицу размера квадратную Существует несколько вариантов DCT со слегка измененными определениями. N действительных чисел преобразуются в N действительных чисел по одной из формул:
ДКП-I
[ редактировать ]Некоторые авторы еще больше умножают и условия по и соответственно умножить и условия по что делает матрицу DCT-I ортогональной , если ее дополнительно умножить на общий масштабный коэффициент но нарушает прямое соответствие с действительно-четным ДПФ .
DCT-I в точности эквивалентен (до общего масштабного коэффициента 2 ДПФ ) действительные числа с четной симметрией. Например, DCT-I действительные числа в точности эквивалентно ДПФ восьми действительных чисел (даже симметрия), разделенная на два. (Напротив, типы ДКП II-IV включают сдвиг на половину выборки в эквивалентном ДПФ.)
Однако обратите внимание, что DCT-I не определен для менее 2, тогда как все остальные типы ДКП определены для любого положительного
Таким образом, ДКП-I соответствует граничным условиям: даже рядом и даже вокруг ; аналогично для
ДКТ-II
[ редактировать ]DCT-II, вероятно, является наиболее часто используемой формой, и ее часто называют просто «DCT». [5] [6]
Это преобразование в точности эквивалентно (до общего масштабного коэффициента 2 ДПФ ) реальные входные данные четной симметрии, где элементы с четным индексом равны нулю. То есть это ДПФ половина входы где для и для Преобразование DCT-II также возможно с использованием сигнала 2 N с последующим умножением на половину сдвига. Это демонстрирует Махул .
Некоторые авторы еще больше умножают срок по и умножьте остальную часть матрицы на общий масштабный коэффициент (соответствующее изменение в DCT-III см. ниже). Это делает матрицу DCT-II ортогональной , но нарушает прямое соответствие с действительно-четным ДПФ полусдвинутого входного сигнала. Это нормализация, которую использует Matlab , например, см. [99] Во многих приложениях, таких как JPEG , масштабирование является произвольным, поскольку масштабные коэффициенты могут комбинироваться с последующим вычислительным шагом (например, шагом квантования в JPEG). [100] ), и можно выбрать масштабирование, позволяющее вычислять ДКП с меньшим количеством умножений. [101] [102]
DCT-II подразумевает граничные условия: даже рядом и даже вокруг даже рядом и странно вокруг
ДКП-III
[ редактировать ]Поскольку это инверсия DCT-II с точностью до масштабного коэффициента (см. ниже), эту форму иногда называют просто «инверсным DCT» («IDCT»). [6]
Некоторые авторы разделяют срок по вместо 2 (что приводит к общему значению термин) и умножить полученную матрицу на общий масштабный коэффициент (соответствующее изменение в DCT-II см. выше), так что DCT-II и DCT-III являются транспонированными друг друга. Это делает матрицу DCT-III ортогональной , но нарушает прямое соответствие с действительно-четным ДПФ полусмещенного выходного сигнала.
DCT-III подразумевает граничные условия: даже рядом и странно вокруг даже рядом и даже вокруг
ДКП-IV
[ редактировать ]Матрица DCT-IV становится ортогональной (и, таким образом, будучи явно симметричной, является собственной обратной), если ее дополнительно умножить на общий масштабный коэффициент
Вариант DCT-IV, в котором данные разных преобразований перекрываются , называется модифицированным дискретным косинусным преобразованием (MDCT). [103]
DCT-IV подразумевает граничные условия: даже рядом и странно вокруг аналогично для
ДКП V-VIII
[ редактировать ]ДКП типов I–IV рассматривают обе границы последовательно с точки зрения точки симметрии: они являются четными/нечетными либо вокруг точки данных для обеих границ, либо на полпути между двумя точками данных для обеих границ. Напротив, ДКП типов V-VIII подразумевают границы, которые являются четными/нечетными вокруг точки данных для одной границы и на полпути между двумя точками данных для другой границы.
Другими словами, ДКП типов I–IV эквивалентны вещественно-четному ДПФ четного порядка (независимо от того, является ли четно или нечетно), поскольку соответствующее ДПФ имеет длину (для DCT-I) или (для DCT-II и III) или (для DCT-IV). Четыре дополнительных типа дискретного косинусного преобразования [104] по существу соответствуют вещественно-четным ДПФ логически нечетного порядка, которые имеют коэффициенты в знаменателях косинусных аргументов.
Однако эти варианты, похоже, редко используются на практике. Одна из причин, возможно, заключается в том, что алгоритмы БПФ для ДПФ нечетной длины обычно более сложны, чем алгоритмы БПФ для ДПФ четной длины (например, самые простые алгоритмы счисления 2 предназначены только для четных длин), и эта повышенная сложность переносится и на ДПФ. как описано ниже.
(Тривиальный действительно-четный массив, ДПФ длины один (нечетная длина) одного числа a , соответствует DCT-V длины )
Обратные преобразования
[ редактировать ]Используя приведенные выше соглашения о нормализации, обратным DCT-I является DCT-I, умноженный на 2/( N - 1). Обратным DCT-IV является DCT-IV, умноженный на 2/ N . Обратное значение DCT-II — это DCT-III, умноженное на 2/ N , и наоборот. [6]
Как и в случае с ДПФ , коэффициент нормализации перед этими определениями преобразования является просто соглашением и различается в зависимости от обработки. Например, некоторые авторы умножают преобразования на так что обратное не требует какого-либо дополнительного мультипликативного множителя. В сочетании с соответствующими коэффициентами √ 2 (см. выше) это можно использовать для того, чтобы сделать матрицу преобразования ортогональной .
Многомерные ДКП
[ редактировать ]Многомерные варианты различных типов ДКП непосредственно следуют из одномерных определений: они просто представляют собой отделимый продукт (эквивалентно композицию) ДКП по каждому измерению.
МД ДКТ-II
[ редактировать ]Например, двумерный DCT-II изображения или матрицы — это просто одномерный DCT-II сверху, выполняемый по строкам, а затем по столбцам (или наоборот). То есть 2D DCT-II задается формулой (без учета нормализации и других масштабных коэффициентов, как указано выше):
- Обратное многомерное ДКП - это просто разделяемое произведение обратных значений соответствующих одномерных ДКП (см. Выше), например, одномерные обратные, применяемые по одному измерению за раз в алгоритме строка-столбец.
3 -D DCT-II является лишь расширением 2-D DCT-II в трехмерном пространстве и математически может быть рассчитан по формуле
Обратной 3-D DCT-II является 3-D DCT-III , и ее можно вычислить по формуле:
Технически вычисление двух-, трех- (или многомерного) ДКП с помощью последовательностей одномерных ДКП вдоль каждого измерения известно как алгоритм строки-столбца . Однако, как и в случае с многомерными алгоритмами БПФ , существуют другие методы вычисления того же самого, выполняя вычисления в другом порядке (т.е. чередование/комбинирование алгоритмов для разных измерений). В связи с быстрым ростом приложений, основанных на 3-D DCT, разработано несколько быстрых алгоритмов для расчета 3-D DCT-II. Алгоритмы Vector-Radix применяются для вычисления MD DCT для уменьшения вычислительной сложности и увеличения скорости вычислений. Для эффективного расчета 3-D DCT-II был разработан быстрый алгоритм векторно-радиксного децимации по частоте (VR DIF).
3-D DCT-II VR DIF
[ редактировать ]Для применения алгоритма VR DIF входные данные необходимо сформулировать и переупорядочить следующим образом. [105] [106] размер преобразования N × N × N Предполагается, что равен 2.
- где
На рисунке рядом показаны четыре этапа, которые участвуют в расчете 3-D DCT-II с использованием алгоритма VR DIF. Первый этап — это трехмерное переупорядочение с использованием индексного отображения, иллюстрируемого приведенными выше уравнениями. Второй этап – расчет бабочки. Каждая бабочка вычисляет вместе восемь точек, как показано на рисунке чуть ниже, где .
Исходный 3-D DCT-II теперь можно записать как
где
Если четная и нечетная части и и рассматриваются, общая формула для расчета 3-D DCT-II может быть выражена как
где
Арифметическая сложность
[ редактировать ]Весь расчет 3-D DCT требует этапы, и каждый этап включает в себя бабочки. Весь 3-D DCT требует бабочки, подлежащие вычислению. Для каждой бабочки требуется семь действительных умножений (включая тривиальные умножения) и 24 действительных сложения (включая тривиальные сложения). Следовательно, общее количество действительных умножений, необходимых для этого этапа, равно и общее количество реальных сложений, т.е. включая пост-сложения (рекурсивные сложения), которые могут быть рассчитаны непосредственно после этапа «бабочка» или после этапа реверса битов, определяются выражением [106]
Традиционный метод расчета MD-DCT-II использует подход «строка-столбец-кадр» (RCF), который является вычислительно сложным и менее производительным на большинстве современных аппаратных платформ. Количество умножений, необходимых для вычисления алгоритма VR DIF по сравнению с алгоритмом RCF, довольно велико. Количество умножений и сложений, задействованных в подходе RCF, определяется выражением и соответственно. Из таблицы 1 видно, что общее количество
Преобразовать размер | 3D VR Mults | RCF мульты | 3D VR добавляет | RCF добавляет |
---|---|---|---|---|
8 × 8 × 8 | 2.625 | 4.5 | 10.875 | 10.875 |
16 × 16 × 16 | 3.5 | 6 | 15.188 | 15.188 |
32 × 32 × 32 | 4.375 | 7.5 | 19.594 | 19.594 |
64 × 64 × 64 | 5.25 | 9 | 24.047 | 24.047 |
умножений, связанных с алгоритмом 3-D DCT VR, меньше, чем с использованием подхода RCF, более чем на 40%. Кроме того, подход RCF включает в себя транспонирование матрицы и большее количество индексации и обмена данными, чем новый алгоритм VR. Это делает алгоритм 3-D DCT VR более эффективным и лучше подходящим для 3-D приложений, в которых используется 3-D DCT-II, таких как сжатие видео и другие приложения обработки трехмерных изображений.
Основным соображением при выборе быстрого алгоритма является избежание вычислительных и структурных сложностей. По мере развития технологий компьютеров и DSP время выполнения арифметических операций (умножения и сложения) становится очень быстрым, и наиболее важным фактором становится регулярная вычислительная структура. [107] Следовательно, хотя предложенный выше алгоритм 3D VR не достигает теоретической нижней границы количества умножений, [108] он имеет более простую вычислительную структуру по сравнению с другими алгоритмами 3-D DCT. Его можно реализовать на месте с использованием одной бабочки, и он обладает свойствами алгоритма БПФ Кули – Тьюки в 3D. Следовательно, 3-D VR представляет собой хороший выбор для сокращения арифметических операций при расчете 3-D DCT-II, сохраняя при этом простую структуру, которая характеризует алгоритмы БПФ Кули-Тьюки типа «бабочка» .
Изображение справа показывает комбинацию горизонтальных и вертикальных частот для монитора 8 × 8. двумерное ДКП. Каждый шаг слева направо и сверху вниз — это увеличение частоты на 1/2 цикла.Например, перемещение вправо от верхнего левого квадрата приводит к увеличению горизонтальной частоты на полпериода. Еще одно движение вправо дает два полупериода. Движение вниз дает два полупериода по горизонтали и полупериод по вертикали. Исходные данные (8×8) преобразуются в линейную комбинацию этих 64 квадратов частот.
МД-ДКП-IV
[ редактировать ]MD DCT-IV — это просто расширение 1-D DCT-IV на М- мерную область. 2D DCT-IV матрицы или изображения определяется выражением
- для и
Мы можем вычислить MD DCT-IV, используя обычный метод строк-столбцов, или мы можем использовать метод полиномиального преобразования. [109] для быстрых и эффективных вычислений. Основная идея этого алгоритма состоит в том, чтобы использовать полиномиальное преобразование для прямого преобразования многомерного ДКП в серию одномерных ДКП. MD DCT-IV также имеет несколько применений в различных областях.
Вычисление
[ редактировать ]Хотя прямое применение этих формул потребовало бы операций, то же самое можно вычислить, используя только сложность за счет факторизации вычислений аналогично быстрому преобразованию Фурье (БПФ). Можно также вычислить ДКП с помощью БПФ в сочетании с этапы предварительной и последующей обработки. В общем, методы вычисления DCT известны как алгоритмы быстрого косинусного преобразования (FCT).
В принципе, наиболее эффективными алгоритмами обычно являются те, которые специализируются непосредственно на ДКП, а не на использовании обычного БПФ плюс дополнительные операции (исключение см. ниже). Однако даже «специализированные» алгоритмы ДКП (включая все те, которые достигают наименьшего известного арифметического счета, по крайней мере, для размеров степени двойки ) обычно тесно связаны с алгоритмами БПФ, поскольку ДКП по сути представляют собой ДПФ вещественно-четных данных. можно разработать быстрый алгоритм ДКП, приняв БПФ и исключив избыточные операции из-за этой симметрии. Это можно сделать даже автоматически ( Frigo & Johnson 2005 ). Наиболее распространены алгоритмы, основанные на алгоритме БПФ Кули-Тьюки , но применим и любой другой алгоритм БПФ. Например, алгоритм БПФ Винограда приводит к алгоритмам минимального умножения для ДПФ, хотя обычно за счет большего количества сложений, и аналогичный алгоритм был предложен ( Фейг и Виноград 1992а ) для ДКП. Поскольку алгоритмы ДПФ, ДКП и подобных преобразований очень тесно связаны, любое улучшение алгоритмов одного преобразования теоретически приведет к немедленным улучшениям и для других преобразований ( Дюамель и Веттерли 1990 ).
Хотя алгоритмы ДКП, использующие немодифицированное БПФ, часто имеют некоторые теоретические накладные расходы по сравнению с лучшими специализированными алгоритмами ДКП, у первых также есть явное преимущество: широко доступны высокооптимизированные программы БПФ. Таким образом, на практике часто легче получить высокую производительность для общих длин N с помощью алгоритмов на основе БПФ. [а] С другой стороны, специализированные алгоритмы DCT широко используются для преобразований небольших фиксированных размеров, таких как DCT-II 8 × 8 , используемый при сжатии JPEG , или небольшие DCT (или MDCT), обычно используемые при сжатии звука. (Уменьшенный размер кода также может быть причиной использования специализированного DCT для приложений встроенных устройств.)
Фактически, даже алгоритмы ДКП, использующие обычное БПФ, иногда эквивалентны удалению избыточных операций из более крупного БПФ вещественно-симметричных данных, и они даже могут быть оптимальными с точки зрения арифметических вычислений. Например, ДКП типа II эквивалентно ДПФ размером с вещественно-четной симметрией, чьи четные элементы равны нулю. Один из наиболее распространенных методов вычисления этого значения с помощью БПФ (например, метод, используемый в FFTPACK и FFTW ) был описан Нарасимхой и Петерсоном (1978) и Махоулом (1980) , и этот метод, оглядываясь назад, можно рассматривать как один шаг Алгоритм Кули – Тьюки с прореживанием во времени по основанию 4, примененный к «логическому» действительно-четному ДПФ, соответствующему DCT-II. [б] Поскольку элементы с четным индексом равны нулю, этот шаг по основанию 4 точно такой же, как шаг разделения системы счисления. Если последующий размер БПФ реальных данных также выполняется с помощью алгоритма разделения системы счисления реальных данных (как в Соренсене и др. (1987) ), тогда результирующий алгоритм фактически соответствует тому, что долгое время было наименьшим опубликованным арифметическим счетчиком для ДКП степени двойки. -II ( вещественные арифметические операции [с] ).
Недавнее сокращение количества операций до также использует БПФ реальных данных. [110] Таким образом, с арифметической точки зрения нет ничего плохого в вычислении ДКП с помощью БПФ – иногда это просто вопрос того, является ли соответствующий алгоритм БПФ оптимальным. (На практике накладные расходы на вызов функций при вызове отдельной процедуры БПФ могут быть значительными для небольших но это скорее реализация, чем алгоритмический вопрос, поскольку его можно решить путем развертывания или встраивания.)
Пример IDCT
[ редактировать ]Рассмотрим это изображение заглавной буквы А размером 8x8 в оттенках серого.
Каждая базисная функция умножается на свой коэффициент, а затем это произведение добавляется к окончательному изображению.
См. также
[ редактировать ]- Дискретное вейвлет-преобразование
- JPEG — Дискретное косинусное преобразование — содержит потенциально более простой для понимания пример преобразования DCT.
- Список преобразований, связанных с Фурье
- Модифицированное дискретное косинусное преобразование
Примечания
[ редактировать ]- ^ Алгоритмическая производительность на современном оборудовании обычно не определяется простыми арифметическими вычислениями, и оптимизация требует значительных инженерных усилий, чтобы наилучшим образом использовать, в пределах ее внутренних ограничений, доступные встроенные аппаратные средства оптимизации.
- ^ Шаг по основанию 4 уменьшает размер ДПФ до четырех размеров ДПФ реальных данных, два из которых равны нулю, а два равны друг другу по четной симметрии. Следовательно, давая единый размер БПФ реальных данных плюс бабочки , как только тривиальные и/или повторяющиеся части будут удалены и/или объединены.
- ^ Точное количество действительных арифметических операций и, в частности, количество действительных умножений в некоторой степени зависит от масштабирования определения преобразования. count относится к показанному здесь определению DCT-II; два умножения можно сохранить, если преобразование масштабируется в целом фактор. Дополнительные умножения можно сохранить, если разрешить индивидуальное масштабирование результатов преобразования, как было показано Араи, Агуи и Накадзимой (1988) для случая размера 8, используемого в JPEG.
Ссылки
[ редактировать ]- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v В х и С аа Станкович, Радомир С.; Астола, Яакко Т. (2012). «Воспоминания о ранней работе в DCT: интервью с К.Р. Рао» (PDF) . Отпечатки первых дней информационных наук . 60 . Международный центр обработки сигналов Тампере. ISBN 978-9521528187 . ISSN 1456-2774 . Архивировано (PDF) из оригинала 30 декабря 2021 года . Проверено 30 декабря 2021 г. - через ETHW .
- ^ Jump up to: а б с д и Британак, Владимир; Да, Патрик С.; Рао, КР (6 ноября 2006 г.). Дискретные косинусные и синусоидальные преобразования: общие свойства, быстрые алгоритмы и целочисленные аппроксимации . Академическая пресса . ISBN 978-0123736246 . LCCN 2006931102 . OCLC 220853454 . ОЛ 18495589М . S2CID 118873224 .
- ^ Jump up to: а б с д Алихани, Дарья (1 апреля 2015 г.). «За пределами разрешения: глюк-арт Розы Менкман» . POSTматерия . Архивировано из оригинала 19 октября 2019 года . Проверено 19 октября 2019 г.
- ^ Jump up to: а б с д и ж Томсон, Гэвин; Шах, Атар (2017). «Представляем HEIF и HEVC» (PDF) . Apple Inc. Дата обращения 5 августа 2019 г.
- ^ Jump up to: а б с д и ж Ахмед, Насир ; Натараджан, Т. Радж; Рао, КР (1 января 1974 г.). «Дискретное косинусное преобразование». Транзакции IEEE на компьютерах . С-23 (1). Компьютерное общество IEEE: 90–93. дои : 10.1109/TC.1974.223784 . eISSN 1557-9956 . ISSN 0018-9340 . LCCN 75642478 . OCLC 1799331 . S2CID 206619973 .
- ^ Jump up to: а б с д и ж Рао, К. Рамамохан ; Йип, Патрик К. (11 сентября 1990 г.). Дискретное косинусное преобразование: алгоритмы, преимущества, приложения . Обработка сигналов, изображений и речи. Академическая пресса . arXiv : 1109.0337 . дои : 10.1016/c2009-0-22279-3 . ISBN 978-0125802031 . LCCN 89029800 . OCLC 1008648293 . ОЛ 2207570М . S2CID 12270940 .
- ^ Jump up to: а б с д и ж г Барберо, М.; Хофманн, Х.; Уэллс, Северная Дакота (14 ноября 1991 г.). «Исходное кодирование DCT и текущие реализации для HDTV» . Технический обзор EBU (251). Европейский вещательный союз : 22–33 . Проверено 4 ноября 2019 г.
- ^ Jump up to: а б с д и Леа, Уильям (1994). «Видео по запросу: Исследовательская работа 94/68» . Библиотека Палаты общин . Проверено 20 сентября 2019 г.
- ^ Jump up to: а б Ахмед, Насир (январь 1991 г.). «Как я придумал дискретное косинусное преобразование» (PDF) . Цифровая обработка сигналов . 1 (1): 4–5. Бибкод : 1991DSP.....1....4A . дои : 10.1016/1051-2004(91)90086-Z .
- ^ Jump up to: а б с д и «T.81 – Цифровое сжатие и кодирование неподвижных изображений с непрерывным тоном – Требования и рекомендации» (PDF) . ССИТТ . Сентябрь 1992 года . Проверено 12 июля 2019 г.
- ^ Чен, Вэнь-Сюн; Смит, Швейцария; Фралик, Южная Каролина (сентябрь 1977 г.). «Быстрый вычислительный алгоритм дискретного косинусного преобразования». Транзакции IEEE в области коммуникаций . 25 (9): 1004–1009. дои : 10.1109/TCOM.1977.1093941 .
- ^ Смит, К.; Фралик, С. (1977). «Быстрый вычислительный алгоритм дискретного косинусного преобразования». Транзакции IEEE в области коммуникаций . 25 (9): 1004–1009. дои : 10.1109/TCOM.1977.1093941 . ISSN 0090-6778 .
- ^ Дхамиджа, Свати; Джайн, Приянка (сентябрь 2011 г.). «Сравнительный анализ дискретного синусоидального преобразования как подходящего метода оценки шума» . Международный журнал компьютерных наук IJCSI . 8 (5, № 3): 162–164 (162) . Проверено 4 ноября 2019 г.
- ^ Хуанг, ТС (1981). Анализ последовательности изображений . Springer Science & Business Media . п. 29. ISBN 9783642870378 .
- ^ Роуз, Джон А.; Робинсон, Гунер С. (30 октября 1975 г.). Тешер, Эндрю Г. (ред.). «Комбинированное пространственное и временное кодирование последовательностей цифровых изображений». Эффективная передача графической информации . 0066 . Международное общество оптики и фотоники: 172–181. Бибкод : 1975SPIE...66..172R . дои : 10.1117/12.965361 . S2CID 62725808 .
- ^ Чианчи, Филип Дж. (2014). Телевидение высокой четкости: создание, развитие и внедрение технологии HDTV . МакФарланд. п. 63. ИСБН 9780786487974 .
- ^ Jump up to: а б с «История сжатия видео» . МСЭ-Т . Объединенная группа по видео (JVT) ISO/IEC MPEG и ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 и ITU-T SG16 Q.6). Июль 2002. стр. 11, 24–9, 33, 40–1, 53–6 . Проверено 3 ноября 2019 г.
- ^ Jump up to: а б с Ганбари, Мохаммед (2003). Стандартные кодеки: от сжатия изображения до расширенного кодирования видео . Институт техники и технологий . стр. 1–2. ISBN 9780852967102 .
- ^ Ли, Цзянь Пин (2006). Материалы Международной компьютерной конференции 2006 г. по вейвлетным активным медиа-технологиям и обработке информации: Чунцин, Китай, 29–31 августа 2006 г. Всемирная научная . п. 847. ИСБН 9789812709998 .
- ^ Принсен, Джон П.; Джонсон, AW; Брэдли, Алан Б. (1987). «Кодирование поддиапазона/преобразования с использованием конструкции банка фильтров на основе отмены псевдонимов во временной области». ИКАССП '87. Международная конференция IEEE по акустике, речи и обработке сигналов . Том. 12. С. 2161–2164. дои : 10.1109/ICASSP.1987.1169405 . S2CID 58446992 .
- ^ Принсен, Дж.; Брэдли, А. (1986). «Разработка банка фильтров анализа/синтеза на основе отмены псевдонимов во временной области». Транзакции IEEE по акустике, речи и обработке сигналов . 34 (5): 1153–1161. дои : 10.1109/ТАССП.1986.1164954 .
- ^ Jump up to: а б с д и ж г час я дж к Ло, Фа-Лонг (2008). Стандарты мобильного мультимедийного вещания: технологии и практика . Springer Science & Business Media . п. 590. ИСБН 9780387782638 .
- ^ Jump up to: а б Британак, В. (2011). «О свойствах, связях и упрощенной реализации наборов фильтров в стандартах кодирования звука Dolby Digital (Plus) AC-3». Транзакции IEEE по обработке звука, речи и языка . 19 (5): 1231–1241. дои : 10.1109/TASL.2010.2087755 . S2CID 897622 .
- ^ Jump up to: а б Гукерт, Джон (весна 2012 г.). «Использование БПФ и MDCT в сжатии аудио MP3» (PDF) . Университет Юты . Проверено 14 июля 2019 г.
- ^ Jump up to: а б Бранденбург, Карлхайнц (1999). «Объяснение MP3 и AAC» (PDF) . Архивировано (PDF) из оригинала 13 февраля 2017 г.
- ^ Jump up to: а б Фонд Xiph.Org (2 июня 2009 г.). «Спецификация Vorbis I – 1.1.2 Классификация» . Фонд Xiph.Org . Проверено 22 сентября 2009 г.
- ^ Мандьям, Гиридхар Д .; Ахмед, Насир; Маготра, Нирадж (17 апреля 1995 г.). Родригес, Артуро А.; Сафранек, Роберт Дж.; Дельп, Эдвард Дж. (ред.). «Схема сжатия изображений без потерь на основе DCT». Сжатие цифрового видео: алгоритмы и технологии 1995 . 2419 . Международное общество оптики и фотоники: 474–478. Бибкод : 1995SPIE.2419..474M . дои : 10.1117/12.206386 . S2CID 13894279 .
- ^ Комацу, К.; Сезаки, Каору (1998). «Обратимое дискретное косинусное преобразование» . Материалы Международной конференции IEEE по акустике, речи и обработке сигналов 1998 г., ICASSP '98 (Кат. № 98CH36181) . Том. 3. С. 1769–1772 т.3. дои : 10.1109/ICASSP.1998.681802 . ISBN 0-7803-4428-6 . S2CID 17045923 .
- ^ Мухахари, Д.; Мондал, Эй Джей; Пармар, РС; Бора, AD; Маджумдер, А. (2015). «Упрощенный подход к проектированию для эффективного расчета DCT». 2015 Пятая Международная конференция по системам связи и сетевым технологиям . стр. 483–487. дои : 10.1109/CSNT.2015.134 . ISBN 978-1-4799-1797-6 . S2CID 16411333 .
- ^ Чен, Вай Кай (2004). Справочник по электротехнике . Эльзевир . п. 906. ИСБН 9780080477480 .
- ^ Jump up to: а б с «Что такое JPEG? Невидимый объект, который вы видите каждый день» . Атлантика . 24 сентября 2013 года . Проверено 13 сентября 2019 г.
- ^ Jump up to: а б с Пессина, Лора-Анн (12 декабря 2014 г.). «JPEG изменил наш мир» . Новости ЭПФЛ . Федеральная политехническая школа Лозанны . Проверено 13 сентября 2019 г.
- ^ Jump up to: а б Ли, Руби Бей-Ло; Бек, Джон П.; Лэмб, Джоэл; Северсон, Кеннет Э. (апрель 1995 г.). «Программный декодер видео MPEG в реальном времени на процессорах PA 7100LC с расширенными мультимедийными возможностями» (PDF) . Журнал Hewlett-Packard . 46 (2). ISSN 0018-1153 .
- ^ Jump up to: а б с Ли, Джек (2005). Масштабируемые системы непрерывной потоковой передачи мультимедиа: архитектура, проектирование, анализ и реализация . Джон Уайли и сыновья . п. 25. ISBN 9780470857649 .
- ^ Jump up to: а б с Сишикуи, Ёсиаки; Наканиси, Хироши; Имаидзуми, Хироюки (26–28 октября 1993 г.). «Схема кодирования HDTV с использованием DCT адаптивного измерения» . Обработка сигналов HDTV . Эльзевир . стр. 611–618. дои : 10.1016/B978-0-444-81844-7.50072-3 . ISBN 9781483298511 .
- ^ Jump up to: а б Очоа-Домингес, Умберто; Рао, КР (2019). Дискретное косинусное преобразование, второе издание . ЦРК Пресс . стр. 1–3, 129. ISBN. 9781351396486 .
- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v В х и С аа аб и объявление но Очоа-Домингес, Умберто; Рао, КР (2019). Дискретное косинусное преобразование, второе издание . ЦРК Пресс . стр. 1–3. ISBN 9781351396486 .
- ^ Jump up to: а б с д и Британак, Владимир; Рао, КР (2017). Наборы косинусно-/синусоидальных фильтров: общие свойства, быстрые алгоритмы и целочисленные аппроксимации . Спрингер. п. 478. ИСБН 9783319610801 .
- ^ Jump up to: а б Джонс, Грэм А.; Слой, Дэвид Х.; Осенковский, Томас Г. (2013). Инженерный справочник Национальной ассоциации вещателей: Инженерный справочник NAB . Тейлор и Фрэнсис . стр. 558–9. ISBN 978-1-136-03410-7 .
- ^ Jump up to: а б с Херсент, Оливье; Пети, Жан-Пьер; Гурле, Дэвид (2005). За пределами протоколов VoIP: понимание голосовых технологий и сетевых технологий для IP-телефонии . Джон Уайли и сыновья . п. 55. ИСБН 9780470023631 .
- ^ Jump up to: а б с д и Дэниел Эран Дилгер (8 июня 2010 г.). «Внутри iPhone 4: видеозвонки FaceTime» . AppleInsider . Проверено 9 июня 2010 г.
- ^ Jump up to: а б с д Блог Netflix Technology (19 апреля 2017 г.). «Более эффективное мобильное кодирование для загрузок Netflix» . Medium.com . Нетфликс . Проверено 20 октября 2019 г.
- ^ Jump up to: а б «Отчет разработчиков видео за 2019 год» (PDF) . Битмовин . 2019 . Проверено 5 ноября 2019 г.
- ^ Очоа-Домингес, Умберто; Рао, КР (2019). Дискретное косинусное преобразование, второе издание . ЦРК Пресс. п. 186. ИСБН 9781351396486 .
- ^ Jump up to: а б с д МакКернан, Брайан (2005). Цифровое кино: революция в кинематографе, постпродакшн, прокат . МакГроу-Хилл . п. 58. ИСБН 978-0-07-142963-4 .
DCT используется в большинстве систем сжатия, стандартизированных Группой экспертов по движущимся изображениям (MPEG), и является доминирующей технологией сжатия изображений. В частности, это базовая технология MPEG-2, системы, используемой для DVD, цифрового телевизионного вещания, которая использовалась во многих испытаниях цифрового кино.
- ^ Jump up to: а б Баранюк, Крис (15 октября 2015 г.). «Защита от копирования может появиться в JPegs» . Новости Би-би-си . Би-би-си . Проверено 13 сентября 2019 г.
- ^ Ашер, Стивен; Пинкус, Эдвард (2012). Справочник кинорежиссера: Комплексное руководство для эпохи цифровых технологий: пятое издание . Пингвин. стр. 246–7. ISBN 978-1-101-61380-1 .
- ^ Бертальмио, Марсело (2014). Обработка изображений для кино . ЦРК Пресс . п. 95. ИСБН 978-1-4398-9928-1 .
- ^ Чжан, Хунцзян (1998). «Просмотр и извлечение видео на основе контента» . В Фюрхте, Борко (ред.). Справочник по Интернету, мультимедийным системам и приложениям . ЦРК Пресс . стр. 83–108 (89) . ISBN 9780849318580 .
- ^ Jump up to: а б «Семейство кодеков Apple ProRes 422» . Библиотека Конгресса . 17 ноября 2014 года . Проверено 13 октября 2019 г.
- ^ Потлури, США; Маданаяке, А.; Синтра, Р.Дж.; Байер, FM; Раджапакша, Н. (17 октября 2012 г.). «Аппроксимации ДКП без множителей для радиочастотной многолучевой цифровой апертурной космической визуализации и направленного зондирования». Измерительная наука и технология . 23 (11): 114003. doi : 10.1088/0957-0233/23/11/114003 . ISSN 0957-0233 . S2CID 119888170 .
- ^ Jump up to: а б Ван, Ханли; Квонг, С.; Кок, К. (2006). «Эффективный алгоритм прогнозирования целочисленных коэффициентов DCT для оптимизации H.264 /AVC». Транзакции IEEE по схемам и системам видеотехнологий . 16 (4): 547–552. дои : 10.1109/TCSVT.2006.871390 . S2CID 2060937 .
- ^ Хадсон, Грэм; Леже, Ален; Нисс, Биргер; Себастьен, Иштван; Ваабен, Йорген (31 августа 2018 г.). «Стандарту JPEG-1 25 лет: причины успеха прошлого, настоящего и будущего» . Журнал электронных изображений . 27 (4): 1. doi : 10.1117/1.JEI.27.4.040901 .
- ^ «Описание формата изображения JPEG» . BT.com . Группа БТ . 31 мая 2018 года . Проверено 5 августа 2019 г.
- ^ «Сравнение HEIF — высокоэффективный формат файла изображения» . Нокиа Технологии . Проверено 5 августа 2019 г.
- ^ Алакуйала, Юрки; Снейерс, Джон; Версари, Лука; Вассенберг, январь (22 января 2021 г.). «Информационный документ JPEG XL» (PDF) . JPEG орг . Архивировано (PDF) из оригинала 2 мая 2021 года . Проверено 14 января 2022 г.
DCT переменного размера (квадратный или прямоугольный от 2x2 до 256x256) служит быстрой аппроксимацией оптимального декорреляционного преобразования.
- ^ Jump up to: а б Ван, Яо (2006). «Стандарты видеокодирования: Часть I» (PDF) . Архивировано из оригинала (PDF) 23 января 2013 г.
- ^ Ван, Яо (2006). «Стандарты видеокодирования: Часть II» (PDF) . Архивировано из оригинала (PDF) 23 января 2013 г.
- ^ Хоффман, Рой (2012). Сжатие данных в цифровых системах . Springer Science & Business Media . п. 255. ИСБН 9781461560319 .
- ^ Jump up to: а б Рао, КР ; Хван, Джей-Джей (18 июля 1996 г.). Методы и стандарты кодирования изображений, видео и аудио . Прентис Холл. JPEG: Глава 8; H.261 : Глава 9; MPEG-1: Глава 10; MPEG-2: Глава 11. ISBN 978-0133099072 . LCCN 96015550 . OCLC 34617596 . ОЛ 978319М . S2CID 56983045 .
- ^ Дэвис, Эндрю (13 июня 1997 г.). «Обзор рекомендаций H.320» . ЭЭ Таймс . Проверено 7 ноября 2019 г.
- ^ IEEE WESCANEX 97: связь, энергетика и вычисления: материалы конференции . Университет Манитобы, Виннипег, Манитоба, Канада: Институт инженеров по электротехнике и электронике . 22–23 мая 1997 г. с. 30. ISBN 9780780341470 .
H.263 похож на H.261 , но более сложен . В настоящее время это наиболее широко используемый международный стандарт сжатия видео для видеотелефонии на телефонных линиях ISDN (цифровая сеть с интеграцией услуг).
- ^ Питер де Риваз; Джек Хотон (2018). «Спецификация битового потока и процесса декодирования AV1» (PDF) . Альянс открытых СМИ . Проверено 14 января 2022 г.
- ^ Разработчики YouTube (15 сентября 2018 г.). «Плейлист для запуска бета-версии AV1» . Ютуб . Проверено 14 января 2022 г.
Первые видео, получившие транскодирование YouTube AV1.
- ^ Бринкманн, Мартин (13 сентября 2018 г.). «Как включить поддержку AV1 на YouTube» . Проверено 14 января 2022 г.
- ^ Блог Netflix Technology (5 февраля 2020 г.). «Netflix теперь транслирует AV1 на Android» . Проверено 14 января 2022 г.
- ^ Блог Netflix Technology (9 ноября 2021 г.). «Потоковое вещание AV1 на телевизорах участников Netflix» . Проверено 14 января 2022 г.
- ^ Эрре, Дж.; Дитц, М. (2008). «Высокоэффективное кодирование AAC MPEG-4 [Коротко о стандартах]». Журнал обработки сигналов IEEE . 25 (3): 137–142. Бибкод : 2008ISPM...25..137H . дои : 10.1109/MSP.2008.918684 .
- ^ Вален, Жан-Марк; Максвелл, Грегори; Терриберри, Тимоти Б.; Вос, Коэн (октябрь 2013 г.). Высококачественное кодирование музыки с малой задержкой в кодеке Opus . 135-я конференция AES. Общество аудиоинженеров . arXiv : 1602.04845 .
- ^ «Опус Кодек» . Опус (Главная страница). Фонд Xiph.org . Проверено 31 июля 2012 г.
- ^ Лейден, Джон (27 октября 2015 г.). «WhatsApp раскрыт: исследованы внутренности приложения, высасывающего информацию» . Регистр . Проверено 19 октября 2019 г.
- ^ Хазра, Судип; Матети, Прабхакер (13–16 сентября 2017 г.). «Проблемы криминалистики Android» . В Тампи, Сабу М.; Перес, Грегорио Мартинес; Вестфалл, Карлос Беккер; Ху, Цзянькунь; Фан, Чун И.; Мармол, Феликс Гомес (ред.). Безопасность в вычислительной технике и коммуникациях: 5-й международный симпозиум, SSCC 2017 . Спрингер. стр. 286–299 (290). дои : 10.1007/978-981-10-6898-0_24 . ISBN 9789811068980 .
- ^ Шривастава, Саурабх Ранджан; Дубе, Сачин; Шривастая, Гульшан; Шарма, Кавита (2019). «Проблемы безопасности, вызванные смартфонами: проблемы, практические примеры и профилактика» . В Ле, Дак-Ныонг; Кумар, Рагвендра; Мишра, Броджо Кишор; Чаттерджи, Джиотир Мой; Хари, Манджу (ред.). Кибербезопасность в параллельных и распределенных вычислениях: концепции, методы, приложения и практические примеры . Джон Уайли и сыновья. стр. 187–206 (200). дои : 10.1002/9781119488330.ch12 . ISBN 9781119488057 . S2CID 214034702 .
- ^ «Программное обеспечение с открытым исходным кодом, используемое в PlayStation 4» . Sony Interactive Entertainment Inc. Проверено 11 декабря 2017 г.
- ^ «Dolby AC-4: доставка звука для развлекательных услуг нового поколения» (PDF) . Лаборатории Долби . Июнь 2015 г. Архивировано из оригинала (PDF) 30 мая 2019 г. . Проверено 11 ноября 2019 г.
- ^ Блейдт, РЛ; Отправлять.; Нидермайер, А.; Челхан, Б.; Фуг, С.; и др. (2017). «Разработка телевизионной аудиосистемы MPEG-H для ATSC 3.0» (PDF) . Транзакции IEEE в области вещания . 63 (1): 202–236. дои : 10.1109/TBC.2017.2661258 . S2CID 30821673 .
- ^ Шнелл, Маркус; Шмидт, Маркус; Джандер, Мануэль; Альберт, Тобиас; Гейгер, Ральф; Руоппила, Веса; Экстранд, Пер; Бернхард, Гриль (октябрь 2008 г.). MPEG-4 Enhanced Low Delay AAC — новый стандарт высококачественной связи (PDF) . 125-я конвенция AES. Фраунгофера ИИС . Общество аудиоинженеров . Проверено 20 октября 2019 г.
- ^ Луцки, Манфред; Шуллер, Джеральд; Гейер, Марк; Кремер, Ульрих; Вабник, Стефан (май 2004 г.). Рекомендации по задержке аудиокодека (PDF) . 116-я конференция AES. Фраунгофера ИИС . Общество аудиоинженеров . Проверено 24 октября 2019 г.
- ^ Jump up to: а б Нагиредди, Сиваннараяна (2008). Обработка голосовых и факсимильных сигналов VoIP . Джон Уайли и сыновья . п. 69. ИСБН 9780470377864 .
- ^ «Программа работы МСЭ-Т» . МСЭ .
- ^ Терриберри, Тимоти Б. Презентация кодека CELT . Событие происходит на 65 минуте. Архивировано из оригинала 7 августа 2011 г. Проверено 19 октября 2019 г. , также «Слайды презентации кодека CELT» (PDF) .
- ^ «Доступна Экига 3.1.0» . Архивировано из оригинала 30 сентября 2011 г. Проверено 19 октября 2019 г.
- ^ «☏ FreeSWITCH» . Сигнальный провод .
- ^ «Кодек расширенных голосовых служб (EVS)» (PDF) . Фраунгофера ИИС . Март 2017 года . Проверено 19 октября 2019 г.
- ^ Абуслеман, врач общей практики; Марселлин, Миссури; Хант, Б.Р. (январь 1995 г.), «Сжатие гиперспектральных изображений с использованием 3-D DCT и гибридного DPCM/DCT», IEEE Trans. Геосци. Дистанционный датчик , 33 (1): 26–34, Bibcode : 1995ITGRS..33...26A , doi : 10.1109/36.368225
- ^ Чан, Ю.; Сиу, В. (май 1997 г.), «Трехмерное дискретное косинусное преобразование кодирования с переменной временной длиной» (PDF) , IEEE Trans. Процесс изображения. , 6 (5): 758–763, Bibcode : 1997ITIP....6..758C , CiteSeerX 10.1.1.516.2824 , doi : 10.1109/83.568933 , hdl : 10397/1928 , PMID 18282969
- ^ Сонг, Дж.; Сюн, З.; Лю, X.; Лю, Ю., «Алгоритм многоуровневого кодирования и передачи видео», Учеб. Четвертый межд. Конф./Вып. Высокопроизводительный компьютер. Азиатско-Тихоокеанский регион , 2 : 700–703
- ^ Тай, Южная Каролина; Ги, Ю.; Лин, К.-В. (сентябрь 2000 г.), «Адаптивный трехмерный кодер дискретного косинусного преобразования для сжатия медицинских изображений», IEEE Trans. Инф. Технол. Биомед. , 4 (3): 259–263, doi : 10.1109/4233.870036 , PMID 11026596 , S2CID 18016215
- ^ Йео, Б.; Лю, Б. (май 1995 г.), «Объемный рендеринг сжатых 3D-скалярных данных на основе DCT», IEEE Transactions on Visualization and Computer Graphics , 1 : 29–43, doi : 10.1109/2945.468390
- ^ Чан, Южная Каролина; Лю, В.; Хо, КИ (2000). «Идеальная реконструкция модулированных блоков фильтров с суммой коэффициентов степеней двойки». 2000 Международный симпозиум IEEE по схемам и системам. Новые технологии XXI века. Протоколы (IEEE Cat No.00CH36353) . Том. 2. С. 73–76. дои : 10.1109/ISCAS.2000.856261 . hdl : 10722/46174 . ISBN 0-7803-5482-6 . S2CID 1757438 .
- ^ Кейруш, РЛ; Нгуен, TQ (1996). «Перекрывающиеся преобразования для эффективного кодирования преобразования/поддиапазона». IEEE Транс. Сигнальный процесс . 44 (5): 497–507.
- ^ Мальвар 1992 .
- ^ Чан, Южная Каролина; Луо, Л.; Хо, КЛ (1998). «M-Channel с компактной поддержкой биортогональных базисов вейвлетов с косинусной модуляцией». IEEE Транс. Сигнальный процесс . 46 (2): 1142–1151. Бибкод : 1998ITSP...46.1142C . дои : 10.1109/78.668566 . hdl : 10722/42775 .
- ^ Jump up to: а б Кацагелос, Аггелос К.; Бабакан, С. Дерин; Чун-Джен, Цай (2009). «Глава 15. Итеративное восстановление изображений». Основное руководство по обработке изображений . Академическая пресса . стр. 349–383. ISBN 9780123744579 .
- ^ «Комариный шум» . Журнал ПК . Проверено 19 октября 2019 г.
- ^ Менкман, Роза (октябрь 2011 г.). Момент сбоя (гм) (PDF) . Институт сетевых культур. ISBN 978-90-816021-6-7 . Проверено 19 октября 2019 г.
- ^ Рафф, Томас (31 мая 2009 г.). «Джпегс». Диафрагма . Диафрагма. п. 132. ИСБН 9781597110938 .
- ^ Кольберг, Йорг (17 апреля 2009 г.). «Обзор: JPEG Томаса Раффа» .
- ^ «Дискретное косинусное преобразование — MATLAB dct» . www.mathworks.com . Проверено 11 июля 2019 г.
- ^ Пеннебейкер, Уильям Б.; Митчелл, Джоан Л. (31 декабря 1992 г.). JPEG: стандарт сжатия данных неподвижных изображений . Спрингер. ISBN 9780442012724 .
- ^ Арай, Ю.; Аги, Т.; Накадзима, М. (1988). «Быстрая схема DCT-SQ для изображений» . IEICE-транзакции . 71 (11): 1095–1097.
- ^ Шао, Сюаньчэн; Джонсон, Стивен Г. (2008). «Алгоритмы DCT/DST типа II/III с уменьшенным количеством арифметических операций». Обработка сигналов . 88 (6): 1553–1564. arXiv : cs/0703150 . Бибкод : 2008SigPr..88.1553S . дои : 10.1016/j.sigpro.2008.01.004 . S2CID 986733 .
- ^ Мальвар 1992 г.
- ^ Мартуччи 1994
- ^ Чан, Южная Каролина; Хо, КЛ (1990). «Прямые методы вычисления дискретных синусоидальных преобразований». Труды IEE F-радар и обработка сигналов . 137 (6): 433. doi : 10.1049/ip-f-2.1990.0063 .
- ^ Jump up to: а б Алшибами, О.; Буссакта, С. (июль 2001 г.). «Трехмерный алгоритм для 3-D DCT-III». Учеб. Шестой межд. Симп. Сообщение, Теоретические приложения : 104–107.
- ^ Гоань Би; Ган Ли; Кай-Куанг Ма; Тан, ТК (2000). «О расчете двумерного ДКП». Транзакции IEEE по обработке сигналов . 48 (4): 1171–1183. Бибкод : 2000ITSP...48.1171B . дои : 10.1109/78.827550 .
- ^ Фиг, Э.; Виноград, С. (июль 1992а). «О мультипликативной сложности дискретных косинусных преобразований». Транзакции IEEE по теории информации . 38 (4): 1387–1391. дои : 10.1109/18.144722 .
- ^ Нуссбаумер, HJ (1981). Алгоритмы быстрого преобразования Фурье и свертки (1-е изд.). Нью-Йорк: Springer-Verlag.
- ^ Шао, Сюаньчэн; Джонсон, Стивен Г. (2008). «Алгоритмы DCT/DST типа II/III с уменьшенным количеством арифметических операций». Обработка сигналов . 88 (6): 1553–1564. arXiv : cs/0703150 . Бибкод : 2008SigPr..88.1553S . дои : 10.1016/j.sigpro.2008.01.004 . S2CID 986733 .
Дальнейшее чтение
[ редактировать ]- Нарасимха, М.; Петерсон, А. (июнь 1978 г.). «О вычислении дискретного косинусного преобразования». Транзакции IEEE в области коммуникаций . 26 (6): 934–936. дои : 10.1109/TCOM.1978.1094144 .
- Махул, Дж. (февраль 1980 г.). «Быстрое косинусное преобразование в одном и двух измерениях». Транзакции IEEE по акустике, речи и обработке сигналов . 28 (1): 27–34. дои : 10.1109/ТАССП.1980.1163351 .
- Соренсен, Х.; Джонс, Д.; Хайдеман, М.; Буррус, К. (июнь 1987 г.). «Алгоритмы быстрого преобразования Фурье с действительными значениями». Транзакции IEEE по акустике, речи и обработке сигналов . 35 (6): 849–863. CiteSeerX 10.1.1.205.4523 . дои : 10.1109/ТАССП.1987.1165220 .
- Плонка, Г. ; Таше, М. (январь 2005 г.). «Быстрые и численно устойчивые алгоритмы дискретных косинусных преобразований» . Линейная алгебра и ее приложения . 394 (1): 309–345. дои : 10.1016/j.laa.2004.07.015 .
- Дюамель, П.; Веттерли, М. (апрель 1990 г.). «Быстрые преобразования Фурье: обзор учебного пособия и современное состояние» . Обработка сигналов (Представленная рукопись). 19 (4): 259–299. Бибкод : 1990SigPr..19..259D . дои : 10.1016/0165-1684(90)90158-У .
- Ахмед, Н. (январь 1991 г.). «Как я придумал дискретное косинусное преобразование» . Цифровая обработка сигналов . 1 (1): 4–9. Бибкод : 1991DSP.....1....4A . дои : 10.1016/1051-2004(91)90086-Z .
- Фиг, Э.; Виноград, С. (сентябрь 1992b). «Быстрые алгоритмы дискретного косинусного преобразования». Транзакции IEEE по обработке сигналов . 40 (9): 2174–2193. Бибкод : 1992ITSP...40.2174F . дои : 10.1109/78.157218 .
- Малвар, Энрике (1992), Обработка сигналов с перекрывающимися преобразованиями , Бостон: Artech House, ISBN 978-0-89006-467-2
- Мартуччи, Ю.А. (май 1994 г.). «Симметричная свертка и дискретные синусоидальные и косинусные преобразования». Транзакции IEEE по обработке сигналов . 42 (5): 1038–1051. Бибкод : 1994ITSP...42.1038M . дои : 10.1109/78.295213 .
- Оппенгейм, Алан; Шафер, Рональд; Бак, Джон (1999), Обработка сигналов в дискретном времени (2-е изд.), Аппер-Сэддл-Ривер, Нью-Джерси: Прентис-Холл, ISBN 978-0-13-754920-7
- Фриго, М.; Джонсон, С.Г. (февраль 2005 г.). «Проектирование и реализация FFTW3» (PDF) . Труды IEEE . 93 (2): 216–231. Бибкод : 2005IEEP..93..216F . CiteSeerX 10.1.1.66.3097 . дои : 10.1109/JPROC.2004.840301 . S2CID 6644892 .
- Буссакта, Саид.; Альшибами, Хамуд О. (апрель 2004 г.). «Быстрый алгоритм для 3-D DCT-II» (PDF) . Транзакции IEEE по обработке сигналов . 52 (4): 992–1000. Бибкод : 2004ITSP...52..992B . дои : 10.1109/TSP.2004.823472 . S2CID 3385296 .
- Ченг, LZ; Цзэн, Ю.Х. (2003). «Новый быстрый алгоритм для многомерного ДКП типа IV». Транзакции IEEE по обработке сигналов . 51 (1): 213–220. дои : 10.1109/TSP.2002.806558 .
- Вэнь-Сюн Чен; Смит, К.; Фралик, С. (сентябрь 1977 г.). «Быстрый вычислительный алгоритм дискретного косинусного преобразования». Транзакции IEEE в области коммуникаций . 25 (9): 1004–1009. дои : 10.1109/TCOM.1977.1093941 .
- Пресс, WH; Теукольский, С.А.; Феттерлинг, WT; Фланнери, BP (2007), «Раздел 12.4.2. Косинусное преобразование» , Численные рецепты: искусство научных вычислений (3-е изд.), Нью-Йорк: Cambridge University Press, ISBN 978-0-521-88068-8 , заархивировано из оригинала 11 августа 2011 г. , получено 13 августа 2011 г.
Внешние ссылки
[ редактировать ]- Сайед Али Хайям: Дискретное косинусное преобразование (ДКП): теория и применение
- Реализация целочисленной аппроксимации MPEG IDCT 8x8 (ISO/IEC 23002-2)
- Маттео Фриго и Стивен Дж. Джонсон : FFTW , домашняя страница FFTW . Бесплатная ( GPL ) библиотека C, которая может вычислять быстрые DCT (типы I-IV) в одном или нескольких измерениях произвольного размера.
- Такуя Оура: пакет БПФ общего назначения, пакет БПФ 1-dim/2-dim . Бесплатные библиотеки C и FORTRAN для вычисления быстрых DCT (типов II–III) в одном, двух или трех измерениях, степень двойки.
- Тим Кинцле: Быстрые алгоритмы для вычисления 8-точечного DCT и IDCT, Algorithm Alley .
- LTFAT — это бесплатный набор инструментов Matlab/Octave с интерфейсами для реализации FFTW DCT и DST типов I–IV.