Четырехвекторный
Часть серии о |
Пространство-время |
---|
В специальной теории относительности — четырёхвектор (или 4-вектор , иногда вектор Лоренца ) [1] — это объект с четырьмя компонентами, которые определенным образом преобразуются при преобразованиях Лоренца . В частности, четырехвектор — это элемент четырехмерного векторного пространства, рассматриваемого как пространство представления стандартного представления группы Лоренца , ( 1 / 2 , 1 / 2 ) представление. Он отличается от евклидова вектора тем, как определяется его величина. Преобразования, сохраняющие эту величину, — это преобразования Лоренца, включающие пространственные вращения и ускорения (переход с постоянной скоростью в другую инерциальную систему отсчета ). [2] :ч1
Четыре-векторы описывают, например, позицию x м в пространстве-времени, смоделированном как пространство Минковского частицы , четырехимпульс p м , амплитуда электромагнитного четырехпотенциала A м ( x ) в точке x пространства-времени и элементы подпространства, натянутые гамма-матрицами внутри алгебры Дирака .
Группа Лоренца может быть представлена матрицами 4×4 Λ . Действие преобразования Лоренца на общий контравариантный четырехвектор X (как в приведенных выше примерах), рассматриваемый как вектор-столбец с декартовыми координатами относительно инерциальной системы отсчета в записях, определяется выражением
(умножение матрицы), где компоненты выделенного объекта относятся к новому кадру. Что касается приведенных выше примеров, которые даны в виде контравариантных векторов, существуют также соответствующие ковариантные векторы x µ , p µ и A µ ( x ) . Они преобразуются по правилу
где Т обозначает транспонирование матрицы . Это правило отличается от приведенного выше правила. Это соответствует двойственному представлению стандартного представления. Однако для группы Лоренца двойственное любому представлению эквивалентно исходному представлению. Таким образом, объекты с ковариантными индексами также являются четырехвекторами.
Пример четырехкомпонентного объекта с хорошим поведением в специальной теории относительности, который не является четырехвектором, см. в разделе «Биспинор» . Оно определяется аналогично, с той разницей, что правило преобразования при преобразованиях Лоренца задается представлением, отличным от стандартного представления. В этом случае правило гласит: X ′ = Π(Λ) X , где Π(Λ) — матрица 4×4, отличная от Λ . Аналогичные замечания применимы к объектам с меньшим или большим количеством компонентов, которые хорошо ведут себя при преобразованиях Лоренца. К ним относятся скаляры , спиноры , тензоры и спинор-тензоры.
В статье рассматриваются четырехвекторы в контексте специальной теории относительности. Хотя концепция четырехвекторов распространяется и на общую теорию относительности , некоторые результаты, изложенные в этой статье, требуют модификации в общей теории относительности.
Обозначения
[ редактировать ]В этой статье используются следующие обозначения: строчные жирные буквы для трехмерных векторов, шляпки для трехмерных единичных векторов , заглавные жирные буквы для четырехмерных векторов (за исключением четырехмерного градиента) и обозначение тензорного индекса .
Четырехвекторная алгебра
[ редактировать ]Четырехвекторы в действительном базисе
[ редактировать ]Четырехвектор A : представляет собой вектор с «времяподобным» компонентом и тремя «пространственноподобными» компонентами и может быть записан в различных эквивалентных обозначениях [3]
где А а – компонент магнитуды, а E α – компонент базисного вектора ; обратите внимание, что оба необходимы для создания вектора, и что когда A а рассматривается отдельно, оно относится строго к компонентам вектора.
Верхние индексы указывают на контравариантные компоненты. Здесь стандартное соглашение состоит в том, что латинские индексы принимают значения для пространственных компонентов, так что i = 1, 2, 3, а греческие индексы принимают значения для компонентов пространства и времени , поэтому α = 0, 1, 2, 3, используемые при суммировании. соглашение . Разделение между временным компонентом и пространственными компонентами полезно делать при определении сокращений вектора одной четверки с другими тензорными величинами, например, для расчета инвариантов Лоренца в скалярных произведениях (примеры приведены ниже) или повышения и понижения индексов .
В специальной теории относительности пространственноподобный базис E 1 , E 2 , E 3 и компоненты A 1 , А 2 , А 3 часто являются декартовым базисом и компонентами:
хотя, конечно, можно использовать любую другую основу и компоненты, например сферические полярные координаты
или цилиндрические полярные координаты ,
или любые другие ортогональные координаты , или даже общие криволинейные координаты . Обратите внимание, что метки координат всегда имеют индексы как метки и не являются индексами, принимающими числовые значения. В общей теории относительности необходимо использовать локальные криволинейные координаты в локальном базисе. Геометрически четырехвектор еще можно интерпретировать как стрелку, но в пространстве-времени – не только пространстве. В теории относительности стрелки рисуются как часть диаграммы Минковского (также называемой диаграммой пространства-времени ). В этой статье четырехвекторы будут называться просто векторами.
Также принято представлять основания векторами-столбцами :
так что:
Связь между ковариантными и контравариантными координатами осуществляется через Минковского метрический тензор (называемый метрикой) η , который повышает и понижает индексы следующим образом:
а в различных эквивалентных обозначениях ковариантными компонентами являются:
где пониженный индекс указывает на ковариантность . Часто метрика диагональная, как в случае ортогональных координат (см. элемент линии ), но не в общих криволинейных координатах .
Базисы могут быть представлены векторами-строками :
так что:
Мотивацией для вышеупомянутых соглашений является то, что внутренний продукт является скаляром, подробности см. ниже.
Преобразование Лоренца
[ редактировать ]Учитывая две инерциальные или повернутые системы отсчета , четырехвектор определяется как величина, которая преобразуется в соответствии с преобразования Лоренца матрицей Λ :
В индексной записи контравариантные и ковариантные компоненты преобразуются соответственно: в котором матрица Λ имеет компоненты Λ м ν в строке µ и столбце ν , а матрица ( Λ −1 ) Т имеет компоненты Λ μ н в строке µ и столбце ν .
Дополнительную информацию о природе этого определения преобразования см. в разделе tensor . Все четырехвекторы преобразуются одинаково, и это можно обобщить на четырехмерные релятивистские тензоры; см. специальную теорию относительности .
Чистые вращения вокруг произвольной оси
[ редактировать ]Для двух кадров, повернутых на фиксированный угол θ вокруг оси, определяемой единичным вектором :
без каких-либо повышений матрица Λ имеет компоненты, определяемые следующим образом: [4]
где δij — — дельта Кронекера , а εijk . трехмерный символ -Чивита Леви Пространственноподобные компоненты четырехвекторов вращаются, а времениподобные остаются неизменными.
Только для случая вращения вокруг оси z пространственноподобная часть матрицы Лоренца сводится к матрице вращения вокруг оси z :
Чистый буст в произвольном направлении
[ редактировать ]Для двух кадров, движущихся с постоянной относительной трехскоростью v (а не четырехскоростью, см. ниже ), относительную скорость удобно обозначать и определять в единицах c следующим образом:
Тогда без вращений матрица Λ имеет компоненты, определяемые следующим образом: [5] где фактор Лоренца определяется как: и δij дельта — Кронекера . В отличие от случая чистого вращения, пространственно- и времяподобные компоненты при ускорении смешиваются.
Только в случае повышения в направлении x матрица уменьшается до; [6] [7]
Там, где быстроты φ использовалось выражение , записанное в терминах гиперболических функций :
Эта матрица Лоренца иллюстрирует усиление как гиперболическое вращение в четырехмерном пространстве-времени, аналогичное круговому вращению, описанному выше в трехмерном пространстве.
Характеристики
[ редактировать ]Линейность
[ редактировать ]Четырехвекторы обладают теми же свойствами линейности , что и евклидовы векторы в трех измерениях . Их можно добавить обычным по записи способом: и аналогично скалярное умножение на скаляр λ определяется поэлементно следующим образом:
Тогда вычитание — это операция, обратная сложению, определяемая поэлементно следующим образом:
Тензор Минковского
[ редактировать ]Применяя тензор Минковского η μν к двум четырехвекторам A и B и записывая результат в виде скалярного произведения , мы имеем, используя обозначения Эйнштейна :
в специальной теории относительности. Скалярное произведение базисных векторов представляет собой метрику Минковского, в отличие от дельты Кронекера, как в евклидовом пространстве. Удобно переписать определение в матричной форме: в этом случае η µν выше является записью в строке µ и столбце ν метрики Минковского в виде квадратной матрицы. Метрика Минковского не является евклидовой метрикой , поскольку она неопределенна (см. подпись метрики ). Можно использовать ряд других выражений, поскольку метрический тензор может повышать и понижать A или B. компоненты Для контра/ковариантных компонентов A и ко/контравариантных компонентов B мы имеем: поэтому в матричной записи: в то время как для A и B каждый в ковариантных компонентах: с матричным выражением, аналогичным приведенному выше.
Применяя тензор Минковского к четырехвектору A с самим собой, получаем: которое, в зависимости от случая, можно считать квадратом или его отрицательным значением длины вектора.
Ниже приведены два распространенных варианта метрического тензора в стандартном базисе (по сути, в декартовых координатах). Если используются ортогональные координаты, то вдоль диагональной части пространственноподобной части метрики будут масштабные коэффициенты, тогда как для общих криволинейных координат вся пространственноподобная часть метрики будет иметь компоненты, зависящие от используемого криволинейного базиса.
Стандартный базис, (+---) сигнатура
[ редактировать ](+---) В сигнатуре метрики оценка суммирования по индексам дает: в матричной форме:
В специальной теории относительности постоянно используется выражение в одной системе отсчета , где C — значение внутреннего продукта в этой системе координат, и: в другом кадре, в котором C ′ — значение внутреннего продукта в этом кадре. Тогда, поскольку внутренний продукт является инвариантом, они должны быть равны: то есть:
Учитывая, что физические величины в теории относительности являются четырехвекторными, это уравнение имеет вид « закона сохранения », но в нем нет никакого «сохранения». Основное значение внутреннего продукта Минковского состоит в том, что для любых двух четырехвекторов его значение инвариантно для всех наблюдателей; изменение координат не приводит к изменению значения внутреннего продукта. Компоненты четырехвекторов меняются от одного кадра к другому; A и A ′ связаны преобразованием Лоренца , и аналогично для B и B ′, хотя скалярные произведения одинаковы во всех системах отсчета. Тем не менее, этот тип выражения используется в релятивистских расчетах наравне с законами сохранения, поскольку величины компонент могут быть определены без явного выполнения каких-либо преобразований Лоренца. Конкретным примером является энергия и импульс в соотношении энергия-импульс, полученном из вектора четырех импульсов (см. Также ниже).
В этой подписи мы имеем:
С сигнатурой (+---) четырехвекторы могут быть классифицированы как пространственноподобные , если , времяподобно , если и нулевые векторы , если .
Стандартный базис, (−+++) сигнатура
[ редактировать ]Некоторые авторы определяют η с противоположным знаком, и в этом случае мы имеем метрическую сигнатуру (−+++). Оценка суммирования с помощью этой сигнатуры:
в то время как матричная форма:
Обратите внимание, что в данном случае в одном кадре:
а в другом:
так что:
эквивалентно приведенному выше выражению для C через A и B. что Любая конвенция будет работать. При использовании метрики Минковского, определенной двумя вышеописанными способами, единственной разницей между ковариантными и контравариантными четырехвекторными компонентами являются знаки, поэтому знаки зависят от того, какое соглашение о знаках используется.
У нас есть:
С сигнатурой (−+++) четырехвекторы могут быть классифицированы как пространственноподобные , если , времяподобно , если и ноль , если .
Двойные векторы
[ редактировать ]Применение тензора Минковского часто выражается как влияние двойственного вектора одного вектора на другой:
Здесь A ν s являются компонентами двойственного вектора A * к A в двойственном базисе и называются ковариантными координатами A , а исходный A н компоненты называются контравариантными координатами.
Четырехвекторное исчисление
[ редактировать ]Производные и дифференциалы
[ редактировать ]В специальной теории относительности (но не в общей теории относительности) производная четырехвектора по скаляру λ (инварианту) сама является четырехвектором. Также полезно взять дифференциал четырехвектора d A и разделить его на дифференциал скаляра dλ :
где контравариантные компоненты:
а ковариантные компоненты:
В релятивистской механике часто берут дифференциал четырехвектора и делят на дифференциал в нужное время (см. ниже).
Фундаментальные четырехвекторы
[ редактировать ]Четырехпозиционный
[ редактировать ]Точка в пространстве Минковского — это временное и пространственное положение, называемое «событием», а иногда и положение четырехвекторное, или четырехпозиционное, или 4-позиционное, описываемое в некоторой системе отсчета набором из четырех координат:
где r — трехмерного пространства вектор положения . Если r является функцией координатного времени t в той же системе отсчета, т.е. r = r ( t ), это соответствует последовательности событий при изменении t . Определение Р 0 = ct гарантирует, что все координаты имеют одинаковые единицы измерения (расстояния). [8] [9] [10] Эти координаты являются компонентами четырех-вектора положения события.
Четырехвектор смещения определяется как «стрелка», связывающая два события:
Для дифференциальной четырехпозиции на мировой линии мы имеем, используя обозначение нормы :
определяющий элемент дифференциальной линии d s и приращение собственного времени d τ , но эта «норма» также является:
так что:
При рассмотрении физических явлений естественным образом возникают дифференциальные уравнения; однако при рассмотрении производных функций по пространству и времени неясно, по отношению к какой системе отсчета берутся эти производные. Принято считать, что производные по времени берутся по собственному времени. . Поскольку собственное время является инвариантом, это гарантирует, что производная по собственному времени любого четырехвектора сама является четырехвектором. Затем важно найти связь между этой производной по собственному времени и другой производной по времени (используя координатное время t инерциальной системы отсчета). Это соотношение обеспечивается путем взятия вышеуказанного дифференциально-инвариантного пространственно-временного интервала и его деления на ( cdt ) 2 чтобы получить:
где u = d r / dt — координата 3- скорость объекта, измеренная в той же системе отсчета, что и координаты x , y , z и координатное время t , и
является фактором Лоренца . Это обеспечивает полезную связь между дифференциалами координатного и собственного времени:
Это соотношение также можно найти из преобразования времени в преобразованиях Лоренца .
Важные четыре вектора в теории относительности можно определить, применив этот дифференциал .
Четырехградиентный
[ редактировать ]что частные производные являются линейными операторами , можно сформировать четырехградиент из частной производной по времени ∂ / ∂t Учитывая , и пространственного градиента ∇. Используя стандартную основу, в индексных и сокращенных обозначениях, контравариантными компонентами являются:
Обратите внимание, что базисные векторы помещаются перед компонентами, чтобы избежать путаницы между взятием производной базисного вектора или просто указанием, что частная производная является компонентом этого четырехвектора. Ковариантные компоненты:
Поскольку это оператор, у него нет «длины», но вычисление внутреннего продукта оператора на самого себя дает другой оператор:
называется оператором Даламбера .
Кинематика
[ редактировать ]Четырехскоростной
[ редактировать ]Четырехскоростная скорость частицы определяется следующим образом:
Геометрически U представляет собой нормированный вектор, касательный к мировой линии частицы. Используя дифференциал четырехпозиционной, можно получить величину четырехскоростной:
Короче говоря, величина четырехскорости для любого объекта всегда является фиксированной константой:
Также нормой является:
так что:
что сводится к определению фактора Лоренца .
Единицами четырехскорости являются м/с в системе СИ и 1 в геометрической системе единиц . Четырехскоростной вектор — контравариантный.
Четырехскоростной
[ редактировать ]Четырехкратное ускорение определяется:
где a = d u / dt – координата 3-ускорения. Поскольку величина U является постоянной, четыре ускорения ортогональны четырем скоростям, т. е. внутренний продукт Минковского четырех ускорений и четырех скоростей равен нулю:
что справедливо для всех мировых линий. Геометрический смысл четырехускорения — вектор кривизны мировой линии в пространстве Минковского.
Динамика
[ редактировать ]Четырехимпульсный
[ редактировать ]Для массивной частицы с массой покоя (или инвариантной массой ) m 0 четырехимпульс : определяется выражением
где полная энергия движущейся частицы равна:
а полный релятивистский импульс равен:
Взяв с собой внутренний продукт четырехимпульса:
а также:
что приводит к соотношению энергия-импульс :
Это последнее соотношение полезно для релятивистской механики , оно важно для релятивистской квантовой механики и релятивистской квантовой теории поля , а также для приложений к физике элементарных частиц .
Четыре силы
[ редактировать ]Четырехсила , действующая на частицу, определяется аналогично 3-силе как производная по времени 3-импульса во втором законе Ньютона :
где P — мощность, передаваемая для перемещения частицы, а f — 3-сила, действующая на частицу. Для частицы постоянной инвариантной массы m 0 это эквивалентно
Инвариант, полученный из четырех сил:
из приведенного выше результата.
Термодинамика
[ редактировать ]Четырехтепловой поток
[ редактировать ]Четырехмерное векторное поле теплового потока по существу аналогично трехмерному теплового потока векторному полю q в локальной системе отсчета жидкости: [11]
где T — абсолютная температура , а k — теплопроводность .
Поток четырехбарионных чисел
[ редактировать ]Поток барионов равен: [12] где n - плотность числа барионов антибарионов в локальной системе покоя барионной жидкости (положительные значения для барионов, отрицательные для ) , а U - поле четырех скоростей (жидкости), как указано выше.
Четырехэнтропийный
[ редактировать ]Вектор четырехэнтропии определяется следующим образом: [13] где s — энтропия на барион, а T — абсолютная температура в локальной системе покоя жидкости. [14]
Электромагнетизм
[ редактировать ]Примеры четырехвекторов в электромагнетизме включают следующее.
Четырехточечный
[ редактировать ]Электромагнитный четырехток (или, точнее, четырехтоковая плотность) [15] определяется формируется из плотности тока j и плотности заряда ρ .
Четырехпотенциальный
[ редактировать ]Электромагнитный четырехпотенциал (или, точнее, векторный потенциал с четырьмя ЭМ), определяемый формулой формируется из векторного потенциала a и скалярного потенциала φ .
Четырехпотенциал не определен однозначно, так как зависит от выбора калибровки .
В волновом уравнении электромагнитного поля:
- В вакууме,
- С четырехтоковым источником и с использованием калибровочного условия Лоренца ,
Волны
[ редактировать ]Четырехчастотный
[ редактировать ]Фотонная плоская волна может быть описана четырехчастотой, определяемой как
где ν — частота волны и — единичный вектор направления движения волны. Сейчас:
поэтому четырехчастота фотона всегда является нулевым вектором.
Четырехволновой вектор
[ редактировать ]Величинами, обратными времени t и пространству r, являются угловая частота ω и угловой волновой вектор k соответственно. Они образуют компоненты четырехволнового вектора или волнового четырехвектора:
Волновой пакет почти монохроматического света можно описать следующим образом:
Затем соотношения де Бройля показали, что четырехволновой вектор применим как к волнам материи, так и к световым волнам: уступчивость и , где ħ — постоянная Планка, деленная на 2 π .
Площадь нормы равна: и по соотношению де Бройля: мы имеем волновой аналог соотношения энергия-импульс:
Обратите внимание, что для безмассовых частиц, в этом случае m 0 = 0 , имеем: или ‖ k ‖ знак равно ω / c . Обратите внимание, что это соответствует приведенному выше случаю; для фотонов с 3-волновым вектором модуля ω/c , определяемом единичным вектором в направлении распространения волны
Квантовая теория
[ редактировать ]Ток четырех вероятностей
[ редактировать ]В квантовой механике ток четырех вероятностей или четырехвероятностный ток аналогичен электромагнитному четырехтоку : [16] где ρ — функция плотности вероятности, соответствующая временной составляющей, а j — вектор тока вероятности . В нерелятивистской квантовой механике этот ток всегда четко определен, поскольку выражения для плотности и тока положительно определены и допускают вероятностную интерпретацию. В релятивистской квантовой механике и квантовой теории поля не всегда возможно обнаружить ток, особенно когда речь идет о взаимодействиях.
Заменяя энергию оператором энергии и импульс оператором импульса в четырехимпульсе, можно получить оператор четырехимпульса , используемый в релятивистских волновых уравнениях .
Четырехспиновый
[ редактировать ]Четырехспин будет частицы определяется в системе покоя частицы, которая где s — псевдовектор спина . В квантовой механике не все три компоненты этого вектора измеримы одновременно, а только одна компонента. Времяподобный компонент равен нулю в системе покоя частицы, но не в любой другой системе отсчета. Эту компоненту можно найти с помощью соответствующего преобразования Лоренца.
Квадрат нормы — это (отрицательный) квадрат величины спина, и согласно квантовой механике мы имеем
Это значение наблюдаемо и квантовано, причем s — квантовое число спина (а не величина вектора спина).
Другие составы
[ редактировать ]Четырехвекторы в алгебре физического пространства
[ редактировать ]Четырехвектор A также можно определить, используя матрицы Паули в качестве основы , опять же в различных эквивалентных обозначениях: [17] или явно: и в этой формулировке четырехвектор представлен как эрмитова матрица ( транспонирование матрицы и комплексно-сопряженная матрица оставляют ее неизменной), а не как вектор-столбец или строка с действительным знаком. Определителем : матрицы является модуль четырехвектора, поэтому определитель является инвариантом
Эта идея использования матриц Паули в качестве базисных векторов используется в алгебре физического пространства , примере алгебры Клиффорда .
Четырехвекторы в алгебре пространства-времени
[ редактировать ]В алгебре пространства-времени , другом примере алгебры Клиффорда, гамма-матрицы также могут образовывать базис . (Их также называют матрицами Дирака из-за их появления в уравнении Дирака ). Существует несколько способов выражения гамма-матриц, подробно описанных в этой основной статье.
Обозначение косой черты Фейнмана является сокращением четырехвекторного A, сжатого гамма-матрицами:
Четырехимпульс, сжатый с гамма-матрицами, является важным случаем в релятивистской квантовой механике и релятивистской квантовой теории поля . В уравнении Дирака и других релятивистских волновых уравнениях члены вида: , в которых компоненты энергии E и импульса ( p x , py z , p ) появляются заменяются соответствующими операторами .
См. также
[ редактировать ]- Базовое введение в математику искривленного пространства-времени
- Пыль (относительность) для четырехвектора числового потока
- Пространство Минковского
- Паравектор
- Релятивистская механика
- Волновой вектор
Ссылки
[ редактировать ]- ^ Риндлер, В. Введение в специальную теорию относительности (2-е изд.) (1991) Clarendon Press Oxford ISBN 0-19-853952-5
- ^ Сибель Баскал; Янг С. Ким; Мэрилин Э. Ноз (1 ноября 2015 г.). Физика группы Лоренца . Издательство Морган и Клейпул. ISBN 978-1-68174-062-1 .
- ^ Демистификация относительности, Д. МакМахон, Мак Гроу Хилл (BSA), 2006, ISBN 0-07-145545-0
- ^ CB Паркер (1994). Энциклопедия физики МакГроу Хилла (2-е изд.). МакГроу Хилл. п. 1333 . ISBN 0-07-051400-3 .
- ^ Гравитация, Дж. Б. Уилер, К. Миснер, К. С. Торн, WH Freeman & Co, 1973, ISAN 0-7167-0344-0
- ^ Динамика и относительность, Дж. Р. Форшоу, Б. Г. Смит, Уайли, 2009, ISAN 978-0-470-01460-8.
- ^ Демистификация относительности, Д. МакМахон, Мак Гроу Хилл (ASB), 2006, ISAN 0-07-145545-0
- ^ Жан-Бернар Зубер и Клод Ицыксон, Квантовая теория поля , стр. 5, ISBN 0-07-032071-3
- ^ Чарльз В. Миснер , Кип С. Торн и Джон А. Уилер , Гравитация , стр. 51, ISBN 0-7167-0344-0
- ^ Джордж Стерман , Введение в квантовую теорию поля , стр. 4, ISBN 0-521-31132-2
- ^ Али, Ю.М.; Чжан, LC (2005). «Релятивистская теплопроводность». Межд. J. Тепломассообмен . 48 (12): 2397–2406. doi : 10.1016/j.ijheatmasstransfer.2005.02.003 .
- ^ Дж. А. Уилер; К. Миснер; К. С. Торн (1973). Гравитация . WH Freeman & Co., стр. 558–559 . ISBN 0-7167-0344-0 .
- ^ Дж. А. Уилер; К. Миснер; К. С. Торн (1973). Гравитация . WH Freeman & Co. с. 567 . ISBN 0-7167-0344-0 .
- ^ Дж. А. Уилер; К. Миснер; К. С. Торн (1973). Гравитация . WH Freeman & Co. с. 558 . ISBN 0-7167-0344-0 .
- ^ Риндлер, Вольфганг (1991). Введение в специальную теорию относительности (2-е изд.). Оксфордские научные публикации. стр. 103–107. ISBN 0-19-853952-5 .
- ^ Владимир Г. Иванцевич, Тияна Т. Иванцевич (2008) Квантовый скачок: от Дирака и Фейнмана через вселенную к человеческому телу и разуму . Всемирная научная издательская компания, ISBN 978-981-281-927-7 , с. 41
- ^ Дж. А. Уилер; К. Миснер; К. С. Торн (1973). Гравитация . WH Freeman & Co., стр. 1142–1143. ISBN 0-7167-0344-0 .
- Риндлер, В. Введение в специальную теорию относительности (2-е изд.) (1991) Clarendon Press Oxford ISBN 0-19-853952-5