Модульная группа
Алгебраическая структура → Теория групп Теория групп |
---|
В математике модулярная группа — это проективная специальная линейная группа. размера 2 × 2 матриц с целыми коэффициентами и определителем 1. Матрицы A и − A отождествлены. Модульная группа действует в верхней половине комплексной плоскости посредством дробных линейных преобразований , а название «модульная группа» происходит от отношения к пространствам модулей , а не от модулярной арифметики .
Определение
[ редактировать ]Модулярная группа Г — это группа верхней дробно-линейных преобразований половины комплексной плоскости , имеющих вид
где a , b , c , d — целые числа, а ad − bc = 1 . Групповая операция — это композиция функций .
Эта группа преобразований изоморфна проективной специальной линейной группе PSL(2, Z ) , которая является фактором двумерной специальной линейной группы SL(2, Z ) по целым числам по ее центру { I , − I } . Другими словами, PSL(2, Z ) состоит из всех матриц
где a , b , c , d — целые числа, ad − bc = 1 , а пары матриц A и − A считаются идентичными. Групповая операция представляет собой обычное умножение матриц .
Некоторые авторы определяют модульную группу как PSL(2, Z ) , а другие определяют модульную группу как большую группу SL(2, Z ) .
Некоторые математические соотношения требуют рассмотрения группы GL(2, Z ) матриц с определителем плюс или минус единица. ( SL(2, Z ) — подгруппа этой группы.) Аналогично, PGL(2, Z ) — это факторгруппа GL(2, Z )/{ I , − I } . Матрица 2 × 2 с единичным определителем является симплектической матрицей и, следовательно, SL(2, Z ) = Sp(2, Z ) , симплектической группой матриц 2 × 2 .
Поиск элементов
[ редактировать ]Чтобы найти явную матрицу
в SL(2, Z ) начните с двух взаимно простых целых чисел и решим определительное уравнение
(Обратите внимание на определяющее уравнение сил быть взаимно простым, так как в противном случае существовал бы множитель такой, что , , следовательно
не будет иметь целочисленных решений.) Например, если тогда определяющее уравнение имеет вид
затем принимая и дает , следовательно
является матрицей. Затем, используя проекцию, эти матрицы определяют элементы в PSL(2, Z ) .
Теоретико-числовые свойства
[ редактировать ]Определитель единицы измерения
означает, что дроби a / b , a / c , c / d , b / d все несократимы, то есть не имеют общих делителей (при условии, что знаменатели ненулевые, конечно). В более общем смысле, если p / q — неприводимая дробь, то
также неприводима (опять же при условии, что знаменатель не равен нулю). Таким образом можно соединить любую пару несократимых дробей; то есть для любой пары п / к и r / s несократимых дробей, существуют элементы
такой, что
Элементы модулярной группы обеспечивают симметрию на двумерной решетке . Пусть ω 1 и ω 2 — два комплексных числа , отношение которых не является действительным. Тогда множество точек
представляет собой решётку параллелограммов на плоскости. Другая пара векторов α 1 и α 2 будет порождать точно такую же решетку тогда и только тогда, когда
для некоторой матрицы из GL(2, Z ) . Именно по этой причине двоякопериодические функции , такие как эллиптические функции , обладают модулярной групповой симметрией.
Действие модульной группы на рациональные числа легче всего понять, представив квадратную сетку с точкой сетки ( p , q ), соответствующей дроби p / q (см. сад Евклида ). Несократимая дробь — это та, которая видна из начала координат; действие модульной группы на дробь никогда не переводит видимую (несводимую) в скрытую (приводимую), и наоборот.
Обратите внимание, что любой член модульной группы отображает проективно расширенную действительную прямую взаимно однозначно в себя и, кроме того, биективно отображает проективно расширенную рациональную линию (рациональные числа с бесконечностью) в себя, иррациональные числа в иррациональные числа, трансцендентные числа в трансцендентные числа, недействительные числа к недействительным числам, верхняя полуплоскость к верхней полуплоскости и так далее.
Если p n −1 / q n −1 и p n / q n — две последовательные дроби цепной дроби , то матрица
принадлежит GL(2, Z ) . В частности, если bc − ad = 1 для натуральных чисел a , b , c , d с a < b и c < d , то а / б и c / d будут соседями в последовательности Фарея порядка max( b , d ) . Важные частные случаи сходящихся дробей непрерывных дробей включают числа Фибоначчи и решения уравнения Пелла . В обоих случаях числа можно расположить так, чтобы сформировать полугрупповое подмножество модульной группы.
Теоретико-групповые свойства
[ редактировать ]Презентация
[ редактировать ]Можно показать, что модульная группа порождается двумя преобразованиями
так что каждый элемент в модулярной группе может быть представлен (неоднозначным образом) композицией степеней S и T . Геометрически S представляет собой инверсию в единичном круге с последующим отражением относительно воображаемой оси, а T представляет собой единичный сдвиг вправо.
Генераторы S и T подчиняются соотношениям S 2 = 1 и ( СТ ) 3 = 1 . Это можно показать [1] что это полный набор отношений, поэтому модульная группа имеет представление :
В этом представлении модулярная группа описывается как группа треугольников вращения D(2, 3, ∞) нет связи (бесконечность, поскольку на T ), и, таким образом, она отображается на все группы треугольников (2, 3, n ) путем добавления отношения T н = 1 , что происходит, например, в конгруэнц-подгруппе Γ( n ) .
Используя генераторы S и ST вместо S и T , это показывает, что модулярная группа изоморфна свободному произведению циклических групп C 2 и C 3 :
- Действие T : z ↦ z + 1 на H
- Действие S : z ↦ − 1 / z на H
Группа кос
[ редактировать ]Группа кос B 3 является универсальным центральным расширением модулярной группы, при этом они располагаются в виде решеток внутри (топологической) универсальной накрывающей группы SL 2 ( R ) → PSL 2 ( R ) . Далее, модулярная группа имеет тривиальный центр и, следовательно, модулярная группа изоморфна фактор-группе по B3 модулю ее центра ; группе внутренних автоморфизмов B эквивалентно 3 .
Группа кос B3 , в свою очередь, изоморфна группе узлов узла -трилистника .
Коэффициенты
[ редактировать ]Факторы по конгруэнтным подгруппам представляют значительный интерес.
Другими важными факторами являются группы треугольников (2, 3, n ) , которые геометрически соответствуют спуску в цилиндр, факторизуя x координату по модулю n , как T н знак равно ( z ↦ z + п ) . (2, 3, 5) — это группа икосаэдральной симметрии , а (2, 3, 7) группа треугольников (и связанная с ней мозаика) — это покрытие для всех поверхностей Гурвица .
Представление в виде матричной группы
[ редактировать ]Группа может быть сгенерировано двумя матрицами [2]
с
Проекция превращает эти матрицы в генераторы , с отношениями, аналогичными групповому представлению.
Связь с гиперболической геометрией
[ редактировать ]Модульная группа важна, поскольку она образует подгруппу группы изометрий гиперболической плоскости . Если мы рассмотрим верхней полуплоскости модель H геометрии гиперболической плоскости, то группа всех , сохраняющие ориентацию, изометрии H состоят из всех преобразований Мёбиуса вида
где a , b , c , d — действительные числа . В терминах проективных координат группа PSL(2, R ) действует на верхней полуплоскости H проективно:
Это действие является верным . Поскольку PSL(2, Z ) является подгруппой PSL(2, R ) , модулярная группа является подгруппой группы изометрий H , сохраняющих ориентацию . [3]
Тесселяция гиперболической плоскости
[ редактировать ]Модульная группа Γ действует на как дискретная подгруппа , то есть для каждого z в можем найти окрестность z , которая не содержит никаких других элементов орбиты z мы . Это также означает, что мы можем построить фундаментальные области содержат ровно одного представителя орбиты каждого z в H. , которые (грубо ) (Необходима осторожность на границе домена.)
Существует много способов создания фундаментального домена, но общим выбором является регион.
ограниченный вертикальными линиями Re( z ) = 1 / 2 и Re( z ) = - 1/2 и круг | г | = 1 . Эта область представляет собой гиперболический треугольник. Он имеет вершины в 1/2 + я √ 3 / 2 и − 1/2 + я √ 3/2 равен , где угол между его сторонами π / 3 и третья вершина, находящаяся на бесконечности, где угол между ее сторонами равен 0.
Существует сильная связь между модульной группой и эллиптическими кривыми . Каждая точка в верхней полуплоскости дает эллиптическую кривую, а именно фактор решеткой, порожденной 1 и . Две точки в верхней полуплоскости дают изоморфные эллиптические кривые тогда и только тогда, когда они связаны преобразованием в модулярной группе. Таким образом, фактор верхней полуплоскости по действию модулярной группы представляет собой так называемое пространство модулей эллиптических кривых: пространство, точки которого описывают классы изоморфизма эллиптических кривых. Это часто визуализируется как описанная выше фундаментальная область с определенными точками на ее границе.
Модульная группа и ее подгруппы также являются источником интересных мозаик гиперболической плоскости. Преобразуя эту фундаментальную область по очереди каждым из элементов модульной группы, регулярное замощение гиперболической плоскости конгруэнтными гиперболическими треугольниками, известное как V6.6.∞ треугольная мозаика бесконечного порядка создается . Обратите внимание, что каждый такой треугольник имеет одну вершину либо на бесконечности, либо на действительной оси Im( z ) = 0 .
Это разбиение можно распространить на диск Пуанкаре , где каждый гиперболический треугольник имеет одну вершину на границе диска. Разбиение диска Пуанкаре естественным образом задается J -инвариантом , который инвариантен относительно модулярной группы и достигает каждого комплексного числа один раз в каждом треугольнике этих областей.
Эту тесселяцию можно немного усовершенствовать, разделив каждую область на две половины (обычно окрашенные в черный и белый цвета), добавив карту, меняющую ориентацию; тогда цвета соответствуют ориентации домена. Добавление ( x , y ) ↦ (− x , y ) и взятие правой половины области R (где Re( z ) ≥ 0 ) дает обычную мозаику. Эта мозаика впервые появляется в печати ( Klein & 1878/79a ), [4] где это приписывается Ричарду Дедекинду со ссылкой на ( Дедекинд 1877 ). [4] [5]
Карту групп (2, 3, ∞) → (2, 3, n ) (от модульной группы к треугольной группе) можно визуализировать с точки зрения этого разбиения (что дает разбиение на модульной кривой), как показано в видео справа.
Паракомпактные равномерные разбиения семейства [∞,3] |
---|
Подгруппы конгруэнтности
[ редактировать ]Важные подгруппы модулярной группы Γ , называемые подгруппами конгруэнции , задаются путем наложения отношений конгруэнции на соответствующие матрицы.
Существует естественный гомоморфизм SL(2, Z SL(2, Z / N Z ), заданный сокращением элементов по модулю N. ) → Это индуцирует гомоморфизм модулярной группы PSL(2, Z ) → PSL(2, Z / N Z ) . Ядро ( этого гомоморфизма называется главной конгруэнц-подгруппой уровня N и обозначается Γ N ) . У нас есть следующая короткая точная последовательность :
Являясь ядром гомоморфизма Γ( N ), является нормальной подгруппой модулярной группы Γ . Группа Γ( N ) задается как множество всех модулярных преобразований
для которого a ≡ d ≡ ±1 (mod N ) и b ≡ c ≡ 0 (mod N ) .
Легко показать, что след матрицы, представляющей элемент Γ( N ), не может быть равен −1, 0 или 1, поэтому эти подгруппы являются группами без кручения . (Существуют и другие подгруппы без кручения.)
Главная конгруэнтная подгруппа уровня 2, Γ(2) , также называется модулярной группой Λ . Поскольку PSL(2, Z /2 Z ) изоморфна S3 c , Λ является подгруппой индекса 6. Группа Λ модулярных преобразований, для которых a и d нечетны, а b и состоит из всех четны.
Другое важное семейство конгруэнтных подгрупп - это модулярная группа Γ 0 ( N ), определенная как набор всех модулярных преобразований, для которых c ≡ 0 (mod N ) , или, что то же самое, как подгруппа, матрицы которой становятся верхнетреугольными при редукции по модулю N . Обратите внимание, что Γ( N ) является подгруппой Γ 0 ( N ) . Модульные кривые, связанные с этими группами, являются аспектом чудовищного самогона — для простого числа p модульная кривая нормализатора имеет нулевой род тогда и только тогда, когда p делит порядок группы монстров или, что то же самое, если p является суперсингулярной группой. основной .
Диадический моноид
[ редактировать ]Одним из важных подмножеств модульной группы является диадический моноид , который является моноидом всех строк формы ST. к СТ м СТ н ... для натуральных чисел k , m , n ,... . Этот моноид естественным образом возникает при изучении фрактальных кривых и описывает самоподобия симметрию функции Кантора , функции вопросительного знака Минковского и снежинки Коха , каждая из которых является частным случаем общей кривой де Рама . Моноид также имеет линейные представления более высокой размерности; например, представление N = 3 можно понимать как описание самосимметрии кривой бланманже .
Карты тора
[ редактировать ]Группа GL(2, Z ) — это линейные отображения, сохраняющие стандартную решетку Z 2 , SL(2, Z ) — сохраняющие ориентацию отображения, сохраняющие эту решетку; они спускаются к самогомеоморфизмам тора таким образом , (отображение SL на сохраняющие ориентацию отображения) и фактически изоморфно отображаются в (расширенную) группу классов отображений тора, что означает, что каждый самогомеоморфизм изотопен тора карта такого вида. Алгебраические свойства матрицы как элемента GL(2, Z ) соответствуют динамике индуцированного отображения тора.
Хедж-группы
[ редактировать ]Модульную группу можно обобщить до групп Хекке , названных в честь Эриха Хекке , и определить следующим образом. [7]
Группа Гекке H q с q ≥ 3 — это дискретная группа, порожденная
где λ q = 2 cos π / q . Для малых значений q ≥ 3 имеем:
Модульная группа Γ изоморфна H 3 , и они имеют общие свойства и приложения – например, так же, как имеется свободное произведение циклических групп.
в более общем плане есть
что соответствует группе треугольников (2, q , ∞) . Аналогично существует понятие главных конгруэнтных подгрупп, связанных с главными идеалами в Z [ λ ] .
История
[ редактировать ]Модульная группа и ее подгруппы были впервые подробно изучены Рихардом Дедекиндом и Феликсом Кляйном в рамках его программы в Эрлангене в 1870-х годах. Однако близкородственные эллиптические функции были изучены Жозефом Луи Лагранжем в 1785 году, а дальнейшие результаты по эллиптическим функциям были опубликованы Карлом Густавом Якобом Якоби и Нильсом Хенриком Абелем в 1827 году.
См. также
[ редактировать ]- Группа Бьянки
- Классическая модульная кривая
- Фуксова группа
- J -инвариант
- Кляйнианская группа
- Группа классов сопоставления
- Функция вопросительного знака Минковского
- Преобразование Мёбиуса
- Модульная кривая
- Модульная форма
- Куттака
- Модель полуплоскости Пуанкаре
- Равномерные мозаики в гиперболической плоскости
Ссылки
[ редактировать ]- ^ Альперин, Роджер К. (апрель 1993 г.). " ПСЛ 2 ( Z ) = Z 2 * Z 3 ". амер. Математика. Ежемесячно . 100 (4): 385–386. дои : 10.2307/2324963 . JSTOR 2324963 .
- ^ Конрад, Кейт. «SL(2,Z)» (PDF) .
- ^ МакКрири, Пол Р.; Мерфи, Тери Джо; Картер, Кристиан. «Модульная группа» (PDF) . Журнал Математика . 9 (3).
- ^ Перейти обратно: а б Ле Брюйн, Ливен (22 апреля 2008 г.), Дедекинд или Кляйн?
- ^ Стиллвелл, Джон (январь 2001 г.). «Модульные чудеса». Американский математический ежемесячник . 108 (1): 70–76. дои : 10.2307/2695682 . ISSN 0002-9890 . JSTOR 2695682 .
- ^ Вестендорп, Джерард. «Платоновые мозаики римановых поверхностей» . www.xs4all.nl .
- ^ Розенбергер, Герхард; Хорошо, Бенджамин; Гальоне, Энтони М.; Спеллман, Деннис (2006). Комбинаторная теория групп, дискретные группы и теория чисел . п. 65. ИСБН 9780821839850 .
- Апостол, Том М. (1990). Модульные функции и ряды Дирихле в теории чисел (2-е изд.). Нью-Йорк: Спрингер. гл. 2. ISBN 0-387-97127-0 .
- Кляйн, Феликс (1878–1879), «О преобразовании эллиптических функций и решении уравнений пятой степени (О преобразовании эллиптических функций и ...)» , Math. 14 : 13–75, doi : 10.1007 /BF02297507 , S2CID 121056952 , заархивировано из оригинала 19 июля 2011 г. , получено 3 июня 2010 г.
- Дедекинд, Ричард (сентябрь 1877 г.), «Письмо г-ну Борхардту о теории эллиптических модульных функций», Crelle's Journal , 83 : 265–292 .