Mathematical identities
Ниже приведены важные тождества, включающие производные и интегралы в векторном исчислении .
Для функции
f
(
x
,
y
,
z
)
{\displaystyle f(x,y,z)}
в трехмерных декартовых координатных переменных градиент представляет собой векторное поле:
grad
(
f
)
=
∇
f
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
f
=
∂
f
∂
x
i
+
∂
f
∂
y
j
+
∂
f
∂
z
k
{\displaystyle \operatorname {grad} (f)=\nabla f={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}f={\frac {\partial f}{\partial x}}\mathbf {i} +{\frac {\partial f}{\partial y}}\mathbf {j} +{\frac {\partial f}{\partial z}}\mathbf {k} }
где i , j , k — стандартные единичные векторы для осей x , y , z . В более общем смысле, для функции n переменных
ψ
(
x
1
,
…
,
x
n
)
{\displaystyle \psi (x_{1},\ldots ,x_{n})}
, также называемое скалярным полем, градиент представляет собой векторное поле :
∇
ψ
=
(
∂
∂
x
1
,
…
,
∂
∂
x
n
)
ψ
=
∂
ψ
∂
x
1
e
1
+
⋯
+
∂
ψ
∂
x
n
e
n
{\displaystyle \nabla \psi ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x_{1}}},\ldots ,{\frac {\partial }{\partial x_{n}}}\end{pmatrix}}\psi ={\frac {\partial \psi }{\partial x_{1}}}\mathbf {e} _{1}+\dots +{\frac {\partial \psi }{\partial x_{n}}}\mathbf {e} _{n}}
где
e
i
(
i
=
1
,
2
,
.
.
.
,
n
)
{\displaystyle \mathbf {e} _{i}\,(i=1,2,...,n)}
являются взаимно ортогональными единичными векторами.
Как следует из названия, градиент пропорционален самому быстрому (положительному) изменению функции и указывает в направлении.
Для векторного поля
A
=
(
A
1
,
…
,
A
n
)
{\displaystyle \mathbf {A} =\left(A_{1},\ldots ,A_{n}\right)}
, также называемое тензорным полем порядка 1, градиент или полная производная представляет собой n × n матрицу Якоби размера :
J
A
=
d
A
=
(
∇
A
)
T
=
(
∂
A
i
∂
x
j
)
i
j
.
{\displaystyle \mathbf {J} _{\mathbf {A} }=d\mathbf {A} =(\nabla \!\mathbf {A} )^{\textsf {T}}=\left({\frac {\partial A_{i}}{\partial x_{j}}}\right)_{\!ij}.}
Для тензорного поля
T
{\displaystyle \mathbf {T} }
любого порядка k градиент
grad
(
T
)
=
d
T
=
(
∇
T
)
T
{\displaystyle \operatorname {grad} (\mathbf {T} )=d\mathbf {T} =(\nabla \mathbf {T} )^{\textsf {T}}}
является тензорным полем порядка k + 1.
Для тензорного поля
T
{\displaystyle \mathbf {T} }
порядка k > 0 тензорное поле
∇
T
{\displaystyle \nabla \mathbf {T} }
порядка k + 1 определяется рекурсивным соотношением
(
∇
T
)
⋅
C
=
∇
(
T
⋅
C
)
{\displaystyle (\nabla \mathbf {T} )\cdot \mathbf {C} =\nabla (\mathbf {T} \cdot \mathbf {C} )}
где
C
{\displaystyle \mathbf {C} }
— произвольный постоянный вектор.
В декартовых координатах дивергенция непрерывно дифференцируемого векторного поля
F
=
F
x
i
+
F
y
j
+
F
z
k
{\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} }
скалярная функция:
div
F
=
∇
⋅
F
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
⋅
(
F
x
,
F
y
,
F
z
)
=
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
.
{\displaystyle \operatorname {div} \mathbf {F} =\nabla \cdot \mathbf {F} ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}\cdot {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}.}
Как следует из названия, дивергенция — это (локальная) мера степени, в которой векторы в поле расходятся.
Дивергенция тензорного поля
T
{\displaystyle \mathbf {T} }
ненулевого порядка k записывается как
div
(
T
)
=
∇
⋅
T
{\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} }
, сжатие тензорного поля порядка k - 1. В частности, дивергенция вектора является скаляром. Дивергенцию тензорного поля более высокого порядка можно найти, разложив тензорное поле на сумму внешних произведений и используя тождество:
∇
⋅
(
A
⊗
T
)
=
T
(
∇
⋅
A
)
+
(
A
⋅
∇
)
T
{\displaystyle \nabla \cdot \left(\mathbf {A} \otimes \mathbf {T} \right)=\mathbf {T} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {T} }
где
A
⋅
∇
{\displaystyle \mathbf {A} \cdot \nabla }
– производная по направлению в направлении
A
{\displaystyle \mathbf {A} }
умноженный на его величину. В частности, для внешнего произведения двух векторов
∇
⋅
(
A
B
T
)
=
B
(
∇
⋅
A
)
+
(
A
⋅
∇
)
B
.
{\displaystyle \nabla \cdot \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=\mathbf {B} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {B} .}
Для тензорного поля
T
{\displaystyle \mathbf {T} }
порядка k > 1 тензорное поле
∇
⋅
T
{\displaystyle \nabla \cdot \mathbf {T} }
порядка k − 1 определяется рекурсивным соотношением
(
∇
⋅
T
)
⋅
C
=
∇
⋅
(
T
⋅
C
)
{\displaystyle (\nabla \cdot \mathbf {T} )\cdot \mathbf {C} =\nabla \cdot (\mathbf {T} \cdot \mathbf {C} )}
где
C
{\displaystyle \mathbf {C} }
— произвольный постоянный вектор.
В декартовых координатах для
F
=
F
x
i
+
F
y
j
+
F
z
k
{\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} }
локон — векторное поле:
curl
F
=
∇
×
F
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
×
(
F
x
,
F
y
,
F
z
)
=
|
i
j
k
∂
∂
x
∂
∂
y
∂
∂
z
F
x
F
y
F
z
|
=
(
∂
F
z
∂
y
−
∂
F
y
∂
z
)
i
+
(
∂
F
x
∂
z
−
∂
F
z
∂
x
)
j
+
(
∂
F
y
∂
x
−
∂
F
x
∂
y
)
k
{\displaystyle {\begin{aligned}\operatorname {curl} \mathbf {F} &=\nabla \times \mathbf {F} ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{vmatrix}}\\[1em]&=\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)\mathbf {k} \end{aligned}}}
где i , j и k — единичные векторы для осей x , y и z соответственно.
Как следует из названия, завиток — это мера того, насколько близлежащие векторы стремятся в круговом направлении.
В обозначениях Эйнштейна векторное поле
F
=
(
F
1
,
F
2
,
F
3
)
{\displaystyle \mathbf {F} ={\begin{pmatrix}F_{1},\ F_{2},\ F_{3}\end{pmatrix}}}
имеет завиток, заданный:
∇
×
F
=
ε
i
j
k
e
i
∂
F
k
∂
x
j
{\displaystyle \nabla \times \mathbf {F} =\varepsilon ^{ijk}\mathbf {e} _{i}{\frac {\partial F_{k}}{\partial x_{j}}}}
где
ε
{\displaystyle \varepsilon }
= ±1 или 0 — символ четности Леви-Чивита .
Для тензорного поля
T
{\displaystyle \mathbf {T} }
порядка k > 1 тензорное поле
∇
×
T
{\displaystyle \nabla \times \mathbf {T} }
порядка k определяется рекурсивным соотношением
(
∇
×
T
)
⋅
C
=
∇
×
(
T
⋅
C
)
{\displaystyle (\nabla \times \mathbf {T} )\cdot \mathbf {C} =\nabla \times (\mathbf {T} \cdot \mathbf {C} )}
где
C
{\displaystyle \mathbf {C} }
— произвольный постоянный вектор.
Тензорное поле порядка больше единицы можно разложить на сумму внешних произведений , а затем можно использовать следующее тождество:
∇
×
(
A
⊗
T
)
=
(
∇
×
A
)
⊗
T
−
A
×
(
∇
T
)
.
{\displaystyle \nabla \times \left(\mathbf {A} \otimes \mathbf {T} \right)=(\nabla \times \mathbf {A} )\otimes \mathbf {T} -\mathbf {A} \times (\nabla \mathbf {T} ).}
В частности, для внешнего произведения двух векторов
∇
×
(
A
B
T
)
=
(
∇
×
A
)
B
T
−
A
×
(
∇
B
)
.
{\displaystyle \nabla \times \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=(\nabla \times \mathbf {A} )\mathbf {B} ^{\textsf {T}}-\mathbf {A} \times (\nabla \mathbf {B} ).}
В декартовых координатах лапласиан функции
f
(
x
,
y
,
z
)
{\displaystyle f(x,y,z)}
является
Δ
f
=
∇
2
f
=
(
∇
⋅
∇
)
f
=
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
+
∂
2
f
∂
z
2
.
{\displaystyle \Delta f=\nabla ^{2}\!f=(\nabla \cdot \nabla )f={\frac {\partial ^{2}\!f}{\partial x^{2}}}+{\frac {\partial ^{2}\!f}{\partial y^{2}}}+{\frac {\partial ^{2}\!f}{\partial z^{2}}}.}
Лапласиан — это мера того, насколько сильно функция меняется на небольшой сфере с центром в этой точке.
Когда лапласиан равен 0, функция называется гармонической функцией . То есть,
Δ
f
=
0.
{\displaystyle \Delta f=0.}
Для поля тензорного
T
{\displaystyle \mathbf {T} }
, лапласиан обычно записывается как:
Δ
T
=
∇
2
T
=
(
∇
⋅
∇
)
T
{\displaystyle \Delta \mathbf {T} =\nabla ^{2}\mathbf {T} =(\nabla \cdot \nabla )\mathbf {T} }
и является тензорным полем того же порядка.
Для тензорного поля
T
{\displaystyle \mathbf {T} }
порядка k > 0 тензорное поле
∇
2
T
{\displaystyle \nabla ^{2}\mathbf {T} }
порядка k определяется рекурсивным соотношением
(
∇
2
T
)
⋅
C
=
∇
2
(
T
⋅
C
)
{\displaystyle \left(\nabla ^{2}\mathbf {T} \right)\cdot \mathbf {C} =\nabla ^{2}(\mathbf {T} \cdot \mathbf {C} )}
где
C
{\displaystyle \mathbf {C} }
— произвольный постоянный вектор.
В индексной записи Фейнмана
∇
B
(
A
⋅
B
)
=
A
×
(
∇
×
B
)
+
(
A
⋅
∇
)
B
{\displaystyle \nabla _{\mathbf {B} }\!\left(\mathbf {A{\cdot }B} \right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} }
где обозначение ∇ B означает, что индексированный градиент действует только на фактор B . [ 1 ] [ 2 ]
Менее общим, но похожим является Гестена обозначение с точкой в геометрической алгебре . [ 3 ] Вышеупомянутое тождество тогда выражается как:
∇
˙
(
A
⋅
B
˙
)
=
A
×
(
∇
×
B
)
+
(
A
⋅
∇
)
B
{\displaystyle {\dot {\nabla }}\left(\mathbf {A} {\cdot }{\dot {\mathbf {B} }}\right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} }
где лишние точки определяют область действия векторной производной. Пунктирный вектор, в данном случае B , дифференцируется, а (непунктирный) A остается постоянным.
В оставшейся части статьи там, где это уместно, будет использоваться индексная запись Фейнмана.
Для скалярных полей
ψ
{\displaystyle \psi }
,
ϕ
{\displaystyle \phi }
и векторные поля
A
{\displaystyle \mathbf {A} }
,
B
{\displaystyle \mathbf {B} }
, мы имеем следующие производные тождества.
∇
(
ψ
+
ϕ
)
=
∇
ψ
+
∇
ϕ
∇
(
A
+
B
)
=
∇
A
+
∇
B
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle {\begin{aligned}\nabla (\psi +\phi )&=\nabla \psi +\nabla \phi \\\nabla (\mathbf {A} +\mathbf {B} )&=\nabla \mathbf {A} +\nabla \mathbf {B} \\\nabla \cdot (\mathbf {A} +\mathbf {B} )&=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} \\\nabla \times (\mathbf {A} +\mathbf {B} )&=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} \end{aligned}}}
(
A
⋅
∇
)
ψ
=
A
⋅
(
∇
ψ
)
(
A
⋅
∇
)
B
=
A
⋅
(
∇
B
)
(
A
×
∇
)
ψ
=
A
×
(
∇
ψ
)
(
A
×
∇
)
B
=
A
×
(
∇
B
)
{\displaystyle {\begin{aligned}(\mathbf {A} \cdot \nabla )\psi &=\mathbf {A} \cdot (\nabla \psi )\\(\mathbf {A} \cdot \nabla )\mathbf {B} &=\mathbf {A} \cdot (\nabla \mathbf {B} )\\(\mathbf {A} \times \nabla )\psi &=\mathbf {A} \times (\nabla \psi )\\(\mathbf {A} \times \nabla )\mathbf {B} &=\mathbf {A} \times (\nabla \mathbf {B} )\end{aligned}}}
У нас есть следующие обобщения правила произведения с одной переменной в исчислении .
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
∇
(
ψ
A
)
=
(
∇
ψ
)
A
T
+
ψ
∇
A
=
∇
ψ
⊗
A
+
ψ
∇
A
∇
⋅
(
ψ
A
)
=
ψ
∇
⋅
A
+
(
∇
ψ
)
⋅
A
∇
×
(
ψ
A
)
=
ψ
∇
×
A
+
(
∇
ψ
)
×
A
∇
2
(
ψ
ϕ
)
=
ψ
∇
2
ϕ
+
2
∇
ψ
⋅
∇
ϕ
+
ϕ
∇
2
ψ
{\displaystyle {\begin{aligned}\nabla (\psi \phi )&=\phi \,\nabla \psi +\psi \,\nabla \phi \\\nabla (\psi \mathbf {A} )&=(\nabla \psi )\mathbf {A} ^{\textsf {T}}+\psi \nabla \mathbf {A} \ =\ \nabla \psi \otimes \mathbf {A} +\psi \,\nabla \mathbf {A} \\\nabla \cdot (\psi \mathbf {A} )&=\psi \,\nabla {\cdot }\mathbf {A} +(\nabla \psi )\,{\cdot }\mathbf {A} \\\nabla {\times }(\psi \mathbf {A} )&=\psi \,\nabla {\times }\mathbf {A} +(\nabla \psi ){\times }\mathbf {A} \\\nabla ^{2}(\psi \phi )&=\psi \,\nabla ^{2\!}\phi +2\,\nabla \!\psi \cdot \!\nabla \phi +\phi \,\nabla ^{2\!}\psi \end{aligned}}}
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
−
ψ
∇
ϕ
ϕ
2
∇
(
A
ϕ
)
=
ϕ
∇
A
−
∇
ϕ
⊗
A
ϕ
2
∇
⋅
(
A
ϕ
)
=
ϕ
∇
⋅
A
−
∇
ϕ
⋅
A
ϕ
2
∇
×
(
A
ϕ
)
=
ϕ
∇
×
A
−
∇
ϕ
×
A
ϕ
2
∇
2
(
ψ
ϕ
)
=
ϕ
∇
2
ψ
−
2
ϕ
∇
(
ψ
ϕ
)
⋅
∇
ϕ
−
ψ
∇
2
ϕ
ϕ
2
{\displaystyle {\begin{aligned}\nabla \left({\frac {\psi }{\phi }}\right)&={\frac {\phi \,\nabla \psi -\psi \,\nabla \phi }{\phi ^{2}}}\\[1em]\nabla \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla \mathbf {A} -\nabla \phi \otimes \mathbf {A} }{\phi ^{2}}}\\[1em]\nabla \cdot \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla {\cdot }\mathbf {A} -\nabla \!\phi \cdot \mathbf {A} }{\phi ^{2}}}\\[1em]\nabla \times \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla {\times }\mathbf {A} -\nabla \!\phi \,{\times }\,\mathbf {A} }{\phi ^{2}}}\\[1em]\nabla ^{2}\left({\frac {\psi }{\phi }}\right)&={\frac {\phi \,\nabla ^{2\!}\psi -2\,\phi \,\nabla \!\left({\frac {\psi }{\phi }}\right)\cdot \!\nabla \phi -\psi \,\nabla ^{2\!}\phi }{\phi ^{2}}}\end{aligned}}}
Позволять
f
(
x
)
{\displaystyle f(x)}
быть функцией одной переменной от скаляров к скалярам,
r
(
t
)
=
(
x
1
(
t
)
,
…
,
x
n
(
t
)
)
{\displaystyle \mathbf {r} (t)=(x_{1}(t),\ldots ,x_{n}(t))}
кривая параметризованная ,
ϕ
:
R
n
→
R
{\displaystyle \phi \!:\mathbb {R} ^{n}\to \mathbb {R} }
функция преобразования векторов в скаляры и
A
:
R
n
→
R
n
{\displaystyle \mathbf {A} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}}
векторное поле. Имеются следующие частные случаи правила цепочки с несколькими переменными .
∇
(
f
∘
ϕ
)
=
(
f
′
∘
ϕ
)
∇
ϕ
(
r
∘
f
)
′
=
(
r
′
∘
f
)
f
′
(
ϕ
∘
r
)
′
=
(
∇
ϕ
∘
r
)
⋅
r
′
(
A
∘
r
)
′
=
r
′
⋅
(
∇
A
∘
r
)
∇
(
ϕ
∘
A
)
=
(
∇
A
)
⋅
(
∇
ϕ
∘
A
)
∇
⋅
(
r
∘
ϕ
)
=
∇
ϕ
⋅
(
r
′
∘
ϕ
)
∇
×
(
r
∘
ϕ
)
=
∇
ϕ
×
(
r
′
∘
ϕ
)
{\displaystyle {\begin{aligned}\nabla (f\circ \phi )&=\left(f'\circ \phi \right)\nabla \phi \\(\mathbf {r} \circ f)'&=(\mathbf {r} '\circ f)f'\\(\phi \circ \mathbf {r} )'&=(\nabla \phi \circ \mathbf {r} )\cdot \mathbf {r} '\\(\mathbf {A} \circ \mathbf {r} )'&=\mathbf {r} '\cdot (\nabla \mathbf {A} \circ \mathbf {r} )\\\nabla (\phi \circ \mathbf {A} )&=(\nabla \mathbf {A} )\cdot (\nabla \phi \circ \mathbf {A} )\\\nabla \cdot (\mathbf {r} \circ \phi )&=\nabla \phi \cdot (\mathbf {r} '\circ \phi )\\\nabla \times (\mathbf {r} \circ \phi )&=\nabla \phi \times (\mathbf {r} '\circ \phi )\end{aligned}}}
Для векторного преобразования
x
:
R
n
→
R
n
{\displaystyle \mathbf {x} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}}
у нас есть:
∇
⋅
(
A
∘
x
)
=
t
r
(
(
∇
x
)
⋅
(
∇
A
∘
x
)
)
{\displaystyle \nabla \cdot (\mathbf {A} \circ \mathbf {x} )=\mathrm {tr} \left((\nabla \mathbf {x} )\cdot (\nabla \mathbf {A} \circ \mathbf {x} )\right)}
Здесь мы берем след скалярного произведения двух тензоров второго порядка, который соответствует произведению их матриц.
∇
(
A
⋅
B
)
=
(
A
⋅
∇
)
B
+
(
B
⋅
∇
)
A
+
A
×
(
∇
×
B
)
+
B
×
(
∇
×
A
)
=
A
⋅
J
B
+
B
⋅
J
A
=
(
∇
B
)
⋅
A
+
(
∇
A
)
⋅
B
{\displaystyle {\begin{aligned}\nabla (\mathbf {A} \cdot \mathbf {B} )&\ =\ (\mathbf {A} \cdot \nabla )\mathbf {B} \,+\,(\mathbf {B} \cdot \nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {B} )\,+\,\mathbf {B} {\times }(\nabla {\times }\mathbf {A} )\\&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }+\mathbf {B} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,+\,(\nabla \mathbf {A} )\cdot \mathbf {B} \end{aligned}}}
где
J
A
=
(
∇
A
)
T
=
(
∂
A
i
/
∂
x
j
)
i
j
{\displaystyle \mathbf {J} _{\mathbf {A} }=(\nabla \!\mathbf {A} )^{\textsf {T}}=(\partial A_{i}/\partial x_{j})_{ij}}
обозначает матрицу Якоби векторного поля
A
=
(
A
1
,
…
,
A
n
)
{\displaystyle \mathbf {A} =(A_{1},\ldots ,A_{n})}
.
В качестве альтернативы, используя индексную нотацию Фейнмана,
∇
(
A
⋅
B
)
=
∇
A
(
A
⋅
B
)
+
∇
B
(
A
⋅
B
)
.
{\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=\nabla _{\mathbf {A} }(\mathbf {A} \cdot \mathbf {B} )+\nabla _{\mathbf {B} }(\mathbf {A} \cdot \mathbf {B} )\ .}
См. эти примечания. [ 4 ]
В частном случае, когда A = B ,
1
2
∇
(
A
⋅
A
)
=
A
⋅
J
A
=
(
∇
A
)
⋅
A
=
(
A
⋅
∇
)
A
+
A
×
(
∇
×
A
)
=
A
∇
A
.
{\displaystyle {\tfrac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {A} )\cdot \mathbf {A} \ =\ (\mathbf {A} {\cdot }\nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {A} )\ =\ A\nabla A.}
Обобщение формулы скалярного произведения на римановы многообразия является определяющим свойством римановой связности , которая дифференцирует векторное поле, чтобы дать векторнозначную 1-форму .
∇
⋅
(
A
×
B
)
=
(
∇
×
A
)
⋅
B
−
A
⋅
(
∇
×
B
)
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
=
A
(
∇
⋅
B
)
+
(
B
⋅
∇
)
A
−
(
B
(
∇
⋅
A
)
+
(
A
⋅
∇
)
B
)
=
∇
⋅
(
B
A
T
)
−
∇
⋅
(
A
B
T
)
=
∇
⋅
(
B
A
T
−
A
B
T
)
A
×
(
∇
×
B
)
=
∇
B
(
A
⋅
B
)
−
(
A
⋅
∇
)
B
=
A
⋅
J
B
−
(
A
⋅
∇
)
B
=
(
∇
B
)
⋅
A
−
A
⋅
(
∇
B
)
=
A
⋅
(
J
B
−
J
B
T
)
(
A
×
∇
)
×
B
=
(
∇
B
)
⋅
A
−
A
(
∇
⋅
B
)
=
A
×
(
∇
×
B
)
+
(
A
⋅
∇
)
B
−
A
(
∇
⋅
B
)
(
A
×
∇
)
⋅
B
=
A
⋅
(
∇
×
B
)
{\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {A} \times \mathbf {B} )&\ =\ (\nabla {\times }\mathbf {A} )\cdot \mathbf {B} \,-\,\mathbf {A} \cdot (\nabla {\times }\mathbf {B} )\\[5pt]\nabla \times (\mathbf {A} \times \mathbf {B} )&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,-\,\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} )\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\right)\,-\,\nabla {\cdot }\left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\,-\,\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\\[5pt]\mathbf {A} \times (\nabla \times \mathbf {B} )&\ =\ \nabla _{\mathbf {B} }(\mathbf {A} {\cdot }\mathbf {B} )\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} \cdot (\nabla \mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \cdot (\mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}})\\[5pt](\mathbf {A} \times \nabla )\times \mathbf {B} &\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \times (\nabla \times \mathbf {B} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\\[5pt](\mathbf {A} \times \nabla )\cdot \mathbf {B} &\ =\ \mathbf {A} \cdot (\nabla {\times }\mathbf {B} )\end{aligned}}}
Обратите внимание, что матрица
J
B
−
J
B
T
{\displaystyle \mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}}}
является антисимметричным.
Дивергенция : ротора любого непрерывно дважды дифференцируемого векторного поля A всегда равна нулю
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
Это частный случай обращения в нуль квадрата внешней производной в Де Рама цепном комплексе .
Лапласиан : скалярного поля — это дивергенция его градиента
Δ
ψ
=
∇
2
ψ
=
∇
⋅
(
∇
ψ
)
{\displaystyle \Delta \psi =\nabla ^{2}\psi =\nabla \cdot (\nabla \psi )}
Результатом является скалярная величина.
Дивергенция векторного поля A является скаляром, а дивергенция скалярной величины не определена. Поэтому,
∇
⋅
(
∇
⋅
A
)
is undefined.
{\displaystyle \nabla \cdot (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}}
Ротор градиента непрерывно дважды любого дифференцируемого поля скалярного
φ
{\displaystyle \varphi }
(т.е. класс дифференцируемости
C
2
{\displaystyle C^{2}}
) всегда является нулевым вектором :
∇
×
(
∇
φ
)
=
0
.
{\displaystyle \nabla \times (\nabla \varphi )=\mathbf {0} .}
Это легко доказать, выразив
∇
×
(
∇
φ
)
{\displaystyle \nabla \times (\nabla \varphi )}
в декартовой системе координат с теоремой Шварца (также называемой теоремой Клеро о равенстве смешанных частей). Этот результат представляет собой частный случай обращения в нуль квадрата внешней производной в Де Рама цепном комплексе .
∇
×
(
∇
×
A
)
=
∇
(
∇
⋅
A
)
−
∇
2
A
{\displaystyle \nabla \times \left(\nabla \times \mathbf {A} \right)\ =\ \nabla (\nabla {\cdot }\mathbf {A} )\,-\,\nabla ^{2\!}\mathbf {A} }
Здесь ∇ 2 — векторный лапласиан, на векторное поле A. действующий
Дивергенция A векторного поля является скаляром, а ротор скалярной величины не определен. Поэтому,
∇
×
(
∇
⋅
A
)
is undefined.
{\displaystyle \nabla \times (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}}
(
∇
⋅
∇
)
ψ
=
∇
⋅
(
∇
ψ
)
=
∇
2
ψ
(
∇
⋅
∇
)
A
=
∇
⋅
(
∇
A
)
=
∇
2
A
(
∇
×
∇
)
ψ
=
∇
×
(
∇
ψ
)
=
0
(
∇
×
∇
)
A
=
∇
×
(
∇
A
)
=
0
{\displaystyle {\begin{aligned}(\nabla \cdot \nabla )\psi &=\nabla \cdot (\nabla \psi )=\nabla ^{2}\psi \\(\nabla \cdot \nabla )\mathbf {A} &=\nabla \cdot (\nabla \mathbf {A} )=\nabla ^{2}\mathbf {A} \\(\nabla \times \nabla )\psi &=\nabla \times (\nabla \psi )=\mathbf {0} \\(\nabla \times \nabla )\mathbf {A} &=\nabla \times (\nabla \mathbf {A} )=\mathbf {0} \end{aligned}}}
Диаграмма DCG: некоторые правила для вторых производных.
Рисунок справа — мнемоника некоторых из этих личностей. Используются следующие сокращения:
Д: расхождение,
С: завиток,
Г: градиент,
Л: Лапласиан,
CC: завиток завитка.
Каждая стрелка помечается результатом идентификатора, а именно результатом применения оператора на хвосте стрелки к оператору на ее вершине. Синий кружок посередине означает, что завиток существует, тогда как два других красных кружка (пунктирные) означают, что DD и GG не существуют.
∇
(
ψ
+
ϕ
)
=
∇
ψ
+
∇
ϕ
{\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi }
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
{\displaystyle \nabla (\psi \phi )=\phi \nabla \psi +\psi \nabla \phi }
∇
(
ψ
A
)
=
∇
ψ
⊗
A
+
ψ
∇
A
{\displaystyle \nabla (\psi \mathbf {A} )=\nabla \psi \otimes \mathbf {A} +\psi \nabla \mathbf {A} }
∇
(
A
⋅
B
)
=
(
A
⋅
∇
)
B
+
(
B
⋅
∇
)
A
+
A
×
(
∇
×
B
)
+
B
×
(
∇
×
A
)
{\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )}
A
⋅
∇
(
B
⋅
B
)
=
2
B
⋅
(
A
⋅
∇
)
B
{\displaystyle \mathbf {A} \cdot \nabla (\mathbf {B} \cdot \mathbf {B} )=2\mathbf {B} \cdot (\mathbf {A} \cdot \nabla )\mathbf {B} }
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
{\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} }
∇
⋅
(
ψ
A
)
=
ψ
∇
⋅
A
+
A
⋅
∇
ψ
{\displaystyle \nabla \cdot \left(\psi \mathbf {A} \right)=\psi \nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla \psi }
∇
⋅
(
A
×
B
)
=
(
∇
×
A
)
⋅
B
−
(
∇
×
B
)
⋅
A
{\displaystyle \nabla \cdot \left(\mathbf {A} \times \mathbf {B} \right)=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -(\nabla \times \mathbf {B} )\cdot \mathbf {A} }
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} }
∇
×
(
ψ
A
)
=
ψ
(
∇
×
A
)
−
(
A
×
∇
)
ψ
=
ψ
(
∇
×
A
)
+
(
∇
ψ
)
×
A
{\displaystyle \nabla \times \left(\psi \mathbf {A} \right)=\psi \,(\nabla \times \mathbf {A} )-(\mathbf {A} \times \nabla )\psi =\psi \,(\nabla \times \mathbf {A} )+(\nabla \psi )\times \mathbf {A} }
∇
×
(
ψ
∇
ϕ
)
=
∇
ψ
×
∇
ϕ
{\displaystyle \nabla \times \left(\psi \nabla \phi \right)=\nabla \psi \times \nabla \phi }
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
{\displaystyle \nabla \times \left(\mathbf {A} \times \mathbf {B} \right)=\mathbf {A} \left(\nabla \cdot \mathbf {B} \right)-\mathbf {B} \left(\nabla \cdot \mathbf {A} \right)+\left(\mathbf {B} \cdot \nabla \right)\mathbf {A} -\left(\mathbf {A} \cdot \nabla \right)\mathbf {B} }
[ 5 ]
(
A
⋅
∇
)
B
=
1
2
[
∇
(
A
⋅
B
)
−
∇
×
(
A
×
B
)
−
B
×
(
∇
×
A
)
−
A
×
(
∇
×
B
)
−
B
(
∇
⋅
A
)
+
A
(
∇
⋅
B
)
]
{\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {B} ={\frac {1}{2}}{\bigg [}\nabla (\mathbf {A} \cdot \mathbf {B} )-\nabla \times (\mathbf {A} \times \mathbf {B} )-\mathbf {B} \times (\nabla \times \mathbf {A} )-\mathbf {A} \times (\nabla \times \mathbf {B} )-\mathbf {B} (\nabla \cdot \mathbf {A} )+\mathbf {A} (\nabla \cdot \mathbf {B} ){\bigg ]}}
[ 6 ]
(
A
⋅
∇
)
A
=
1
2
∇
|
A
|
2
−
A
×
(
∇
×
A
)
=
1
2
∇
|
A
|
2
+
(
∇
×
A
)
×
A
{\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {A} ={\frac {1}{2}}\nabla |\mathbf {A} |^{2}-\mathbf {A} \times (\nabla \times \mathbf {A} )={\frac {1}{2}}\nabla |\mathbf {A} |^{2}+(\nabla \times \mathbf {A} )\times \mathbf {A} }
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
∇
×
(
∇
ψ
)
=
0
{\displaystyle \nabla \times (\nabla \psi )=\mathbf {0} }
∇
⋅
(
∇
ψ
)
=
∇
2
ψ
{\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi }
( скалярный лапласиан )
∇
(
∇
⋅
A
)
−
∇
×
(
∇
×
A
)
=
∇
2
A
{\displaystyle \nabla \left(\nabla \cdot \mathbf {A} \right)-\nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla ^{2}\mathbf {A} }
( векторный лапласиан )
∇
⋅
(
ϕ
∇
ψ
)
=
ϕ
∇
2
ψ
+
∇
ϕ
⋅
∇
ψ
{\displaystyle \nabla \cdot (\phi \nabla \psi )=\phi \nabla ^{2}\psi +\nabla \phi \cdot \nabla \psi }
ψ
∇
2
ϕ
−
ϕ
∇
2
ψ
=
∇
⋅
(
ψ
∇
ϕ
−
ϕ
∇
ψ
)
{\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)}
∇
2
(
ϕ
ψ
)
=
ϕ
∇
2
ψ
+
2
(
∇
ϕ
)
⋅
(
∇
ψ
)
+
(
∇
2
ϕ
)
ψ
{\displaystyle \nabla ^{2}(\phi \psi )=\phi \nabla ^{2}\psi +2(\nabla \phi )\cdot (\nabla \psi )+\left(\nabla ^{2}\phi \right)\psi }
∇
2
(
ψ
A
)
=
A
∇
2
ψ
+
2
(
∇
ψ
⋅
∇
)
A
+
ψ
∇
2
A
{\displaystyle \nabla ^{2}(\psi \mathbf {A} )=\mathbf {A} \nabla ^{2}\psi +2(\nabla \psi \cdot \nabla )\mathbf {A} +\psi \nabla ^{2}\mathbf {A} }
∇
2
(
A
⋅
B
)
=
A
⋅
∇
2
B
−
B
⋅
∇
2
A
+
2
∇
⋅
(
(
B
⋅
∇
)
A
+
B
×
(
∇
×
A
)
)
{\displaystyle \nabla ^{2}(\mathbf {A} \cdot \mathbf {B} )=\mathbf {A} \cdot \nabla ^{2}\mathbf {B} -\mathbf {B} \cdot \nabla ^{2}\!\mathbf {A} +2\nabla \cdot ((\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {B} \times (\nabla \times \mathbf {A} ))}
( векторное тождество Грина )
∇
2
(
∇
ψ
)
=
∇
(
∇
⋅
(
∇
ψ
)
)
=
∇
(
∇
2
ψ
)
{\displaystyle \nabla ^{2}(\nabla \psi )=\nabla (\nabla \cdot (\nabla \psi ))=\nabla \left(\nabla ^{2}\psi \right)}
∇
2
(
∇
⋅
A
)
=
∇
⋅
(
∇
(
∇
⋅
A
)
)
=
∇
⋅
(
∇
2
A
)
{\displaystyle \nabla ^{2}(\nabla \cdot \mathbf {A} )=\nabla \cdot (\nabla (\nabla \cdot \mathbf {A} ))=\nabla \cdot \left(\nabla ^{2}\mathbf {A} \right)}
∇
2
(
∇
×
A
)
=
−
∇
×
(
∇
×
(
∇
×
A
)
)
=
∇
×
(
∇
2
A
)
{\displaystyle \nabla ^{2}(\nabla \times \mathbf {A} )=-\nabla \times (\nabla \times (\nabla \times \mathbf {A} ))=\nabla \times \left(\nabla ^{2}\mathbf {A} \right)}
Ниже фигурный символ ∂ означает « границу » поверхности или твердого тела.
В следующих интегральных теоремах поверхность-объем V обозначает трехмерный объем с соответствующей двумерной границей S = ∂ V ( замкнутая поверхность ):
∂
V
{\displaystyle \scriptstyle \partial V}
ψ
d
S
=
∭
V
∇
ψ
d
V
{\displaystyle \psi \,d\mathbf {S} \ =\ \iiint _{V}\nabla \psi \,dV}
∂
V
{\displaystyle \scriptstyle \partial V}
A
⋅
d
S
=
∭
V
∇
⋅
A
d
V
{\displaystyle \mathbf {A} \cdot d\mathbf {S} \ =\ \iiint _{V}\nabla \cdot \mathbf {A} \,dV}
( теорема о дивергенции )
∂
V
{\displaystyle \scriptstyle \partial V}
A
×
d
S
=
−
∭
V
∇
×
A
d
V
{\displaystyle \mathbf {A} \times d\mathbf {S} \ =\ -\iiint _{V}\nabla \times \mathbf {A} \,dV}
∂
V
{\displaystyle \scriptstyle \partial V}
ψ
∇
φ
⋅
d
S
=
∭
V
(
ψ
∇
2
φ
+
∇
φ
⋅
∇
ψ
)
d
V
{\displaystyle \psi \nabla \!\varphi \cdot d\mathbf {S} \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi +\nabla \!\varphi \cdot \nabla \!\psi \right)\,dV}
( первая личность Грина )
∂
V
{\displaystyle \scriptstyle \partial V}
(
ψ
∇
φ
−
φ
∇
ψ
)
⋅
d
S
=
{\displaystyle \left(\psi \nabla \!\varphi -\varphi \nabla \!\psi \right)\cdot d\mathbf {S} \ =\ }
∂
V
{\displaystyle \scriptstyle \partial V}
(
ψ
∂
φ
∂
n
−
φ
∂
ψ
∂
n
)
d
S
{\displaystyle \left(\psi {\frac {\partial \varphi }{\partial n}}-\varphi {\frac {\partial \psi }{\partial n}}\right)dS}
=
∭
V
(
ψ
∇
2
φ
−
φ
∇
2
ψ
)
d
V
{\displaystyle \displaystyle \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi -\varphi \nabla ^{2}\!\psi \right)\,dV}
( Вторая личность Грина )
∭
V
A
⋅
∇
ψ
d
V
=
{\displaystyle \iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV\ =\ }
∂
V
{\displaystyle \scriptstyle \partial V}
ψ
A
⋅
d
S
−
∭
V
ψ
∇
⋅
A
d
V
{\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV}
( интегрирование по частям )
∭
V
ψ
∇
⋅
A
d
V
=
{\displaystyle \iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV\ =\ }
∂
V
{\displaystyle \scriptstyle \partial V}
ψ
A
⋅
d
S
−
∭
V
A
⋅
∇
ψ
d
V
{\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV}
( интегрирование по частям )
∭
V
A
⋅
(
∇
×
B
)
d
V
=
−
{\displaystyle \iiint _{V}\mathbf {A} \cdot \left(\nabla \times \mathbf {B} \right)\,dV\ =\ -}
∂
V
{\displaystyle \scriptstyle \partial V}
(
A
×
B
)
⋅
d
S
+
∭
V
(
∇
×
A
)
⋅
B
d
V
{\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\cdot d\mathbf {S} +\iiint _{V}\left(\nabla \times \mathbf {A} \right)\cdot \mathbf {B} \,dV}
( интегрирование по частям )
∭
V
(
∇
⋅
B
+
B
⋅
∇
)
A
d
V
=
{\displaystyle \iiint _{V}\left(\nabla \cdot \mathbf {B} +\mathbf {B} \cdot \nabla \right)\mathbf {A} \,dV\ =\ }
∂
V
{\displaystyle \scriptstyle \partial V}
(
B
⋅
d
S
)
A
{\displaystyle \left(\mathbf {B} \cdot d\mathbf {S} \right)\mathbf {A} }
[ 7 ]
В следующих теоремах об интеграле кривой и поверхности S обозначает 2d открытую поверхность с соответствующей 1d границей C = ∂ S ( замкнутая кривая ):
∮
∂
S
A
⋅
d
ℓ
=
∬
S
(
∇
×
A
)
⋅
d
S
{\displaystyle \oint _{\partial S}\mathbf {A} \cdot d{\boldsymbol {\ell }}\ =\ \iint _{S}\left(\nabla \times \mathbf {A} \right)\cdot d\mathbf {S} }
( теорема Стокса )
∮
∂
S
ψ
d
ℓ
=
−
∬
S
∇
ψ
×
d
S
{\displaystyle \oint _{\partial S}\psi \,d{\boldsymbol {\ell }}\ =\ -\iint _{S}\nabla \psi \times d\mathbf {S} }
∮
∂
S
A
×
d
ℓ
=
−
∬
S
(
∇
A
−
(
∇
⋅
A
)
1
)
⋅
d
S
=
−
∬
S
(
d
S
×
∇
)
×
A
{\displaystyle \oint _{\partial S}\mathbf {A} \times d{\boldsymbol {\ell }}\ =\ -\iint _{S}\left(\nabla \mathbf {A} -(\nabla \cdot \mathbf {A} )\mathbf {1} \right)\cdot d\mathbf {S} \ =\ -\iint _{S}\left(d\mathbf {S} \times \nabla \right)\times \mathbf {A} }
∮
∂
S
(
B
⋅
d
ℓ
)
A
=
∬
S
(
d
S
⋅
[
∇
×
B
−
B
×
∇
]
)
A
{\displaystyle \oint _{\partial S}(\mathbf {B} \cdot d{\boldsymbol {\ell }})\mathbf {A} =\iint _{S}(d\mathbf {S} \cdot \left[\nabla \times \mathbf {B} -\mathbf {B} \times \nabla \right])\mathbf {A} }
[ 8 ]
Интегрирование вокруг замкнутой кривой по часовой стрелке является отрицанием того же линейного интеграла в направлении против часовой стрелки (аналогично перестановке пределов в определенном интеграле ):
∂
S
{\displaystyle {\scriptstyle \partial S}}
A
⋅
d
ℓ
=
−
{\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-}
∂
S
{\displaystyle {\scriptstyle \partial S}}
A
⋅
d
ℓ
.
{\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}.}
В следующих теоремах об интеграле конечной точки и кривой P обозначает 1d открытый путь со знаковыми граничными точками 0d.
q
−
p
=
∂
P
{\displaystyle \mathbf {q} -\mathbf {p} =\partial P}
и интегрирование по P осуществляется из
p
{\displaystyle \mathbf {p} }
к
q
{\displaystyle \mathbf {q} }
:
ψ
|
∂
P
=
ψ
(
q
)
−
ψ
(
p
)
=
∫
P
∇
ψ
⋅
d
ℓ
{\displaystyle \psi |_{\partial P}=\psi (\mathbf {q} )-\psi (\mathbf {p} )=\int _{P}\nabla \psi \cdot d{\boldsymbol {\ell }}}
( теорема о градиенте )
A
|
∂
P
=
A
(
q
)
−
A
(
p
)
=
∫
P
(
d
ℓ
⋅
∇
)
A
{\displaystyle \mathbf {A} |_{\partial P}=\mathbf {A} (\mathbf {q} )-\mathbf {A} (\mathbf {p} )=\int _{P}\left(d{\boldsymbol {\ell }}\cdot \nabla \right)\mathbf {A} }
Тензорная форма теоремы о векторном интеграле может быть получена путем замены вектора (или одного из них) тензором при условии, что сначала вектор будет выглядеть только как самый правый вектор каждого подынтегрального выражения. Например, теорема Стокса принимает вид
∮
∂
S
d
ℓ
⋅
T
=
∬
S
d
S
⋅
(
∇
×
T
)
{\displaystyle \oint _{\partial S}d{\boldsymbol {\ell }}\cdot \mathbf {T} \ =\ \iint _{S}d\mathbf {S} \cdot \left(\nabla \times \mathbf {T} \right)}
.
Поле масштабатора также можно рассматривать как вектор и заменять вектором или тензором. Например, первое тождество Грина становится
∂
V
{\displaystyle \scriptstyle \partial V}
ψ
d
S
⋅
∇
A
=
∭
V
(
ψ
∇
2
A
+
∇
ψ
⋅
∇
A
)
d
V
{\displaystyle \psi \,d\mathbf {S} \cdot \nabla \!\mathbf {A} \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\mathbf {A} +\nabla \!\psi \cdot \nabla \!\mathbf {A} \right)\,dV}
.
Аналогичные правила применимы к алгебраическим формулам и формулам дифференцирования. Для алгебраических формул альтернативно можно использовать крайнюю левую позицию вектора.
^ Фейнман, Р.П.; Лейтон, РБ; Сэндс, М. (1964). Фейнмановские лекции по физике . Аддисон-Уэсли. Том II, с. 27–4. ISBN 0-8053-9049-9 .
^ Холмецкий А.Л.; Миссевич, О.В. (2005). «Закон индукции Фарадея в теории относительности». п. 4. arXiv : физика/0504223 .
^ Доран, К. ; Ласенби, А. (2003). Геометрическая алгебра для физиков . Издательство Кембриджского университета. п. 169. ИСБН 978-0-521-71595-9 .
^ Келли, П. (2013). «Глава 1.14 Тензорное исчисление 1: Тензорные поля» (PDF) . Конспект лекций по механике. Часть III: Основы механики сплошных сред . Университет Окленда . Проверено 7 декабря 2017 г.
^ "лекция15.pdf" (PDF) .
^ Куо, Кеннет К.; Ачарья, Рагини (2012). Применения турбулентного и многофазного горения . Хобокен, Нью-Джерси: Уайли. п. 520. дои : 10.1002/9781118127575.app1 . ISBN 9781118127575 . Архивировано из оригинала 19 апреля 2021 года . Проверено 19 апреля 2020 г.
^ Вангснесс, Роальд К.; Клауд, Майкл Дж. (1986). Электромагнитные поля (2-е изд.). Уайли. ISBN 978-0-471-81186-2 .
^ Перес-Гарридо, Антонио (2024). «Восстановление редко используемых теорем векторного исчисления и их применение к проблемам электромагнетизма». Американский журнал физики . 92 (5): 354–359. arXiv : 2312.17268 . дои : 10.1119/5.0182191 .