Mathematical identities
Ниже приведены важные тождества, включающие производные и интегралы в векторном исчислении .
Для функции f ( x , y , z ) {\displaystyle f(x,y,z)} в трехмерных декартовых координатных переменных градиент представляет собой векторное поле:
grad ( f ) = ∇ f = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) f = ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k {\displaystyle \operatorname {grad} (f)=\nabla f={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}f={\frac {\partial f}{\partial x}}\mathbf {i} +{\frac {\partial f}{\partial y}}\mathbf {j} +{\frac {\partial f}{\partial z}}\mathbf {k} } где i , j , k — стандартные единичные векторы для осей x , y , z . В более общем смысле, для функции n переменных ψ ( x 1 , … , x n ) {\displaystyle \psi (x_{1},\ldots ,x_{n})} , также называемое скалярным полем, градиент представляет собой векторное поле : ∇ ψ = ( ∂ ∂ x 1 , … , ∂ ∂ x n ) ψ = ∂ ψ ∂ x 1 e 1 + ⋯ + ∂ ψ ∂ x n e n {\displaystyle \nabla \psi ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x_{1}}},\ldots ,{\frac {\partial }{\partial x_{n}}}\end{pmatrix}}\psi ={\frac {\partial \psi }{\partial x_{1}}}\mathbf {e} _{1}+\dots +{\frac {\partial \psi }{\partial x_{n}}}\mathbf {e} _{n}} где e i ( i = 1 , 2 , . . . , n ) {\displaystyle \mathbf {e} _{i}\,(i=1,2,...,n)} являются взаимно ортогональными единичными векторами.
Как следует из названия, градиент пропорционален самому быстрому (положительному) изменению функции и указывает в направлении.
Для векторного поля A = ( A 1 , … , A n ) {\displaystyle \mathbf {A} =\left(A_{1},\ldots ,A_{n}\right)} , также называемое тензорным полем порядка 1, градиент или полная производная представляет собой n × n матрицу Якобиана размера : J A = d A = ( ∇ A ) T = ( ∂ A i ∂ x j ) i j . {\displaystyle \mathbf {J} _{\mathbf {A} }=d\mathbf {A} =(\nabla \!\mathbf {A} )^{\textsf {T}}=\left({\frac {\partial A_{i}}{\partial x_{j}}}\right)_{\!ij}.}
Для тензорного поля T {\displaystyle \mathbf {T} } любого порядка k градиент grad ( T ) = d T = ( ∇ T ) T {\displaystyle \operatorname {grad} (\mathbf {T} )=d\mathbf {T} =(\nabla \mathbf {T} )^{\textsf {T}}} является тензорным полем порядка k + 1.
Для тензорного поля T {\displaystyle \mathbf {T} } порядка k > 0 тензорное поле ∇ T {\displaystyle \nabla \mathbf {T} } порядка k + 1 определяется рекурсивным соотношением ( ∇ T ) ⋅ C = ∇ ( T ⋅ C ) {\displaystyle (\nabla \mathbf {T} )\cdot \mathbf {C} =\nabla (\mathbf {T} \cdot \mathbf {C} )} где C {\displaystyle \mathbf {C} } — произвольный постоянный вектор.
В декартовых координатах дивергенция непрерывно дифференцируемого векторного поля F = F x i + F y j + F z k {\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} } скалярная функция: div F = ∇ ⋅ F = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ⋅ ( F x , F y , F z ) = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z . {\displaystyle \operatorname {div} \mathbf {F} =\nabla \cdot \mathbf {F} ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}\cdot {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}.}
Как следует из названия, дивергенция — это (локальная) мера степени, в которой векторы в поле расходятся.
Дивергенция тензорного поля T {\displaystyle \mathbf {T} } ненулевого порядка k записывается как div ( T ) = ∇ ⋅ T {\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} } , сжатие тензорного поля порядка k - 1. В частности, дивергенция вектора является скаляром. Дивергенцию тензорного поля более высокого порядка можно найти, разложив тензорное поле на сумму внешних произведений и используя тождество: ∇ ⋅ ( A ⊗ T ) = T ( ∇ ⋅ A ) + ( A ⋅ ∇ ) T {\displaystyle \nabla \cdot \left(\mathbf {A} \otimes \mathbf {T} \right)=\mathbf {T} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {T} } где A ⋅ ∇ {\displaystyle \mathbf {A} \cdot \nabla } – производная по направлению в направлении A {\displaystyle \mathbf {A} } умноженный на его величину. В частности, для внешнего произведения двух векторов ∇ ⋅ ( A B T ) = B ( ∇ ⋅ A ) + ( A ⋅ ∇ ) B . {\displaystyle \nabla \cdot \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=\mathbf {B} (\nabla \cdot \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {B} .}
Для тензорного поля T {\displaystyle \mathbf {T} } порядка k > 1 тензорное поле ∇ ⋅ T {\displaystyle \nabla \cdot \mathbf {T} } порядка k − 1 определяется рекурсивным соотношением ( ∇ ⋅ T ) ⋅ C = ∇ ⋅ ( T ⋅ C ) {\displaystyle (\nabla \cdot \mathbf {T} )\cdot \mathbf {C} =\nabla \cdot (\mathbf {T} \cdot \mathbf {C} )} где C {\displaystyle \mathbf {C} } — произвольный постоянный вектор.
В декартовых координатах для F = F x i + F y j + F z k {\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} } локон — векторное поле: curl F = ∇ × F = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) × ( F x , F y , F z ) = | i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z | = ( ∂ F z ∂ y − ∂ F y ∂ z ) i + ( ∂ F x ∂ z − ∂ F z ∂ x ) j + ( ∂ F y ∂ x − ∂ F x ∂ y ) k {\displaystyle {\begin{aligned}\operatorname {curl} \mathbf {F} &=\nabla \times \mathbf {F} ={\begin{pmatrix}\displaystyle {\frac {\partial }{\partial x}},\ {\frac {\partial }{\partial y}},\ {\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}F_{x},\ F_{y},\ F_{z}\end{pmatrix}}={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{vmatrix}}\\[1em]&=\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)\mathbf {k} \end{aligned}}} где i , j и k — единичные векторы для осей x , y и z соответственно.
Как следует из названия, завиток — это мера того, насколько близлежащие векторы стремятся в круговом направлении.
В обозначениях Эйнштейна векторное поле F = ( F 1 , F 2 , F 3 ) {\displaystyle \mathbf {F} ={\begin{pmatrix}F_{1},\ F_{2},\ F_{3}\end{pmatrix}}} имеет завиток, заданный: ∇ × F = ε i j k e i ∂ F k ∂ x j {\displaystyle \nabla \times \mathbf {F} =\varepsilon ^{ijk}\mathbf {e} _{i}{\frac {\partial F_{k}}{\partial x_{j}}}} где ε {\displaystyle \varepsilon } = ±1 или 0 — символ четности Леви-Чивита .
Для тензорного поля T {\displaystyle \mathbf {T} } порядка k > 1 тензорное поле ∇ × T {\displaystyle \nabla \times \mathbf {T} } порядка k определяется рекурсивным соотношением ( ∇ × T ) ⋅ C = ∇ × ( T ⋅ C ) {\displaystyle (\nabla \times \mathbf {T} )\cdot \mathbf {C} =\nabla \times (\mathbf {T} \cdot \mathbf {C} )} где C {\displaystyle \mathbf {C} } — произвольный постоянный вектор.
Тензорное поле порядка больше единицы можно разложить на сумму внешних произведений , а затем можно использовать следующее тождество: ∇ × ( A ⊗ T ) = ( ∇ × A ) ⊗ T − A × ( ∇ T ) . {\displaystyle \nabla \times \left(\mathbf {A} \otimes \mathbf {T} \right)=(\nabla \times \mathbf {A} )\otimes \mathbf {T} -\mathbf {A} \times (\nabla \mathbf {T} ).} В частности, для внешнего произведения двух векторов ∇ × ( A B T ) = ( ∇ × A ) B T − A × ( ∇ B ) . {\displaystyle \nabla \times \left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)=(\nabla \times \mathbf {A} )\mathbf {B} ^{\textsf {T}}-\mathbf {A} \times (\nabla \mathbf {B} ).}
В декартовых координатах лапласиан функции f ( x , y , z ) {\displaystyle f(x,y,z)} является Δ f = ∇ 2 f = ( ∇ ⋅ ∇ ) f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 . {\displaystyle \Delta f=\nabla ^{2}\!f=(\nabla \cdot \nabla )f={\frac {\partial ^{2}\!f}{\partial x^{2}}}+{\frac {\partial ^{2}\!f}{\partial y^{2}}}+{\frac {\partial ^{2}\!f}{\partial z^{2}}}.}
Лапласиан — это мера того, насколько сильно функция меняется на небольшой сфере с центром в этой точке.
Когда лапласиан равен 0, функция называется гармонической функцией . То есть, Δ f = 0. {\displaystyle \Delta f=0.}
Для поля тензорного T {\displaystyle \mathbf {T} } , лапласиан обычно записывается как: Δ T = ∇ 2 T = ( ∇ ⋅ ∇ ) T {\displaystyle \Delta \mathbf {T} =\nabla ^{2}\mathbf {T} =(\nabla \cdot \nabla )\mathbf {T} } и является тензорным полем того же порядка.
Для тензорного поля T {\displaystyle \mathbf {T} } порядка k > 0 тензорное поле ∇ 2 T {\displaystyle \nabla ^{2}\mathbf {T} } порядка k определяется рекурсивным соотношением ( ∇ 2 T ) ⋅ C = ∇ 2 ( T ⋅ C ) {\displaystyle \left(\nabla ^{2}\mathbf {T} \right)\cdot \mathbf {C} =\nabla ^{2}(\mathbf {T} \cdot \mathbf {C} )} где C {\displaystyle \mathbf {C} } — произвольный постоянный вектор.
В индексной записи Фейнмана ∇ B ( A ⋅ B ) = A × ( ∇ × B ) + ( A ⋅ ∇ ) B {\displaystyle \nabla _{\mathbf {B} }\!\left(\mathbf {A{\cdot }B} \right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} } где обозначение ∇ B означает, что индексированный градиент действует только на фактор B . [1] [2]
Менее общим, но похожим является Гестена обозначение с точкой в геометрической алгебре . [3] Вышеупомянутое тождество тогда выражается как: ∇ ˙ ( A ⋅ B ˙ ) = A × ( ∇ × B ) + ( A ⋅ ∇ ) B {\displaystyle {\dot {\nabla }}\left(\mathbf {A} {\cdot }{\dot {\mathbf {B} }}\right)=\mathbf {A} {\times }\!\left(\nabla {\times }\mathbf {B} \right)+\left(\mathbf {A} {\cdot }\nabla \right)\mathbf {B} } где лишние точки определяют область действия векторной производной. Пунктирный вектор, в данном случае B , дифференцируется, а (непунктирный) A остается постоянным.
В оставшейся части статьи там, где это уместно, будет использоваться индексная запись Фейнмана.
Для скалярных полей ψ {\displaystyle \psi } , ϕ {\displaystyle \phi } и векторные поля A {\displaystyle \mathbf {A} } , B {\displaystyle \mathbf {B} } , мы имеем следующие производные тождества.
∇ ( ψ + ϕ ) = ∇ ψ + ∇ ϕ ∇ ( A + B ) = ∇ A + ∇ B ∇ ⋅ ( A + B ) = ∇ ⋅ A + ∇ ⋅ B ∇ × ( A + B ) = ∇ × A + ∇ × B {\displaystyle {\begin{aligned}\nabla (\psi +\phi )&=\nabla \psi +\nabla \phi \\\nabla (\mathbf {A} +\mathbf {B} )&=\nabla \mathbf {A} +\nabla \mathbf {B} \\\nabla \cdot (\mathbf {A} +\mathbf {B} )&=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} \\\nabla \times (\mathbf {A} +\mathbf {B} )&=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} \end{aligned}}} ( A ⋅ ∇ ) ψ = A ⋅ ( ∇ ψ ) ( A ⋅ ∇ ) B = A ⋅ ( ∇ B ) ( A × ∇ ) ψ = A × ( ∇ ψ ) ( A × ∇ ) B = A × ( ∇ B ) {\displaystyle {\begin{aligned}(\mathbf {A} \cdot \nabla )\psi &=\mathbf {A} \cdot (\nabla \psi )\\(\mathbf {A} \cdot \nabla )\mathbf {B} &=\mathbf {A} \cdot (\nabla \mathbf {B} )\\(\mathbf {A} \times \nabla )\psi &=\mathbf {A} \times (\nabla \psi )\\(\mathbf {A} \times \nabla )\mathbf {B} &=\mathbf {A} \times (\nabla \mathbf {B} )\end{aligned}}} У нас есть следующие обобщения правила произведения с одной переменной в исчислении .
∇ ( ψ ϕ ) = ϕ ∇ ψ + ψ ∇ ϕ ∇ ( ψ A ) = ( ∇ ψ ) A T + ψ ∇ A = ∇ ψ ⊗ A + ψ ∇ A ∇ ⋅ ( ψ A ) = ψ ∇ ⋅ A + ( ∇ ψ ) ⋅ A ∇ × ( ψ A ) = ψ ∇ × A + ( ∇ ψ ) × A ∇ 2 ( ψ ϕ ) = ψ ∇ 2 ϕ + 2 ∇ ψ ⋅ ∇ ϕ + ϕ ∇ 2 ψ {\displaystyle {\begin{aligned}\nabla (\psi \phi )&=\phi \,\nabla \psi +\psi \,\nabla \phi \\\nabla (\psi \mathbf {A} )&=(\nabla \psi )\mathbf {A} ^{\textsf {T}}+\psi \nabla \mathbf {A} \ =\ \nabla \psi \otimes \mathbf {A} +\psi \,\nabla \mathbf {A} \\\nabla \cdot (\psi \mathbf {A} )&=\psi \,\nabla {\cdot }\mathbf {A} +(\nabla \psi )\,{\cdot }\mathbf {A} \\\nabla {\times }(\psi \mathbf {A} )&=\psi \,\nabla {\times }\mathbf {A} +(\nabla \psi ){\times }\mathbf {A} \\\nabla ^{2}(\psi \phi )&=\psi \,\nabla ^{2\!}\phi +2\,\nabla \!\psi \cdot \!\nabla \phi +\phi \,\nabla ^{2\!}\psi \end{aligned}}} ∇ ( ψ ϕ ) = ϕ ∇ ψ − ψ ∇ ϕ ϕ 2 ∇ ( A ϕ ) = ϕ ∇ A − ∇ ϕ ⊗ A ϕ 2 ∇ ⋅ ( A ϕ ) = ϕ ∇ ⋅ A − ∇ ϕ ⋅ A ϕ 2 ∇ × ( A ϕ ) = ϕ ∇ × A − ∇ ϕ × A ϕ 2 ∇ 2 ( ψ ϕ ) = ϕ ∇ 2 ψ − 2 ϕ ∇ ( ψ ϕ ) ⋅ ∇ ϕ − ψ ∇ 2 ϕ ϕ 2 {\displaystyle {\begin{aligned}\nabla \left({\frac {\psi }{\phi }}\right)&={\frac {\phi \,\nabla \psi -\psi \,\nabla \phi }{\phi ^{2}}}\\[1em]\nabla \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla \mathbf {A} -\nabla \phi \otimes \mathbf {A} }{\phi ^{2}}}\\[1em]\nabla \cdot \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla {\cdot }\mathbf {A} -\nabla \!\phi \cdot \mathbf {A} }{\phi ^{2}}}\\[1em]\nabla \times \left({\frac {\mathbf {A} }{\phi }}\right)&={\frac {\phi \,\nabla {\times }\mathbf {A} -\nabla \!\phi \,{\times }\,\mathbf {A} }{\phi ^{2}}}\\[1em]\nabla ^{2}\left({\frac {\psi }{\phi }}\right)&={\frac {\phi \,\nabla ^{2\!}\psi -2\,\phi \,\nabla \!\left({\frac {\psi }{\phi }}\right)\cdot \!\nabla \phi -\psi \,\nabla ^{2\!}\phi }{\phi ^{2}}}\end{aligned}}} Позволять f ( x ) {\displaystyle f(x)} быть функцией одной переменной от скаляров к скалярам, r ( t ) = ( x 1 ( t ) , … , x n ( t ) ) {\displaystyle \mathbf {r} (t)=(x_{1}(t),\ldots ,x_{n}(t))} кривая параметризованная , ϕ : R n → R {\displaystyle \phi \!:\mathbb {R} ^{n}\to \mathbb {R} } функция преобразования векторов в скаляры и A : R n → R n {\displaystyle \mathbf {A} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} векторное поле. Имеются следующие частные случаи правила цепочки с несколькими переменными .
∇ ( f ∘ ϕ ) = ( f ′ ∘ ϕ ) ∇ ϕ ( r ∘ f ) ′ = ( r ′ ∘ f ) f ′ ( ϕ ∘ r ) ′ = ( ∇ ϕ ∘ r ) ⋅ r ′ ( A ∘ r ) ′ = r ′ ⋅ ( ∇ A ∘ r ) ∇ ( ϕ ∘ A ) = ( ∇ A ) ⋅ ( ∇ ϕ ∘ A ) ∇ ⋅ ( r ∘ ϕ ) = ∇ ϕ ⋅ ( r ′ ∘ ϕ ) ∇ × ( r ∘ ϕ ) = ∇ ϕ × ( r ′ ∘ ϕ ) {\displaystyle {\begin{aligned}\nabla (f\circ \phi )&=\left(f'\circ \phi \right)\nabla \phi \\(\mathbf {r} \circ f)'&=(\mathbf {r} '\circ f)f'\\(\phi \circ \mathbf {r} )'&=(\nabla \phi \circ \mathbf {r} )\cdot \mathbf {r} '\\(\mathbf {A} \circ \mathbf {r} )'&=\mathbf {r} '\cdot (\nabla \mathbf {A} \circ \mathbf {r} )\\\nabla (\phi \circ \mathbf {A} )&=(\nabla \mathbf {A} )\cdot (\nabla \phi \circ \mathbf {A} )\\\nabla \cdot (\mathbf {r} \circ \phi )&=\nabla \phi \cdot (\mathbf {r} '\circ \phi )\\\nabla \times (\mathbf {r} \circ \phi )&=\nabla \phi \times (\mathbf {r} '\circ \phi )\end{aligned}}} Для векторного преобразования x : R n → R n {\displaystyle \mathbf {x} \!:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} у нас есть:
∇ ⋅ ( A ∘ x ) = t r ( ( ∇ x ) ⋅ ( ∇ A ∘ x ) ) {\displaystyle \nabla \cdot (\mathbf {A} \circ \mathbf {x} )=\mathrm {tr} \left((\nabla \mathbf {x} )\cdot (\nabla \mathbf {A} \circ \mathbf {x} )\right)} Здесь мы берем след скалярного произведения двух тензоров второго порядка, который соответствует произведению их матриц.
∇ ( A ⋅ B ) = ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A + A × ( ∇ × B ) + B × ( ∇ × A ) = A ⋅ J B + B ⋅ J A = ( ∇ B ) ⋅ A + ( ∇ A ) ⋅ B {\displaystyle {\begin{aligned}\nabla (\mathbf {A} \cdot \mathbf {B} )&\ =\ (\mathbf {A} \cdot \nabla )\mathbf {B} \,+\,(\mathbf {B} \cdot \nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {B} )\,+\,\mathbf {B} {\times }(\nabla {\times }\mathbf {A} )\\&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }+\mathbf {B} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,+\,(\nabla \mathbf {A} )\cdot \mathbf {B} \end{aligned}}} где J A = ( ∇ A ) T = ( ∂ A i / ∂ x j ) i j {\displaystyle \mathbf {J} _{\mathbf {A} }=(\nabla \!\mathbf {A} )^{\textsf {T}}=(\partial A_{i}/\partial x_{j})_{ij}} обозначает матрицу Якоби векторного поля A = ( A 1 , … , A n ) {\displaystyle \mathbf {A} =(A_{1},\ldots ,A_{n})} .
В качестве альтернативы, используя индексную нотацию Фейнмана,
∇ ( A ⋅ B ) = ∇ A ( A ⋅ B ) + ∇ B ( A ⋅ B ) . {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=\nabla _{\mathbf {A} }(\mathbf {A} \cdot \mathbf {B} )+\nabla _{\mathbf {B} }(\mathbf {A} \cdot \mathbf {B} )\ .} См. эти примечания. [4]
В частном случае, когда A = B ,
1 2 ∇ ( A ⋅ A ) = A ⋅ J A = ( ∇ A ) ⋅ A = ( A ⋅ ∇ ) A + A × ( ∇ × A ) = A ∇ A . {\displaystyle {\tfrac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {A} }\ =\ (\nabla \mathbf {A} )\cdot \mathbf {A} \ =\ (\mathbf {A} {\cdot }\nabla )\mathbf {A} \,+\,\mathbf {A} {\times }(\nabla {\times }\mathbf {A} )\ =\ A\nabla A.} Обобщение формулы скалярного произведения на римановы многообразия является определяющим свойством римановой связности , которая дифференцирует векторное поле, чтобы дать векторнозначную 1-форму .
∇ ⋅ ( A × B ) = ( ∇ × A ) ⋅ B − A ⋅ ( ∇ × B ) ∇ × ( A × B ) = A ( ∇ ⋅ B ) − B ( ∇ ⋅ A ) + ( B ⋅ ∇ ) A − ( A ⋅ ∇ ) B = A ( ∇ ⋅ B ) + ( B ⋅ ∇ ) A − ( B ( ∇ ⋅ A ) + ( A ⋅ ∇ ) B ) = ∇ ⋅ ( B A T ) − ∇ ⋅ ( A B T ) = ∇ ⋅ ( B A T − A B T ) A × ( ∇ × B ) = ∇ B ( A ⋅ B ) − ( A ⋅ ∇ ) B = A ⋅ J B − ( A ⋅ ∇ ) B = ( ∇ B ) ⋅ A − A ⋅ ( ∇ B ) = A ⋅ ( J B − J B T ) ( A × ∇ ) × B = ( ∇ B ) ⋅ A − A ( ∇ ⋅ B ) = A × ( ∇ × B ) + ( A ⋅ ∇ ) B − A ( ∇ ⋅ B ) ( A × ∇ ) ⋅ B = A ⋅ ( ∇ × B ) {\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {A} \times \mathbf {B} )&\ =\ (\nabla {\times }\mathbf {A} )\cdot \mathbf {B} \,-\,\mathbf {A} \cdot (\nabla {\times }\mathbf {B} )\\[5pt]\nabla \times (\mathbf {A} \times \mathbf {B} )&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,-\,\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} (\nabla {\cdot }\mathbf {B} )\,+\,(\mathbf {B} {\cdot }\nabla )\mathbf {A} \,-\,(\mathbf {B} (\nabla {\cdot }\mathbf {A} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} )\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\right)\,-\,\nabla {\cdot }\left(\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\\[2pt]&\ =\ \nabla {\cdot }\left(\mathbf {B} \mathbf {A} ^{\textsf {T}}\,-\,\mathbf {A} \mathbf {B} ^{\textsf {T}}\right)\\[5pt]\mathbf {A} \times (\nabla \times \mathbf {B} )&\ =\ \nabla _{\mathbf {B} }(\mathbf {A} {\cdot }\mathbf {B} )\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ \mathbf {A} \cdot \mathbf {J} _{\mathbf {B} }\,-\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \\[2pt]&\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} \cdot (\nabla \mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \cdot (\mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}})\\[5pt](\mathbf {A} \times \nabla )\times \mathbf {B} &\ =\ (\nabla \mathbf {B} )\cdot \mathbf {A} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\\[2pt]&\ =\ \mathbf {A} \times (\nabla \times \mathbf {B} )\,+\,(\mathbf {A} {\cdot }\nabla )\mathbf {B} \,-\,\mathbf {A} (\nabla {\cdot }\mathbf {B} )\\[5pt](\mathbf {A} \times \nabla )\cdot \mathbf {B} &\ =\ \mathbf {A} \cdot (\nabla {\times }\mathbf {B} )\end{aligned}}} Обратите внимание, что матрица J B − J B T {\displaystyle \mathbf {J} _{\mathbf {B} }\,-\,\mathbf {J} _{\mathbf {B} }^{\textsf {T}}} является антисимметричным.
Дивергенция : ротора любого непрерывно дважды дифференцируемого векторного поля A всегда равна нулю ∇ ⋅ ( ∇ × A ) = 0 {\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
Это частный случай обращения в нуль квадрата внешней производной в Де Рама цепном комплексе .
Лапласиан : скалярного поля — это дивергенция его градиента Δ ψ = ∇ 2 ψ = ∇ ⋅ ( ∇ ψ ) {\displaystyle \Delta \psi =\nabla ^{2}\psi =\nabla \cdot (\nabla \psi )} Результатом является скалярная величина.
Дивергенция векторного поля A является скаляром, а дивергенция скалярной величины не определена. Поэтому, ∇ ⋅ ( ∇ ⋅ A ) is undefined. {\displaystyle \nabla \cdot (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}}
Ротор градиента непрерывно дважды любого дифференцируемого поля скалярного φ {\displaystyle \varphi } (т.е. класс дифференцируемости C 2 {\displaystyle C^{2}} ) всегда является нулевым вектором : ∇ × ( ∇ φ ) = 0 . {\displaystyle \nabla \times (\nabla \varphi )=\mathbf {0} .}
Это легко доказать, выразив ∇ × ( ∇ φ ) {\displaystyle \nabla \times (\nabla \varphi )} в декартовой системе координат с теоремой Шварца (также называемой теоремой Клеро о равенстве смешанных частей). Этот результат представляет собой частный случай обращения в нуль квадрата внешней производной в Де Рама цепном комплексе .
∇ × ( ∇ × A ) = ∇ ( ∇ ⋅ A ) − ∇ 2 A {\displaystyle \nabla \times \left(\nabla \times \mathbf {A} \right)\ =\ \nabla (\nabla {\cdot }\mathbf {A} )\,-\,\nabla ^{2\!}\mathbf {A} }
Здесь ∇ 2 — векторный лапласиан, на векторное поле A. действующий
Дивергенция A векторного поля является скаляром, а ротор скалярной величины не определен. Поэтому, ∇ × ( ∇ ⋅ A ) is undefined. {\displaystyle \nabla \times (\nabla \cdot \mathbf {A} ){\text{ is undefined.}}}
( ∇ ⋅ ∇ ) ψ = ∇ ⋅ ( ∇ ψ ) = ∇ 2 ψ ( ∇ ⋅ ∇ ) A = ∇ ⋅ ( ∇ A ) = ∇ 2 A ( ∇ × ∇ ) ψ = ∇ × ( ∇ ψ ) = 0 ( ∇ × ∇ ) A = ∇ × ( ∇ A ) = 0 {\displaystyle {\begin{aligned}(\nabla \cdot \nabla )\psi &=\nabla \cdot (\nabla \psi )=\nabla ^{2}\psi \\(\nabla \cdot \nabla )\mathbf {A} &=\nabla \cdot (\nabla \mathbf {A} )=\nabla ^{2}\mathbf {A} \\(\nabla \times \nabla )\psi &=\nabla \times (\nabla \psi )=\mathbf {0} \\(\nabla \times \nabla )\mathbf {A} &=\nabla \times (\nabla \mathbf {A} )=\mathbf {0} \end{aligned}}} Диаграмма DCG: некоторые правила для вторых производных. Рисунок справа — мнемоника некоторых из этих личностей. Используются следующие сокращения:
Д: расхождение, С: завиток, Г: градиент, Л: Лапласиан, CC: завиток завитка. Каждая стрелка помечается результатом идентификатора, а именно результатом применения оператора на хвосте стрелки к оператору на ее вершине. Синий кружок посередине означает, что завиток существует, тогда как два других красных кружка (пунктирные) означают, что DD и GG не существуют.
∇ ( ψ + ϕ ) = ∇ ψ + ∇ ϕ {\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi } ∇ ( ψ ϕ ) = ϕ ∇ ψ + ψ ∇ ϕ {\displaystyle \nabla (\psi \phi )=\phi \nabla \psi +\psi \nabla \phi } ∇ ( ψ A ) = ∇ ψ ⊗ A + ψ ∇ A {\displaystyle \nabla (\psi \mathbf {A} )=\nabla \psi \otimes \mathbf {A} +\psi \nabla \mathbf {A} } ∇ ( A ⋅ B ) = ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A + A × ( ∇ × B ) + B × ( ∇ × A ) {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )} ∇ ⋅ ( A + B ) = ∇ ⋅ A + ∇ ⋅ B {\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} } ∇ ⋅ ( ψ A ) = ψ ∇ ⋅ A + A ⋅ ∇ ψ {\displaystyle \nabla \cdot \left(\psi \mathbf {A} \right)=\psi \nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla \psi } ∇ ⋅ ( A × B ) = ( ∇ × A ) ⋅ B − ( ∇ × B ) ⋅ A {\displaystyle \nabla \cdot \left(\mathbf {A} \times \mathbf {B} \right)=(\nabla \times \mathbf {A} )\cdot \mathbf {B} -(\nabla \times \mathbf {B} )\cdot \mathbf {A} } ∇ × ( A + B ) = ∇ × A + ∇ × B {\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} } ∇ × ( ψ A ) = ψ ( ∇ × A ) − ( A × ∇ ) ψ = ψ ( ∇ × A ) + ( ∇ ψ ) × A {\displaystyle \nabla \times \left(\psi \mathbf {A} \right)=\psi \,(\nabla \times \mathbf {A} )-(\mathbf {A} \times \nabla )\psi =\psi \,(\nabla \times \mathbf {A} )+(\nabla \psi )\times \mathbf {A} } ∇ × ( ψ ∇ ϕ ) = ∇ ψ × ∇ ϕ {\displaystyle \nabla \times \left(\psi \nabla \phi \right)=\nabla \psi \times \nabla \phi } ∇ × ( A × B ) = A ( ∇ ⋅ B ) − B ( ∇ ⋅ A ) + ( B ⋅ ∇ ) A − ( A ⋅ ∇ ) B {\displaystyle \nabla \times \left(\mathbf {A} \times \mathbf {B} \right)=\mathbf {A} \left(\nabla \cdot \mathbf {B} \right)-\mathbf {B} \left(\nabla \cdot \mathbf {A} \right)+\left(\mathbf {B} \cdot \nabla \right)\mathbf {A} -\left(\mathbf {A} \cdot \nabla \right)\mathbf {B} } [5] ( A ⋅ ∇ ) B = 1 2 [ ∇ ( A ⋅ B ) − ∇ × ( A × B ) − B × ( ∇ × A ) − A × ( ∇ × B ) − B ( ∇ ⋅ A ) + A ( ∇ ⋅ B ) ] {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {B} ={\frac {1}{2}}{\bigg [}\nabla (\mathbf {A} \cdot \mathbf {B} )-\nabla \times (\mathbf {A} \times \mathbf {B} )-\mathbf {B} \times (\nabla \times \mathbf {A} )-\mathbf {A} \times (\nabla \times \mathbf {B} )-\mathbf {B} (\nabla \cdot \mathbf {A} )+\mathbf {A} (\nabla \cdot \mathbf {B} ){\bigg ]}} [6] ( A ⋅ ∇ ) A = 1 2 ∇ | A | 2 − A × ( ∇ × A ) = 1 2 ∇ | A | 2 + ( ∇ × A ) × A {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {A} ={\frac {1}{2}}\nabla |\mathbf {A} |^{2}-\mathbf {A} \times (\nabla \times \mathbf {A} )={\frac {1}{2}}\nabla |\mathbf {A} |^{2}+(\nabla \times \mathbf {A} )\times \mathbf {A} } ∇ ⋅ ( ∇ × A ) = 0 {\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0} ∇ × ( ∇ ψ ) = 0 {\displaystyle \nabla \times (\nabla \psi )=\mathbf {0} } ∇ ⋅ ( ∇ ψ ) = ∇ 2 ψ {\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi } ( скалярный лапласиан ) ∇ ( ∇ ⋅ A ) − ∇ × ( ∇ × A ) = ∇ 2 A {\displaystyle \nabla \left(\nabla \cdot \mathbf {A} \right)-\nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla ^{2}\mathbf {A} } ( векторный лапласиан ) ∇ ⋅ ( ϕ ∇ ψ ) = ϕ ∇ 2 ψ + ∇ ϕ ⋅ ∇ ψ {\displaystyle \nabla \cdot (\phi \nabla \psi )=\phi \nabla ^{2}\psi +\nabla \phi \cdot \nabla \psi } ψ ∇ 2 ϕ − ϕ ∇ 2 ψ = ∇ ⋅ ( ψ ∇ ϕ − ϕ ∇ ψ ) {\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)} ∇ 2 ( ϕ ψ ) = ϕ ∇ 2 ψ + 2 ( ∇ ϕ ) ⋅ ( ∇ ψ ) + ( ∇ 2 ϕ ) ψ {\displaystyle \nabla ^{2}(\phi \psi )=\phi \nabla ^{2}\psi +2(\nabla \phi )\cdot (\nabla \psi )+\left(\nabla ^{2}\phi \right)\psi } ∇ 2 ( ψ A ) = A ∇ 2 ψ + 2 ( ∇ ψ ⋅ ∇ ) A + ψ ∇ 2 A {\displaystyle \nabla ^{2}(\psi \mathbf {A} )=\mathbf {A} \nabla ^{2}\psi +2(\nabla \psi \cdot \nabla )\mathbf {A} +\psi \nabla ^{2}\mathbf {A} } ∇ 2 ( A ⋅ B ) = A ⋅ ∇ 2 B − B ⋅ ∇ 2 A + 2 ∇ ⋅ ( ( B ⋅ ∇ ) A + B × ( ∇ × A ) ) {\displaystyle \nabla ^{2}(\mathbf {A} \cdot \mathbf {B} )=\mathbf {A} \cdot \nabla ^{2}\mathbf {B} -\mathbf {B} \cdot \nabla ^{2}\!\mathbf {A} +2\nabla \cdot ((\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {B} \times (\nabla \times \mathbf {A} ))} ( Векторное тождество Грина ) ∇ 2 ( ∇ ψ ) = ∇ ( ∇ ⋅ ( ∇ ψ ) ) = ∇ ( ∇ 2 ψ ) {\displaystyle \nabla ^{2}(\nabla \psi )=\nabla (\nabla \cdot (\nabla \psi ))=\nabla \left(\nabla ^{2}\psi \right)} ∇ 2 ( ∇ ⋅ A ) = ∇ ⋅ ( ∇ ( ∇ ⋅ A ) ) = ∇ ⋅ ( ∇ 2 A ) {\displaystyle \nabla ^{2}(\nabla \cdot \mathbf {A} )=\nabla \cdot (\nabla (\nabla \cdot \mathbf {A} ))=\nabla \cdot \left(\nabla ^{2}\mathbf {A} \right)} ∇ 2 ( ∇ × A ) = − ∇ × ( ∇ × ( ∇ × A ) ) = ∇ × ( ∇ 2 A ) {\displaystyle \nabla ^{2}(\nabla \times \mathbf {A} )=-\nabla \times (\nabla \times (\nabla \times \mathbf {A} ))=\nabla \times \left(\nabla ^{2}\mathbf {A} \right)} Ниже фигурный символ ∂ означает « границу » поверхности или твердого тела.
В следующих интегральных теоремах поверхность-объем V обозначает трехмерный объем с соответствующей двумерной границей S = ∂ V ( замкнутая поверхность ):
∂ V {\displaystyle \scriptstyle \partial V} ψ d S = ∭ V ∇ ψ d V {\displaystyle \psi \,d\mathbf {S} \ =\ \iiint _{V}\nabla \psi \,dV} ∂ V {\displaystyle \scriptstyle \partial V} A ⋅ d S = ∭ V ∇ ⋅ A d V {\displaystyle \mathbf {A} \cdot d\mathbf {S} \ =\ \iiint _{V}\nabla \cdot \mathbf {A} \,dV} ( теорема о дивергенции ) ∂ V {\displaystyle \scriptstyle \partial V} A × d S = − ∭ V ∇ × A d V {\displaystyle \mathbf {A} \times d\mathbf {S} \ =\ -\iiint _{V}\nabla \times \mathbf {A} \,dV} ∂ V {\displaystyle \scriptstyle \partial V} ψ ∇ φ ⋅ d S = ∭ V ( ψ ∇ 2 φ + ∇ φ ⋅ ∇ ψ ) d V {\displaystyle \psi \nabla \!\varphi \cdot d\mathbf {S} \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi +\nabla \!\varphi \cdot \nabla \!\psi \right)\,dV} ( первая личность Грина ) ∂ V {\displaystyle \scriptstyle \partial V} ( ψ ∇ φ − φ ∇ ψ ) ⋅ d S = {\displaystyle \left(\psi \nabla \!\varphi -\varphi \nabla \!\psi \right)\cdot d\mathbf {S} \ =\ } ∂ V {\displaystyle \scriptstyle \partial V} ( ψ ∂ φ ∂ n − φ ∂ ψ ∂ n ) d S {\displaystyle \left(\psi {\frac {\partial \varphi }{\partial n}}-\varphi {\frac {\partial \psi }{\partial n}}\right)dS} = ∭ V ( ψ ∇ 2 φ − φ ∇ 2 ψ ) d V {\displaystyle \displaystyle \ =\ \iiint _{V}\left(\psi \nabla ^{2}\!\varphi -\varphi \nabla ^{2}\!\psi \right)\,dV} ( Вторая личность Грина ) ∭ V A ⋅ ∇ ψ d V = {\displaystyle \iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV\ =\ } ∂ V {\displaystyle \scriptstyle \partial V} ψ A ⋅ d S − ∭ V ψ ∇ ⋅ A d V {\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV} ( интегрирование по частям ) ∭ V ψ ∇ ⋅ A d V = {\displaystyle \iiint _{V}\psi \nabla \cdot \mathbf {A} \,dV\ =\ } ∂ V {\displaystyle \scriptstyle \partial V} ψ A ⋅ d S − ∭ V A ⋅ ∇ ψ d V {\displaystyle \psi \mathbf {A} \cdot d\mathbf {S} -\iiint _{V}\mathbf {A} \cdot \nabla \psi \,dV} ( интегрирование по частям ) ∭ V A ⋅ ( ∇ × B ) d V = − {\displaystyle \iiint _{V}\mathbf {A} \cdot \left(\nabla \times \mathbf {B} \right)\,dV\ =\ -} ∂ V {\displaystyle \scriptstyle \partial V} ( A × B ) ⋅ d S + ∭ V ( ∇ × A ) ⋅ B d V {\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\cdot d\mathbf {S} +\iiint _{V}\left(\nabla \times \mathbf {A} \right)\cdot \mathbf {B} \,dV} ( интегрирование по частям ) В следующих теоремах об интеграле кривой и поверхности S обозначает 2d открытую поверхность с соответствующей 1d границей C = ∂ S ( замкнутая кривая ):
∮ ∂ S A ⋅ d ℓ = ∬ S ( ∇ × A ) ⋅ d S {\displaystyle \oint _{\partial S}\mathbf {A} \cdot d{\boldsymbol {\ell }}\ =\ \iint _{S}\left(\nabla \times \mathbf {A} \right)\cdot d\mathbf {S} } ( теорема Стокса ) ∮ ∂ S ψ d ℓ = − ∬ S ∇ ψ × d S {\displaystyle \oint _{\partial S}\psi \,d{\boldsymbol {\ell }}\ =\ -\iint _{S}\nabla \psi \times d\mathbf {S} } ∮ ∂ S A × d ℓ = − ∬ S ( ∇ A − ( ∇ ⋅ A ) 1 ) ⋅ d S = − ∬ S ( d S × ∇ ) × A {\displaystyle \oint _{\partial S}\mathbf {A} \times d{\boldsymbol {\ell }}\ =\ -\iint _{S}\left(\nabla \mathbf {A} -(\nabla \cdot \mathbf {A} )\mathbf {1} \right)\cdot d\mathbf {S} \ =\ -\iint _{S}\left(d\mathbf {S} \times \nabla \right)\times \mathbf {A} } Интегрирование вокруг замкнутой кривой по часовой стрелке является отрицанием того же линейного интеграла в направлении против часовой стрелки (аналогично перестановке пределов в определенном интеграле ):
∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ = − {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} ∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ . {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}.} В следующих теоремах об интеграле конечной точки и кривой P обозначает 1d открытый путь со знаковыми граничными точками 0d. q − p = ∂ P {\displaystyle \mathbf {q} -\mathbf {p} =\partial P} и интегрирование по P осуществляется из p {\displaystyle \mathbf {p} } к q {\displaystyle \mathbf {q} } :
ψ | ∂ P = ψ ( q ) − ψ ( p ) = ∫ P ∇ ψ ⋅ d ℓ {\displaystyle \psi |_{\partial P}=\psi (\mathbf {q} )-\psi (\mathbf {p} )=\int _{P}\nabla \psi \cdot d{\boldsymbol {\ell }}} ( теорема о градиенте ) A | ∂ P = A ( q ) − A ( p ) = ∫ P ( d ℓ ⋅ ∇ ) A {\displaystyle \mathbf {A} |_{\partial P}=\mathbf {A} (\mathbf {q} )-\mathbf {A} (\mathbf {p} )=\int _{P}\left(d{\boldsymbol {\ell }}\cdot \nabla \right)\mathbf {A} } ^ Фейнман, Р.П.; Лейтон, РБ; Сэндс, М. (1964). Фейнмановские лекции по физике . Аддисон-Уэсли. Том II, с. 27–4. ISBN 0-8053-9049-9 . ^ Холмецкий А.Л.; Миссевич, О.В. (2005). «Закон индукции Фарадея в теории относительности». п. 4. arXiv : физика/0504223 . ^ Доран, К. ; Ласенби, А. (2003). Геометрическая алгебра для физиков . Издательство Кембриджского университета. п. 169. ИСБН 978-0-521-71595-9 . ^ Келли, П. (2013). «Глава 1.14 Тензорное исчисление 1: Тензорные поля» (PDF) . Конспект лекций по механике. Часть III: Основы механики сплошных сред . Университет Окленда . Проверено 7 декабря 2017 г. ^ "лекция15.pdf" (PDF) . ^ Куо, Кеннет К.; Ачарья, Рагини (2012). Применения турбулентного и многофазного горения . Хобокен, Нью-Джерси: Уайли. п. 520. дои : 10.1002/9781118127575.app1 . ISBN 9781118127575 . Архивировано из оригинала 19 апреля 2021 года . Проверено 19 апреля 2020 г.