Выпуклость связи
В финансах выпуклость облигаций является мерой нелинейной зависимости цен облигаций от изменений процентных ставок и определяется как вторая производная цены облигации по отношению к процентным ставкам ( дюрация — это первая производная). В целом, чем выше дюрация, тем более чувствительна цена облигации к изменению процентных ставок. Выпуклость облигаций — одна из самых основных и широко используемых форм выпуклости в финансах . Выпуклость была основана на работе Хон-Фей Лая и популяризирована Стэнли Диллером. [1]
Расчет выпуклости
[ редактировать ]Дюрация — это линейная мера или первая производная того, как меняется цена облигации в ответ на изменения процентной ставки. При изменении процентных ставок цена вряд ли будет меняться линейно, вместо этого она будет меняться в зависимости от некоторой кривой функции процентных ставок. Чем более изогнута функция цены облигации, тем более неточной является дюрация как мера чувствительности процентной ставки. [2]
Выпуклость — это мера кривизны или 2-й производной того, как цена облигации меняется в зависимости от процентной ставки, т.е. как изменяется продолжительность облигации при изменении процентной ставки. [3] В частности, предполагается, что процентная ставка постоянна на протяжении всего срока действия облигации и что изменения процентных ставок происходят равномерно. Используя эти предположения, дюрацию можно сформулировать как первую производную функции цены облигации по отношению к рассматриваемой процентной ставке. Тогда выпуклость будет второй производной функции цены по процентной ставке. [2]
Выпуклость не предполагает, что связь между стоимостью облигаций и процентными ставками является линейной. [4] На реальных рынках предположение о постоянных процентных ставках и даже об их изменениях неверно, и для фактической оценки облигаций необходимы более сложные модели. Однако эти упрощающие допущения позволяют быстро и легко рассчитать факторы, описывающие чувствительность цен облигаций к изменениям процентных ставок. [5]
Почему выпуклости облигаций могут различаться
[ редактировать ]Чувствительность цены к параллельным изменениям временной структуры процентных ставок является самой высокой у облигаций с нулевым купоном и самой низкой у амортизируемых облигаций (по которым выплаты производятся авансом). [6] Хотя амортизируемая облигация и облигация с нулевым купоном имеют разную чувствительность при одном и том же сроке погашения, если их окончательные сроки погашения различаются и имеют одинаковую дюрацию облигаций , тогда они будут иметь одинаковую чувствительность. [7] То есть на их цены в равной степени будут влиять небольшие сдвиги кривой доходности первого порядка (и параллельные) . Однако они начнут меняться на разные суммы с каждым дальнейшим параллельным сдвигом ставок из-за разных дат и сумм платежей. [8]
Для двух облигаций с одинаковой номинальной стоимостью, купоном и сроком погашения выпуклость может различаться в зависимости от того, в какой точке кривой ценовой доходности они расположены. [9]
Математическое определение
[ редактировать ]Если фиксированная плавающая процентная ставка равна r , а цена облигации равна B , то выпуклость C определяется как [10]
Другой способ выразить C — через модифицированную продолжительность D :
Поэтому,
уход
Где D — модифицированная продолжительность
Как меняется срок действия облигаций при изменении процентной ставки
[ редактировать ]Вернитесь к стандартному определению модифицированной продолжительности: [11]
где P ( i ) — текущая стоимость купона i , а t ( i ) — будущая дата платежа.
По мере увеличения процентной ставки приведенная стоимость более долгосрочных платежей снижается по отношению к более ранним купонам (на коэффициент дисконтирования между ранними и просроченными платежами). [12] Однако цена облигации также снижается при увеличении процентной ставки, но изменения текущей стоимости суммы каждого купона, умноженной на время (числитель в суммировании), больше, чем изменения в цене облигации (знаменатель в суммировании). Следовательно, увеличение r должно уменьшить дюрацию (или, в случае облигаций с нулевым купоном, оставить неизменной константу дюрации). [13] [14] Обратите внимание, что модифицированная длительность D отличается от обычной длительности в один раз более 1 + r (показано выше), который также уменьшается с r увеличением .
Учитывая указанную выше связь между выпуклостью и длительностью, выпуклость обычных облигаций всегда должна быть положительной. [15]
Положительность выпуклости также может быть доказана аналитически для ценных бумаг с базовой процентной ставкой. Например, в предположении о плоской кривой доходности можно записать стоимость купонной облигации как , где C i обозначает купон, выплаченный в момент t i . Тогда это легко увидеть
Обратите внимание, что это, наоборот, подразумевает отрицательность производной продолжительности путем дифференцирования .
Применение выпуклости
[ редактировать ]- Выпуклость — это показатель управления рисками, используемый аналогично тому, как «гамма» используется в по деривативам управлении рисками ; это число, используемое для управления рыночным риском, которому подвержен портфель облигаций. Если совокупность выпуклости и продолжительности торговой книги высока, высок и риск. [16] Однако, если совокупная выпуклость и дюрация невелики, книга хеджируется , и деньги будут потеряны немного, даже если произойдет довольно существенное движение процентных ставок. (Параллельно кривой доходности) [17]
- Аппроксимация второго порядка движения цен облигаций из-за изменения ставок использует выпуклость:
Эффективная выпуклость
[ редактировать ]Для облигации со встроенным опционом расчет на основе доходности к погашению выпуклости (и дюрации ) не учитывает, как изменения в кривой доходности изменят денежные потоки в результате исполнения опциона . Чтобы решить эту проблему, эффективную выпуклость необходимо рассчитать численно . [18] Эффективная выпуклость представляет собой дискретную аппроксимацию второй производной стоимости облигации как функции процентной ставки: [18]
где — стоимость облигации, рассчитанная с использованием модели ценообразования опционов , - это сумма, на которую изменяется доходность, и — это значения, которые примет облигация, если доходность упадет на или поднимается на соответственно ( параллельный сдвиг ).
Эти значения обычно находятся с использованием древовидной модели, построенной для всей кривой доходности и, следовательно, фиксирующей поведение исполнения в каждый момент срока действия опциона как функцию как времени, так и процентных ставок; [19] [20] см. Решетчатую модель (финансы) § Производные процентные ставки .
См. также
[ редактировать ]- Уравнение Блэка – Шоулза
- Срок действия облигации
- Оценка облигаций
- Атрибуция с фиксированным доходом § Первые принципы в сравнении с атрибуцией возмущений
- Иммунизация (финансы)
- Список тем, посвященных выпуклости
- Список финансовых тем
Ссылки
[ редактировать ]- ^ Диллер, Стэнли (1991), Параметрический анализ ценных бумаг с фиксированным доходом, в Даттатрея, Рави (ред.) Аналитика фиксированного дохода: современный анализ долга и моделирование оценки, Probus Publishing
- ^ Перейти обратно: а б Брукс, Роберт; Аттингер, Билл (1 июля 1992 г.). «Использование дюрации и выпуклости в анализе конвертируемых облигаций с правом отзыва» . Журнал финансовых аналитиков . 48 (4): 74–77. дои : 10.2469/faj.v48.n4.74 . ISSN 0015-198X .
- ^ Пельссер, Антон (4 февраля 2003 г.). «Математические основы коррекции выпуклости» . Количественные финансы . 3 (1). дои : 10.1088/1469-7688/3/1/306/мета . eISSN 1469-7696 . Проверено 30 сентября 2023 г.
- ^ Удегбунам, Рафаэль И.; Оайхенан, Хасан Э. (13 марта 2012 г.). «Процентный риск цен на акции в Нигерии: эмпирическая проверка модели продолжительности и выпуклости» . Журнал финансов развивающихся рынков . 11 (1): 93–113. дои : 10.1177/097265271101100104 . ISSN 0972-6527 .
- ^ Вейл, Лоуренс Фишер, Роман Л. (1982), «Как справиться с риском колебаний процентных ставок: доходы держателей облигаций от наивных и оптимальных стратегий *» , Продолжительность облигаций и иммунизация , Routledge, doi : 10.4324/9781315145976-11/coping -риск-колебания-процентных ставок-доходность-держатели облигаций-na%C3%AFve-оптимальные-стратегии-Лоуренс-Фишер-Роман-Вейль , ISBN 978-1-315-14597-6 , получено 2 октября 2023 г.
{{citation}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Дай, Цян; Синглтон, Кеннет Дж.; Ян, Вэй (12 апреля 2007 г.). «Смены режима в модели динамической срочной структуры доходности казначейских облигаций США» . Обзор финансовых исследований . 20 (5): 1669–1706. дои : 10.1093/rfs/hhm021 . ISSN 0893-9454 .
- ^ Уиттингем, М. (1997). «Канадский рынок бескупонных облигаций» (PDF) . Обзор Банка Канады : 47–62.
- ^ Фоа, Уэсли; Ширер, Майкл (31 декабря 1997 г.). «Примечание о чувствительности к изменению формы произвольной кривой доходности с использованием дюрации ключевой ставки» . Журнал фиксированного дохода . 7 (3): 67–71. дои : 10.3905/jfi.1997.408212 . ISSN 1059-8596 .
- ^ Ливингстон, Майлз (1 марта 1979 г.). «Налогообложение облигаций и форма кривой доходности к погашению» . Журнал финансов . 34 (1): 189–196. дои : 10.1111/j.1540-6261.1979.tb02079.x . ISSN 0022-1082 .
- ^ Фонг, Х. Гиффорд; Васичек, Олдрич А. (31 июля 1991 г.). «Управление волатильностью фиксированного дохода» . Журнал управления портфелем . 17 (4): 41–46. дои : 10.3905/jpm.1991.409345 . ISSN 0095-4918 .
- ^ Фабоцци, Фрэнк Дж., изд. (15 сентября 2008 г.). Справочник по финансам (1-е изд.). Уайли. дои : 10.1002/9780470404324.hof003014 . ISBN 978-0-470-04256-4 .
- ^ Ши, Гэри С. (1984). «Подводные камни при сглаживании данных о временной структуре процентных ставок: равновесные модели и сплайн-аппроксимации» . Журнал финансового и количественного анализа . 19 (3): 253–269. дои : 10.2307/2331089 . ISSN 0022-1090 .
- ^ Гейгер, Феликс (2011), Гейгер, Феликс (редактор), «Теория временной структуры процентных ставок» , Кривая доходности и премии за финансовый риск: последствия для денежно-кредитной политики , Конспекты лекций по экономике и математическим системам, Берлин, Гейдельберг: Springer, стр. 43–82, номер документа : 10.1007/978-3-642-21575-9_3 , ISBN. 978-3-642-21575-9 , получено 6 ноября 2023 г.
- ^ Свищук, Анатолий (4 января 2009 г.). «Производные процентные ставки на основе сборов: изменение метода времени и PIDE» (PDF) . Эконометрика: модели с одним уравнением, электронный журнал . doi : 10.2139/ssrn.1322532 – через SSRN.
- ^ Грантье, Брюс Дж. (1 ноября 1988 г.). «Выпуклость и эффективность соединения: чем Бентер лучше» . Журнал финансовых аналитиков . 44 (6): 79–81. дои : 10.2469/faj.v44.n6.79 . ISSN 0015-198X .
- ^ Фонг, Х. Гиффорд; Васичек, Олдрич А. (31 июля 1991 г.). «Управление волатильностью фиксированного дохода» . Журнал управления портфелем . 17 (4): 41–46. дои : 10.3905/jpm.1991.409345 . ISSN 0095-4918 .
- ^ Смит, Линда; Сварт, Барбара (31 января 2006 г.). «Расчет цены выпуклости облигаций» . Журнал управления портфелем . 32 (2): 99–106. дои : 10.3905/jpm.2006.611809 . ISSN 0095-4918 .
- ^ Перейти обратно: а б Фабоцци, Фрэнк Дж., изд. (15 сентября 2008 г.). Справочник по финансам (1-е изд.). Уайли. дои : 10.1002/9780470404324.hof003014 . ISBN 978-0-470-04256-4 .
- ^ Чоудри, Мурад (01 января 2004 г.), Чоудри, Мурад (редактор), «3 - Динамика цен на активы» , Расширенный анализ фиксированного дохода , Оксфорд: Баттерворт-Хейнеманн, стр. 107-111. 35–54, номер домена : 10.1016/b978-075066263-5.50005-7 , ISBN. 978-0-7506-6263-5 , получено 6 ноября 2023 г.
- ^ Милтерсен, Кристиан Р.; Шварц, Эдуардо С. (1998). «Ценообразование опционов на товарные фьючерсы со стохастическими временными структурами удобной доходности и процентных ставок» . Журнал финансового и количественного анализа . 33 (1): 33–59. дои : 10.2307/2331377 . ISSN 0022-1090 .
Дальнейшее чтение
[ редактировать ]- Фрэнк Фабоцци , Справочник по ценным бумагам с фиксированной доходностью, 7-е изд. , Нью-Йорк: МакГроу Хилл, 2005.
- Фабоцци, Фрэнк Дж. (1999). «Основы длительности и выпуклости». Дюрация, выпуклость и другие меры риска облигаций . Серия Фрэнка Дж. Фабоцци. Том. 58. Джон Уайли и сыновья. ISBN 9781883249632 .
- Мэйл, Январь (1994), Стандартные методы расчета ценных бумаг: формулы для ценных бумаг с фиксированным доходом для аналитических показателей , том. 2 (1-е изд.), Ассоциация индустрии ценных бумаг и финансовых рынков , ISBN 1-882936-01-9 . Стандартный справочник конвенций, применимых к ценным бумагам США.