Плитка Труше
В визуализации информации и графическом дизайне вращательно плитки Труше представляют собой квадратные плитки, украшенные узорами, которые не являются -симметричными . При размещении на квадратной плитке плоскости они могут образовывать различные узоры, а ориентацию каждой плитки можно использовать для визуализации информации, связанной с положением плитки внутри плитки. [1]
Плитка Трюше была впервые описана в мемуарах Себастьяна Трюше в 1704 году , озаглавленных «Mémoire sur les Combinisons», и была популяризирована в 1987 году Сирилом Стэнли Смитом . [1] [2]
Вариации
[ редактировать ]Контрастные треугольники
[ редактировать ]Плитка, которую первоначально изучал Трюше, разделена по диагонали на два треугольника контрастных цветов. Плитка имеет четыре возможных направления.
На некоторых примерах заполнения поверхности выполнена укладка плитки по такому рисунку .
По схеме:
При случайном размещении:
Четвертькруги
[ редактировать ]Вторая распространенная форма плиток Труше, предложенная Смитом (1987) , украшает каждую плитку двумя четвертькругами, соединяющими середины соседних сторон. Каждая такая плитка имеет две возможные ориентации.
У нас есть такая плитка:
Этот тип плитки также использовался в абстрактных стратегических играх Trax и Black Path Game до работы Смита. [1]
Диагональ
[ редактировать ]Лабиринт . можно создать из плиток в виде белого квадрата с черной диагональю Как и в случае с плитками в четверть круга, каждая такая плитка имеет две ориентации. [3] Связность полученного лабиринта можно проанализировать математически, используя теорию перколяции как перколяцию связей в критической точке диагонально ориентированной сетки. Ник Монфор одна строка Commodore 64 BASIC : считает, что для создания таких шаблонов необходима 10 PRINT CHR$(205.5+RND(1)); : GOTO 10
- быть « конкретным стихотворением , найденным стихотворением». [3]
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Jump up to: а б с Браун, Кэмерон (2008), «Кривые и поверхности Трюше», Computers & Graphics , 32 (2): 268–281, doi : 10.1016/j.cag.2007.10.001 .
- ^ Смит, Сирил Стэнли (1987), «Мозаичные узоры Себастьяна Труше и топология структурной иерархии», Леонардо , 20 (4): 373–385, doi : 10.2307/1578535 . С переводом текста Трюше Полины Буше.
- ^ Jump up to: а б Монфор, Ник (2012). 10 PRINT CHR$(205,5+RND(1)); : ПЕРЕЙДИТЕ К 10 . МТИ Пресс.
Внешние ссылки
[ редактировать ]- Вайсштейн, Эрик В. «Плитка Труше» . Математический мир .
- Онлайн-генератор узоров труш: https://truchetpatterns.netlify.app/
- Ибаньес, Рауль, « Плитки Труше и алмазная головоломка »