Физика конденсированного состояния
Физика конденсированного состояния |
---|
Физика конденсированного состояния — это область физики , которая занимается макроскопическими и микроскопическими физическими свойствами материи , особенно твердой и жидкой фаз , которые возникают в результате электромагнитных сил между атомами и электронами . В более общем плане речь идет о конденсированных фазах материи: системах многих компонентов с сильными взаимодействиями между ними. Более экзотические конденсированные фазы включают сверхпроводящую фазу, проявляемую некоторыми материалами при чрезвычайно низких криогенных температурах , ферромагнитные и антиферромагнитные фазы спинов на кристаллических решетках атомов, конденсаты Бозе-Эйнштейна, обнаруженные в ультрахолодных атомных системах, и жидкие кристаллы . Физики конденсированного состояния стремятся понять поведение этих фаз с помощью экспериментов по измерению различных свойств материалов и применения физических законов квантовой механики , электромагнетизма , статистической механики и других физических теорий для разработки математических моделей и предсказания свойств чрезвычайно больших групп. атомов. [ 1 ]
Разнообразие систем и явлений, доступных для изучения, делает физику конденсированного состояния наиболее активной областью современной физики: треть всех американских физиков идентифицируют себя как физики конденсированного состояния, [ 2 ] а Отдел физики конденсированного состояния — крупнейшее подразделение Американского физического общества . [ 3 ] К ним относятся физики твердого тела и мягкой материи , которые изучают квантовые и неквантовые физические свойства материи соответственно. [ 4 ] Оба типа изучают широкий спектр материалов, предоставляя множество возможностей для исследований, финансирования и трудоустройства. [ 5 ] Эта область пересекается с химией , материаловедением , инженерией и нанотехнологиями и тесно связана с атомной физикой и биофизикой . Теоретическая физика конденсированного состояния разделяет важные концепции и методы с физикой элементарных частиц и ядерной физикой . [ 6 ]
Различные темы физики, такие как кристаллография , металлургия , упругость , магнетизм и т. д., рассматривались как отдельные области до 1940-х годов, когда они были сгруппированы вместе как физика твердого тела . изучение физических свойств жидкостей , сформировав основу для более обширной специальности — физики конденсированного состояния. Примерно в 1960-е годы к этому списку добавилось [ 7 ] Bell Telephone Laboratories была одним из первых институтов, проводивших исследовательскую программу в области физики конденсированного состояния. [ 7 ] По словам директора-основателя Института исследований твердого тела Макса Планка , профессора физики Мануэля Кардоны, именно Альберт Эйнштейн создал современную область физики конденсированного состояния, начиная с его основополагающей статьи 1905 года о фотоэлектрическом эффекте и фотолюминесценции , которая открыла области физики конденсированного состояния. фотоэлектронная спектроскопия и фотолюминесцентная спектроскопия , а позже его статья 1907 года о теплоемкости твердых тел , в которой впервые было показано влияние колебаний решетки на термодинамические свойства. кристаллов, в частности теплоемкость . [ 8 ] Заместитель директора Йельского квантового института А. Дуглас Стоун приводит аналогичные аргументы в пользу Эйнштейна в своей работе по синтетической истории квантовой механики . [ 9 ]
Этимология
[ редактировать ]По словам физика Филипа Уоррена Андерсона , использование термина «конденсированное вещество» для обозначения области исследований было придумано им и Фолькером Гейне , когда они изменили название своей группы в Кавендишских лабораториях в Кембридже с «Теории твердого тела» на «Теория твердого тела». Теория конденсированного состояния материи в 1967 г., [ 10 ] поскольку они чувствовали, что это лучше включало их интерес к жидкостям, ядерной материи и так далее. [ 11 ] [ 12 ] Хотя Андерсон и Гейне помогли популяризировать название «конденсированное вещество», оно использовалось в Европе в течение нескольких лет, наиболее заметно в Springer-Verlag журнале «Физика конденсированного вещества» , выпущенном в 1963 году. [ 13 ] Название «физика конденсированного состояния» подчеркивало общность научных проблем, с которыми сталкиваются физики, работающие над твердыми телами, жидкостями, плазмой и другими сложными веществами, тогда как «физика твердого тела» часто ассоциировалась с ограниченным промышленным применением металлов и полупроводников. В 1960-х и 70-х годах некоторые физики считали, что более полное название лучше соответствует условиям финансирования и политике холодной войны того времени. [ 14 ]
Ссылки на «конденсированные» состояния можно найти в более ранних источниках. Например, во введении к своей книге 1947 года «Кинетическая теория жидкостей » [ 15 ] Яков Френкель предположил, что «Кинетическая теория жидкостей должна соответственно развиваться как обобщение и расширение кинетической теории твердых тел. Собственно говоря, правильнее было бы объединить их под названием «конденсированные тела » » .
История
[ редактировать ]Классическая физика
[ редактировать ]Одно из первых исследований конденсированных состояний вещества было проведено английским химиком Гемфри Дэви в первые десятилетия девятнадцатого века. Дэви заметил, что из сорока известных в то время химических элементов двадцать шесть обладали металлическими свойствами, такими как блеск , пластичность и высокая электро- и теплопроводность. [ 16 ] Это указывало на то, что атомы в Джона Дальтона не атомной теории были неделимыми, как утверждал Дальтон, а имели внутреннюю структуру. Дэви далее утверждал, что элементы, которые тогда считались газами, такие как азот и водород, могут быть сжижены при правильных условиях и затем вести себя как металлы. [ 17 ] [ примечание 1 ]
В 1823 году Майкл Фарадей , тогда ассистент в лаборатории Дэви, успешно сжижал хлор и приступил к сжижению всех известных газообразных элементов, за исключением азота, водорода и кислорода . [ 16 ] Вскоре после этого, в 1869 году, ирландский химик Томас Эндрюс изучил фазовый переход из жидкости в газ и ввёл термин «критическая точка» , чтобы описать состояние, когда газ и жидкость неотличимы как фазы. [ 19 ] а голландский физик Йоханнес ван дер Ваальс предоставил теоретическую основу, которая позволила предсказать критическое поведение на основе измерений при гораздо более высоких температурах. [ 20 ] : 35–38 К 1908 году Джеймс Дьюар и Хайке Камерлинг-Оннес успешно смогли сжижать водород, а затем недавно открытый гелий соответственно. [ 16 ]
Пол Друде в 1900 году предложил первую теоретическую модель классического электрона, движущегося через металлическое твердое тело. [ 6 ] Модель Друде описывала свойства металлов с точки зрения газа свободных электронов и была первой микроскопической моделью, объясняющей эмпирические наблюдения, такие как закон Видемана-Франца . [ 21 ] [ 22 ] : 27–29 Однако, несмотря на успех модели Друде , у нее была одна заметная проблема: она не могла правильно объяснить электронный вклад в теплоемкость и магнитные свойства металлов, а также температурную зависимость удельного сопротивления при низких температурах. [ 23 ] : 366–368
был впервые сжижен, Оннес, работавший в Лейденском университете, обнаружил сверхпроводимость ртути В 1911 году, через три года после того, как гелий , когда он заметил, что удельное электрическое сопротивление ртути исчезает при температурах ниже определенного значения. [ 24 ] Явление совершенно удивило лучших физиков-теоретиков того времени и оставалось необъяснимым в течение нескольких десятилетий. [ 25 ] Альберт Эйнштейн в 1922 году сказал относительно современных теорий сверхпроводимости, что «при нашем далеко идущем незнании квантовой механики сложных систем мы очень далеки от возможности составить теорию из этих смутных идей». [ 26 ]
Появление квантовой механики
[ редактировать ]Классическая модель Друде была дополнена Вольфгангом Паули , Арнольдом Зоммерфельдом , Феликсом Блохом и другими физиками. Паули понял, что свободные электроны в металле должны подчиняться статистике Ферми – Дирака . Используя эту идею, он разработал теорию парамагнетизма в 1926 году. Вскоре после этого Зоммерфельд включил статистику Ферми – Дирака в модель свободных электронов и помог лучше объяснить теплоемкость. Два года спустя Блох использовал квантовую механику для описания движения электрона в периодической решетке. [ 23 ] : 366–368
Математика кристаллических структур, разработанная Огюстом Браве , Евграфом Федоровым и другими, использовалась для классификации кристаллов по группам симметрии , а таблицы кристаллических структур легли в основу серии «Международные таблицы кристаллографии» , впервые опубликованной в 1935 году. [ 27 ] Расчеты зонной структуры были впервые использованы в 1930 году для предсказания свойств новых материалов, а в 1947 году Бардин , Уолтер Браттейн и Уильям Шокли разработали первый полупроводниковый транзистор Джон , ознаменовав революцию в электронике. [ 6 ]
В 1879 году Эдвин Герберт Холл, работавший в Университете Джонса Хопкинса, обнаружил, что в проводниках возникает напряжение, поперечное как электрическому току в проводнике, так и магнитному полю, приложенному перпендикулярно току. [ 28 ] Это явление, возникающее из-за природы носителей заряда в проводнике, получило название эффекта Холла , но в то время оно не было должным образом объяснено, поскольку электрон был экспериментально открыт лишь 18 лет спустя. После появления квантовой механики Лев Ландау в 1930 году разработал теорию квантования Ландау и заложил основы теоретического объяснения квантового эффекта Холла , открытого полвека спустя. [ 29 ] : 458–460 [ 30 ]
Магнетизм как свойство материи известен в Китае с 4000 г. до н.э. [ 31 ] : 1–2 Однако первые современные исследования магнетизма начались только с развитием электродинамики Фарадеем, Максвеллом и другими в девятнадцатом веке, которая включала классификацию материалов на ферромагнитные , парамагнетики и диамагнетики на основе их реакции на намагничивание. [ 32 ] Пьер Кюри изучил зависимость намагниченности от температуры и обнаружил фазовый переход точки Кюри в ферромагнетиках. [ 31 ] В 1906 году Пьер Вейс ввел концепцию магнитных доменов для объяснения основных свойств ферромагнетиков. [ 33 ] : 9 Первую попытку микроскопического описания магнетизма предприняли Вильгельм Ленц и Эрнст Изинг с помощью модели Изинга , которая описывала магнитные материалы как состоящие из периодической решетки спинов , которые коллективно приобретали намагниченность. [ 31 ] Модель Изинга была решена именно для того, чтобы показать, что спонтанная намагниченность может возникать в одном измерении и возможна в решетках более высоких размерностей. Дальнейшие исследования, такие как Блох по спиновым волнам и Неель по антиферромагнетизму, привели к разработке новых магнитных материалов для применения в магнитных запоминающих устройствах. [ 31 ] : 36–38, г48
Современная физика многих тел
[ редактировать ]Модель Зоммерфельда и спиновые модели ферромагнетизма проиллюстрировали успешное применение квантовой механики к проблемам конденсированного состояния в 1930-х годах. Однако все еще оставалось несколько нерешенных проблем, в первую очередь описание сверхпроводимости и эффекта Кондо . [ 35 ] После Второй мировой войны несколько идей квантовой теории поля были применены к проблемам конденсированного состояния. К ним относятся признание коллективных мод возбуждения твердых тел и важное понятие квазичастицы. Советский физик Лев Ландау использовал эту идею для теории ферми-жидкости , в которой низкоэнергетические свойства взаимодействующих фермионных систем выражались в терминах того, что сейчас называют квазичастицами Ландау. [ 35 ] Ландау также разработал теорию среднего поля для непрерывных фазовых переходов, которая описывала упорядоченные фазы как спонтанное нарушение симметрии . В теории также введено понятие параметра порядка, позволяющего различать упорядоченные фазы. [ 36 ] В конце концов, в 1956 году Джон Бардин , Леон Купер и Роберт Шриффер разработали так называемую БКШ теорию сверхпроводимости , основанную на открытии того, что сколь угодно малое притяжение между двумя электронами с противоположным спином, опосредованное фононами в решетке, может привести к возникновению связанного состояния, называемого пара Купера . [ 37 ]
Изучение фазовых переходов и критического поведения наблюдаемых величин, называемых критическими явлениями , было основной областью интересов в 1960-х годах. [ 39 ] Лео Каданофф , Бенджамин Видом и Майкл Фишер развили идеи критических показателей и масштабирования мудрости . Эти идеи были объединены Кеннетом Г. Уилсоном в 1972 году в рамках формализма ренормгруппы в контексте квантовой теории поля. [ 39 ]
Квантовый эффект Холла был открыт Клаусом фон Клитцингом , Дордой и Пеппером в 1980 году, когда они заметили, что проводимость Холла представляет собой целое кратное число фундаментальной константы. .(см. рисунок) Эффект оказался независимым от таких параметров, как размер системы и примеси. [ 38 ] В 1981 году теоретик Роберт Лафлин предложил теорию, объясняющую неожиданную точность интегрального плато. Это также подразумевало, что проводимость Холла пропорциональна топологическому инварианту, называемому числом Черна , значение которого для зонной структуры твердых тел было сформулировано Дэвидом Дж. Таулессом и его сотрудниками. [ 40 ] [ 41 ] : 69, 74 Вскоре после этого, в 1982 году, Хорст Штёрмер и Даниэль Цуй наблюдали дробный квантовый эффект Холла , при котором проводимость теперь стала рациональным кратным постоянной. . Лафлин в 1983 году понял, что это является следствием взаимодействия квазичастиц в состояниях Холла, и сформулировал решение вариационного метода , названное волновой функцией Лафлина . [ 42 ] Изучение топологических свойств дробного эффекта Холла остается активной областью исследований. [ 43 ] Десятилетия спустя вышеупомянутая топологическая теория зон, выдвинутая Дэвидом Дж. Таулессом и его сотрудниками, [ 44 ] получила дальнейшее развитие, что привело к открытию топологических изоляторов . [ 45 ] [ 46 ]
В 1986 году Карл Мюллер и Йоханнес Беднорц открыли первый высокотемпературный сверхпроводник La 2-x Ba x CuO 4 , который является сверхпроводящим при температурах до 39 Кельвинов . [ 47 ] Стало понятно, что высокотемпературные сверхпроводники являются примером сильно коррелированных материалов, в которых электрон-электронные взаимодействия играют важную роль. [ 48 ] Удовлетворительное теоретическое описание высокотемпературных сверхпроводников до сих пор не известно, и область сильно коррелированных материалов продолжает оставаться активной темой исследований.
В 2012 году несколько групп выпустили препринты, в которых предполагается, что гексаборид самария обладает свойствами топологического изолятора. [ 49 ] в соответствии с более ранними теоретическими предсказаниями. [ 50 ] Поскольку гексаборид самария является признанным кондо-изолятором , то есть сильно коррелированным электронным материалом, ожидается, что существование топологического поверхностного состояния Дирака в этом материале приведет к топологическому изолятору с сильными электронными корреляциями.
Теоретический
[ редактировать ]Теоретическая физика конденсированного состояния предполагает использование теоретических моделей для понимания свойств состояний вещества. К ним относятся модели для изучения электронных свойств твердых тел, такие как модель Друде , зонная структура и теория функционала плотности . также разработаны теоретические модели Для изучения физики фазовых переходов , такие как теория Гинзбурга-Ландау , критические показатели степени и использование математических методов квантовой теории поля и ренормгруппы . Современные теоретические исследования включают использование численного расчета электронной структуры и математических инструментов для понимания таких явлений, как высокотемпературная сверхпроводимость , топологические фазы и калибровочная симметрия .
Появление
[ редактировать ]Теоретическое понимание физики конденсированного состояния тесно связано с понятием возникновения , при котором сложные совокупности частиц ведут себя совершенно иначе, чем их отдельные составляющие. [ 37 ] [ 43 ] Например, плохо изучен ряд явлений, связанных с высокотемпературной сверхпроводимостью, хотя микроскопическая физика отдельных электронов и решеток хорошо известна. [ 51 ] Аналогичным образом изучались модели систем конденсированного состояния, в которых коллективные возбуждения ведут себя как фотоны и электроны , тем самым описывая электромагнетизм как возникающее явление. [ 52 ] Эмерджентные свойства также могут возникать на границе раздела материалов: одним из примеров является интерфейс алюминат лантана-титанат стронция , где два зонных изолятора соединяются для создания проводимости и сверхпроводимости .
Электронная теория твердого тела
[ редактировать ]Металлическое состояние исторически было важным строительным блоком для изучения свойств твердых тел. [ 53 ] Первое теоретическое описание металлов было дано Полом Друде в 1900 году с помощью модели Друде , которая объясняла электрические и тепловые свойства, описывая металл как идеальный газ из недавно обнаруженных электронов . Ему удалось вывести эмпирический закон Видемана-Франца и получить результаты, близко согласующиеся с экспериментами. [ 22 ] : 90–91 Эта классическая модель была затем улучшена Арнольдом Зоммерфельдом , который включил статистику электронов Ферми – Дирака и смог объяснить аномальное поведение теплоемкости металлов в законе Видемана – Франца . [ 22 ] : 101–103 В 1912 году структуру кристаллических твердых тел изучали Макс фон Лауэ и Пауль Книппинг, когда они наблюдали картину дифракции рентгеновских лучей кристаллов и пришли к выводу, что кристаллы получают свою структуру из периодических решеток атомов. [ 22 ] : 48 [ 54 ] В 1928 году швейцарский физик Феликс Блох предоставил решение волновой функции уравнения Шредингера с периодическим потенциалом, известное как теорема Блоха . [ 55 ]
Расчет электронных свойств металлов путем решения волновой функции многих тел часто является вычислительно сложным, и, следовательно, для получения значимых прогнозов необходимы методы аппроксимации. [ 56 ] Теория Томаса-Ферми , разработанная в 1920-х годах, использовалась для оценки энергии системы и электронной плотности путем рассмотрения локальной электронной плотности как вариационного параметра . Позже, в 1930-х годах, Дуглас Хартри , Владимир Фок и Джон Слейтер разработали так называемую волновую функцию Хартри-Фока как усовершенствованную модель Томаса-Ферми. Метод Хартри – Фока учитывал статистику обмена волновыми функциями одночастичных электронов. В общем, решить уравнение Хартри–Фока очень сложно. Только случай газа свободных электронов может быть решен точно. [ 53 ] : 330–337 Наконец, в 1964–65 годах Вальтер Кон , Пьер Хоэнберг и Лу Джеу Шам предложили теорию функционала плотности (DFT), которая дала реалистичное описание объемных и поверхностных свойств металлов. Теория функционала плотности широко используется с 1970-х годов для расчета зонной структуры различных твердых тел. [ 56 ]
Нарушение симметрии
[ редактировать ]В некоторых состояниях материи наблюдается нарушение симметрии , когда соответствующие законы физики обладают той или иной формой симметрии , которая нарушается. Типичным примером являются кристаллические твердые тела , которые нарушают непрерывную трансляционную симметрию . Другие примеры включают намагниченные ферромагнетики , которые нарушают вращательную симметрию , и более экзотические состояния, такие как основное состояние BCS сверхпроводника , которое нарушает U(1) . фазовую вращательную симметрию [ 57 ] [ 58 ]
Теорема Голдстоуна в квантовой теории поля утверждает, что в системе с нарушенной непрерывной симметрией могут существовать возбуждения со сколь угодно низкой энергией, называемые бозонами Голдстоуна . Например, в кристаллических твердых телах они соответствуют фононам , которые являются квантованными версиями колебаний решетки. [ 59 ]
Фазовый переход
[ редактировать ]Фазовый переход относится к изменению фазы системы, которое вызвано изменением внешнего параметра, такого как температура , давление или молярный состав . В однокомпонентной системе классический фазовый переход происходит при температуре (при определенном давлении), при которой происходит резкое изменение порядка системы. Например, когда лед тает и превращается в воду, упорядоченная гексагональная кристаллическая структура льда модифицируется до подвижного расположения молекул воды с водородными связями.
При квантовых фазовых переходах температура устанавливается равной абсолютному нулю , а нетепловой параметр управления, такой как давление или магнитное поле, вызывает фазовые переходы, когда порядок разрушается квантовыми флуктуациями, возникающими из принципа неопределенности Гейзенберга . Здесь различные квантовые фазы системы относятся к различным основным состояниям матрицы Гамильтона . Понимание поведения квантового фазового перехода важно в сложных задачах объяснения свойств редкоземельных магнитных изоляторов, высокотемпературных сверхпроводников и других веществ. [ 60 ]
Встречаются два класса фазовых переходов: переходы первого рода и переходы второго рода или непрерывные переходы . В последнем случае две участвующие фазы не сосуществуют при температуре перехода, также называемой критической точкой . Вблизи критической точки системы подвергаются критическому поведению, при котором некоторые из их свойств, такие как корреляционная длина , теплоемкость и магнитная восприимчивость , расходятся экспоненциально. [ 60 ] Эти критические явления представляют собой серьезные проблемы для физиков, поскольку обычные макроскопические законы больше не действуют в регионе, и необходимо изобретать новые идеи и методы, чтобы найти новые законы, которые могут описать систему. [ 61 ] : 75ff
Простейшей теорией, способной описать непрерывные фазовые переходы, является теория Гинзбурга–Ландау , работающая в так называемом приближении среднего поля . Однако он может лишь грубо объяснить непрерывный фазовый переход для сегнетоэлектриков и сверхпроводников I типа, который включает в себя дальнодействующие микроскопические взаимодействия. Для других типов систем, которые включают короткодействующие взаимодействия вблизи критической точки, необходима более совершенная теория. [ 62 ] : 8–11
Вблизи критической точки флуктуации происходят в широком диапазоне масштабов, в то время как особенность всей системы является масштабно-инвариантной. Методы ренормгруппы последовательно поэтапно усредняют наиболее коротковолновые колебания, сохраняя их эффекты на следующем этапе. Таким образом, изменения физической системы, рассматриваемые в различных масштабах, могут быть исследованы систематически. Эти методы вместе с мощным компьютерным моделированием вносят большой вклад в объяснение критических явлений, связанных с непрерывным фазовым переходом. [ 61 ] : 11
Экспериментальный
[ редактировать ]Экспериментальная физика конденсированного состояния предполагает использование экспериментальных зондов для открытия новых свойств материалов. Такие зонды включают воздействие электрических и магнитных полей , измерение функций отклика , транспортных свойств и термометрию . [ 63 ] Обычно используемые экспериментальные методы включают спектроскопию с такими датчиками, как рентгеновские лучи , инфракрасный свет и неупругое рассеяние нейтронов ; изучение теплового отклика, такого как удельная теплоемкость , и измерение переноса посредством теплопроводности и теплопроводности .
Рассеяние
[ редактировать ]Некоторые эксперименты с конденсированной средой включают рассеяние экспериментального зонда, такого как рентгеновские лучи , оптические фотоны , нейтроны и т. д., на компонентах материала. Выбор рассеивающего зонда зависит от интересующего энергетического масштаба наблюдения. Видимый свет имеет энергию в размере 1 электрон-вольт (эВ) и используется в качестве датчика рассеяния для измерения изменений свойств материала, таких как диэлектрическая проницаемость и показатель преломления . Рентгеновские лучи имеют энергию порядка 10 кэВ и, следовательно, способны исследовать масштабы атомных длин и используются для измерения изменений плотности электронного заряда и кристаллической структуры. [ 64 ] : 33–34
Нейтроны также могут исследовать масштабы атомных длин и используются для изучения рассеяния на ядрах, спинов электронов и намагниченности (поскольку нейтроны имеют спин, но не имеют заряда). Измерения кулоновского и моттовского рассеяния можно проводить, используя электронные пучки в качестве зондов рассеяния. [ 64 ] : 33–34 [ 65 ] : 39–43 Точно так же аннигиляция позитрона может использоваться как косвенное измерение локальной плотности электронов. [ 66 ] Лазерная спектроскопия — отличный инструмент для изучения микроскопических свойств среды, например, для изучения запрещенных переходов в средах с помощью нелинейной оптической спектроскопии . [ 61 ] : 258–259
Внешние магнитные поля
[ редактировать ]В экспериментальной физике конденсированного состояния внешние магнитные поля выступают в качестве термодинамических переменных , управляющих состоянием, фазовыми переходами и свойствами материальных систем. [ 67 ] Ядерный магнитный резонанс (ЯМР) — это метод, с помощью которого внешние магнитные поля используются для обнаружения резонансных режимов отдельных ядер, что дает информацию об атомной, молекулярной и связующей структуре их окружения. Эксперименты ЯМР можно проводить в магнитных полях напряженностью до 60 тесла . Более сильные магнитные поля могут улучшить качество данных измерений ЯМР. [ 68 ] : 69 [ 69 ] : 185 Квантовые колебания — еще один экспериментальный метод, в котором сильные магнитные поля используются для изучения свойств материала, таких как геометрия поверхности Ферми . [ 70 ] Сильные магнитные поля будут полезны при экспериментальной проверке различных теоретических предсказаний, таких как квантовый магнитоэлектрический эффект изображения , магнитный монополь и полуцелый квантовый эффект Холла . [ 68 ] : 57
Магнитно-резонансная спектроскопия
[ редактировать ]Локальную структуру , а также структуру ближайших атомов-соседей можно исследовать в конденсированном состоянии методами магнитного резонанса, такими как электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР), которые очень чувствительны к деталям окружение ядер и электронов посредством сверхтонкой связи. становятся как локализованные электроны, так и специфические стабильные или нестабильные изотопы ядер Зондом этих сверхтонких взаимодействий , которые связывают спин электрона или ядра с локальными электрическими и магнитными полями. Эти методы подходят для изучения дефектов, диффузии, фазовых переходов и магнитного порядка. Общие экспериментальные методы включают ЯМР , ядерный квадрупольный резонанс (ЯКР), имплантированные радиоактивные зонды, как в случае мюонной спиновой спектроскопии ( СИ), мессбауэровская спектроскопия , ЯМР и возмущенная угловая корреляция (PAC). PAC особенно идеален для изучения фазовых изменений при экстремальных температурах выше 2000 °C благодаря температурной независимости метода.
Холодные атомные газы
[ редактировать ]Захват ультрахолодных атомов в оптических решетках — экспериментальный инструмент, широко используемый в физике конденсированного состояния, а также в атомной, молекулярной и оптической физике . Метод предполагает использование оптических лазеров для формирования интерференционной картины , которая действует как решетка , в которую можно помещать ионы или атомы при очень низких температурах. Холодные атомы в оптических решетках используются в качестве квантовых симуляторов , то есть действуют как управляемые системы, способные моделировать поведение более сложных систем, например, фрустрированных магнитов . [ 71 ] В частности, они используются для создания одно-, двух- и трехмерных решеток для модели Хаббарда с заранее заданными параметрами, а также для изучения фазовых переходов при упорядочении антиферромагнитной жидкости и спиновой жидкости . [ 72 ] [ 73 ] [ 43 ]
В 1995 году газ атомов рубидия , охлажденный до температуры 170 нК, был использован для экспериментальной реализации конденсата Бозе-Эйнштейна , нового состояния вещества, первоначально предсказанного С. Н. Бозе и Альбертом Эйнштейном , в котором большое количество атомов занимают один квант. состояние . [ 74 ]
Приложения
[ редактировать ]Исследования в области физики конденсированного состояния [ 43 ] [ 75 ] привело к появлению нескольких приложений для устройств, таких как разработка полупроводникового транзистора , [ 6 ] лазерная технология, [ 61 ] магнитные накопители , жидкие кристаллы , оптические волокна [ 76 ] и несколько явлений, изучаемых в контексте нанотехнологий . [ 77 ] : 111 и далее Такие методы, как сканирующая туннельная микроскопия, могут использоваться для управления процессами в нанометровом масштабе и дали начало изучению нанопроизводства. [ 78 ] Такие молекулярные машины были разработаны, например, нобелевскими лауреатами по химии Беном Ферингой , Жан-Пьером Соважем и Фрейзером Стоддартом . Феринга и его команда разработали несколько молекулярных машин, таких как молекулярный автомобиль , молекулярная ветряная мельница и многие другие. [ 79 ]
В квантовых вычислениях информация представлена квантовыми битами или кубитами . Кубиты могут быстро декогерировать , прежде чем полезные вычисления будут завершены. Эту серьезную проблему необходимо решить, прежде чем можно будет реализовать квантовые вычисления. Для решения этой проблемы в физике конденсированного состояния предложено несколько многообещающих подходов, в том числе кубиты джозефсоновского перехода , спинтронные кубиты, использующие спиновую ориентацию магнитных материалов, или топологические неабелевы анионы из состояний дробного квантового эффекта Холла . [ 78 ]
Физика конденсированного состояния также имеет важное применение в биомедицине , например, экспериментальный метод магнитно-резонансной томографии , широко используемый в медицинской диагностике. [ 78 ]
См. также
[ редактировать ]- Мягкая материя - раздел физики конденсированного состояния.
- Отношения Грина – Кубо - уравнение, связывающее транспортные коэффициенты с корреляционными функциями.
- Функция Грина (теория многих тел) - Корреляторы операторов поля
- Материаловедение - Исследование материалов.
- Ядерная спектроскопия - использование свойств ядра для исследования свойств материала.
- Сравнение программного обеспечения для моделирования молекулярной механики
- Прозрачные материалы — свойство объекта или вещества пропускать свет с минимальным рассеянием.
- Орбитальная намагниченность
- Симметрия в квантовой механике - свойства, лежащие в основе современной физики
- Мезоскопическая физика - раздел физики конденсированного состояния, изучающий материалы промежуточного размера.
Примечания
[ редактировать ]- ^ С тех пор и водород, и азот были сжижены; однако обычные жидкие азот и водород не обладают металлическими свойствами. Физики Юджин Вигнер и Хиллард Белл Хантингтон предсказали в 1935 году. [ 18 ] что состояние металлического водорода существует при достаточно высоких давлениях (свыше 25 ГПа ), но этого пока не наблюдалось.
Ссылки
[ редактировать ]- ^ «Теория физики конденсированного состояния» . Физический факультет Йельского университета . Проверено 30 ноября 2023 г.
- ^ «Работа в области физики конденсированного состояния: Карьера в области физики конденсированного состояния» . Вакансии по физике сегодня . Архивировано из оригинала 27 марта 2009 г. Проверено 1 ноября 2010 г.
- ^ «История физики конденсированного состояния» . Американское физическое общество . Проверено 27 марта 2012 г.
- ^ «Физика конденсированного состояния» . Физический факультет Университета Колорадо в Боулдере . 26 апреля 2016 года . Проверено 30 ноября 2023 г.
- ^ «Физика конденсированного состояния и материалов» . Колледж свободных искусств и наук Айовы . Проверено 30 ноября 2023 г.
- ^ Перейти обратно: а б с д Коэн, Марвин Л. (2008). «Очерк: пятьдесят лет физики конденсированного состояния» . Письма о физических отзывах . 101 (25): 250001. Бибкод : 2008PhRvL.101y0001C . doi : 10.1103/PhysRevLett.101.250001 . ПМИД 19113681 . Проверено 31 марта 2012 г.
- ^ Перейти обратно: а б Кон, В. (1999). «Очерк физики конденсированного состояния в ХХ веке» (PDF) . Обзоры современной физики . 71 (2): С59–С77. Бибкод : 1999RvMPS..71...59K . дои : 10.1103/RevModPhys.71.S59 . Архивировано из оригинала (PDF) 25 августа 2013 года . Проверено 27 марта 2012 г.
- ^ Кардона, Мануэль (31 августа 2005 г.). «Эйнштейн как отец физики твердого тела». arXiv : физика/0508237 .
- ^ Стоун, А. Дуглас (6 октября 2013 г.). Эйнштейн и квант: поиски доблестного шваба (первое изд.). Издательство Принстонского университета. ISBN 978-0691139685 . Проверено 1 июня 2022 г.
- ^ «Филип Андерсон» . Кафедра физики . Принстонский университет . Проверено 27 марта 2012 г.
- ^ Андерсон, Филип В. (ноябрь 2011 г.). «В фокусе: больше и другое» . Всемирный научный информационный бюллетень . 33 :2.
- ^ Андерсон, Филип В. (09 марта 2018 г.). Основные понятия физики конденсированного состояния . ЦРК Пресс. ISBN 978-0-429-97374-1 .
- ^ « Физика конденсированного состояния » . 1963 год . Проверено 20 апреля 2015 г.
- ^ Мартин, Джозеф Д. (2015). «Что значит смена названия? Физика твердого тела, физика конденсированного состояния и материаловедение» (PDF) . Физика в перспективе . 17 (1): 3–32. Бибкод : 2015ФП....17....3М . дои : 10.1007/s00016-014-0151-7 . S2CID 117809375 . Архивировано (PDF) из оригинала 9 октября 2022 г.
- ^ Френкель, Дж. (1947). Кинетическая теория жидкостей . Издательство Оксфордского университета.
- ^ Перейти обратно: а б с Гудстейн, Дэвид ; Гудштейн, Джудит (2000). «Ричард Фейнман и история сверхпроводимости» (PDF) . Физика в перспективе . 2 (1): 30. Бибкод : 2000PhP.....2...30G . дои : 10.1007/s000160050035 . S2CID 118288008 . Архивировано из оригинала (PDF) 17 ноября 2015 года . Проверено 7 апреля 2012 г.
- ^ Дэви, Джон, изд. (1839). Собрание сочинений сэра Хамфри Дэви: Vol. II . Смит Элдер и Ко, Корнхилл. п. 22 .
- ^ Сильвера, Исаак Ф.; Коул, Джон В. (2010). «Металлический водород: самое мощное ракетное топливо из когда-либо существовавших» . Журнал физики . 215 (1): 012194. Бибкод : 2010JPhCS.215a2194S . дои : 10.1088/1742-6596/215/1/012194 .
- ^ Роулинсон, Дж. С. (1969). «Томас Эндрюс и критическая точка». Природа . 224 (8): 541–543. Бибкод : 1969Natur.224..541R . дои : 10.1038/224541a0 . S2CID 4168392 .
- ^ Аткинс, Питер; де Паула, Хулио (2009). Элементы физической химии . Издательство Оксфордского университета. ISBN 978-1-4292-1813-9 .
- ^ Киттель, Чарльз (1996). Введение в физику твердого тела . Джон Уайли и сыновья. ISBN 978-0-471-11181-8 .
- ^ Перейти обратно: а б с д Ходдесон, Лилиан (1992). Из кристаллического лабиринта: главы из истории физики твердого тела . Издательство Оксфордского университета. ISBN 978-0-19-505329-6 .
- ^ Перейти обратно: а б Краг, Хельге (2002). Квантовые поколения: история физики двадцатого века (переиздание). Издательство Принстонского университета. ISBN 978-0-691-09552-3 .
- ^ ван Делфт, Дирк; Кес, Питер (сентябрь 2010 г.). «Открытие сверхпроводимости» (PDF) . Физика сегодня . 63 (9): 38–43. Бибкод : 2010ФТ....63и..38В . дои : 10.1063/1.3490499 . Архивировано (PDF) из оригинала 9 октября 2022 г. Проверено 7 апреля 2012 г.
- ^ Слихтер, Чарльз. «Введение в историю сверхпроводимости» . Моменты открытия . Американский институт физики. Архивировано из оригинала 15 мая 2012 года . Проверено 13 июня 2012 г.
- ^ Шмалиан, Йорг (2010). «Неудачные теории сверхпроводимости». Буквы современной физики Б. 24 (27): 2679–2691. arXiv : 1008.0447 . Бибкод : 2010MPLB...24.2679S . дои : 10.1142/S0217984910025280 . S2CID 119220454 .
- ^ Арройо, Мойс, И.; Мюллер, Ульрих; Вондраччек, Ганс (2006). Историческое введение (PDF) . Международные таблицы по кристаллографии. Том А. стр. 2–5. CiteSeerX 10.1.1.471.4170 . дои : 10.1107/97809553602060000537 . ISBN 978-1-4020-2355-2 . Архивировано из оригинала (PDF) 3 октября 2008 г. Проверено 24 октября 2017 г.
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Холл, Эдвин (1879). «О новом действии магнита на электрический ток» . Американский журнал математики . 2 (3): 287–92. дои : 10.2307/2369245 . JSTOR 2369245 . S2CID 107500183 . Архивировано из оригинала 8 февраля 2007 г. Проверено 28 февраля 2008 г.
- ^ Ландау, Л.Д.; Лифшиц, Э.М. (1977). Квантовая механика: нерелятивистская теория . Пергамон Пресс. ISBN 978-0-7506-3539-4 .
- ^ Линдли, Дэвид (15 мая 2015 г.). «В центре внимания: ориентиры - случайное открытие ведет к стандарту калибровки». Физика . 8:46 . doi : 10.1103/Physics.8.46 .
- ^ Перейти обратно: а б с д Мэттис, Дэниел (2006). Теория магнетизма стала проще . Всемирная научная. ISBN 978-981-238-671-7 .
- ^ Чаттерджи, Сабьясачи (август 2004 г.). «Гейзенберг и ферромагнетизм» . Резонанс . 9 (8): 57–66. дои : 10.1007/BF02837578 . S2CID 123099296 . Проверено 13 июня 2012 г.
- ^ Висинтин, Аугусто (1994). Дифференциальные модели гистерезиса . Спрингер. ISBN 978-3-540-54793-8 .
- ^ Мерали, Зия (2011). «Коллаборативная физика: теория струн находит помощника» . Природа . 478 (7369): 302–304. Бибкод : 2011Natur.478..302M . дои : 10.1038/478302a . ПМИД 22012369 .
- ^ Перейти обратно: а б Коулман, Пирс (2003). «Физика многих тел: незавершенная революция». Анналы Анри Пуанкаре . 4 (2): 559–580. arXiv : cond-mat/0307004 . Бибкод : 2003AnHP....4..559C . CiteSeerX 10.1.1.242.6214 . дои : 10.1007/s00023-003-0943-9 . S2CID 8171617 .
- ^ Каданов, Лео, П. (2009). Фазы материи и фазовые переходы; От теории среднего поля к критическим явлениям (PDF) . Чикагский университет. Архивировано из оригинала (PDF) 31 декабря 2015 г. Проверено 14 июня 2012 г.
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Перейти обратно: а б Коулман, Пирс (2016). Введение в физику многих тел . Издательство Кембриджского университета. ISBN 978-0-521-86488-6 .
- ^ Перейти обратно: а б фон Клитцинг, Клаус (9 декабря 1985 г.). «Квантованный эффект Холла» (PDF) . Нобелевская премия.org . Архивировано (PDF) из оригинала 9 октября 2022 г.
- ^ Перейти обратно: а б Фишер, Майкл Э. (1998). «Теория ренормгруппы: ее основа и формулировка в статистической физике». Обзоры современной физики . 70 (2): 653–681. Бибкод : 1998РвМП...70..653Ф . CiteSeerX 10.1.1.129.3194 . дои : 10.1103/RevModPhys.70.653 .
- ^ Аврон, Джозеф Э.; Осадчий, Даниил; Зайлер, Руди (2003). «Топологический взгляд на квантовый эффект Холла» . Физика сегодня . 56 (8): 38–42. Бибкод : 2003ФТ....56ч..38А . дои : 10.1063/1.1611351 .
- ^ Дэвид Дж. Таулесс (12 марта 1998 г.). Топологические квантовые числа в нерелятивистской физике . Всемирная научная. ISBN 978-981-4498-03-6 .
- ^ Вэнь, Сяо-Ган (1992). «Теория краевых состояний в дробных квантовых эффектах Холла» (PDF) . Международный журнал современной физики C . 6 (10): 1711–1762. Бибкод : 1992IJMPB...6.1711W . CiteSeerX 10.1.1.455.2763 . дои : 10.1142/S0217979292000840 . Архивировано из оригинала (PDF) 22 мая 2005 года . Проверено 14 июня 2012 г.
- ^ Перейти обратно: а б с д Гирвин, Стивен М.; Ян, Кун (28 февраля 2019 г.). Современная физика конденсированного состояния . Издательство Кембриджского университета. ISBN 978-1-108-57347-4 .
- ^ Таулесс, диджей; Кохмото, М.; Найтингейл, депутат парламента; ден Нейс, М. (9 августа 1982 г.). «Квантованная холловская проводимость в двумерном периодическом потенциале» . Письма о физических отзывах . 49 (6): 405–408. Бибкод : 1982PhRvL..49..405T . doi : 10.1103/PhysRevLett.49.405 .
- ^ Кейн, CL; Меле, Э.Дж. (23 ноября 2005 г.). «Квантовый спиновый эффект Холла в графене» . Письма о физических отзывах . 95 (22): 226801. arXiv : cond-mat/0411737 . Бибкод : 2005PhRvL..95v6801K . doi : 10.1103/PhysRevLett.95.226801 . ПМИД 16384250 . S2CID 6080059 .
- ^ Хасан, МЗ; Кейн, CL (08 ноября 2010 г.). «Коллоквиум: Топологические изоляторы» . Обзоры современной физики . 82 (4): 3045–3067. arXiv : 1002.3895 . Бибкод : 2010RvMP...82.3045H . дои : 10.1103/RevModPhys.82.3045 . S2CID 16066223 .
- ^ Беднорц, Дж. Г., Мюллер, К. А. (1986), «Возможная сверхпроводимость с высокой температурой Tc в системе Ba-La-Cu-O», Z. Physik B - Condensed Matter , 64 (2): 189–193, doi : 10.1007/ БФ01303701
{{citation}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Кинтанилья, Хорхе; Хули, Крис (июнь 2009 г.). «Загадка сильной корреляции» (PDF) . Мир физики . 22 (6): 32. Бибкод : 2009PhyW...22f..32Q . дои : 10.1088/2058-7058/22.06.38 . Архивировано из оригинала (PDF) 6 сентября 2012 года . Проверено 14 июня 2012 г.
- ^ Евгения Сэмюэл Райх (2012). «Появляются надежды на экзотический изолятор» . Природа . 492 (7428): 165. Бибкод : 2012Natur.492..165S . дои : 10.1038/492165a . ПМИД 23235853 .
- ^ Дзеро, В.; К. Сан; В. Галицкий; П. Коулман (2010). «Топологические изоляторы Кондо». Письма о физических отзывах . 104 (10): 106408. arXiv : 0912.3750 . Бибкод : 2010PhRvL.104j6408D . doi : 10.1103/PhysRevLett.104.106408 . ПМИД 20366446 . S2CID 119270507 .
- ^ «Понимание возникновения» . Национальный научный фонд . Проверено 30 марта 2012 г.
- ^ Левин, Майкл; Вэнь, Сяо-Ган (2005). «Коллоквиум: Фотоны и электроны как возникающие явления». Обзоры современной физики . 77 (3): 871–879. arXiv : cond-mat/0407140 . Бибкод : 2005РвМП...77..871Л . дои : 10.1103/RevModPhys.77.871 . S2CID 117563047 .
- ^ Перейти обратно: а б Нил В. Эшкрофт; Н. Дэвид Мермин (1976). Физика твердого тела . Колледж Сондерс. ISBN 978-0-03-049346-1 .
- ^ Эккерт, Майкл (2011). «Спорное открытие: начало дифракции рентгеновских лучей в кристаллах в 1912 году и его последствия» . Акта Кристаллографика А. 68 (1): 30–39. Бибкод : 2012AcCrA..68...30E . дои : 10.1107/S0108767311039985 . ПМИД 22186281 .
- ^ Хан, Чон Хун (2010). Физика твердого тела (PDF) . Университет Сунг Кюн Кван. Архивировано из оригинала (PDF) 20 мая 2013 г.
- ^ Перейти обратно: а б Пердью, Джон П.; Ружсински, Адриенн (2010). «Четырнадцать простых уроков теории функционала плотности» (PDF) . Международный журнал квантовой химии . 110 (15): 2801–2807. дои : 10.1002/qua.22829 . Архивировано (PDF) из оригинала 9 октября 2022 г. Проверено 13 мая 2012 г.
- ^ Намбу, Ёитиро (8 декабря 2008 г.). «Спонтанное нарушение симметрии в физике элементарных частиц: случай перекрестного оплодотворения» . Нобелевская премия.org .
- ^ Грейтер, Мартин (16 марта 2005 г.). «Нарушается ли электромагнитная калибровочная инвариантность в сверхпроводниках?». Анналы физики . 319 (2005): 217–249. arXiv : cond-mat/0503400 . Бибкод : 2005АнФиз.319..217Г . дои : 10.1016/j.aop.2005.03.008 . S2CID 55104377 .
- ^ Лейтвайлер, Х. (1997). «Фононы как бозоны Голдстоуна». Хелв. Физ. Акта . 70 (1997): 275–286. arXiv : hep-ph/9609466 . Бибкод : 1996hep.ph....9466L .
- ^ Перейти обратно: а б Войта, Матиас (2003). «Квантовые фазовые переходы». Отчеты о прогрессе в физике . 66 (12): 2069–2110. arXiv : cond-mat/0309604 . Бибкод : 2003РПФ...66.2069В . CiteSeerX 10.1.1.305.3880 . дои : 10.1088/0034-4885/66/12/R01 . S2CID 15806867 .
- ^ Перейти обратно: а б с д Физика конденсированного состояния, Физика 1990-х годов . Национальный исследовательский совет. 1986. дои : 10.17226/626 . ISBN 978-0-309-03577-4 .
- ^ Малкольм Ф. Коллинз, профессор физики Университета Макмастера (2 марта 1989 г.). Магнитное критическое рассеяние . Издательство Оксфордского университета, США. ISBN 978-0-19-536440-8 .
- ^ Ричардсон, Роберт С. (1988). Экспериментальные методы в физике конденсированного состояния при низких температурах . Аддисон-Уэсли. ISBN 978-0-201-15002-5 .
- ^ Перейти обратно: а б Чайкин, ПМ; Лубенский, ТК (1995). Основы физики конденсированного состояния . Издательство Кембриджского университета. ISBN 978-0-521-43224-5 .
- ^ Вэньтао Чжан (22 августа 2012 г.). Фотоэмиссионная спектроскопия высокотемпературного сверхпроводника: исследование Bi2Sr2CaCu2O8 методом лазерной фотоэмиссии с угловым разрешением . Springer Science & Business Media. ISBN 978-3-642-32472-7 .
- ^ Сигел, RW (1980). «Спектроскопия позитронной аннигиляции». Ежегодный обзор материаловедения . 10 : 393–425. Бибкод : 1980AnRMS..10..393S . дои : 10.1146/annurev.ms.10.080180.002141 .
- ^ Комитет по установкам для физики конденсированного состояния (2004). «Отчет рабочей группы IUPAP по установкам для физики конденсированного состояния: сильные магнитные поля» (PDF) . Международный союз теоретической и прикладной физики. Архивировано из оригинала (PDF) 22 февраля 2014 г. Проверено 7 февраля 2016 г.
Магнитное поле — это не просто спектроскопический инструмент, а термодинамическая переменная, которая наряду с температурой и давлением контролирует состояние, фазовые переходы и свойства материалов.
- ^ Перейти обратно: а б Комитет по оценке текущего состояния и будущего направления науки о сильных магнитных полях в США; Совет по физике и астрономии; Отдел инженерных и физических наук; Национальный исследовательский совет (25 ноября 2013 г.). Наука о сильных магнитных полях и ее применение в Соединенных Штатах: современное состояние и будущие направления . Пресса национальных академий. дои : 10.17226/18355 . ISBN 978-0-309-28634-3 .
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Моултон, В.Г.; Рейес, AP (2006). «Ядерный магнитный резонанс в твердых телах в очень сильных магнитных полях» . В Херлахе, Фриц (ред.). Сильные магнитные поля . Наука и технологии. Всемирная научная. ISBN 978-981-277-488-0 .
- ^ Дуарон-Лейро, Николя; и др. (2007). «Квантовые колебания и поверхность Ферми в недолегированном высокотемпературном сверхпроводнике». Природа . 447 (7144): 565–568. arXiv : 0801.1281 . Бибкод : 2007Natur.447..565D . дои : 10.1038/nature05872 . ПМИД 17538614 . S2CID 4397560 .
- ^ Булута, Юлия; Нори, Франко (2009). «Квантовые симуляторы». Наука . 326 (5949): 108–11. Бибкод : 2009Sci...326..108B . дои : 10.1126/science.1177838 . ПМИД 19797653 . S2CID 17187000 .
- ^ Грейнер, Маркус; Фёллинг, Саймон (2008). «Физика конденсированного состояния: Оптические решетки». Природа . 453 (7196): 736–738. Бибкод : 2008Natur.453..736G . дои : 10.1038/453736a . ПМИД 18528388 . S2CID 4572899 .
- ^ Якш, Д.; Золлер, П. (2005). «Набор инструментов Хаббарда для холодного атома». Анналы физики . 315 (1): 52–79. arXiv : cond-mat/0410614 . Бибкод : 2005АнФиз.315...52J . CiteSeerX 10.1.1.305.9031 . дои : 10.1016/j.aop.2004.09.010 . S2CID 12352119 .
- ^ Гланц, Джеймс (10 октября 2001 г.). «Три исследователя из США получили Нобелевскую премию по физике» . Нью-Йорк Таймс . Проверено 23 мая 2012 г.
- ^ Коулман, Пирс (2015). Введение в физику многих тел . Кембриджское ядро. дои : 10.1017/CBO9781139020916 . ISBN 9780521864886 . Проверено 20 апреля 2020 г.
- ^ «Конденсированная материя» . Физический Пантеон . Проверено 30 ноября 2023 г.
- ^ Комитет по CMMP 2010; Комитет по наукам о твердом теле; Совет по физике и астрономии; Отдел инженерных и физических наук, Национальный исследовательский совет (21 декабря 2007 г.). Физика конденсированного состояния и материалов: наука о мире вокруг нас . Пресса национальных академий. дои : 10.17226/11967 . ISBN 978-0-309-13409-5 .
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) CS1 maint: числовые имена: список авторов ( ссылка ) - ^ Перейти обратно: а б с Да, Най-Чанг (2008). «Перспектива границ современной физики конденсированного состояния» (PDF) . Бюллетень ААППС . 18 (2) . Проверено 19 июня 2018 г.
- ^ Кудернац, Тибор; Руангсупапичат, Ноппорн; Паршау, Манфред; Масиа, Беатрис; Кацонис, Натали; Арутюнян Сюзанна Р.; Эрнст, Карл-Хайнц; Феринга, Бен Л. (1 ноября 2011 г.). «Электрически направленное движение четырехколесной молекулы по металлической поверхности» . Природа . 479 (7372): 208–211. Бибкод : 2011Natur.479..208K . дои : 10.1038/nature10587 . ISSN 1476-4687 . ПМИД 22071765 . S2CID 6175720 .
Дальнейшее чтение
[ редактировать ]- Андерсон, Филип В. (09 марта 2018 г.). Основные понятия физики конденсированного состояния . ЦРК Пресс. ISBN 978-0-429-97374-1 .
- Гирвин, Стивен М.; Ян, Кун (28 февраля 2019 г.). Современная физика конденсированного состояния . Издательство Кембриджского университета. ISBN 978-1-108-57347-4 .
- Коулман, Пирс (2015). Введение в физику многих тел , Издательство Кембриджского университета, ISBN 0-521-86488-7 .
- П.М. Чайкин и Т.Ц. Лубенский (2000). Принципы физики конденсированного состояния , издательство Кембриджского университета; 1-е издание, ISBN 0-521-79450-1
- Александр Альтланд и Бен Саймонс (2006). Теория поля конденсированного состояния , Издательство Кембриджского университета, ISBN 0-521-84508-4 .
- Майкл П. Мардер (2010). Физика конденсированного состояния, второе издание , Джон Уайли и сыновья, ISBN 0-470-61798-5 .
- Лилиан Ходдесон, Эрнест Браун, Юрген Тейхманн и Спенсер Уирт, ред. (1992). Из кристаллического лабиринта: главы из истории физики твердого тела , Oxford University Press, ISBN 0-19-505329-X .
Внешние ссылки
[ редактировать ]- СМИ, связанные с физикой конденсированного состояния, на Викискладе?