Изотопы Ксенона
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Xe) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Природная ксенон ( 54 XE) состоит из семи стабильных изотопов и двух очень долгоживущих изотопов. Двойной электронный захват наблюдался в 124 XE (период полураспада 1,8 ± 0,5 (статистика) ± 0,1 (SYS) × 10 22 годы ) [ 2 ] и двойной бета -распад в 136 XE (период полураспада 2,165 ± 0,016 (стат) ± 0,059 (SYS) × 10 21 годы ), [ 7 ] которые являются одними из самых длинных измеренных полураспада всех нуклидов. Изотопы 126 XE и 134 Также прогнозируется, что XE пройдет двойное бета -распад, [ 8 ] Но этот процесс никогда не наблюдался в этих изотопах, поэтому они считаются стабильными. [ 9 ] [ 10 ] [ 11 ] Помимо этих стабильных форм, были изучены 32 искусственных нестабильных изотопов и различных изомеров, самые длинные из которых 127 XE с периодом полураспада 36,345 дней. Все остальные изотопы имеют период полураспада менее 12 дней, большинство менее 20 часов. Самый короткий изотоп, 108 Машина, [ 12 ] имеет период полураспада 58 мкс и является самым тяжелым известным нуклидом с равным количеством протонов и нейтронов. Из известных изомеров самый длинный 131m XE с периодом полураспада 11,934 дня. 129 XE производится бета -распадом 129 I ( период полураспада : 16 миллионов лет); 131m Машина, 133 Машина, 133 м XE и 135 Xe are some of the fission products of both 235U and 239PU , поэтому используются в качестве показателей ядерных взрывов .
The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Because of this effect, designers must make provisions to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel) over the initial value needed to start the chain reaction. For the same reason, the fission products produced in a nuclear explosion and a power plant differ significantly as a large share of 135
Xe will absorb neutrons in a steady state reactor, while basically none of the 135
I will have had time to decay to xenon before the explosion of the bomb removes it from the neutron radiation.
Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water.[citation needed] The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas 222Rn.
Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the Solar System. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.[13] It has been suggested that the isotopic composition of atmospheric xenon fluctuated prior to the GOE before stabilizing, perhaps as a result of the rise in atmospheric O2.[14]
List of isotopes
[edit]Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 8] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
108Xe[12] [n 9] | 54 | 54 | 58+106 −23 μs |
α | 104Te | 0+ | |||||||||||||
109Xe | 54 | 55 | 13(2) ms | α | 105Te | ||||||||||||||
110Xe | 54 | 56 | 109.94428(14) | 310(190) ms [105+35 −25 ms] |
β+ | 110I | 0+ | ||||||||||||
α | 106Te | ||||||||||||||||||
111Xe | 54 | 57 | 110.94160(33)# | 740(200) ms | β+ (90%) | 111I | 5/2+# | ||||||||||||
α (10%) | 107Te | ||||||||||||||||||
112Xe | 54 | 58 | 111.93562(11) | 2.7(8) s | β+ (99.1%) | 112I | 0+ | ||||||||||||
α (.9%) | 108Te | ||||||||||||||||||
113Xe | 54 | 59 | 112.93334(9) | 2.74(8) s | β+ (92.98%) | 113I | (5/2+)# | ||||||||||||
β+, p (7%) | 112Te | ||||||||||||||||||
α (.011%) | 109Te | ||||||||||||||||||
β+, α (.007%) | 109Sb | ||||||||||||||||||
114Xe | 54 | 60 | 113.927980(12) | 10.0(4) s | β+ | 114I | 0+ | ||||||||||||
115Xe | 54 | 61 | 114.926294(13) | 18(4) s | β+ (99.65%) | 115I | (5/2+) | ||||||||||||
β+, p (.34%) | 114Te | ||||||||||||||||||
β+, α (3×10−4%) | 111Sb | ||||||||||||||||||
116Xe | 54 | 62 | 115.921581(14) | 59(2) s | β+ | 116I | 0+ | ||||||||||||
117Xe | 54 | 63 | 116.920359(11) | 61(2) s | β+ (99.99%) | 117I | 5/2(+) | ||||||||||||
β+, p (.0029%) | 116Te | ||||||||||||||||||
118Xe | 54 | 64 | 117.916179(11) | 3.8(9) min | β+ | 118I | 0+ | ||||||||||||
119Xe | 54 | 65 | 118.915411(11) | 5.8(3) min | β+ | 119I | 5/2(+) | ||||||||||||
120Xe | 54 | 66 | 119.911784(13) | 40(1) min | β+ | 120I | 0+ | ||||||||||||
121Xe | 54 | 67 | 120.911462(12) | 40.1(20) min | β+ | 121I | (5/2+) | ||||||||||||
122Xe | 54 | 68 | 121.908368(12) | 20.1(1) h | EC | 122I | 0+ | ||||||||||||
123Xe | 54 | 69 | 122.908482(10) | 2.08(2) h | β+ | 123I | 1/2+ | ||||||||||||
123mXe | 185.18(22) keV | 5.49(26) μs | 7/2(−) | ||||||||||||||||
124Xe[n 10] | 54 | 70 | 123.905893(2) | 1.8(5 (stat), 1 (sys))×1022 y[2] | Double EC | 124Te | 0+ | 9.52(3)×10−4 | |||||||||||
125Xe | 54 | 71 | 124.9063955(20) | 16.9(2) h | β+ | 125I | 1/2(+) | ||||||||||||
125m1Xe | 252.60(14) keV | 56.9(9) s | IT | 125Xe | 9/2(−) | ||||||||||||||
125m2Xe | 295.86(15) keV | 0.14(3) μs | 7/2(+) | ||||||||||||||||
126Xe | 54 | 72 | 125.904274(7) | Observationally Stable[n 11] | 0+ | 8.90(2)×10−4 | |||||||||||||
127Xe | 54 | 73 | 126.905184(4) | 36.345(3) d | EC | 127I | 1/2+ | ||||||||||||
127mXe | 297.10(8) keV | 69.2(9) s | IT | 127Xe | 9/2− | ||||||||||||||
128Xe | 54 | 74 | 127.9035313(15) | Stable | 0+ | 0.019102(8) | |||||||||||||
129Xe[n 12] | 54 | 75 | 128.9047794(8) | Stable | 1/2+ | 0.264006(82) | |||||||||||||
129mXe | 236.14(3) keV | 8.88(2) d | IT | 129Xe | 11/2− | ||||||||||||||
130Xe | 54 | 76 | 129.9035080(8) | Stable | 0+ | 0.040710(13) | |||||||||||||
131Xe[n 13] | 54 | 77 | 130.9050824(10) | Stable | 3/2+ | 0.212324(30) | |||||||||||||
131mXe | 163.930(8) keV | 11.934(21) d | IT | 131Xe | 11/2− | ||||||||||||||
132Xe[n 13] | 54 | 78 | 131.9041535(10) | Stable | 0+ | 0.269086(33) | |||||||||||||
132mXe | 2752.27(17) keV | 8.39(11) ms | IT | 132Xe | (10+) | ||||||||||||||
133Xe[n 13][n 14] | 54 | 79 | 132.9059107(26) | 5.2475(5) d | β− | 133Cs | 3/2+ | ||||||||||||
133mXe | 233.221(18) keV | 2.19(1) d | IT | 133Xe | 11/2− | ||||||||||||||
134Xe[n 13] | 54 | 80 | 133.9053945(9) | Observationally Stable[n 15] | 0+ | 0.104357(21) | |||||||||||||
134m1Xe | 1965.5(5) keV | 290(17) ms | IT | 134Xe | 7− | ||||||||||||||
134m2Xe | 3025.2(15) keV | 5(1) μs | (10+) | ||||||||||||||||
135Xe[n 16] | 54 | 81 | 134.907227(5) | 9.14(2) h | β− | 135Cs | 3/2+ | ||||||||||||
135mXe | 526.551(13) keV | 15.29(5) min | IT (99.99%) | 135Xe | 11/2− | ||||||||||||||
β− (.004%) | 135Cs | ||||||||||||||||||
136Xe[n 10] | 54 | 82 | 135.907219(8) | 2.165(16 (stat), 59 (sys))×1021 y[7] | β−β− | 136Ba | 0+ | 0.088573(44) | |||||||||||
136mXe | 1891.703(14) keV | 2.95(9) μs | 6+ | ||||||||||||||||
137Xe | 54 | 83 | 136.911562(8) | 3.818(13) min | β− | 137Cs | 7/2− | ||||||||||||
138Xe | 54 | 84 | 137.91395(5) | 14.08(8) min | β− | 138Cs | 0+ | ||||||||||||
139Xe | 54 | 85 | 138.918793(22) | 39.68(14) s | β− | 139Cs | 3/2− | ||||||||||||
140Xe | 54 | 86 | 139.92164(7) | 13.60(10) s | β− | 140Cs | 0+ | ||||||||||||
141Xe | 54 | 87 | 140.92665(10) | 1.73(1) s | β− (99.45%) | 141Cs | 5/2(−#) | ||||||||||||
β−, n (.043%) | 140Cs | ||||||||||||||||||
142Xe | 54 | 88 | 141.92971(11) | 1.22(2) s | β− (99.59%) | 142Cs | 0+ | ||||||||||||
β−, n (.41%) | 141Cs | ||||||||||||||||||
143Xe | 54 | 89 | 142.93511(21)# | 0.511(6) s | β− | 143Cs | 5/2− | ||||||||||||
144Xe | 54 | 90 | 143.93851(32)# | 0.388(7) s | β− | 144Cs | 0+ | ||||||||||||
β−, n | 143Cs | ||||||||||||||||||
145Xe | 54 | 91 | 144.94407(32)# | 188(4) ms | β− | 145Cs | (3/2−)# | ||||||||||||
146Xe | 54 | 92 | 145.94775(43)# | 146(6) ms | β− | 146Cs | 0+ | ||||||||||||
147Xe | 54 | 93 | 146.95356(43)# | 130(80) ms [0.10(+10−5) s] |
β− | 147Cs | 3/2−# | ||||||||||||
β−, n | 146Cs | ||||||||||||||||||
148Xe | 54 | 94 | 85(15) ms | β− | 148Cs | 0+ | |||||||||||||
149Xe | 54 | 95 | 50 ms# | 3/2−# | |||||||||||||||
150Xe | 54 | 96 | 40 ms# | 0+ | |||||||||||||||
This table header & footer: |
- ^ mXe – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^ Heaviest known isotope with equal numbers of protons and neutrons
- ^ Jump up to: a b Primordial radionuclide
- ^ Suspected of undergoing β+β+ decay to 126Te
- ^ Used in a method of radiodating groundwater and to infer certain events in the Solar System's history
- ^ Jump up to: a b c d Fission product
- ^ Has medical uses
- ^ Theoretically capable of undergoing β−β− decay to 134Ba with a half-life over 2.8×1022 years[11]
- ^ Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information
- The isotopic composition refers to that in air.
Xenon-124
[edit]Xenon-124 is an isotope of xenon that undergoes double electron capture to tellurium-124 with a very long half-life of 1.8×1022 years, more than 12 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). Such decays have been observed in the XENON1T detector in 2019, and are the rarest processes ever directly observed.[15] (Even slower decays of other nuclei have been measured, but by detecting decay products that have accumulated over billions of years rather than observing them directly.[16])
Xenon-133
[edit]General | |
---|---|
Symbol | 133Xe |
Names | xenon-133, 133Xe, Xe-133 |
Protons (Z) | 54 |
Neutrons (N) | 79 |
Nuclide data | |
Natural abundance | syn |
Half-life (t1/2) | 5.243(1) d |
Isotope mass | 132.9059107 Da |
Spin | 3/2+ |
Decay products | 133Cs |
Decay modes | |
Decay mode | Decay energy (MeV) |
Beta− | 0.427 |
Isotopes of xenon Complete table of nuclides |
Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03 (WHO)) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs.[17] It is also used to image blood flow, particularly in the brain.[18] 133Xe is also an important fission product.[citation needed] It is discharged to the atmosphere in small quantities by some nuclear power plants.[19]
Xenon-135
[edit]Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron-absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns[20]). The overall yield of xenon-135 from fission is 6.3%, though most of this results from the radioactive decay of fission-produced tellurium-135 and iodine-135. Xe-135 exerts a significant effect on nuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.[19]
Xenon-136
[edit]Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11×1021 years, more than 10 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.
See also
[edit]References
[edit]- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Jump up to: a b c "Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4.
- ^ Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502.
- ^ Redshaw, M.; Wingfield, E.; McDaniel, J.; Myers, E. (2007). "Mass and Double-Beta-Decay Q Value of 136Xe". Physical Review Letters. 98 (5): 53003. Bibcode:2007PhRvL..98e3003R. doi:10.1103/PhysRevLett.98.053003.
- ^ "Standard Atomic Weights: Xenon". CIAAW. 1999.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Jump up to: a b Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89 (1): 015502. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502. Archived from the original on 2023-06-13. Retrieved 2023-01-24.
- ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
- ^ Status of ββ-decay in Xenon, Roland Lüscher, accessed online September 17, 2007. Archived September 27, 2007, at the Wayback Machine
- ^ Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of 134Xe, 126Xe, and 124Xe with large scale Xe detectors". Journal of Physics G. 41 (11): 115105–1–115105–12. arXiv:1409.8308. Bibcode:2014JPhG...41k5105B. doi:10.1088/0954-3899/41/11/115105. S2CID 116264328.
- ^ Jump up to: a b Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502). arXiv:2312.15632. doi:10.1103/PhysRevLett.132.152502.
- ^ Jump up to: a b Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.
- ^ Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth". Science. 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897. S2CID 28159702.
- ^ Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T.; Komiya, T.; Shibuya, T.; Marty, B. (2022). "The end of the isotopic evolution of atmospheric xenon". Geochemical Perspectives Letters. 20: 43–47. Bibcode:2022GChPL..20...43A. doi:10.7185/geochemlet.2207. S2CID 247399987.
- ^ David Nield (26 Apr 2019). "A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science".
- ^ Хеннек, Эдвард В.; Мануэль, ОК; Сабу, Дварка Д. (1975). «Двойной бета -распад TE 128» . Физический обзор c . 11 (4): 1378–1384. doi : 10.1103/physrevc.11.1378 .
- ^ Джонс, RL; Sproule, BJ; Овертон, Т.Р. (1978). «Измерение региональной вентиляции и перфузии легких с помощью XE-133». Журнал ядерной медицины . 19 (10): 1187–1188. PMID 722337 .
- ^ Хоши, Х.; Jinnouchi, S.; Ватанабе, К.; Onishi, T.; Uwada, O.; Накано, с.; Kinoshita, K. (1987). «Визуализация головного кровотока у пациентов с опухолью головного мозга и артерионозным пороком развития с использованием оксима гексаметилпропиленпропиленамина-сравнение с XE-133 и IMP». Каку Игаку . 24 (11): 1617–1623. PMID 3502279 .
- ^ Jump up to: а беременный Выпуски сточных вод от атомных электростанций и мощностей топливного цикла . Национальная академическая пресса (США). 2012-03-29.
- ^ Диаграмма нуклидов 13 -е издание
- Изотопные массы из оценки атомной массы AME2003 от Жоржа Ауди, Алдерта Хендрика Уэпстры, Кэтрин Тибо, Жана Блахот и Оливье Берсиллона в ядерной физике A729 (2003).
- Изотопные композиции и стандартные атомные массы из:
- де Лейтер, Джон Роберт ; Böhlke, Джон Карл; Де Бивра, Пол; Хидака, Хироши; Пейзер, Х. Штеффен; Росман, Кевин младший; Тейлор, Филипп Д.П. (2003). «Атомные веса элементов. Обзор 2000 (технический отчет IUPAC)» . Чистая и прикладная химия . 75 (6): 683–800. doi : 10.1351/pac200375060683 .
- Визер, Майкл Э. (2006). «Атомные веса элементов 2005 года (технический отчет IUPAC)» . Чистая и прикладная химия . 78 (11): 2051–2066. doi : 10.1351/pac200678112051 .
- «Новости и уведомления: стандартные атомные веса пересмотрены» . Международный союз чистой и прикладной химии . 19 октября 2005 г.
- Данные полураспада, спин и изомер, выбранные из следующих источников.
- Audi, Жорж; Берсильон, Оливье; Блахто, Джин; Wapstra, Aaldert Hendrik (2003), «Оценка n Ubase ядерных и распадных свойств» , Ядерная физика A , 729 : 3–128, Bibcode : 2003nupha.729 .... 3a , doi : 10.1016/j.nuclphysa.2003.11 .001
- Национальный центр ядерного обращения . «База данных Nudat 2.x» . Брукхейвенская национальная лаборатория .
- Холден, Норман Э. (2004). «11. Таблица изотопов». В Лиде Дэвид Р. (ред.). Справочник по химии и физике CRC (85 -е изд.). Бока Ратон, Флорида : CRC Press . ISBN 978-0-8493-0485-9 .