Jump to content

Интернет вещей

Интернет вещей ( IoT ) описывает устройства с датчиками , возможностями обработки, программным обеспечением и другими технологиями, которые соединяются и обмениваются данными с другими устройствами и системами через Интернет или другие сети связи. [1] [2] [3] [4] [5] Интернет вещей охватывает электронику , связь и информатику . Термин «Интернет вещей» считается неправильным, поскольку устройствам не требуется подключение к общедоступному Интернету ; их нужно только подключить к сети [6] и быть индивидуально адресуемыми. [7] [8]

Эта область развивалась благодаря конвергенции множества технологий , включая повсеместные вычисления , обычные датчики и все более мощные встроенные системы , а также машинное обучение . [9] Старые области встроенных систем , беспроводных сенсорных сетей , систем управления, автоматизации (включая автоматизацию дома и зданий ) независимо и коллективно обеспечивают Интернет вещей. [10] На потребительском рынке технология Интернета вещей больше всего ассоциируется с « умного дома продуктами », включая устройства и приборы ( осветительные приборы , термостаты домашней , системы безопасности , камеры и другая бытовая техника), которые поддерживают одну или несколько общих экосистем и могут управляться через устройства, связанные с этой экосистемой, такие как смартфоны и интеллектуальные колонки . Интернет вещей также используется в системах здравоохранения . [11]

There are a number of concerns about the risks in the growth of IoT technologies and products, especially in the areas of privacy and security, and consequently there have been industry and government moves to address these concerns, including the development of international and local standards, guidelines, and regulatory frameworks.[12] Because of their interconnected nature, IoT devices are vulnerable to security breaches and privacy concerns. At the same time, the way these devices communicate wirelessly creates regulatory ambiguities, complicating jurisdictional boundaries of the data transfer.[13]

History[edit]

The main concept of a network of smart devices was discussed as early as 1982, with a modified Coca-Cola vending machine at Carnegie Mellon University becoming the first ARPANET-connected appliance,[14] able to report its inventory and whether newly loaded drinks were cold or not.[15] Mark Weiser's 1991 paper on ubiquitous computing, "The Computer of the 21st Century", as well as academic venues such as UbiComp and PerCom produced the contemporary vision of the IoT.[16][17] In 1994, Reza Raji described the concept in IEEE Spectrum as "[moving] small packets of data to a large set of nodes, so as to integrate and automate everything from home appliances to entire factories".[18] Between 1993 and 1997, several companies proposed solutions like Microsoft's at Work or Novell's NEST. The field gained momentum when Bill Joy envisioned device-to-device communication as a part of his "Six Webs" framework, presented at the World Economic Forum at Davos in 1999.[19]

The concept of the "Internet of things" and the term itself, first appeared in a speech by Peter T. Lewis, to the Congressional Black Caucus Foundation 15th Annual Legislative Weekend in Washington, D.C., published in September 1985.[20] According to Lewis, "The Internet of Things, or IoT, is the integration of people, processes and technology with connectable devices and sensors to enable remote monitoring, status, manipulation and evaluation of trends of such devices."[21]

The term "Internet of things" was coined independently by Kevin Ashton of Procter & Gamble, later of MIT's Auto-ID Center, in 1999,[22] though he prefers the phrase "Internet for things".[23] At that point, he viewed radio-frequency identification (RFID) as essential to the Internet of things,[24] which would allow computers to manage all individual things.[25][26][27] The main theme of the Internet of things is to embed short-range mobile transceivers in various gadgets and daily necessities to enable new forms of communication between people and things, and between things themselves.[28]

In 2004 Cornelius "Pete" Peterson, CEO of NetSilicon, predicted that, "The next era of information technology will be dominated by [IoT] devices, and networked devices will ultimately gain in popularity and significance to the extent that they will far exceed the number of networked computers and workstations." Peterson believed that medical devices and industrial controls would become dominant applications of the technology.[29]

Defining the Internet of things as "simply the point in time when more 'things or objects' were connected to the Internet than people", Cisco Systems estimated that the IoT was "born" between 2008 and 2009, with the things/people ratio growing from 0.08 in 2003 to 1.84 in 2010.[30]

Applications[edit]

The extensive set of applications for IoT devices[31] is often divided into consumer, commercial, industrial, and infrastructure spaces.[32][33]

Consumers[edit]

A growing portion of IoT devices is created for consumer use, including connected vehicles, home automation, wearable technology, connected health, and appliances with remote monitoring capabilities.[34]

Home automation[edit]

IoT devices are a part of the larger concept of home automation, which can include lighting, heating and air conditioning, media and security systems and camera systems.[35][36] Long-term benefits could include energy savings by automatically ensuring lights and electronics are turned off or by making the residents in the home aware of usage.[37]

A smart home or automated home could be based on a platform or hubs that control smart devices and appliances.[38] For instance, using Apple's HomeKit, manufacturers can have their home products and accessories controlled by an application in iOS devices such as the iPhone and the Apple Watch.[39][40] This could be a dedicated app or iOS native applications such as Siri.[41] This can be demonstrated in the case of Lenovo's Smart Home Essentials, which is a line of smart home devices that are controlled through Apple's Home app or Siri without the need for a Wi-Fi bridge.[41] There are also dedicated smart home hubs that are offered as standalone platforms to connect different smart home products. These include the Amazon Echo, Google Home, Apple's HomePod, and Samsung's SmartThings Hub.[42] In addition to the commercial systems, there are many non-proprietary, open source ecosystems, including Home Assistant, OpenHAB and Domoticz.[43]

Elder care[edit]

One key application of a smart home is to assist the elderly and disabled. These home systems use assistive technology to accommodate an owner's specific disabilities.[44] Voice control can assist users with sight and mobility limitations while alert systems can be connected directly to cochlear implants worn by hearing-impaired users.[45] They can also be equipped with additional safety features, including sensors that monitor for medical emergencies such as falls or seizures.[46] Smart home technology applied in this way can provide users with more freedom and a higher quality of life.[44]

Organizations[edit]

The term "Enterprise IoT" refers to devices used in business and corporate settings. By 2019, it is estimated that the EIoT will account for 9.1 billion devices.[32]

Medical and healthcare[edit]

The Internet of Medical Things (IoMT) is an application of the IoT for medical and health-related purposes, data collection and analysis for research, and monitoring.[47][48][49][50][51] The IoMT has been referenced as "Smart Healthcare",[52] as the technology for creating a digitized healthcare system, connecting available medical resources and healthcare services.[53][54]

IoT devices can be used to enable remote health monitoring and emergency notification systems. These health monitoring devices can range from blood pressure and heart rate monitors to advanced devices capable of monitoring specialized implants, such as pacemakers, Fitbit electronic wristbands, or advanced hearing aids.[55] Some hospitals have begun implementing "smart beds" that can detect when they are occupied and when a patient is attempting to get up. It can also adjust itself to ensure appropriate pressure and support are applied to the patient without the manual interaction of nurses.[47] A 2015 Goldman Sachs report indicated that healthcare IoT devices "can save the United States more than $300 billion in annual healthcare expenditures by increasing revenue and decreasing cost."[56] Moreover, the use of mobile devices to support medical follow-up led to the creation of 'm-health', used analyzed health statistics."[57]

Specialized sensors can also be equipped within living spaces to monitor the health and general well-being of senior citizens, while also ensuring that proper treatment is being administered and assisting people to regain lost mobility via therapy as well.[58] These sensors create a network of intelligent sensors that are able to collect, process, transfer, and analyze valuable information in different environments, such as connecting in-home monitoring devices to hospital-based systems.[52] Other consumer devices to encourage healthy living, such as connected scales or wearable heart monitors, are also a possibility with the IoT.[59] End-to-end health monitoring IoT platforms are also available for antenatal and chronic patients, helping one manage health vitals and recurring medication requirements.[60]

Advances in plastic and fabric electronics fabrication methods have enabled ultra-low cost, use-and-throw IoMT sensors. These sensors, along with the required RFID electronics, can be fabricated on paper or e-textiles for wireless powered disposable sensing devices.[61] Applications have been established for point-of-care medical diagnostics, where portability and low system-complexity is essential.[62]

As of 2018 IoMT was not only being applied in the clinical laboratory industry,[49] but also in the healthcare and health insurance industries. IoMT in the healthcare industry is now permitting doctors, patients, and others, such as guardians of patients, nurses, families, and similar, to be part of a system, where patient records are saved in a database, allowing doctors and the rest of the medical staff to have access to patient information.[63] IoMT in the insurance industry provides access to better and new types of dynamic information. This includes sensor-based solutions such as biosensors, wearables, connected health devices, and mobile apps to track customer behavior. This can lead to more accurate underwriting and new pricing models.[64]

The application of the IoT in healthcare plays a fundamental role in managing chronic diseases and in disease prevention and control. Remote monitoring is made possible through the connection of powerful wireless solutions. The connectivity enables health practitioners to capture patient's data and apply complex algorithms in health data analysis.[65]

Transportation[edit]

Digital variable speed-limit sign

The IoT can assist in the integration of communications, control, and information processing across various transportation systems. Application of the IoT extends to all aspects of transportation systems (i.e., the vehicle,[66] the infrastructure, and the driver or user). Dynamic interaction between these components of a transport system enables inter- and intra-vehicular communication,[67] smart traffic control, smart parking, electronic toll collection systems, logistics and fleet management, vehicle control, safety, and road assistance.[55][68]

V2X communications[edit]

In vehicular communication systems, vehicle-to-everything communication (V2X), consists of three main components: vehicle-to-vehicle communication (V2V), vehicle-to-infrastructure communication (V2I) and vehicle to pedestrian communications (V2P). V2X is the first step to autonomous driving and connected road infrastructure.[69]

Home automation[edit]

IoT devices can be used to monitor and control the mechanical, electrical and electronic systems used in various types of buildings (e.g., public and private, industrial, institutions, or residential)[55] in home automation and building automation systems. In this context, three main areas are being covered in literature:[70]

  • The integration of the Internet with building energy management systems to create energy-efficient and IOT-driven "smart buildings".[70]
  • The possible means of real-time monitoring for reducing energy consumption[37] and monitoring occupant behaviors.[70]
  • The integration of smart devices in the built environment and how they might be used in future applications.[70]

Industrial[edit]

Also known as IIoT, industrial IoT devices acquire and analyze data from connected equipment, operational technology (OT), locations, and people. Combined with operational technology (OT) monitoring devices, IIoT helps regulate and monitor industrial systems.[71] Also, the same implementation can be carried out for automated record updates of asset placement in industrial storage units as the size of the assets can vary from a small screw to the whole motor spare part, and misplacement of such assets can cause a loss of manpower time and money.

Manufacturing[edit]

The IoT can connect various manufacturing devices equipped with sensing, identification, processing, communication, actuation, and networking capabilities.[72] Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control allow IoT to be used for industrial applications and smart manufacturing.[73] IoT intelligent systems enable rapid manufacturing and optimization of new products and rapid response to product demands.[55]

Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IIoT.[74] IoT can also be applied to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability.[75] Industrial management systems can be integrated with smart grids, enabling energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by networked sensors.[55]

In addition to general manufacturing, IoT is also used for processes in the industrialization of construction.[76]

Agriculture[edit]

There are numerous IoT applications in farming[77] such as collecting data on temperature, rainfall, humidity, wind speed, pest infestation, and soil content. This data can be used to automate farming techniques, take informed decisions to improve quality and quantity, minimize risk and waste, and reduce the effort required to manage crops. For example, farmers can now monitor soil temperature and moisture from afar and even apply IoT-acquired data to precision fertilization programs.[78] The overall goal is that data from sensors, coupled with the farmer's knowledge and intuition about his or her farm, can help increase farm productivity, and also help reduce costs.

In August 2018, Toyota Tsusho began a partnership with Microsoft to create fish farming tools using the Microsoft Azure application suite for IoT technologies related to water management. Developed in part by researchers from Kindai University, the water pump mechanisms use artificial intelligence to count the number of fish on a conveyor belt, analyze the number of fish, and deduce the effectiveness of water flow from the data the fish provide.[79] The FarmBeats project[80] from Microsoft Research that uses TV white space to connect farms is also a part of the Azure Marketplace now.[81]

Maritime[edit]

IoT devices are in use to monitor the environments and systems of boats and yachts.[82] Many pleasure boats are left unattended for days in summer, and months in winter so such devices provide valuable early alerts of boat flooding, fire, and deep discharge of batteries. The use of global internet data networks such as Sigfox, combined with long-life batteries, and microelectronics allows the engine rooms, bilge, and batteries to be constantly monitored and reported to connected Android & Apple applications for example.

Infrastructure[edit]

Monitoring and controlling operations of sustainable urban and rural infrastructures like bridges, railway tracks and on- and offshore wind farms is a key application of the IoT.[74] The IoT infrastructure can be used for monitoring any events or changes in structural conditions that can compromise safety and increase risk. The IoT can benefit the construction industry by cost-saving, time reduction, better quality workday, paperless workflow and increase in productivity. It can help in taking faster decisions and saving money in Real-Time Data Analytics. It can also be used for scheduling repair and maintenance activities efficiently, by coordinating tasks between different service providers and users of these facilities.[55] IoT devices can also be used to control critical infrastructure like bridges to provide access to ships. The usage of IoT devices for monitoring and operating infrastructure is likely to improve incident management and emergency response coordination, and quality of service, up-times and reduce costs of operation in all infrastructure-related areas.[83] Even areas such as waste management can benefit[84] from automation and optimization that could be brought in by the IoT.[citation needed]

Metropolitan scale deployments[edit]

There are several planned or ongoing large-scale deployments of the IoT, to enable better management of cities and systems. For example, Songdo, South Korea, the first of its kind fully equipped and wired smart city, is gradually being built[when?], with approximately 70 percent of the business district completed as of June 2018. Much of the city is planned to be wired and automated, with little or no human intervention.[85]

Another application is currently[when?] undergoing a project in Santander, Spain. For this deployment, two approaches have been adopted. This city of 180,000 inhabitants has already seen 18,000 downloads of its city smartphone app. The app is connected to 10,000 sensors that enable services like parking search, and environmental monitoring. City context information is used in this deployment so as to benefit merchants through a spark deals mechanism based on city behavior that aims at maximizing the impact of each notification.[86]

Other examples of large-scale deployments underway include the Sino-Singapore Guangzhou Knowledge City;[87] work on improving air and water quality, reducing noise pollution, and increasing transportation efficiency in San Jose, California;[88] and smart traffic management in western Singapore.[89] Using its RPMA (Random Phase Multiple Access) technology, San Diego-based Ingenu has built a nationwide public network[90] for low-bandwidth data transmissions using the same unlicensed 2.4 gigahertz spectrum as Wi-Fi. Ingenu's "Machine Network" covers more than a third of the US population across 35 major cities including San Diego and Dallas.[91] French company, Sigfox, commenced building an Ultra Narrowband wireless data network in the San Francisco Bay Area in 2014, the first business to achieve such a deployment in the U.S.[92][93] It subsequently announced it would set up a total of 4000 base stations to cover a total of 30 cities in the U.S. by the end of 2016, making it the largest IoT network coverage provider in the country thus far.[94][95] Cisco also participates in smart cities projects. Cisco has deployed technologies for Smart Wi-Fi, Smart Safety & Security, Smart Lighting, Smart Parking, Smart Transports, Smart Bus Stops, Smart Kiosks, Remote Expert for Government Services (REGS) and Smart Education in the five km area in the city of Vijaywada, India.[96][97]

Another example of a large deployment is the one completed by New York Waterways in New York City to connect all the city's vessels and be able to monitor them live 24/7. The network was designed and engineered by Fluidmesh Networks, a Chicago-based company developing wireless networks for critical applications. The NYWW network is currently providing coverage on the Hudson River, East River, and Upper New York Bay. With the wireless network in place, NY Waterway is able to take control of its fleet and passengers in a way that was not previously possible. New applications can include security, energy and fleet management, digital signage, public Wi-Fi, paperless ticketing and others.[98]

Energy management[edit]

Significant numbers of energy-consuming devices (e.g. lamps, household appliances, motors, pumps, etc.) already integrate Internet connectivity, which can allow them to communicate with utilities not only to balance power generation but also helps optimize the energy consumption as a whole.[55] These devices allow for remote control by users, or central management via a cloud-based interface, and enable functions like scheduling (e.g., remotely powering on or off heating systems, controlling ovens, changing lighting conditions etc.).[55] The smart grid is a utility-side IoT application; systems gather and act on energy and power-related information to improve the efficiency of the production and distribution of electricity.[99] Using advanced metering infrastructure (AMI) Internet-connected devices, electric utilities not only collect data from end-users, but also manage distribution automation devices like transformers.[55]

Environmental monitoring[edit]

Environmental monitoring applications of the IoT typically use sensors to assist in environmental protection[100] by monitoring air or water quality,[101] atmospheric or soil conditions,[102] and can even include areas like monitoring the movements of wildlife and their habitats.[103] Development of resource-constrained devices connected to the Internet also means that other applications like earthquake or tsunami early-warning systems can also be used by emergency services to provide more effective aid. IoT devices in this application typically span a large geographic area and can also be mobile.[55] It has been argued that the standardization that IoT brings to wireless sensing will revolutionize this area.[104]

Living Lab

Another example of integrating the IoT is Living Lab which integrates and combines research and innovation processes, establishing within a public-private-people-partnership.[105] Between 2006 and January 2024, there were over 440 Living Labs (though not all are currently active)[106] that use the IoT to collaborate and share knowledge between stakeholders to co-create innovative and technological products. For companies to implement and develop IoT services for smart cities, they need to have incentives. The governments play key roles in smart city projects as changes in policies will help cities to implement the IoT which provides effectiveness, efficiency, and accuracy of the resources that are being used. For instance, the government provides tax incentives and cheap rent, improves public transports, and offers an environment where start-up companies, creative industries, and multinationals may co-create, share a common infrastructure and labor markets, and take advantage of locally embedded technologies, production process, and transaction costs.[105]

Military[edit]

The Internet of Military Things (IoMT) is the application of IoT technologies in the military domain for the purposes of reconnaissance, surveillance, and other combat-related objectives. It is heavily influenced by the future prospects of warfare in an urban environment and involves the use of sensors, munitions, vehicles, robots, human-wearable biometrics, and other smart technology that is relevant on the battlefield.[107]

One of the examples of IOT devices used in the military is Xaver 1000 system. The Xaver 1000 was developed by Israel's Camero Tech, which is the latest in the company's line of "through wall imaging systems". The Xaver line uses millimeter wave (MMW) radar, or radar in the range of 30-300 gigahertz. It is equipped with an AI-based life target tracking system as well as its own 3D 'sense-through-the-wall' technology.[108]

Internet of Battlefield Things[edit]

The Internet of Battlefield Things (IoBT) is a project initiated and executed by the U.S. Army Research Laboratory (ARL) that focuses on the basic science related to the IoT that enhance the capabilities of Army soldiers.[109] In 2017, ARL launched the Internet of Battlefield Things Collaborative Research Alliance (IoBT-CRA), establishing a working collaboration between industry, university, and Army researchers to advance the theoretical foundations of IoT technologies and their applications to Army operations.[110][111]

Ocean of Things[edit]

The Ocean of Things project is a DARPA-led program designed to establish an Internet of things across large ocean areas for the purposes of collecting, monitoring, and analyzing environmental and vessel activity data. The project entails the deployment of about 50,000 floats that house a passive sensor suite that autonomously detect and track military and commercial vessels as part of a cloud-based network.[112]

Product digitalization[edit]

There are several applications of smart or active packaging in which a QR code or NFC tag is affixed on a product or its packaging. The tag itself is passive, however, it contains a unique identifier (typically a URL) which enables a user to access digital content about the product via a smartphone.[113] Strictly speaking, such passive items are not part of the Internet of things, but they can be seen as enablers of digital interactions.[114] The term "Internet of Packaging" has been coined to describe applications in which unique identifiers are used, to automate supply chains, and are scanned on large scale by consumers to access digital content.[115] Authentication of the unique identifiers, and thereby of the product itself, is possible via a copy-sensitive digital watermark or copy detection pattern for scanning when scanning a QR code,[116] while NFC tags can encrypt communication.[117]

Trends and characteristics[edit]

The IoT's major significant trend in recent years[when?] is the explosive growth of devices connected and controlled via the Internet.[118] The wide range of applications for IoT technology mean that the specifics can be very different from one device to the next but there are basic characteristics shared by most.

The IoT creates opportunities for more direct integration of the physical world into computer-based systems, resulting in efficiency improvements, economic benefits, and reduced human exertions.[119][120][121][122]

The number of IoT devices increased 31% year-over-year to 8.4 billion in the year 2017[123] and it is estimated that there will be 30 billion devices by 2020.[118]

Intelligence[edit]

Ambient intelligence and autonomous control are not part of the original concept of the Internet of things. Ambient intelligence and autonomous control do not necessarily require Internet structures, either. However, there is a shift in research (by companies such as Intel) to integrate the concepts of the IoT and autonomous control, with initial outcomes towards this direction considering objects as the driving force for autonomous IoT.[124] An approach in this context is deep reinforcement learning where most of IoT systems provide a dynamic and interactive environment.[125] Training an agent (i.e., IoT device) to behave smartly in such an environment cannot be addressed by conventional machine learning algorithms such as supervised learning. By reinforcement learning approach, a learning agent can sense the environment's state (e.g., sensing home temperature), perform actions (e.g., turn HVAC on or off) and learn through the maximizing accumulated rewards it receives in long term.

IoT intelligence can be offered at three levels: IoT devices, Edge/Fog nodes, and cloud computing.[126] The need for intelligent control and decision at each level depends on the time sensitiveness of the IoT application. For example, an autonomous vehicle's camera needs to make real-time obstacle detection to avoid an accident. This fast decision making would not be possible through transferring data from the vehicle to cloud instances and return the predictions back to the vehicle. Instead, all the operation should be performed locally in the vehicle. Integrating advanced machine learning algorithms including deep learning into IoT devices is an active research area to make smart objects closer to reality. Moreover, it is possible to get the most value out of IoT deployments through analyzing IoT data, extracting hidden information, and predicting control decisions. A wide variety of machine learning techniques have been used in IoT domain ranging from traditional methods such as regression, support vector machine, and random forest to advanced ones such as convolutional neural networks, LSTM, and variational autoencoder.[127][126]

In the future, the Internet of things may be a non-deterministic and open network in which auto-organized or intelligent entities (web services, SOA components) and virtual objects (avatars) will be interoperable and able to act independently (pursuing their own objectives or shared ones) depending on the context, circumstances or environments. Autonomous behavior through the collection and reasoning of context information as well as the object's ability to detect changes in the environment (faults affecting sensors) and introduce suitable mitigation measures constitutes a major research trend,[128] clearly needed to provide credibility to the IoT technology. Modern IoT products and solutions in the marketplace use a variety of different technologies to support such context-aware automation, but more sophisticated forms of intelligence are requested to permit sensor units and intelligent cyber-physical systems to be deployed in real environments.[129]

Architecture[edit]

IoT system architecture, in its simplistic view, consists of three tiers: Tier 1: Devices, Tier 2: the Edge Gateway, and Tier 3: the Cloud.[130] Devices include networked things, such as the sensors and actuators found in IoT equipment, particularly those that use protocols such as Modbus, Bluetooth, Zigbee, or proprietary protocols, to connect to an Edge Gateway.[130] The Edge Gateway layer consists of sensor data aggregation systems called Edge Gateways that provide functionality, such as pre-processing of the data, securing connectivity to cloud, using systems such as WebSockets, the event hub, and, even in some cases, edge analytics or fog computing.[130] Edge Gateway layer is also required to give a common view of the devices to the upper layers to facilitate in easier management. The final tier includes the cloud application built for IoT using the microservices architecture, which are usually polyglot and inherently secure in nature using HTTPS/OAuth. It includes various database systems that store sensor data, such as time series databases or asset stores using backend data storage systems (e.g. Cassandra, PostgreSQL).[130] The cloud tier in most cloud-based IoT system features event queuing and messaging system that handles communication that transpires in all tiers.[131] Some experts classified the three-tiers in the IoT system as edge, platform, and enterprise and these are connected by proximity network, access network, and service network, respectively.[132]

Building on the Internet of things, the web of things is an architecture for the application layer of the Internet of things looking at the convergence of data from IoT devices into Web applications to create innovative use-cases. In order to program and control the flow of information in the Internet of things, a predicted architectural direction is being called BPM Everywhere which is a blending of traditional process management with process mining and special capabilities to automate the control of large numbers of coordinated devices.[citation needed]

Network architecture[edit]

The Internet of things requires huge scalability in the network space to handle the surge of devices.[133] IETF 6LoWPAN can be used to connect devices to IP networks. With billions of devices[134] being added to the Internet space, IPv6 will play a major role in handling the network layer scalability. IETF's Constrained Application Protocol, ZeroMQ, and MQTT can provide lightweight data transport. In practice many groups of IoT devices are hidden behind gateway nodes and may not have unique addresses. Also the vision of everything-interconnected is not needed for most applications as it is mainly the data which need interconnecting at a higher layer.[citation needed]

Fog computing is a viable alternative to prevent such a large burst of data flow through the Internet.[135] The edge devices' computation power to analyze and process data is extremely limited. Limited processing power is a key attribute of IoT devices as their purpose is to supply data about physical objects while remaining autonomous. Heavy processing requirements use more battery power harming IoT's ability to operate. Scalability is easy because IoT devices simply supply data through the internet to a server with sufficient processing power.[136]

Decentralized IoT[edit]

Decentralized Internet of things, or decentralized IoT, is a modified IoT which utilizes fog computing to handle and balance requests of connected IoT devices in order to reduce loading on the cloud servers and improve responsiveness for latency-sensitive IoT applications like vital signs monitoring of patients, vehicle-to-vehicle communication of autonomous driving, and critical failure detection of industrial devices.[137] Performance is improved, especially for huge IoT systems with millions of nodes.[138]

Conventional IoT is connected via a mesh network and led by a major head node (centralized controller).[139] The head node decides how a data is created, stored, and transmitted.[140] In contrast, decentralized IoT attempts to divide IoT systems into smaller divisions.[141] The head node authorizes partial decision-making power to lower level sub-nodes under mutual agreed policy.[142]

Some approached to decentralized IoT attempts to address the limited bandwidth and hashing capacity of battery powered or wireless IoT devices via blockchain.[143][144][145]

Complexity[edit]

In semi-open or closed loops (i.e., value chains, whenever a global finality can be settled) the IoT will often be considered and studied as a complex system[146] due to the huge number of different links, interactions between autonomous actors, and its capacity to integrate new actors. At the overall stage (full open loop) it will likely be seen as a chaotic environment (since systems always have finality). As a practical approach, not all elements on the Internet of things run in a global, public space. Subsystems are often implemented to mitigate the risks of privacy, control and reliability. For example, domestic robotics (domotics) running inside a smart home might only share data within and be available via a local network.[147] Managing and controlling a high dynamic ad hoc IoT things/devices network is a tough task with the traditional networks architecture, Software Defined Networking (SDN) provides the agile dynamic solution that can cope with the special requirements of the diversity of innovative IoT applications.[148][149]

Size considerations[edit]

The exact scale of the Internet of things is unknown, with quotes of billions or trillions often quoted at the beginning of IoT articles. In 2015 there were 83 million smart devices in people's homes. This number is expected to grow to 193 million devices by 2020.[36][150]

The figure of online capable devices grew 31% from 2016 to 2017 to reach 8.4 billion.[123]

Space considerations[edit]

In the Internet of things, the precise geographic location of a thing—and also the precise geographic dimensions of a thing—can be critical.[151] Therefore, facts about a thing, such as its location in time and space, have been less critical to track because the person processing the information can decide whether or not that information was important to the action being taken, and if so, add the missing information (or decide to not take the action). (Note that some things on the Internet of things will be sensors, and sensor location is usually important.[152]) The GeoWeb and Digital Earth are applications that become possible when things can become organized and connected by location. However, the challenges that remain include the constraints of variable spatial scales, the need to handle massive amounts of data, and an indexing for fast search and neighbour operations. On the Internet of things, if things are able to take actions on their own initiative, this human-centric mediation role is eliminated. Thus, the time-space context that we as humans take for granted must be given a central role in this information ecosystem. Just as standards play a key role on the Internet and the Web, geo-spatial standards will play a key role on the Internet of things.[153][154]

A solution to "basket of remotes"[edit]

Many IoT devices have the potential to take a piece of this market. Jean-Louis Gassée (Apple initial alumni team, and BeOS co-founder) has addressed this topic in an article on Monday Note,[155] where he predicts that the most likely problem will be what he calls the "basket of remotes" problem, where we'll have hundreds of applications to interface with hundreds of devices that don't share protocols for speaking with one another.[155] For improved user interaction, some technology leaders are joining forces to create standards for communication between devices to solve this problem. Others are turning to the concept of predictive interaction of devices, "where collected data is used to predict and trigger actions on the specific devices" while making them work together.[156]

Social Internet of things[edit]

Social Internet of things (SIoT) is a new kind of IoT that focuses the importance of social interaction and relationship between IoT devices.[157] SIoT is a pattern of how cross-domain IoT devices enabling application to application communication and collaboration without human intervention in order to serve their owners with autonomous services,[158] and this only can be realized when gained low-level architecture support from both IoT software and hardware engineering.[159]

Social Network for IoT Devices (Not Human)[edit]

IoT defines a device with an identity like a citizen in a community and connect them to the internet to provide services to its users.[160] SIoT defines a social network for IoT devices only to interact with each other for different goals that to serve human.[161]

How is SIoT different from IoT?[edit]

SIoT is different from the original IoT in terms of the collaboration characteristics. IoT is passive, it was set to serve for dedicated purposes with existing IoT devices in predetermined system. SIoT is active, it was programmed and managed by AI to serve for unplanned purposes with mix and match of potential IoT devices from different systems that benefit its users.[162]

How does SIoT Work?[edit]

IoT devices built-in with sociability will broadcast their abilities or functionalities, and at the same time discovers, shares information, monitors, navigates and groups with other IoT devices in the same or nearby network realizing SIoT [163] and facilitating useful service compositions in order to help its users proactively in every day's life especially during emergency.[164]

Social IoT Examples[edit]

  1. IoT-based smart home technology monitors health data of patients or aging adults by analyzing their physiological parameters and prompt the nearby health facilities when emergency medical services needed.[165] In case emergency, automatically, ambulance of a nearest available hospital will be called with pickup location provided, ward assigned, patient's health data will be transmitted to the emergency department, and display on the doctor's computer immediately for further action.[166]
  2. IoT sensors on the vehicles, road and traffic lights monitor the conditions of the vehicles and drivers and alert when attention needed and also coordinate themselves automatically to ensure autonomous driving is working normally. Unfortunately if an accident happens, IoT camera will inform the nearest hospital and police station for help.[167]

Social IoT Challenges[edit]

  1. Internet of things is multifaceted and complicated.[168] One of the main factors that hindering people from adopting and use Internet of things (IoT) based products and services is its complexity.[169] Installation and setup is a challenge to people, therefore, there is a need for IoT devices to mix match and configure themselves automatically to provide different services at different situation.[170]
  2. System security always a concern for any technology, and it is more crucial for SIoT as not only security of oneself need to be considered but also the mutual trust mechanism between collaborative IoT devices from time to time, from place to place.[159]
  3. Another critical challenge for SIoT is the accuracy and reliability of the sensors. At most of the circumstances, IoT sensors would need to respond in nanoseconds to avoid accidents, injury, and loss of life.[159]

Enabling technologies[edit]

There are many technologies that enable the IoT. Crucial to the field is the network used to communicate between devices of an IoT installation, a role that several wireless or wired technologies may fulfill:[171][172][173]

Addressability[edit]

The original idea of the Auto-ID Center is based on RFID-tags and distinct identification through the Electronic Product Code. This has evolved into objects having an IP address or URI.[174] An alternative view, from the world of the Semantic Web[175] focuses instead on making all things (not just those electronic, smart, or RFID-enabled) addressable by the existing naming protocols, such as URI. The objects themselves do not converse, but they may now be referred to by other agents, such as powerful centralised servers acting for their human owners.[176] Integration with the Internet implies that devices will use an IP address as a distinct identifier. Due to the limited address space of IPv4 (which allows for 4.3 billion different addresses), objects in the IoT will have to use the next generation of the Internet protocol (IPv6) to scale to the extremely large address space required.[177][178][179]Internet-of-things devices additionally will benefit from the stateless address auto-configuration present in IPv6,[180] as it reduces the configuration overhead on the hosts,[178] and the IETF 6LoWPAN header compression. To a large extent, the future of the Internet of things will not be possible without the support of IPv6; and consequently, the global adoption of IPv6 in the coming years will be critical for the successful development of the IoT in the future.[179]

Application Layer[edit]

  • ADRC defines an application layer protocol and supporting framework for implementing IoT applications.

Short-range wireless[edit]

Medium-range wireless[edit]

  • LTE-Advanced – High-speed communication specification for mobile networks. Provides enhancements to the LTE standard with extended coverage, higher throughput, and lower latency.
  • 5G – 5G wireless networks can be used to achieve the high communication requirements of the IoT and connect a large number of IoT devices, even when they are on the move.[181] There are three features of 5G that are each considered to be useful for supporting particular elements of IoT: enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable low latency communications (URLLC).[182]
  • LoRa: Range up to 3 miles (4.8 km) in urban areas, and up to 10 miles (16 km) or more in rural areas (line of sight).
  • DASH7: Range of up to 2 km.

Long-range wireless[edit]

Wired[edit]

Comparison of technologies by layer[edit]

Different technologies have different roles in a protocol stack. Below is a simplified[notes 1] presentation of the roles of several popular communication technologies in IoT applications:

PhysicalLink / MACNetworkTransportApplication
Bluetooth LE[183]YesYesYesYesYes
Z-Wave[184]NoNoYesYesYes
ITU-T G.9959[185]YesYesNoNoNo
Zigbee[186]NoNoYesYesYes
Matter[187]NoNoNoNoYes
TCP[188] and UDP[189]NoNoNoYesNo
Thread[190]NoNoYesNoNo
IEEE 802.15.4[191]YesYesNoNoNo
IPv6[192]NoNoYesNoNo
Ethernet[193]YesYesNoNoNo
Wi-Fi[194]YesYesNoNoNo

Standards and standards organizations[edit]

This is a list of technical standards for the IoT, most of which are open standards, and the standards organizations that aspire to successfully setting them.[195][196]

Short nameLong nameStandards under developmentOther notes
Auto-ID LabsAuto Identification CenterNetworked RFID (radiofrequency identification) and emerging sensing technologies
Connected Home over IPProject Connected Home over IPConnected Home over IP (or Project Connected Home over IP) is an open-sourced, royalty-free home automation connectivity standard project which features compatibility among different smart home and Internet of things (IoT) products and softwareThe Connected Home over IP project group was launched and introduced by Amazon, Apple, Google,[197] Comcast and the Zigbee Alliance on December 18, 2019.[198] The project is backed by big companies and by being based on proven Internet design principles and protocols it aims to unify the currently fragmented systems.[199]
EPCglobalElectronic Product code TechnologyStandards for adoption of EPC (Electronic Product Code) technology
FDAU.S. Food and Drug AdministrationUDI (Unique Device Identification) system for distinct identifiers for medical devices
GS1Global Standards OneStandards for UIDs ("unique" identifiers) and RFID of fast-moving consumer goods (consumer packaged goods), health care supplies, and other things

The GS1 digital link standard,[200] first released in August 2018, allows the use QR Codes, GS1 Datamatrix, RFID and NFC to enable various types of business-to-business, as well as business-to-consumers interactions.

Parent organization comprises member organizations such as GS1 US
IEEEInstitute of Electrical and Electronics EngineersUnderlying communication technology standards such as IEEE 802.15.4, IEEE P1451-99[201] (IoT Harmonization), and IEEE P1931.1 (ROOF Computing).
IETFInternet Engineering Task ForceStandards that comprise TCP/IP (the Internet protocol suite)
MTConnect InstituteMTConnect is a manufacturing industry standard for data exchange with machine tools and related industrial equipment. It is important to the IIoT subset of the IoT.
O-DFOpen Data FormatO-DF is a standard published by the Internet of Things Work Group of The Open Group in 2014, which specifies a generic information model structure that is meant to be applicable for describing any "Thing", as well as for publishing, updating and querying information when used together with O-MI (Open Messaging Interface).
O-MIOpen Messaging InterfaceO-MI is a standard published by the Internet of Things Work Group of The Open Group in 2014, which specifies a limited set of key operations needed in IoT systems, notably different kinds of subscription mechanisms based on the Observer pattern.
OCFOpen Connectivity FoundationStandards for simple devices using CoAP (Constrained Application Protocol)OCF (Open Connectivity Foundation) supersedes OIC (Open Interconnect Consortium)
OMAOpen Mobile AllianceOMA DM and OMA LWM2M for IoT device management, as well as GotAPI, which provides a secure framework for IoT applications
XSFXMPP Standards FoundationProtocol extensions of XMPP (Extensible Messaging and Presence Protocol), the open standard of instant messaging
W3CWorld Wide Web ConsortiumStandards for bringing interoperability between different IoT protocols and platforms such as Thing Description, Discovery, Scripting API and Architecture that explains how they work together.Homepage of the Web of Things activity at the W3C at https://www.w3.org/WoT/

Politics and civic engagement[edit]

Some scholars and activists argue that the IoT can be used to create new models of civic engagement if device networks can be open to user control and inter-operable platforms. Philip N. Howard, a professor and author, writes that political life in both democracies and authoritarian regimes will be shaped by the way the IoT will be used for civic engagement. For that to happen, he argues that any connected device should be able to divulge a list of the "ultimate beneficiaries" of its sensor data and that individual citizens should be able to add new organisations to the beneficiary list. In addition, he argues that civil society groups need to start developing their IoT strategy for making use of data and engaging with the public.[202]

Government regulation[edit]

One of the key drivers of the IoT is data. The success of the idea of connecting devices to make them more efficient is dependent upon access to and storage & processing of data. For this purpose, companies working on the IoT collect data from multiple sources and store it in their cloud network for further processing. This leaves the door wide open for privacy and security dangers and single point vulnerability of multiple systems.[203] The other issues pertain to consumer choice and ownership of data[204] and how it is used. Though still in their infancy, regulations and governance regarding these issues of privacy, security, and data ownership continue to develop.[205][206][207] IoT regulation depends on the country. Some examples of legislation that is relevant to privacy and data collection are: the US Privacy Act of 1974, OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data of 1980, and the EU Directive 95/46/EC of 1995.[208]

Current regulatory environment:

A report published by the Federal Trade Commission (FTC) in January 2015 made the following three recommendations:[209]

  • Data security – At the time of designing IoT companies should ensure that data collection, storage and processing would be secure at all times. Companies should adopt a "defense in depth" approach and encrypt data at each stage.[210]
  • Data consent – users should have a choice as to what data they share with IoT companies and the users must be informed if their data gets exposed.
  • Data minimisation – IoT companies should collect only the data they need and retain the collected information only for a limited time.

However, the FTC stopped at just making recommendations for now. According to an FTC analysis, the existing framework, consisting of the FTC Act, the Fair Credit Reporting Act, and the Children's Online Privacy Protection Act, along with developing consumer education and business guidance, participation in multi-stakeholder efforts and advocacy to other agencies at the federal, state and local level, is sufficient to protect consumer rights.[211]

A resolution passed by the Senate in March 2015, is already being considered by the Congress.[212] This resolution recognized the need for formulating a National Policy on IoT and the matter of privacy, security and spectrum. Furthermore, to provide an impetus to the IoT ecosystem, in March 2016, a bipartisan group of four Senators proposed a bill, The Developing Innovation and Growing the Internet of Things (DIGIT) Act, to direct the Federal Communications Commission to assess the need for more spectrum to connect IoT devices.

Approved on 28 September 2018, California Senate Bill No. 327[213] goes into effect on 1 January 2020. The bill requires "a manufacturer of a connected device, as those terms are defined, to equip the device with a reasonable security feature or features that are appropriate to the nature and function of the device, appropriate to the information it may collect, contain, or transmit, and designed to protect the device and any information contained therein from unauthorized access, destruction, use, modification, or disclosure,"

Several standards for the IoT industry are actually being established relating to automobiles because most concerns arising from use of connected cars apply to healthcare devices as well. In fact, the National Highway Traffic Safety Administration (NHTSA) is preparing cybersecurity guidelines and a database of best practices to make automotive computer systems more secure.[214]

A recent report from the World Bank examines the challenges and opportunities in government adoption of IoT.[215] These include –

  • Still early days for the IoT in government 
  • Underdeveloped policy and regulatory frameworks 
  • Unclear business models, despite strong value proposition 
  • Clear institutional and capacity gap in government AND the private sector 
  • Inconsistent data valuation and management 
  • Infrastructure a major barrier 
  • Government as an enabler 
  • Most successful pilots share common characteristics (public-private partnership, local, leadership)

In early December 2021, the U.K. government introduced the Product Security and Telecommunications Infrastructure bill (PST), an effort to legislate IoT distributors, manufacturers, and importers to meet certain cybersecurity standards. The bill also seeks to improve the security credentials of consumer IoT devices.[216]

Criticism, problems and controversies[edit]

Platform fragmentation[edit]

The IoT suffers from platform fragmentation, lack of interoperability and common technical standards[217][218][219][220][221][222][223][excessive citations] a situation where the variety of IoT devices, in terms of both hardware variations and differences in the software running on them, makes the task of developing applications that work consistently between different inconsistent technology ecosystems hard.[1] For example, wireless connectivity for IoT devices can be done using Bluetooth, Wi-Fi, Wi-Fi HaLow, Zigbee, Z-Wave, LoRa, NB-IoT, Cat M1 as well as completely custom proprietary radios – each with its own advantages and disadvantages; and unique support ecosystem.[224]

The IoT's amorphous computing nature is also a problem for security, since patches to bugs found in the core operating system often do not reach users of older and lower-price devices.[225][226][227] One set of researchers says that the failure of vendors to support older devices with patches and updates leaves more than 87% of active Android devices vulnerable.[228][229]

Privacy, autonomy, and control[edit]

Philip N. Howard, a professor and author, writes that the Internet of things offers immense potential for empowering citizens, making government transparent, and broadening information access. Howard cautions, however, that privacy threats are enormous, as is the potential for social control and political manipulation.[230]

Concerns about privacy have led many to consider the possibility that big data infrastructures such as the Internet of things and data mining are inherently incompatible with privacy.[231] Key challenges of increased digitalization in the water, transport or energy sector are related to privacy and cybersecurity which necessitate an adequate response from research and policymakers alike.[232]

Writer Adam Greenfield claims that IoT technologies are not only an invasion of public space but are also being used to perpetuate normative behavior, citing an instance of billboards with hidden cameras that tracked the demographics of passersby who stopped to read the advertisement.

The Internet of Things Council compared the increased prevalence of digital surveillance due to the Internet of things to the concept of the panopticon described by Jeremy Bentham in the 18th century.[233] The assertion is supported by the works of French philosophers Michel Foucault and Gilles Deleuze. In Discipline and Punish: The Birth of the Prison, Foucault asserts that the panopticon was a central element of the discipline society developed during the Industrial Era.[234] Foucault also argued that the discipline systems established in factories and school reflected Bentham's vision of panopticism.[234] In his 1992 paper "Postscripts on the Societies of Control", Deleuze wrote that the discipline society had transitioned into a control society, with the computer replacing the panopticon as an instrument of discipline and control while still maintaining the qualities similar to that of panopticism.[235]

Peter-Paul Verbeek, a professor of philosophy of technology at the University of Twente, Netherlands, writes that technology already influences our moral decision making, which in turn affects human agency, privacy and autonomy. He cautions against viewing technology merely as a human tool and advocates instead to consider it as an active agent.[236]

Justin Brookman, of the Center for Democracy and Technology, expressed concern regarding the impact of the IoT on consumer privacy, saying that "There are some people in the commercial space who say, 'Oh, big data – well, let's collect everything, keep it around forever, we'll pay for somebody to think about security later.' The question is whether we want to have some sort of policy framework in place to limit that."[237]

Tim O'Reilly believes that the way companies sell the IoT devices on consumers are misplaced, disputing the notion that the IoT is about gaining efficiency from putting all kinds of devices online and postulating that the "IoT is really about human augmentation. The applications are profoundly different when you have sensors and data driving the decision-making."[238]

Editorials at WIRED have also expressed concern, one stating "What you're about to lose is your privacy. Actually, it's worse than that. You aren't just going to lose your privacy, you're going to have to watch the very concept of privacy be rewritten under your nose."[239]

The American Civil Liberties Union (ACLU) expressed concern regarding the ability of IoT to erode people's control over their own lives. The ACLU wrote that "There's simply no way to forecast how these immense powers – disproportionately accumulating in the hands of corporations seeking financial advantage and governments craving ever more control – will be used. Chances are big data and the Internet of Things will make it harder for us to control our own lives, as we grow increasingly transparent to powerful corporations and government institutions that are becoming more opaque to us."[240]

In response to rising concerns about privacy and smart technology, in 2007 the British Government stated it would follow formal Privacy by Design principles when implementing their smart metering program. The program would lead to replacement of traditional power meters with smart power meters, which could track and manage energy usage more accurately.[241] However the British Computer Society is doubtful these principles were ever actually implemented.[242] In 2009 the Dutch Parliament rejected a similar smart metering program, basing their decision on privacy concerns. The Dutch program later revised and passed in 2011.[242]

Data storage[edit]

A challenge for producers of IoT applications is to clean, process and interpret the vast amount of data which is gathered by the sensors. There is a solution proposed for the analytics of the information referred to as Wireless Sensor Networks.[243] These networks share data among sensor nodes that are sent to a distributed system for the analytics of the sensory data.[244]

Another challenge is the storage of this bulk data. Depending on the application, there could be high data acquisition requirements, which in turn lead to high storage requirements. In 2013, the Internet was estimated to be responsible for consuming 5% of the total energy produced,[243] and a "daunting challenge to power" IoT devices to collect and even store data still remains.[245]

Data silos, although a common challenge of legacy systems, still commonly occur with the implementation of IoT devices, particularly within manufacturing. As there are a lot of benefits to be gained from IoT and IIoT devices, the means in which the data is stored can present serious challenges without the principles of autonomy, transparency, and interoperability being considered.[246] The challenges do not occur by the device itself, but the means in which databases and data warehouses are set-up. These challenges were commonly identified in manufactures and enterprises which have begun upon digital transformation, and are part of the digital foundation, indicating that in order to receive the optimal benefits from IoT devices and for decision making, enterprises will have to first re-align their data storing methods. These challenges were identified by Keller (2021) when investigating the IT and application landscape of I4.0 implementation within German M&E manufactures.[246]

Security[edit]

Security is the biggest concern in adopting Internet of things technology,[247] with concerns that rapid development is happening without appropriate consideration of the profound security challenges involved[248] and the regulatory changes that might be necessary.[249][250] The rapid development of the Internet of Things (IoT) has allowed billions of devices to connect to the network. Due to too many connected devices and the limitation of communication security technology, various security issues gradually appear in the IoT.[251]

Most of the technical security concerns are similar to those of conventional servers, workstations and smartphones.[252] These concerns include using weak authentication, forgetting to change default credentials, unencrypted messages sent between devices, SQL injections, man-in-the-middle attacks, and poor handling of security updates.[253][254] However, many IoT devices have severe operational limitations on the computational power available to them. These constraints often make them unable to directly use basic security measures such as implementing firewalls or using strong cryptosystems to encrypt their communications with other devices[255] - and the low price and consumer focus of many devices makes a robust security patching system uncommon.[256]

Rather than conventional security vulnerabilities, fault injection attacks are on the rise and targeting IoT devices. A fault injection attack is a physical attack on a device to purposefully introduce faults in the system to change the intended behavior. Faults might happen unintentionally by environmental noises and electromagnetic fields. There are ideas stemmed from control-flow integrity (CFI) to prevent fault injection attacks and system recovery to a healthy state before the fault.[257]

Internet of things devices also have access to new areas of data, and can often control physical devices,[258] so that even by 2014 it was possible to say that many Internet-connected appliances could already "spy on people in their own homes" including televisions, kitchen appliances,[259] cameras, and thermostats.[260] Computer-controlled devices in automobiles such as brakes, engine, locks, hood and trunk releases, horn, heat, and dashboard have been shown to be vulnerable to attackers who have access to the on-board network. In some cases, vehicle computer systems are Internet-connected, allowing them to be exploited remotely.[261] By 2008 security researchers had shown the ability to remotely control pacemakers without authority. Later hackers demonstrated remote control of insulin pumps[262] and implantable cardioverter defibrillators.[263]

Poorly secured Internet-accessible IoT devices can also be subverted to attack others. In 2016, a distributed denial of service attack powered by Internet of things devices running the Mirai malware took down a DNS provider and major web sites.[264] The Mirai Botnet had infected roughly 65,000 IoT devices within the first 20 hours.[265] Eventually the infections increased to around 200,000 to 300,000 infections.[265] Brazil, Colombia and Vietnam made up of 41.5% of the infections.[265] The Mirai Botnet had singled out specific IoT devices that consisted of DVRs, IP cameras, routers and printers.[265] Top vendors that contained the most infected devices were identified as Dahua, Huawei, ZTE, Cisco, ZyXEL and MikroTik.[265] In May 2017, Junade Ali, a Computer Scientist at Cloudflare noted that native DDoS vulnerabilities exist in IoT devices due to a poor implementation of the Publish–subscribe pattern.[266][267] These sorts of attacks have caused security experts to view IoT as a real threat to Internet services.[268]

The U.S. National Intelligence Council in an unclassified report maintains that it would be hard to deny "access to networks of sensors and remotely-controlled objects by enemies of the United States, criminals, and mischief makers... An open market for aggregated sensor data could serve the interests of commerce and security no less than it helps criminals and spies identify vulnerable targets. Thus, massively parallel sensor fusion may undermine social cohesion, if it proves to be fundamentally incompatible with Fourth-Amendment guarantees against unreasonable search."[269] In general, the intelligence community views the Internet of things as a rich source of data.[270]

On 31 January 2019, the Washington Post wrote an article regarding the security and ethical challenges that can occur with IoT doorbells and cameras: "Last month, Ring got caught allowing its team in Ukraine to view and annotate certain user videos; the company says it only looks at publicly shared videos and those from Ring owners who provide consent. Just last week, a California family's Nest camera let a hacker take over and broadcast fake audio warnings about a missile attack, not to mention peer in on them, when they used a weak password."[271]

There have been a range of responses to concerns over security. The Internet of Things Security Foundation (IoTSF) was launched on 23 September 2015 with a mission to secure the Internet of things by promoting knowledge and best practice. Its founding board is made from technology providers and telecommunications companies. In addition, large IT companies are continually developing innovative solutions to ensure the security of IoT devices. In 2017, Mozilla launched Project Things, which allows to route IoT devices through a safe Web of Things gateway.[272] As per the estimates from KBV Research,[273] the overall IoT security market[274] would grow at 27.9% rate during 2016–2022 as a result of growing infrastructural concerns and diversified usage of Internet of things.[275][276]

Governmental regulation is argued by some to be necessary to secure IoT devices and the wider Internet – as market incentives to secure IoT devices is insufficient.[277][249][250] It was found that due to the nature of most of the IoT development boards, they generate predictable and weak keys which make it easy to be utilized by man-in-the-middle attack. However, various hardening approaches were proposed by many researchers to resolve the issue of SSH weak implementation and weak keys.[278]

IoT security within the field of manufacturing presents different challenges, and varying perspectives. Within the EU and Germany, data protection is constantly referenced throughout manufacturing and digital policy particularly that of I4.0. However, the attitude towards data security differs from the enterprise perspective whereas there is an emphasis on less data protection in the form of GDPR as the data being collected from IoT devices in the manufacturing sector does not display personal details.[246] Yet, research has indicated that manufacturing experts are concerned about "data security for protecting machine technology from international competitors with the ever-greater push for interconnectivity".[246]

Safety[edit]

IoT systems are typically controlled by event-driven smart apps that take as input either sensed data, user inputs, or other external triggers (from the Internet) and command one or more actuators towards providing different forms of automation.[279] Examples of sensors include smoke detectors, motion sensors, and contact sensors. Examples of actuators include smart locks, smart power outlets, and door controls. Popular control platforms on which third-party developers can build smart apps that interact wirelessly with these sensors and actuators include Samsung's SmartThings,[280] Apple's HomeKit,[281] and Amazon's Alexa,[282] among others.

A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states, e.g., "unlock the entrance door when no one is at home" or "turn off the heater when the temperature is below 0 degrees Celsius and people are sleeping at night".[279] Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. Recently, researchers from the University of California Riverside have proposed IotSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states.[279] They have evaluated IotSan on the Samsung SmartThings platform. From 76 manually configured systems, IotSan detects 147 vulnerabilities (i.e., violations of safe physical states/properties).

Design[edit]

Given widespread recognition of the evolving nature of the design and management of the Internet of things, sustainable and secure deployment of IoT solutions must design for "anarchic scalability".[283] Application of the concept of anarchic scalability can be extended to physical systems (i.e. controlled real-world objects), by virtue of those systems being designed to account for uncertain management futures. This hard anarchic scalability thus provides a pathway forward to fully realize the potential of Internet-of-things solutions by selectively constraining physical systems to allow for all management regimes without risking physical failure.[283]

Brown University computer scientist Michael Littman has argued that successful execution of the Internet of things requires consideration of the interface's usability as well as the technology itself. These interfaces need to be not only more user-friendly but also better integrated: "If users need to learn different interfaces for their vacuums, their locks, their sprinklers, their lights, and their coffeemakers, it's tough to say that their lives have been made any easier."[284]

Environmental sustainability impact[edit]

A concern regarding Internet-of-things technologies pertains to the environmental impacts of the manufacture, use, and eventual disposal of all these semiconductor-rich devices.[285] Modern electronics are replete with a wide variety of heavy metals and rare-earth metals, as well as highly toxic synthetic chemicals. This makes them extremely difficult to properly recycle. Electronic components are often incinerated or placed in regular landfills. Furthermore, the human and environmental cost of mining the rare-earth metals that are integral to modern electronic components continues to grow. This leads to societal questions concerning the environmental impacts of IoT devices over their lifetime.[286]

Intentional obsolescence of devices[edit]

The Electronic Frontier Foundation has raised concerns that companies can use the technologies necessary to support connected devices to intentionally disable or "brick" their customers' devices via a remote software update or by disabling a service necessary to the operation of the device. In one example, home automation devices sold with the promise of a "Lifetime Subscription" were rendered useless after Nest Labs acquired Revolv and made the decision to shut down the central servers the Revolv devices had used to operate.[287] As Nest is a company owned by Alphabet (Google's parent company), the EFF argues this sets a "terrible precedent for a company with ambitions to sell self-driving cars, medical devices, and other high-end gadgets that may be essential to a person's livelihood or physical safety."[288]

Owners should be free to point their devices to a different server or collaborate on improved software. But such action violates the United States DMCA section 1201, which only has an exemption for "local use". This forces tinkerers who want to keep using their own equipment into a legal grey area. EFF thinks buyers should refuse electronics and software that prioritize the manufacturer's wishes above their own.[288]

Examples of post-sale manipulations include Google Nest Revolv, disabled privacy settings on Android, Sony disabling Linux on PlayStation 3, enforced EULA on Wii U.[288]

Confusing terminology[edit]

Kevin Lonergan at Information Age, a business technology magazine, has referred to the terms surrounding the IoT as a "terminology zoo".[289] The lack of clear terminology is not "useful from a practical point of view" and a "source of confusion for the end user".[289] A company operating in the IoT space could be working in anything related to sensor technology, networking, embedded systems, or analytics.[289] According to Lonergan, the term IoT was coined before smart phones, tablets, and devices as we know them today existed, and there is a long list of terms with varying degrees of overlap and technological convergence: Internet of things, Internet of everything (IoE), Internet of goods (supply chain), industrial Internet, pervasive computing, pervasive sensing, ubiquitous computing, cyber-physical systems (CPS), wireless sensor networks (WSN), smart objects, digital twin, cyberobjects or avatars,[146] cooperating objects, machine to machine (M2M), ambient intelligence (AmI), Operational technology (OT), and information technology (IT).[289] Regarding IIoT, an industrial sub-field of IoT, the Industrial Internet Consortium's Vocabulary Task Group has created a "common and reusable vocabulary of terms"[290] to ensure "consistent terminology"[290][291] across publications issued by the Industrial Internet Consortium. IoT One has created an IoT Terms Database including a New Term Alert[292] to be notified when a new term is published. As of March 2020, this database aggregates 807 IoT-related terms, while keeping material "transparent and comprehensive".[293][294]

Adoption barriers[edit]

GE Digital CEO William Ruh speaking about GE's attempts to gain a foothold in the market for IoT services at the first IEEE Computer Society TechIgnite conference

Lack of interoperability and unclear value propositions[edit]

Despite a shared belief in the potential of the IoT, industry leaders and consumers are facing barriers to adopt IoT technology more widely. Mike Farley argued in Forbes that while IoT solutions appeal to early adopters, they either lack interoperability or a clear use case for end-users.[295] A study by Ericsson regarding the adoption of IoT among Danish companies suggests that many struggle "to pinpoint exactly where the value of IoT lies for them".[296]

Privacy and security concerns[edit]

As for IoT, especially in regards to consumer IoT, information about a user's daily routine is collected so that the "things" around the user can cooperate to provide better services that fulfill personal preference.[297] When the collected information which describes a user in detail travels through multiple hops in a network, due to a diverse integration of services, devices and network, the information stored on a device is vulnerable to privacy violation by compromising nodes existing in an IoT network.[298]

For example, on 21 October 2016, a multiple distributed denial of service (DDoS) attacks systems operated by domain name system provider Dyn, which caused the inaccessibility of several websites, such as GitHub, Twitter, and others. This attack is executed through a botnet consisting of a large number of IoT devices including IP cameras, gateways, and even baby monitors.[299]

Fundamentally there are 4 security objectives that the IoT system requires: (1) data confidentiality: unauthorised parties cannot have access to the transmitted and stored data; (2) data integrity: intentional and unintentional corruption of transmitted and stored data must be detected; (3) non-repudiation: the sender cannot deny having sent a given message; (4) data availability: the transmitted and stored data should be available to authorised parties even with the denial-of-service (DOS) attacks.[300]

Information privacy regulations also require organisations to practice "reasonable security". California's SB-327 Information privacy: connected devices "would require a manufacturer of a connected device, as those terms are defined, to equip the device with a reasonable security feature or features that are appropriate to the nature and function of the device, appropriate to the information it may collect, contain, or transmit, and designed to protect the device and any information contained therein from unauthorised access, destruction, use, modification, or disclosure, as specified".[301] As each organisation's environment is unique, it can prove challenging to demonstrate what "reasonable security" is and what potential risks could be involved for the business. Oregon's HB2395 also "requires [a] person that manufactures, sells or offers to sell connected device] manufacturer to equip connected device with reasonable security features that protect connected device and information that connected device collects, contains, stores or transmits] stores from access, destruction, modification, use or disclosure that consumer does not authorise."[302]

According to antivirus provider Kaspersky, there were 639 million data breaches of IoT devices in 2020 and 1.5 billion breaches in the first six months of 2021.[216]

Traditional governance structure[edit]

Town of Internet of Things in Hangzhou, China

A study issued by Ericsson regarding the adoption of Internet of things among Danish companies identified a "clash between IoT and companies' traditional governance structures, as IoT still presents both uncertainties and a lack of historical precedence."[296] Among the respondents interviewed, 60 percent stated that they "do not believe they have the organizational capabilities, and three of four do not believe they have the processes needed, to capture the IoT opportunity."[296] This has led to a need to understand organizational culture in order to facilitate organizational design processes and to test new innovation management practices. A lack of digital leadership in the age of digital transformation has also stifled innovation and IoT adoption to a degree that many companies, in the face of uncertainty, "were waiting for the market dynamics to play out",[296] or further action in regards to IoT "was pending competitor moves, customer pull, or regulatory requirements".[296] Some of these companies risk being "kodaked" – "Kodak was a market leader until digital disruption eclipsed film photography with digital photos" – failing to "see the disruptive forces affecting their industry"[303] and "to truly embrace the new business models the disruptive change opens up".[303] Scott Anthony has written in Harvard Business Review that Kodak "created a digital camera, invested in the technology, and even understood that photos would be shared online"[303] but ultimately failed to realize that "online photo sharing was the new business, not just a way to expand the printing business."[303]

Business planning and project management[edit]

According to 2018 study, 70–75% of IoT deployments were stuck in the pilot or prototype stage, unable to reach scale due in part to a lack of business planning.[304][page needed][305]

Несмотря на то, что ученые, инженеры и менеджеры по всему миру постоянно работают над созданием и использованием преимуществ продуктов Интернета вещей, существуют некоторые недостатки в управлении, управлении и реализации таких проектов. Несмотря на огромный прогресс в области информационных и других базовых технологий, Интернет вещей по-прежнему остается сложной областью, и проблема управления проектами Интернета вещей все еще требует решения. Проекты Интернета вещей должны реализовываться иначе, чем простые и традиционные проекты в сфере ИТ, производства или строительства. Поскольку проекты Интернета вещей имеют более длительные сроки реализации, нехватку квалифицированных ресурсов и ряд проблем безопасности/юридических вопросов, существует потребность в новых и специально разработанных проектных процессах. Следующие методы управления должны повысить уровень успеха проектов Интернета вещей: [306]

  • Отдельный этап исследований и разработок
  • Проверка концепции/прототипа перед началом реального проекта
  • Менеджеры проектов с междисциплинарными техническими знаниями
  • Универсально определяемый деловой и технический жаргон

См. также [ править ]

Примечания [ править ]

  1. ^ В реальных стандартах может использоваться другая терминология и/или определяться границы слоев, отличные от представленных здесь.

Ссылки [ править ]

  1. Перейти обратно: Перейти обратно: а б Гиллис, Александр (2021). «Что такое Интернет вещей (IoT)?» . Программа IOT . Проверено 17 августа 2021 г.
  2. ^ Браун, Эрик (20 сентября 2016 г.). «21 проект с открытым исходным кодом для Интернета вещей» . Linux.com . Проверено 23 октября 2016 г.
  3. ^ «Инициатива по глобальным стандартам Интернета вещей» . МСЭ . Проверено 26 июня 2015 г.
  4. ^ Хендрикс, Дрю (10 августа 2015 г.). «Проблема с Интернетом вещей» . Лондонский датастор . Администрация Большого Лондона . Проверено 10 августа 2015 г.
  5. ^ Шафик, Мухаммед; Гу, Чжаоцюань; Шейхруху, Омар; Альхаками, Ваджди; Хамам, Хабиб (3 августа 2022 г.). «Расцвет «Интернета вещей»: обзор и открытые исследования проблем, связанных с обнаружением и предотвращением атак на безопасность на основе Интернета вещей» . Беспроводная связь и мобильные вычисления . 2022 : e8669348. дои : 10.1155/2022/8669348 . ISSN   1530-8669 .
  6. ^ Бил, Ванги (2 марта 2022 г.) [1 сентября 1996 г.]. «Что такое сеть?» . Вебопедия . Архивировано из оригинала 22 ноября 2022 года . Проверено 22 ноября 2022 г.
  7. ^ Дей, Ниланджан; Хасаниен, Абул Элла; Бхатт, Чинтан; Ашур, Амира; Сатапати, Суреш Чандра, ред. (2018). Интернет вещей и анализ больших данных на пути к интеллекту следующего поколения . Чам, Швейцария: Springer. п. 440. ИСБН  978-3-319-60435-0 . OCLC   1001327784 .
  8. ^ «Прогноз: Интернет вещей по всему миру, 2013 г.» . Гартнер . 18 ноября 2013 года . Проверено 3 марта 2022 г.
  9. ^ Ху, Дж.; Ню, Х.; Карраско, Дж.; Леннокс, Б.; Арвин Ф., « Отказоустойчивая совместная навигация сетевых роев БПЛА для мониторинга лесных пожаров », Aerospace Science and Technology, 2022. дои : 10.1016/j.ast.2022.107494 .
  10. ^ Ху, Дж.; Леннокс, Б.; Арвин Ф., « Надежное управление формацией сетевых робототехнических систем с использованием отрицательной мнимой динамики », Автоматика, 2022. два : 10.1016/j.automatica.2022.110235 .
  11. ^ Лапланте, Филипп А.; Кассаб, Мохамад; Лапланте, Нэнси Л.; Воас, Джеффри М. (2018). «Создание заботливых систем здравоохранения в Интернете вещей» . Системный журнал IEEE . 12 (3): 3030–3037. Бибкод : 2018ISysJ..12.3030L . дои : 10.1109/JSYST.2017.2662602 . ISSN   1932-8184 . ПМК   6506834 . ПМИД   31080541 .
  12. ^ «Стратегия Интернета вещей Нью-Йорка» . www1.nyc.gov . Проверено 6 сентября 2021 г.
  13. ^ Малдер, Т.; Тудорика, М. (2 сентября 2019 г.). «Политика конфиденциальности, трансграничные данные о состоянии здоровья и GDPR» . Закон об информационных и коммуникационных технологиях . 28 (3): 261–274. дои : 10.1080/13600834.2019.1644068 . ISSN   1360-0834 .
  14. ^ «Единственный» автомат по продаже кока-колы в Интернете» . cs.cmu.edu . Университет Карнеги-Меллон . Проверено 10 ноября 2014 г.
  15. ^ «Интернет вещей, сделанных неправильно, душит инновации» . Информационная неделя . 7 июля 2014 года . Проверено 10 ноября 2014 г.
  16. ^ Маттерн, Фридеманн; Флеркемайер, Кристиан (2010). «От Интернета компьютеров к Интернету вещей» (PDF) . Компьютерные науки Спектр . 33 (2): 107–121. Бибкод : 2009InfSp..32..496H . дои : 10.1007/s00287-010-0417-7 . hdl : 20.500.11850/159645 . S2CID   29563772 . Проверено 3 февраля 2014 г.
  17. ^ Вайзер, Марк (1991). «Компьютер XXI века» (PDF) . Научный американец . 265 (3): 94–104. Бибкод : 1991SciAm.265c..94W . doi : 10.1038/scientificamerican0991-94 . Архивировано из оригинала (PDF) 11 марта 2015 года . Проверено 5 ноября 2014 г.
  18. ^ Раджи, Р.С. (1994). «Умные сети для контроля». IEEE-спектр . 31 (6): 49–55. дои : 10.1109/6.284793 . S2CID   42364553 .
  19. ^ Понтин, Джейсон (29 сентября 2005 г.). «ETC: Шесть паутин Билла Джоя» . Обзор технологий Массачусетского технологического института . Проверено 17 ноября 2013 г.
  20. ^ Шарма, Четан (14 марта 2016 г.). «Исправление истории Интернета вещей» . chetansharma.com . Проверено 1 июня 2021 г.
  21. ^ Лахвани, Камлеш (2020). Интернет вещей (IoT): принципы, парадигмы и приложения IoT . Хемант Кумар Гиани, Джозеф Кофи Виреко, Камаль Кант Хиран. [Место издания не указано]. ISBN  9789389423365 . OCLC   1188989203 . {{cite book}}: CS1 maint: отсутствует местоположение издателя ( ссылка )
  22. ^ Эштон, К. (22 июня 2009 г.). «Этот Интернет вещей» . rfidjournal.com . Архивировано из оригинала 15 апреля 2013 года . Проверено 9 мая 2017 г.
  23. ^ «Мир бизнеса Питера Дэя» . BBC.co.uk. ​Всемирная служба Би-би-си . Проверено 4 октября 2016 г.
  24. ^ Маграсси, П. (2 мая 2002 г.). «Почему универсальная RFID-инфраструктура была бы хорошей вещью» . Отчет об исследовании Gartner G00106518 .
  25. ^ Маграсси, П.; Берг, Т. (12 августа 2002 г.). «Мир смарт-объектов» . Отчет об исследовании Gartner R-17-2243 . Архивировано из оригинала 3 октября 2003 года.
  26. ^ «Интернет вещей – план действий для Европы» (PDF) . ec.europa.eu . Комиссия Европейских Сообществ. 18 июня 2009 г. COM(2009) 278 финал.
  27. ^ Вуд, Алекс (31 марта 2015 г.). «Интернет вещей совершает революцию в нашей жизни, но стандарты необходимы» . Хранитель .
  28. ^ Столлингс, Уильям (2016). Основы современных сетей: SDN, NFV, QoE, IoT и Cloud . Флоренс Агбома, Софиен Йеласси. Индианаполис. ISBN  978-0-13-417547-8 . OCLC   927715441 . {{cite book}}: CS1 maint: отсутствует местоположение издателя ( ссылка )
  29. ^ «СтекПуть» . Industryweek.com . 21 декабря 2004 года . Проверено 20 мая 2022 г.
  30. ^ Дэйв Эванс (апрель 2011 г.). «Интернет вещей: как следующая эволюция Интернета меняет все» (PDF) . Технический документ CISCO .
  31. ^ Вонгсингтонг, С.; Сманчат, С. (2014). «Интернет вещей: обзор приложений и технологий» (PDF) . Суранари Журнал науки и технологий .
  32. Перейти обратно: Перейти обратно: а б «Рынок корпоративного Интернета вещей» . Бизнес-инсайдер . 25 февраля 2015 года . Проверено 26 июня 2015 г.
  33. ^ Перера, К.; Лю, CH; Джаявардена, С. (декабрь 2015 г.). «Развивающийся рынок Интернета вещей с промышленной точки зрения: обзор». Транзакции IEEE по новым темам вычислительной техники . 3 (4): 585–598. arXiv : 1502.00134 . Бибкод : 2015arXiv150200134P . дои : 10.1109/TETC.2015.2390034 . ISSN   2168-6750 . S2CID   7329149 .
  34. ^ «Как Интернет вещей меняет основы розничной торговли » . Trak.in – Индийский бизнес в области технологий, мобильных устройств и стартапов . 30 августа 2016 года . Проверено 2 июня 2017 г.
  35. ^ Кан, Вон Мин; Мун, Со Ён; Пак, Чон Хёк (5 марта 2017 г.). «Усовершенствованная система безопасности бытовой техники в умном доме» . Человеко-ориентированные вычисления и информационные науки . 7 (6). дои : 10.1186/s13673-017-0087-4 .
  36. Перейти обратно: Перейти обратно: а б «Как Интернет вещей и автоматизация умного дома изменят наш образ жизни» . Бизнес-инсайдер . Проверено 10 ноября 2017 г. .
  37. Перейти обратно: Перейти обратно: а б Юсси Карлгрен ; Леннарт Фален; Андерс Вальберг; Пер Ханссон; Олов Столь; Йонас Седерберг; Карл-Петтер Окессон (2008). «Социально интеллектуальные интерфейсы для повышения осведомленности об энергетике дома». Интернет вещей . Конспекты лекций по информатике. Том. 4952. Бег. стр. 263–275. arXiv : 2106.15297 . дои : 10.1007/978-3-540-78731-0_17 . ISBN  978-3-540-78730-3 . S2CID   30983428 .
  38. ^ Грингард, Сэмюэл (2015). Интернет вещей . Кембридж, Массачусетс: MIT Press. п. 90. ИСБН  9780262527736 .
  39. ^ «HomeKit — Разработчик Apple» . разработчик.apple.com . Проверено 19 сентября 2018 г.
  40. ^ Воллертон, Меган (3 июня 2018 г.). «Вот все, что вам нужно знать об Apple HomeKit» . CNET . Проверено 19 сентября 2018 г.
  41. Перейти обратно: Перейти обратно: а б Лавджой, Бен (31 августа 2018 г.). «Устройства HomeKit становятся более доступными, поскольку Lenovo анонсирует линейку Smart Home Essentials» . 9to5Mac . Проверено 19 сентября 2018 г.
  42. ^ Просперо, Майк (12 сентября 2018 г.). «Лучшие хабы для умного дома 2018 года» . Путеводитель Тома . Проверено 19 сентября 2018 г.
  43. ^ Бейкер, Джейсон (14 декабря 2017 г.). «6 инструментов домашней автоматизации с открытым исходным кодом» . opensource.com . Проверено 13 мая 2019 г.
  44. Перейти обратно: Перейти обратно: а б Демирис, Г; Хенсель, К. (2008). «Технологии для стареющего общества: систематический обзор приложений «умного дома»» . Ежегодник медицинской информатики IMIA, 2008 г. 17 :33–40. дои : 10.1055/s-0038-1638580 . ПМИД   18660873 . S2CID   7244183 .
  45. ^ Абурукба, Раафат; Аль-Али, Арканзас; Кандиль, Нурхан; Абудамис, Диала (10 мая 2016 г.). «Конфигурируемая система управления на базе ZigBee для людей с ограниченными возможностями в умных домах». 2016 Международная конференция по промышленной информатике и компьютерным системам (CIICS) . стр. 1–5. дои : 10.1109/ICCSII.2016.7462435 . ISBN  978-1-4673-8743-9 . S2CID   16754386 .
  46. ^ Малвенна, Морис; Хаттон, Антон; Мартин, Сюзанна; Тодд, Стивен; Бонд, Рэймонд; Мурхед, Энн (14 декабря 2017 г.). «Взгляды лиц, осуществляющих уход, на этику вспомогательных технологий, используемых для домашнего наблюдения за людьми, живущими с деменцией» . Нейроэтика . 10 (2): 255–266. дои : 10.1007/s12152-017-9305-z . ПМЦ   5486509 . ПМИД   28725288 .
  47. Перейти обратно: Перейти обратно: а б да Коста, Калифорния; Паслуоста, CF; Эскофье, Б; да Силва, Д.Б.; да Роза Риги, R (июль 2018 г.). «Интернет здоровья: на пути к интеллектуальному мониторингу жизненно важных функций в больничных палатах». Искусственный интеллект в медицине . 89 : 61–69. doi : 10.1016/j.artmed.2018.05.005 . ПМИД   29871778 . S2CID   46941758 .
  48. ^ Инженер, А; Штернберг, Э.М.; Наджафи, Б. (21 августа 2018 г.). «Проектирование интерьеров для смягчения физических и когнитивных недостатков, связанных со старением, и для увеличения долголетия пожилых людей: обзор» . Геронтология . 64 (6): 612–622. дои : 10.1159/000491488 . ПМИД   30130764 . S2CID   52056959 . Значок открытого доступа
  49. Перейти обратно: Перейти обратно: а б Кричка, ЖЖ (2019). «История сбоев в лабораторной медицине: что мы узнали из предсказаний?» . Клиническая химия и лабораторная медицина . 57 (3): 308–311. дои : 10.1515/cclm-2018-0518 . ПМИД   29927745 . S2CID   49354315 .
  50. ^ Гатуйя, Артур; Бадр, Юаким; Массо, Бертран; Сейдич, Эрвин (2018). «Интернет медицинских вещей: обзор последних публикаций, посвященных киберфизическим системам в медицине» (PDF) . Журнал IEEE Интернета вещей . 5 (5): 3810–3822. дои : 10.1109/jiot.2018.2849014 . ISSN   2327-4662 . S2CID   53440449 .
  51. ^ Тополь, Эрик (2016). Пациент увидит вас сейчас: будущее медицины в ваших руках . Основные книги. ISBN  978-0465040025 .
  52. Перейти обратно: Перейти обратно: а б Дей, Ниланджан; Хасаниен, Абул Элла; Бхатт, Чинтан; Ашур, Амира С.; Сатапати, Суреш Чандра (2018). Интернет вещей и анализ больших данных на пути к интеллекту следующего поколения (PDF) . Международное издательство Спрингер. ISBN  978-3-319-60434-3 . Архивировано из оригинала (PDF) 14 октября 2018 года . Проверено 14 октября 2018 г.
  53. ^ Пратап Сингх, Р.; Джавайд, М.; Халим, А.; Вайшья, Р.; Али, С. (2020). «Интернет медицинских вещей (IoMT) для ортопедии в условиях пандемии COVID-19: роли, проблемы и приложения» . Журнал клинической ортопедии и травматологии . 11 (4): 713–717. дои : 10.1016/j.jcot.2020.05.011 . ПМЦ   7227564 . ПМИД   32425428 .
  54. ^ «Центр решений для здравоохранения Deloitte» (PDF) . Делойт .
  55. Перейти обратно: Перейти обратно: а б с д и ж г час я дж Эрсуэ, М.; Ромашкану, Д.; Шенвальдер, Дж.; Сегал, А. (май 2015 г.). «Управление сетями с ограниченными устройствами: варианты использования» . Интернет-проект IETF .
  56. ^ «Отчет Goldman Sachs: как Интернет вещей может сэкономить американской системе здравоохранения 305 миллиардов долларов в год» . Задействовать мобильный блог . Энгейдж Мобил Солюшнс, ООО. 23 июня 2016 г. Архивировано из оригинала 26 июля 2018 г. Проверено 26 июля 2018 г.
  57. ^ Всемирная организация здравоохранения. «Мобильное здравоохранение. Новые горизонты здравоохранения через мобильные технологии» (PDF) . Всемирная организация здравоохранения . Проверено 3 января 2020 г.
  58. ^ Истепанян Р.; Ху, С.; Филип, Н.; Сангур, А. (2011). «Потенциал Интернета вещей мобильного здравоохранения «m-IoT» для неинвазивного измерения уровня глюкозы» . 2011 Ежегодная международная конференция Общества инженерии в медицине и биологии IEEE . Том. 2011. стр. 5264–6. дои : 10.1109/IEMBS.2011.6091302 . ISBN  978-1-4577-1589-1 . ПМИД   22255525 . S2CID   995488 .
  59. ^ Свон, Мелани (8 ноября 2012 г.). «Сенсорная мания! Интернет вещей, носимые компьютеры, объективные метрики и количественное Я 2.0» . Журнал сетей датчиков и исполнительных механизмов . 1 (3): 217–253. дои : 10.3390/jsan1030217 .
  60. ^ Информационная стратегия Тайваня, Справочник по развитию Интернета и электронной коммерции — стратегическая информация, правила, контакты . IBP, Inc. США. 2016. с. 79. ИСБН  978-1514521021 .
  61. ^ Грелль, Макс; Динсер, Банка; Ле, Тао; Лаури, Альберто; Нуньес Бахо, Эстефания; Касиматис, Майкл; Барандун, Джандрин; Майер, Стефан А.; Касс, Энтони Э.Г. (2019). «Автокаталитическая металлизация тканей с использованием кремниевых чернил для биосенсоров, батарей и сбора энергии» . Передовые функциональные материалы . 29 (1): 1804798. doi : 10.1002/adfm.201804798 . ISSN   1616-301X . ПМК   7384005 . ПМИД   32733177 .
  62. ^ Динсер, Банка; Брух, Ричард; Клинг, Андре; Диттрих, Петра С.; Урбан, Джеральд А. (1 августа 2017 г.). «Мультиплексное тестирование на месте оказания медицинской помощи – xPOCT» . Тенденции в биотехнологии . 35 (8): 728–742. дои : 10.1016/j.tibtech.2017.03.013 . ISSN   0167-7799 . ПМК   5538621 . ПМИД   28456344 .
  63. ^ «Что такое HIE? | HealthIT.gov» . www.healthit.gov . Проверено 21 января 2020 г.
  64. ^ Амио, Эммануэль. «Интернет вещей. Нарушение традиционных бизнес-моделей» (PDF) . Оливер Вайман . Проверено 14 октября 2018 г.
  65. ^ Вермезан, Овидиу и Питер Фрис, ред. Интернет вещей: конвергентные технологии для умной среды и интегрированных экосистем. Издательство River, 2013. https://www.researchgate.net/publication/272943881.
  66. ^ Махмуд, Хизир; Таун, Грэм Э.; Морсалин, Саидул; Хоссейн, MJ (февраль 2018 г.). «Интеграция электромобилей и управления энергетикой в ​​Интернете». Обзоры возобновляемой и устойчивой энергетики . 82 : 4179–4203. дои : 10.1016/j.rser.2017.11.004 .
  67. ^ Се, Сяо-Фэн; Ван, Цзунь-Цзин (2017). «Интегрированная бортовая система поддержки принятия решений для вождения на регулируемых перекрестках: прототип умного Интернета вещей на транспорте» . Ежегодное собрание Совета по транспортным исследованиям (TRB), Вашингтон, округ Колумбия, США .
  68. ^ «Ключевые применения интеллектуального Интернета вещей для трансформации транспорта» . 20 сентября 2016 г.
  69. ^ «Технологии V2V и V2X открывают путь к автономному вождению | СБОРКА» . www.assemblymag.com . Проверено 20 февраля 2024 г.
  70. Перейти обратно: Перейти обратно: а б с д Хаазе, Ян; Алахмад, Махмуд; Ниси, Хироаки; Пленнигс, Йорн; Цанг, Ким Фунг (2016). «Искусственная среда, опосредованная IOT: краткий обзор». 2016 IEEE 14-я Международная конференция по промышленной информатике (INDIN) . стр. 1065–1068. дои : 10.1109/INDIN.2016.7819322 . ISBN  978-1-5090-2870-2 . S2CID   5554635 .
  71. ^ «Все, что вам нужно знать об IoT и промышленном Интернете вещей» . Архивировано из оригинала 24 января 2022 года . Проверено 5 июля 2022 г.
  72. ^ Ян, Чен; Шен, Веймин; Ван, Сяньбинь (январь 2018 г.). «Интернет вещей в производстве: ключевые проблемы и потенциальные применения». Журнал IEEE Systems, Man и Cybernetics . 4 (1): 6–15. дои : 10.1109/MSMC.2017.2702391 . S2CID   42651835 .
  73. ^ Севери, С.; Абреу, Г.; Соттиле, Ф.; Пастроне, К.; Спирито, М.; Беренс, Ф. (23–26 июня 2014 г.). «Технологии M2M: факторы повсеместного Интернета вещей» . Европейская конференция по сетям и коммуникациям (EUCNC2014) .
  74. Перейти обратно: Перейти обратно: а б Губби, Джаявардхана; Буйя, Раджкумар; Марушич, Славен; Паланисвами, Маримуту (24 февраля 2013 г.). «Интернет вещей (IoT): видение, архитектурные элементы и будущие направления». Компьютерные системы будущего поколения . 29 (7): 1645–1660. arXiv : 1207.0203 . дои : 10.1016/j.future.2013.01.010 . S2CID   204982032 .
  75. ^ Тан, Лу; Ван, Ненг (20–22 августа 2010 г.). «Интернет будущего: Интернет вещей». 2010 3-я Международная конференция по передовой компьютерной теории и инженерии (ICACTE) . Том. 5. С. 376–380. дои : 10.1109/ICACTE.2010.5579543 . ISBN  978-1-4244-6539-2 . S2CID   40587 .
  76. ^ «Промышленное строительство в академических кругах» (PDF) . Автодеск .
  77. ^ Меола, А. (20 декабря 2016 г.). «Почему Интернет вещей, большие данные и умное сельское хозяйство — это будущее сельского хозяйства» . Бизнес-инсайдер . Инсайдер, Инк . Проверено 26 июля 2018 г.
  78. ^ Чжан, К. (2015). Технология точного земледелия для растениеводства . ЦРК Пресс. стр. 249–58. ISBN  9781482251081 .
  79. ^ «Google становится двуязычным, Facebook конкретизирует перевод, а TensorFlow — это круто. А Microsoft помогает рыбоводам в Японии» . Регистр .
  80. ^ Васишт, Дипак; Капетанович, Зерина; отец Чонхо; Цзинь, Синьсинь; Чандра, Ранвир; Синха, Судипта; Капур, Ашиш; Сударшан, Мадхусудхан; Стратман, Шон (2017). FarmBeats: платформа Интернета вещей для сельского хозяйства, управляемого данными . стр. 515–529. ISBN  978-1-931971-37-9 .
  81. ^ «FarmBeats: AI, Edge и IoT для сельского хозяйства» . Исследования Майкрософт . Проверено 28 июня 2021 г.
  82. ^ «Приложения для мониторинга: как Интернет вещей может превратить вашу лодку в умную» . Яхтенный мир . 9 марта 2020 г.
  83. ^ Чуй, Майкл; Леффлер, Маркус; Робертс, Роджер. «Интернет вещей» . Ежеквартальный журнал McKinsey . МакКинси и компания. Архивировано из оригинала 14 марта 2015 года . Проверено 10 июля 2014 г.
  84. ^ «Умный мусор» . Постпейзажи . Проверено 10 июля 2014 г.
  85. ^ Пун, Л. (22 июня 2018 г.). «Сонный в Сонгдо, самом умном городе Кореи» . СитиЛаб . Атлантическая ежемесячная группа . Проверено 26 июля 2018 г.
  86. ^ Рико, Хуан (22–24 апреля 2014 г.). «Выходя за рамки мониторинга и действий в крупномасштабных умных городах». Решения NFC и Proximity – WIMA Monaco .
  87. ^ «Видение города сегодня, город видения завтра» . Китайско-сингапурский город знаний Гуанчжоу . Проверено 11 июля 2014 г.
  88. ^ «Сан-Хосе внедряет технологии Intel для создания более умного города» . Отдел новостей Intel . Проверено 11 июля 2014 г.
  89. ^ «Западный Сингапур становится испытательным полигоном для решений «умного города»» . Кокосы Сингапур . 19 июня 2014 года . Проверено 11 июля 2014 г.
  90. ^ Хиггинботэм, Стейси. «Группа руководителей беспроводных сетей стремится построить общенациональную сеть Интернета вещей» . Фортуна.com . Проверено 8 июня 2019 г.
  91. ^ Фриман, Майк (9 сентября 2015 г.). «On-Ramp Wireless становится Ingenu и запускает общенациональную сеть Интернета вещей» . SanDiegoUnionTribune.com . Проверено 8 июня 2019 г.
  92. ^ Липски, Джессика. «Конфликт IoT на частотах более 900 МГц» . ЭТаймс . Проверено 15 мая 2015 г.
  93. ^ Аллевен, Моника. «Sigfox запускает сеть Интернета вещей в 10 городах Великобритании» . Жестокая беспроводная технология . Проверено 13 мая 2015 г.
  94. ^ Мерритт, Рик. «13 взглядов на мир Интернета вещей» . ЭТаймс . Проверено 15 мая 2015 г.
  95. ^ Фитчард, Кевин (20 мая 2014 г.). «Sigfox переносит свою сеть Интернета вещей в Сан-Франциско» . Гигаом . Проверено 15 мая 2015 г.
  96. ^ Уджалей, Мохд (25 июля 2018 г.). «Cisco инвестирует в оптоволоконные сети, Интернет вещей и умные города в Андхра-Прадеше» . ПроКвест   1774166769 .
  97. ^ Стол, Новости (27 октября 2017 г.). «Cisco помогает Виджаяваде создать самую длинную умную улицу в Индии» . Геопространственный мир . Проверено 21 февраля 2024 г. {{cite web}}: |first= имеет общее имя ( справка )
  98. ^ «Поощрительная премия STE Security Innovation Awards: Конец отключений» . Securityinfowatch.com . 10 декабря 2012 года . Проверено 12 августа 2015 г.
  99. ^ Парелло, Дж.; Клез, Б.; Шенинг, Б.; Квиттек, Дж. (28 апреля 2014 г.). «Система энергетического менеджмента» . IETF . {{cite journal}}: Для цитирования журнала требуется |journal= ( помощь )
  100. ^ Дэвис, Никола. «Как Интернет вещей сделает возможным создание «умных зданий» » . Экстремальные технологии .
  101. ^ «Глаз моллюска» . Архивировано из оригинала 12 ноября 2016 года . Проверено 26 июня 2015 г.
  102. ^ Ли, Шиксинг; Ван, Хун; Сюй, Тао; Чжоу, Гуйпин (2011). «Исследование применения Интернета вещей в области охраны окружающей среды». Информатика в управлении, автоматизации и робототехнике (Представлена ​​рукопись). Конспект лекций по электротехнике. Том. 133. С. 99–106. дои : 10.1007/978-3-642-25992-0_13 . ISBN  978-3-642-25991-3 . Архивировано из оригинала 26 декабря 2019 года . Проверено 7 ноября 2018 г.
  103. ^ «Сценарий использования: чувствительный мониторинг дикой природы» . Французский проект FIT . Архивировано из оригинала 14 июля 2014 года . Проверено 10 июля 2014 г.
  104. ^ Харт, Джейн К.; Мартинес, Кирк (1 мая 2015 г.). «На пути к экологическому Интернету вещей» . Наука о Земле и космосе . 2 (5): 194–200. Бибкод : 2015E&SS....2..194H . дои : 10.1002/2014EA000044 .
  105. Перейти обратно: Перейти обратно: а б Скуотто, Вероника; Феррарис, Альберто; Брешиани, Стефано (4 апреля 2016 г.). «Интернет вещей». Журнал «Управление бизнес-процессами» . 22 (2): 357–367. дои : 10.1108/bpmj-05-2015-0074 . ISSN   1463-7154 .
  106. ^ «Живые лаборатории – Европейская сеть живых лабораторий» . енолл.орг. 31 августа 2017 года . Проверено 13 января 2024 г.
  107. ^ Кэмерон, Лори (март 2018 г.). «Интернет вещей в армии и на поле боя: соединение оборудования и биометрических носимых устройств для IoMT и IoBT» . Компьютерное общество IEEE . Проверено 31 октября 2019 г.
  108. ^ Мизоками, Кайл (7 июля 2022 г.). «Эта технология с поддержкой искусственного интеллекта позволяет солдатам видеть сквозь стены» . Популярная механика . Проверено 18 апреля 2023 г.
  109. ^ «Армия решает серьезные проблемы с Интернетом вещей на поле боя» . МериТок . 30 января 2018 года . Проверено 31 октября 2019 г.
  110. ^ Гудеман, Ким (6 октября 2017 г.). «Боевой интернет нового поколения (IoBT) призван помочь обеспечить безопасность войск и гражданского населения» . ЕЭК Иллинойс . Проверено 31 октября 2019 г.
  111. ^ «Интернет вещей поля боя (IOBT)» . Армейская исследовательская лаборатория CCDC . Проверено 31 октября 2019 г.
  112. ^ «DARPA выдвигает предложение для океана вещей» . МериТок . 3 января 2018 года . Проверено 31 октября 2019 г.
  113. ^ «Как сделать умную упаковку еще умнее» . Дайджест упаковки . 4 июня 2018 года . Проверено 28 апреля 2020 г.
  114. ^ «Связь с потребителями: преимущества и опасности умной упаковки для индустрии еды и напитков» . foodnavigator-asia.com . 18 июня 2019 года . Проверено 28 апреля 2020 г.
  115. ^ «Какие технологии умной упаковки будут доступны в 2018 году» . confectionerynews.com . 18 июля 2018 года . Проверено 28 апреля 2020 г.
  116. ^ Чен, Чаншэн; Ли, Мулин; Феррейра, Ансельмо; Хуан, Цзиу; Цай, Жичжао (2020). «Схема защиты от копирования, основанная на моделях спектрального и пространственного канала штрих-кодирования». Транзакции IEEE по информационной криминалистике и безопасности . 15 : 1056–1071. дои : 10.1109/tifs.2019.2934861 . ISSN   1556-6013 . S2CID   201903693 .
  117. ^ «MIT представляет безбатарейную криптографическую метку для защиты от подделок» . www.securingindustry.com . 26 февраля 2020 г. Проверено 28 апреля 2020 г.
  118. Перейти обратно: Перейти обратно: а б Нордрам, Эми (18 августа 2016 г.). «Популярный прогноз «Интернета вещей» о 50 миллиардах устройств к 2020 году устарел» . IEEE-спектр .
  119. ^ Вермезан, Овидиу; Фрисс, Питер (2013). Интернет вещей: конвергентные технологии для умной среды и интегрированных экосистем (PDF) . Ольборг, Дания: River Publishers. ISBN  978-87-92982-96-4 .
  120. ^ Сантуччи, Джеральд. «Интернет вещей: между интернет-революцией и метаморфозой объектов» (PDF) . Информационная служба Сообщества Европейской Комиссии по исследованиям и разработкам . Проверено 23 октября 2016 г.
  121. ^ Маттерн, Фридеманн; Флеркемайер, Кристиан. «От Интернета компьютеров к Интернету вещей» (PDF) . ETH Цюрих . Проверено 23 октября 2016 г.
  122. ^ Линднер, Тим (13 июля 2015 г.). «Цепочка поставок: изменения со скоростью технологий» . Связанный мир . Архивировано из оригинала 22 августа 2015 года . Проверено 18 сентября 2015 г.
  123. Перейти обратно: Перейти обратно: а б Кён, Рюдигер. «Интернет-преступность: корпорации объединяются против хакеров» . Фаз.нет .
  124. ^ «Умные вещи: автономный Интернет вещей» . Блог ГДР . Творческий интеллект ГДР. 5 января 2018 года . Проверено 26 июля 2018 г.
  125. ^ Левин, Сергей; Финн, Челси ; Даррелл, Тревор; Аббель, Питер (2016). «Сквозное обучение глубокой зрительно-моторной политике» (PDF) . Журнал исследований машинного обучения . 17 (1): 1334–1373. arXiv : 1504.00702 . Бибкод : 2015arXiv150400702L .
  126. Перейти обратно: Перейти обратно: а б Мохаммади, Мехди; Аль-Фукаха, Ала; Сорур, Самех; Гуизани, Мохсен (2018). «Глубокое обучение для больших данных Интернета вещей и потоковой аналитики: опрос». Опросы и учебные пособия IEEE по коммуникациям . 20 (4): 2923–2960. arXiv : 1712.04301 . дои : 10.1109/COMST.2018.2844341 . S2CID   9461213 .
  127. ^ Махдавинеджад, Мохаммад Саид; Резван, Мохаммадреза; Барекатаин, Мохаммед; Адиби, Пейман; Барнаги, Пайам; Шет, Амит П. (2018). «Машинное обучение для анализа данных Интернета вещей: опрос». Цифровые коммуникации и сети . 4 (3): 161–175. arXiv : 1802.06305 . Бибкод : 2018arXiv180206305S дои : 10.1016/j.dcan.2017.10.002 . S2CID   2666574 .
  128. ^ Алиппи, К. (2014). Интеллект для встраиваемых систем . Спрингер Верлаг. ISBN  978-3-319-05278-6 .
  129. ^ Деликато, ФК; Аль-Анбуки, А.; Ван, К., ред. (2018). Умные киберфизические системы: на пути к всеобъемлющим интеллектуальным системам . Эльзевир . Проверено 26 июля 2018 г. {{cite book}}: |work= игнорируется ( помогите )
  130. Перейти обратно: Перейти обратно: а б с д Траукина, Алена; Томас, Джаянт; Тьяги, Прашант; Реддипалли, Кишор (29 сентября 2018 г.). Разработка промышленных интернет-приложений: упростите разработку IIoT, используя гибкость публичного облака и собственных облачных сервисов (1-е изд.). Пакт Паблишинг. п. 18.
  131. ^ Хасан, Кусай; Хан, Атта; Мадани, Саджад (2018). Интернет вещей: проблемы, достижения и приложения . Бока-Ратон, Флорида: CRC Press. п. 198. ИСБН  9781498778510 .
  132. ^ Чаухури, Абхик (2018). Интернет вещей, для вещей и посредством вещей . Бока-Ратон, Флорида: CRC Press. ISBN  9781138710443 .
  133. ^ Пал, Арпан (май – июнь 2015 г.). «Интернет вещей: воплотить ажиотаж в реальность» (PDF) . ИТ-профессионал . 17 (3): 2–4. дои : 10.1109/MITP.2015.36 . Архивировано из оригинала (PDF) 4 июля 2015 года . Проверено 10 апреля 2016 г. .
  134. ^ «Gartner сообщает, что в 2016 году будет использоваться 6,4 миллиарда подключенных «вещей», что на 30 процентов больше, чем в 2015 году» . Гартнер . 10 ноября 2015 г. Архивировано из оригинала 12 ноября 2015 г. . Проверено 21 апреля 2016 г.
  135. ^ Реза Аркиан, Хамид (2017). «MIST: схема анализа данных на основе тумана с экономичным предоставлением ресурсов для приложений краудсенсорного анализа Интернета вещей». Журнал сетевых и компьютерных приложений . 82 : 152–165. дои : 10.1016/j.jnca.2017.01.012 .
  136. ^ «Интернет вещей: внешние периферийные вычисления» . Июнь 2019 года . Проверено 3 июня 2019 г. {{cite journal}}: Для цитирования журнала требуется |journal= ( помощь )
  137. ^ Цуй, Лайчжун; Ян, Шу; Чен, Цзитенг; Пан, Йи; Мин, Чжун; Сюй, Минвэй (май 2020 г.). «Децентрализованная и надежная платформа периферийных вычислений для Интернета вещей». Журнал IEEE Интернета вещей . 7 (5): 3910–3922. дои : 10.1109/JIOT.2019.2951619 . ISSN   2327-4662 . S2CID   209097962 .
  138. ^ Мессауд, Сейфеддин; Брадай, Аббас; Бухари, Сайед Хашим Раза; Куанг, Фам Чан Ань; Ахмед, Ольфа Бен; Атри, Мохамед (1 декабря 2020 г.). «Опрос по машинному обучению в Интернете вещей: алгоритмы, стратегии и приложения». Интернет вещей . 12 : 100314. дои : 10.1016/j.iot.2020.100314 . ISSN   2542-6605 . S2CID   228876304 .
  139. ^ Нгуен, Тянь-Дунг; Ха, Юи-Нам; Джо, Минхо (июнь 2019 г.). «Децентрализованная и переработанная платформа развертывания и обнаружения контентно-ориентированных сетевых сервисов в мобильных периферийных вычислениях для устройств Интернета вещей». Журнал IEEE Интернета вещей . 6 (3): 4162–4175. дои : 10.1109/JIOT.2018.2875489 . ISSN   2327-4662 . S2CID   69250756 .
  140. ^ Сюн, Цзэхуэй; Чжан, Ян; Луонг, Нгуен Конг; Ниято, Дусит; Ван, Пин; Гуизани, Надра (январь 2020 г.). «Лучшее из обоих миров: общая архитектура управления данными в Интернете вещей с поддержкой блокчейна». Сеть IEEE . 34 (1): 166–173. дои : 10.1109/MNET.001.1900095 . ISSN   1558-156X . S2CID   211050783 .
  141. ^ Альхайзай, Юсеф; Певец Джереми; Михала, Анна Лито (июнь 2021 г.). «Оптимизация распределения задач для периферийных микрокластеров в умных городах» (PDF) . 22-й Международный симпозиум IEEE «Мир беспроводных, мобильных и мультимедийных сетей» (WoWMoM) , 2021 г. стр. 341–347. дои : 10.1109/WoWMoM51794.2021.00062 . ISBN  978-1-6654-2263-5 . S2CID   235780952 .
  142. ^ Го, Хунчжи; Лю, Цзяцзя; Цинь, Хуэйлин (январь 2018 г.). «Совместная разгрузка периферийных мобильных вычислений для Интернета вещей через оптоволоконные беспроводные сети». Сеть IEEE . 32 (1): 66–71. дои : 10.1109/MNET.2018.1700139 . ISSN   1558-156X . S2CID   12479631 .
  143. ^ Черупалли, Сумант Редди; Бога, Шринивас; Подили, Прашант; Катаока, Котаро (январь 2021 г.). «Легкий и масштабируемый распределенный реестр на основе DAG для проверки целостности данных Интернета вещей». Международная конференция по информационным сетям (ICOIN) 2021 года . стр. 267–272. дои : 10.1109/ICOIN50884.2021.9334000 . ISBN  978-1-7281-9101-0 . S2CID   231825899 .
  144. ^ Фан, Синьсинь; Чай, Ци; Сюй, Лей; Го, Донг (6 октября 2020 г.). «DIAM-IoT: децентрализованная платформа управления идентификацией и доступом для Интернета вещей». Материалы 2-го Международного симпозиума ACM по блокчейну и безопасности критической инфраструктуры . Бакалавриат '20. Тайбэй, Тайвань: Ассоциация вычислительной техники. стр. 186–191. дои : 10.1145/3384943.3409436 . ISBN  978-1-4503-7610-5 . S2CID   222142832 .
  145. ^ Дюран, Арно; Гремо, Паскаль; Паскье, Жак (22 октября 2017 г.). «Децентрализованная сеть доверия и аутентификации для Интернета вещей». Материалы Седьмой Международной конференции по Интернету вещей . Интернет вещей '17. Линц, Австрия: Ассоциация вычислительной техники. стр. 1–2. дои : 10.1145/3131542.3140263 . ISBN  978-1-4503-5318-2 . S2CID   3645848 .
  146. Перейти обратно: Перейти обратно: а б Готье, Филипп; Гонсалес, Лоран (2011). Интернет вещей... Интернет, но лучше (PDF) . Предисловие Жеральда Сантуччи (Европейская комиссия), послесловие Даниэля Каплана (FING) и Мишеля Волле. Париж: AFNOR издания . ISBN  978-2-12-465316-4 .
  147. ^ Маргинян, М.-Т.; Лу, К. (2016). «Протокол связи sDOMO для домашних роботизированных систем в контексте Интернета вещей» . Информатика, технологии и применение . Всемирная научная. стр. 151–60. ISBN  9789813200432 .
  148. ^ Монтазеролгам, Ахмадреза (2021). «Программно-определяемый Интернет мультимедийных вещей: энергоэффективное и сбалансированное по нагрузке управление ресурсами» . Журнал IEEE Интернета вещей . 9 (3): 2432–2442. дои : 10.1109/JIOT.2021.3095237 . ISSN   2327-4662 . S2CID   237801052 .
  149. ^ Ровайда, А. Садек (май 2018 г.). «– Гибкая архитектура программно-конфигурируемой сети (SDN) на основе Интернета вещей (IoT)» (PDF) . Египетский журнал компьютерных наук .
  150. ^ Монтазеролгам, Ахмадреза; Ягмаи, Мохаммад Хосейн (апрель 2020 г.). «Программно-определяемый Интернет вещей со балансировкой нагрузки и поддержкой QoS» . Журнал IEEE Интернета вещей . 7 (4): 3323–3337. дои : 10.1109/JIOT.2020.2967081 . ISSN   2327-4662 . S2CID   214551067 .
  151. ^ «Стандартная спецификация API OGC SensorThings» . ОГК . Проверено 15 февраля 2016 г.
  152. ^ «Веб-включение датчиков OGC: обзор и архитектура высокого уровня» . ОГК . Проверено 15 февраля 2016 г.
  153. ^ Минтир, А. (2017). «Глава 9: Применение геопространственной аналитики к данным Интернета вещей» . Аналитика для Интернета вещей (IoT) . Пакт Паблишинг. стр. 230–57. ISBN  9781787127579 .
  154. ^ ван дер Зее, Э.; Схолтен, Х. (2014). «Пространственные измерения больших данных: применение географических концепций и пространственных технологий к Интернету вещей» . В Бессисе, Н.; Добре, К. (ред.). Большие данные и Интернет вещей: дорожная карта для умной среды . Спрингер. стр. 137–68. ISBN  9783319050294 .
  155. Перейти обратно: Перейти обратно: а б Гассе, Ж.-Л. (12 января 2014 г.). «Интернет вещей: проблема «корзины пультов» . Примечание понедельника . Проверено 26 июня 2015 г.
  156. ^ де Соуза, М. (2015). «Глава 10: Интеграция с Muzzley» . Интернет вещей с Intel Galileo . Пакт Паблишинг. п. 163. ИСБН  9781782174912 .
  157. ^ «Социальный Интернет вещей» . Включение Интернета вещей . ieeexplore.ieee.org. 2021. стр. 195–211. дои : 10.1002/9781119701460.ch9 . ISBN  9781119701255 . S2CID   240696468 . Проверено 9 июля 2021 г.
  158. ^ Салим, Ясир; Креспи, Ноэль; Пейс, Паскуале (апрель 2018 г.). «SCDIoT: социальный междоменный Интернет вещей, обеспечивающий связь между приложениями» . Международная конференция IEEE по облачной инженерии (IC2E) 2018 г. Орландо, Флорида: IEEE. стр. 346–350. дои : 10.1109/IC2E.2018.00068 . ISBN  978-1-5386-5008-0 . S2CID   21720322 .
  159. Перейти обратно: Перейти обратно: а б с Афзал, Билал; Умайр, Мухаммед; Асадулла Шах, Галиб; Ахмед, Эджаз (март 2019 г.). «Включение платформ Интернета вещей для социальных приложений Интернета вещей: видение, сопоставление функций и проблемы» . Компьютерные системы будущего поколения . 92 : 718–731. дои : 10.1016/j.future.2017.12.002 . S2CID   57379503 .
  160. ^ Бхатия, Муниш; Суд, Сандип К. (июнь 2020 г.). «Оптимизация сети для приложений Интернета вещей на основе квантовых вычислений» . Журнал IEEE Интернета вещей . 7 (6): 5590–5598. дои : 10.1109/JIOT.2020.2979887 . ISSN   2327-4662 . S2CID   215845606 .
  161. ^ Ченг, Вай Хуэн; Илеладева, Адеойе Абиодун; Тан, Тейк Бун (январь 2019 г.). «Система персонализированных рекомендаций для социального Интернета вещей (SIoT)» . Международная конференция по экологическим и человеческим информационным технологиям (ICGHIT) 2019 года . стр. 24–29. дои : 10.1109/ICGHIT.2019.00013 . ISBN  978-1-7281-0627-4 . S2CID   204702019 .
  162. ^ Ацори, Луиджи; Иера, Антонио; Морабито, Джакомо; Нитти, Мишель (14 ноября 2012 г.). «Социальный Интернет вещей (SIoT) – Когда социальные сети встречаются с Интернетом вещей: концепция, архитектура и характеристики сети» . Компьютерные сети . 56 (16): 3594–3608. дои : 10.1016/j.comnet.2012.07.010 . ISSN   1389-1286 .
  163. ^ Воутирас, Орфефс; Бурелос, Панайотис; Гогоувитис, Спиридон; Кириазис, Димосфенис; Варваригу, Теодора (17 февраля 2015 г.). «Социальный мониторинг и социальный анализ в виртуальных сетях Интернета вещей» . 18-я Международная конференция по интеллекту в сетях следующего поколения . дои : 10.1109/ICIN.2015.7073838 .
  164. ^ Хеллуфи, Амар; Нин, Хуаншэн; Делим, Сахрауи; Цю, Тай; Ма, Цзяньхуа; Хуан, Жунхэ; Ацори, Луиджи (1 февраля 2021 г.). «Система рекомендаций услуг на основе социальных отношений для устройств SIoT» . Журнал IEEE Интернета вещей . 8 (3): 1859–1870. дои : 10.1109/JIOT.2020.3016659 . ISSN   2327-4662 . S2CID   226476576 .
  165. ^ Миори, Витторио; Руссо, Дарио (июнь 2017 г.). «Улучшение качества жизни пожилых людей с помощью социального Интернета вещей (SIoT)» . Глобальный саммит Интернета вещей (GIoTS) 2017 . Женева, Швейцария: IEEE. стр. 1–6. дои : 10.1109/ГИОТС.2017.8016215 . ISBN  978-1-5090-5873-0 . S2CID   7475703 .
  166. ^ Удавант, Омкар; Томбаре, Нихил; Чаухан, Девананд; Хадке, Акаш; Вагхол, Даттатрей (декабрь 2017 г.). «Умная система скорой помощи с использованием IoT» . Международная конференция по большим данным, Интернету вещей и науке о данных (BID) 2017 . Пуна, Индия: IEEE. стр. 171–176. дои : 10.1109/BID.2017.8336593 . ISBN  978-1-5090-6593-6 . S2CID   4865714 .
  167. ^ Салим, Ясир; Креспи, Ноэль; Рехмани, Мубашир Хусейн; Коупленд, Ребекка; Хусейн, Дина; Бертен, Эммануэль (декабрь 2016 г.). «Использование социального Интернета вещей для рекомендательных сервисов» . Третий Всемирный форум IEEE по Интернету вещей (WF-IoT) , 2016 г. Рестон, Вирджиния, США: IEEE. стр. 359–364. дои : 10.1109/WF-IoT.2016.7845500 . ISBN  978-1-5090-4130-5 . S2CID   206866361 .
  168. ^ Андраде, Россана MC; Арагао, Бельмондо Р.; Оливейра, Педро Альмир М.; Майя, Марсио Э.Ф.; Виана, Виндсон; Ногейра, Талес П. (апрель 2021 г.). «Многогранная инфраструктура для самоадаптивных систем Интернета вещей» . Информационные и программные технологии . 132 : 106505. doi : 10.1016/j.infsof.2020.106505 . S2CID   231731945 .
  169. ^ Фарахбахш, Бахаре; Фаниан, Али; Маншаи, Мохаммад Хосейн (март 2021 г.). «TGSM: На пути к надежному групповому управлению услугами для социального Интернета вещей» . Интернет вещей . 13 : 100312. дои : 10.1016/j.iot.2020.100312 . ISSN   2542-6605 . S2CID   228806944 .
  170. ^ Икбал, Мухаммад Азхар; Хусейн, Саджад; Син, Хуанлай; Имран, Мухаммед (февраль 2021 г.). Включение Интернета вещей: основы, дизайн и приложения (1-е изд.). Уайли. дои : 10.1002/9781119701460.ch9 . ISBN  978-1-119-70125-5 . S2CID   240696468 .
  171. ^ Хочу, Рой; Шилит, Билл Н.; Дженсон, Скотт (2015). «Включение Интернета вещей». Компьютер . 48 : 28–35. дои : 10.1109/MC.2015.12 . S2CID   17384656 .
  172. ^ «Интернет вещей: беспорядок или беспорядок?» . Регистр . Проверено 5 июня 2016 г.
  173. ^ «Можем ли мы поговорить? Поставщики Интернета вещей сталкиваются с «беспорядком» в коммуникациях » . Компьютерный мир . 18 апреля 2014 года . Проверено 5 июня 2016 г.
  174. ^ Хасан, QF (2018). Интернет вещей от А до Я: технологии и приложения . Джон Уайли и сыновья. стр. 27–8. ISBN  9781119456759 .
  175. ^ Дэн Брикли и др., гр. 2001 г.
  176. ^ Шэн, М.; Цюнь, Ю.; Яо, Л.; Бенаталлах, Б. (2017). Управление сетью вещей: соединение реального мира с сетью . Морган Кауфманн. стр. 256–8. ISBN  9780128097656 .
  177. ^ Вальднер, Жан Батист (2008). Нанокомпьютеры и роевой интеллект . Лондон: ИСТЭ. стр. 227–231. ISBN  978-1-84704-002-2 .
  178. Перейти обратно: Перейти обратно: а б Кушалнагар, Н.; Черногория, Г.; Шумахер, К. (август 2007 г.). IPv6 в беспроводных персональных сетях малой мощности (6LoWPAN): обзор, предположения, постановка проблемы и цели . IETF . дои : 10.17487/RFC4919 . РФК 4919 .
  179. Перейти обратно: Перейти обратно: а б Сан, Чарльз К. (1 мая 2014 г.). «Прекратите использовать Интернет-протокол версии 4!» . Компьютерный мир .
  180. ^ Томсон, С.; Нартен, Т.; Джинмей, Т. (сентябрь 2007 г.). Автоконфигурация адреса без сохранения состояния IPv6 . IETF . дои : 10.17487/RFC4862 . РФК 4862 .
  181. ^ Алсулами, ММ; Аккари, Н. (апрель 2018 г.). «Роль беспроводных сетей 5G в Интернете вещей (IoT)». 2018 1-я Международная конференция по компьютерным приложениям и информационной безопасности (ICCAIS) . стр. 1–8. дои : 10.1109/CAIS.2018.8471687 . ISBN  978-1-5386-4427-0 . S2CID   52897932 .
  182. ^ «Интернет вещей 5G» . Transformainsights.com . Проверено 26 июля 2022 г.
  183. ^ Вулли, Мартин (6 июня 2022 г.), Учебник по Bluetooth с низким энергопотреблением (PDF) , Bluetooth SIG, Inc.
  184. ^ Рабочая группа по приложениям. Спецификации Z-Wave, версия 1.0 , Z-Wave Alliance, 9 мая 2022 г.
  185. ^ G.9959: Узкополосные приемопередатчики цифровой радиосвязи ближнего радиуса действия - спецификации уровней PHY, MAC, SAR и LLC , ITU, 13 января 2015 г. , получено 20 декабря 2022 г.
  186. ^ Версия спецификации zigbee 22 1.0 , zigbee Alliance, 19 апреля 2017 г.
  187. ^ Спецификация Matter, версия 1.0 , Альянс стандартов связи, 28 сентября 2022 г.
  188. ^ Эдди, Уэсли (18 августа 2022 г.), Протокол управления передачей (TCP) , Рабочая группа по разработке Интернета , получено 20 декабря 2022 г.
  189. ^ Протокол пользовательских дейтаграмм , Инженерная группа Интернета, 2 марта 2013 г. , получено 20 декабря 2022 г.
  190. ^ «Праймер для резьбы» . OpenThread . 10 октября 2022 г. Проверено 20 декабря 2022 г.
  191. ^ «Стандарт IEEE для низкоскоростных беспроводных сетей». IEEE STD 802.15.4-2020 (пересмотр IEEE STD 802.15.4-2015) : 1–800. 23 июля 2020 г. doi : 10.1109/IEESTD.2020.9144691 . ISBN  978-1-5044-6689-9 .
  192. ^ Диринг, Стив Э.; Хинден, Боб (июль 2017 г.), Спецификация интернет-протокола версии 6 (IPv6) , Целевая группа по разработке Интернета , получено 20 декабря 2022 г.
  193. ^ «Стандарт IEEE для Ethernet». IEEE STD 802.3-2018 (пересмотр IEEE STD 802.3-2015) : 1–5600. 31 августа 2018 г. doi : 10.1109/IEESTD.2018.8457469 . ISBN  978-1-5044-5090-4 .
  194. ^ «Стандарт IEEE для информационных технологий. Телекоммуникации и обмен информацией между системами. Локальные и городские сети. Особые требования. Часть 11. Спецификации управления доступом к среде беспроводной локальной сети (MAC) и физического уровня (PHY)». IEEE STD 802.11-2020 (пересмотр IEEE STD 802.11-2016) : 1–4379. 26 февраля 2021 г. doi : 10.1109/IEESTD.2021.9363693 . ISBN  978-1-5044-7283-8 .
  195. ^ Цзин, Дж.; Ли, Х. (2012). «Исследование соответствующих стандартов Интернета вещей» . Ин Ван, Ю.; Чжан, X. (ред.). Интернет вещей: Международный семинар IOT 2012 . Спрингер. стр. 627–32. ISBN  9783642324277 .
  196. ^ Махмуд, З. (2018). Подключенные среды для Интернета вещей: проблемы и решения . Спрингер. стр. 89–90. ISBN  9783319701028 .
  197. ^ «Проект «Подключенный дом через IP»» . Блог разработчиков Google . Проверено 16 сентября 2020 г.
  198. ^ Михальчик, Кэрри. «Apple, Amazon, Google и другие хотят создать новый стандарт технологий умного дома» . CNET . Проверено 24 декабря 2019 г.
  199. ^ Стратегия, Moor Insights и. «CHIP Shot: поможет ли проект «Подключенный дом через IP» перейти к «зеленому» Интернету вещей?» . Форбс . Проверено 3 сентября 2020 г.
  200. ^ «Цифровая связь — Стандарты | GS1» . www.gs1.org . 12 ноября 2018 года . Проверено 28 апреля 2020 г.
  201. ^ «P1451-99 — Стандарт гармонизации устройств и систем Интернета вещей (IoT)» . ИИЭЭ . Проверено 26 июля 2021 г.
  202. ^ Ховард, Филип Н. (1 июня 2015 г.). «Интернет вещей может изменить саму демократию» . Политик . Проверено 8 августа 2017 г.
  203. ^ Томпсон, Кирстен; Маттало, Брэндон (24 ноября 2015 г.). «Интернет вещей: руководство, регулирование и канадский подход» . КиберЛекс . Проверено 23 октября 2016 г.
  204. ^ «Вопрос о том, кому принадлежат данные, станет намного сложнее» . Удача . 6 апреля 2016 года . Проверено 23 октября 2016 г.
  205. ^ Вебер, Р.Х.; Вебер, Р. (2010). Интернет вещей: правовые перспективы . Springer Science & Business Media. стр. 59–64. ISBN  9783642117107 .
  206. ^ Хасан, QF (2018). Интернет вещей от А до Я: технологии и приложения . Джон Уайли и сыновья. стр. 41–4. ISBN  9781119456759 .
  207. ^ Хасан, QF; Хан, А. ур Р.; Мадани, Ю.А. (2017). Интернет вещей: проблемы, достижения и приложения . ЦРК Пресс. стр. 41–2. ISBN  9781498778534 .
  208. ^ Лопес, Хавьер; Риос, Рубен; Бао, Фэн; Ван, Гуйлинь (2017). «Развитие конфиденциальности: от датчиков к Интернету вещей». Компьютерные системы будущего поколения . 75 : 46–57. дои : 10.1016/j.future.2017.04.045 .
  209. ^ «Интернет вещей: юридические проблемы в ультрасвязанном мире» . Мейсон Хейс и Карран . 22 января 2016 года . Проверено 23 октября 2016 г.
  210. ^ Браун, Ян (2015). «Регулирование и Интернет вещей» (PDF) . Оксфордский Интернет-Институт . Проверено 23 октября 2016 г.
  211. ^ «Отчет Федеральной торговой комиссии об Интернете вещей призывает компании применять лучшие практики для устранения рисков конфиденциальности и безопасности потребителей» . Федеральная торговая комиссия . 27 января 2015 года . Проверено 23 октября 2016 г.
  212. ^ Лоусон, Стивен (2 марта 2016 г.). «Пользователи IoT могут победить, приняв новый законопроект в Сенате США» . Тех Барриста . Проверено 9 декабря 2019 г.
  213. ^ «Законодательная информация Калифорнии – SB-327 Конфиденциальность информации: подключенные устройства» .
  214. ^ Питтман, Ф. Пол (2 февраля 2016 г.). «Правовые изменения в сфере подключенных автомобилей дают представление о регулировании конфиденциальности и безопасности данных в Интернете вещей» . Лексология . Проверено 23 октября 2016 г.
  215. ^ Расит, Юсе, Мехмет; Клаус, Байсвенгер, Стефан; Мангалам, Шрикант; Дас, Прасанна, Лал; Мартин, Лукач (2 ноября 2017 г.). «Интернет вещей: новое правительство для бизнес-платформы – обзор возможностей, практик и проблем» : 1–112. {{cite journal}}: Для цитирования журнала требуется |journal= ( помощь ) CS1 maint: несколько имен: список авторов ( ссылка )
  216. Перейти обратно: Перейти обратно: а б Пейдж, Карли (4 декабря 2021 г.). «Соответствует ли новый законопроект правительства Великобритании о кибербезопасности Интернета вещей?» . ТехКранч . Проверено 4 декабря 2021 г.
  217. ^ Виланд, Кен (25 февраля 2016 г.). «Эксперты IoT обеспокоены фрагментацией» . Мобильный мир .
  218. ^ Уоллес, Майкл (19 февраля 2016 г.). «Фрагментация — враг Интернета вещей» . Qualcomm.com .
  219. ^ Бауэр, Харальд; Патель, Марк; Вейра, Ян (октябрь 2015 г.). «Интернет вещей: возможности и вызовы для полупроводниковых компаний» . МакКинси и Ко .
  220. ^ Ардири, Аарон (8 июля 2014 г.). «Будет ли фрагментация стандартов только препятствовать раскрытию истинного потенциала индустрии Интернета вещей?» . evothings.com . Архивировано из оригинала 27 февраля 2021 года . Проверено 23 сентября 2016 г.
  221. ^ «Интернет вещей приводит к фрагментации платформы» (PDF) . Arm.com .
  222. ^ Рэггетт, Дэйв (27 апреля 2016 г.). «Противодействие фрагментации с помощью Интернета вещей: взаимодействие платформ Интернета вещей» (PDF) . W3C .
  223. ^ Ковач, Стив (30 июля 2013 г.). «Отчет о фрагментации Android» . Бизнес-инсайдер . Проверено 19 октября 2013 г.
  224. ^ «Полное руководство по подключению к Интернету вещей (IoT)» .
  225. ^ Пьедад, Флойд Н. «Испортит ли фрагментация Android привлекательность Интернета вещей?» . ТехМаяк .
  226. ^ Франчески-Биккьерай, Лоренцо (29 июля 2015 г.). «Прощай, Андроид» . Материнская плата . Порок.
  227. ^ Кингсли-Хьюз, Адриан. «Руководство по выживанию в токсичном адском рагу» . ЗДнет . Проверено 2 августа 2015 г.
  228. ^ Тунг, Лиам (13 октября 2015 г.). «Безопасность Android — это «рынок лимонов», который оставляет 87 процентов уязвимыми» . ЗДНет . Проверено 14 октября 2015 г.
  229. ^ Томас, Дэниел Р.; Бересфорд, Аластер Р.; Райс, Эндрю (2015). Материалы 5-го ежегодного семинара ACM CCS по безопасности и конфиденциальности в смартфонах и мобильных устройствах – SPSM '15 (PDF) . Компьютерная лаборатория Кембриджского университета . стр. 87–98. дои : 10.1145/2808117.2808118 . ISBN  9781450338196 . S2CID   14832327 . Проверено 14 октября 2015 г.
  230. ^ Ховард, Филип Н. (2015). Pax Technica: Как Интернет вещей может сделать нас свободными или запереть . Нью-Хейвен, Коннектикут: Издательство Йельского университета. ISBN  978-0-30019-947-5 .
  231. ^ Макьюэн, Адриан (2014). «Проектирование Интернета вещей» (PDF) . Проверено 1 июня 2016 г.
  232. ^ Мой де Витри, Мэтью; Шнайдер, Мариан; Вани, Омар; Лилиан, Мэнни; Лейтао, Жоао П.; Эггиманн, Свен (2019). «Умные городские системы водоснабжения: что может пойти не так?» . Письма об экологических исследованиях . 14 (8): 081001. Бибкод : 2019ERL....14h1001M . дои : 10.1088/1748-9326/ab3761 . hdl : 20.500.11850/362196 .
  233. ^ «Паноптикум как метафора Интернета вещей» (PDF) . Совет Интернета вещей . Архивировано из оригинала (PDF) 27 сентября 2017 года . Проверено 6 июня 2016 г.
  234. Перейти обратно: Перейти обратно: а б «Фуко» (PDF) . Калифорнийский университет в Лос-Анджелесе.
  235. ^ «Делёз – 1992 – Постскриптум об обществах контроля» (PDF) . Калифорнийский университет в Лос-Анджелесе.
  236. ^ Вербек, Питер-Пол (2011). Морализирующая технология: понимание и проектирование морали вещей . Чикаго: Издательство Чикагского университета. ISBN  978-0-22685-291-1 .
  237. ^ Кардвелл, Дайан (18 февраля 2014 г.). «В аэропорту Ньюарка горит свет, и за вами наблюдают» . Нью-Йорк Таймс .
  238. ^ Харди, Квентин (4 февраля 2015 г.). «Тим О'Рейли объясняет Интернет вещей» . Нью-Йорк Таймс .
  239. ^ Уэбб, Джефф (5 февраля 2015 г.). «Попрощайтесь с конфиденциальностью» . ПРОВОДНОЙ . Проверено 15 февраля 2015 г.
  240. ^ Крамп, Кэтрин; Харвуд, Мэтью (25 марта 2014 г.). «Сеть вокруг нас смыкается» . ТомДиспетч .
  241. ^ Браун, Ян (12 февраля 2013 г.). «Британская программа интеллектуальных счетчиков: пример конфиденциальности благодаря дизайну». Международное обозрение права, компьютеров и технологий . 28 (2): 172–184. дои : 10.1080/13600869.2013.801580 . S2CID   62756630 . ССНН   2215646 .
  242. Перейти обратно: Перейти обратно: а б «Социальное влияние Интернета вещей» (PDF) . Британское компьютерное общество . 14 февраля 2013 года . Проверено 23 октября 2016 г.
  243. Перейти обратно: Перейти обратно: а б Губби, Джаявардхана; Буйя, Раджкумар; Марушич, Славен; Паланисвами, Маримуту (1 сентября 2013 г.). «Интернет вещей (IoT): видение, архитектурные элементы и будущие направления». Компьютерные системы будущего поколения . Включая специальные разделы: Распределенные вычисления с поддержкой кибербезопасности для повсеместных облачных и сетевых сервисов, а также облачные вычисления и научные приложения — большие данные, масштабируемая аналитика и многое другое. 29 (7): 1645–1660. arXiv : 1207.0203 . дои : 10.1016/j.future.2013.01.010 . S2CID   204982032 .
  244. ^ Ачарджья, ДП; Ахмед, СНБ (2017). «Распознавание атак на беспроводную сенсорную сеть с точки зрения Интернета вещей» . В Ачардже, ДП; Гита, МК (ред.). Интернет вещей: новые достижения и предполагаемые приложения . Спрингер. стр. 149–50. ISBN  9783319534725 .
  245. ^ Хусейн, А. (июнь 2017 г.). «Энергопотребление узлов беспроводного Интернета вещей» (PDF) . Норвежский университет науки и технологий . Проверено 26 июля 2018 г.
  246. Перейти обратно: Перейти обратно: а б с д Келлер, Матиас (2021). «Интеграция стратегии и политики I4.0 в обрабатывающей промышленности Германии» . КУ Левен, WWU, TalTech .
  247. ^ «Мы спросили руководителей об Интернете вещей, и их ответы показали, что безопасность по-прежнему вызывает огромную озабоченность» . Бизнес-инсайдер . Проверено 26 июня 2015 г.
  248. ^ Сингх, Джатиндер; Паскье, Томас; Бэкон, Жан; Ко, Хаджун; Эйерс, Дэвид (2015). «Двадцать аспектов облачной безопасности для поддержки Интернета вещей» . Журнал IEEE Интернета вещей . 3 (3): 1. doi : 10.1109/JIOT.2015.2460333 . S2CID   4732406 .
  249. Перейти обратно: Перейти обратно: а б Клирфилд, Крис. «Почему Федеральная торговая комиссия не может регулировать Интернет вещей» . Форбс . Проверено 26 июня 2015 г.
  250. Перейти обратно: Перейти обратно: а б Фимстер, Ник (18 февраля 2017 г.). «Снижение растущих рисков небезопасного Интернета вещей» . Свобода мастерить . Проверено 8 августа 2017 г.
  251. ^ Цигельдорф, Ян Хенрик; Морчон, Оскар Гарсия; Верле, Клаус (10 июня 2013 г.). «Конфиденциальность в Интернете вещей: угрозы и вызовы» . Сети безопасности и связи . 7 (12): 2728–2742. arXiv : 1505.07683 . дои : 10.1002/сек.795 . ISSN   1939-0114 . S2CID   1208330 .
  252. ^ Ли, С. (2017). «Глава 1: Введение: безопасность Интернета вещей» . Ин Ли, С.; Сюй, Л.Д. (ред.). Безопасность Интернета вещей . Сингресс. п. 4. ISBN  9780128045053 .
  253. ^ Бастос, Д.; Шеклтон, М.; Эль-Мусса, Ф. (2018). «Интернет вещей: обзор технологий и рисков безопасности в умном доме и городской среде». Жизнь в Интернете вещей: Кибербезопасность Интернета вещей — 2018 . стр. 30 (7 стр.). дои : 10.1049/cp.2018.0030 . ISBN  9781785618437 .
  254. ^ Харби, Ясмин; Алиуат, Зибуда; Харус, Саад; Бенталеб, Абдельхак; Рефуфи, Аллауа (сентябрь 2019 г.). «Обзор безопасности в Интернете вещей» . Беспроводная персональная связь . 108 (1): 325–344. дои : 10.1007/s11277-019-06405-y . ISSN   0929-6212 . S2CID   150181134 .
  255. ^ Лю, Симэн; Ян, Ян; Чу, Ким-Кван Рэймонд; Ван, Хуацюнь (24 сентября 2018 г.). «Проблемы безопасности и конфиденциальности Интернета вещей и туманных вычислений» . Беспроводная связь и мобильные вычисления . 2018 : 1–3. дои : 10.1155/2018/9373961 . ISSN   1530-8669 .
  256. ^ Моррисси, Джанет (22 января 2019 г.). «Спешащим присоединиться к толпе умных домов покупатели должны быть осторожны» . Нью-Йорк Таймс . ISSN   0362-4331 . Проверено 26 февраля 2020 г.
  257. ^ Ахмади, Мохсен; Киаэй, Пантея; Эмамдуст, Навид (2021). SN4KE: Практическое тестирование мутаций на двоичном уровне (PDF) (MSc). Симпозиум NDSS 2021.
  258. ^ Клирфилд, Кристофер (26 июня 2013 г.). «Переосмысление безопасности Интернета вещей» . Блог Harvard Business Review .
  259. ^ Витковски, Адриано; Сантин, Альтаир; Абреу, Вилмар; Мариновский, Жоао (2014). «Метод аутентификации на основе IdM и ключей для обеспечения единого входа в Интернет вещей» . Конференция по глобальным коммуникациям IEEE 2015 (GLOBECOM) . стр. 1–6. дои : 10.1109/GLOCOM.2014.7417597 . ISBN  978-1-4799-5952-5 . S2CID   8108114 .
  260. ^ Стейнберг, Джозеф (27 января 2014 г.). «Эти устройства могут шпионить за вами (даже в вашем собственном доме)» . Форбс . Проверено 27 мая 2014 г.
  261. ^ Гринберг, Энди (21 июля 2015 г.). «Хакеры удаленно убили джип на шоссе, находясь в нем со мной» . Проводной . Проверено 21 июля 2015 г.
  262. ^ Scientific American , апрель 2015 г., стр.68.
  263. ^ Лукас, Джордж (июнь 2015 г.). Киберфизические атаки Растущая невидимая угроза . Оксфорд, Великобритания: Баттервор-Хайнеманн (Эльзевир). п. 65. ИСБН  9780128012901 .
  264. ^ Вульф, Ники (26 октября 2016 г.). «DDoS-атака, которая нарушила работу Интернета, была крупнейшей в своем роде в истории, говорят эксперты» . Хранитель .
  265. Перейти обратно: Перейти обратно: а б с д и Антонакакис, Манос; Эйприл, Тим; Бейли, Майкл; Бернхард, Мэтт; Бурштейн, Эли; Кокран, Хайме; Дурумерик, Закир; Халдерман, Дж. Алекс; Инверницци, Лука (18 августа 2017 г.). Понимание ботнета Mirai (PDF) . Ассоциация ЮСЕНИКС. ISBN  978-1-931971-40-9 . Проверено 13 мая 2018 г. {{cite book}}: |website= игнорируется ( помогите )
  266. ^ «Анти-паттерны», превратившие Интернет вещей в Интернет Дерьма/Боинг-Боинг» . boingboing.net . 3 мая 2017 г.
  267. ^ Али, Джунаде (2 мая 2017 г.). «Антипаттерны безопасности Интернета вещей» . Блог Cloudflare .
  268. ^ Шнайер, Брюс (6 октября 2016 г.). «Нам нужно спасти Интернет от Интернета вещей» . Материнская плата .
  269. ^ «Глобальные тенденции в области прорывных технологий 2025» (PDF) . Национальный совет разведки (NIC) . Апрель 2008. с. 27.
  270. ^ Акерман, Спенсер (15 марта 2012 г.). «Шеф ЦРУ: Мы будем шпионить за вами через вашу посудомоечную машину» . ПРОВОДНОЙ . Проверено 26 июня 2015 г.
  271. ^ «У дверных звонков есть глаза: битва за конфиденциальность назревает из-за домашних камер видеонаблюдения» . Вашингтон Пост . Проверено 3 февраля 2019 г.
  272. ^ «Создание Интернета вещей – Mozilla Hacks – блог веб-разработчиков» . Mozilla Hacks — блог веб-разработчиков .
  273. ^ «Шаг к инновациям» .
  274. ^ «К 2022 году глобальный рынок безопасности Интернета вещей достигнет размера в 29,2 миллиарда долларов» .
  275. ^ Уорд, Марк (23 сентября 2015 г.). «Умные устройства для настройки безопасности» . Новости Би-би-си .
  276. ^ «Исполнительный руководящий совет» . Фонд безопасности Интернета вещей .
  277. ^ Шнайер, Брюс (1 февраля 2017 г.). «Безопасность и Интернет вещей» .
  278. ^ Альфанди, Омар; Хасан, Мусааб; Балбахаит, Заид (2019), «Оценка и усиление плат разработки Интернета вещей», Проводные/беспроводные интернет-коммуникации , Конспекты лекций по информатике, том. 11618, Springer International Publishing, стр. 27–39, номер номера : 10.1007/978-3-030-30523-9_3 , ISBN.  978-3-030-30522-2 , S2CID   202550425
  279. Перейти обратно: Перейти обратно: а б с Нгуен, Данг Ту; Сун, Чэнъюй; Цянь, Чжиюнь; В. Кришнамурти, Шрикант; Дж. М. Кольбер, Эдвард; Макдэниел, Патрик (2018). IoTSan: повышение безопасности систем Интернета вещей . Учеб. 14-й Международной конференции по новым сетевым экспериментам и технологиям (CoNEXT '18). Ираклион, Греция. arXiv : 1810.09551 . дои : 10.1145/3281411.3281440 . arXiv: 1810.09551.
  280. ^ «Умные вещи» . SmartThings.com .
  281. ^ «HomeKit — Разработчик Apple» . разработчик.apple.com .
  282. ^ «Амазонка Алекса» . разработчик.amazon.com .
  283. Перейти обратно: Перейти обратно: а б Филдинг, Рой Томас (2000). «Архитектурные стили и проектирование сетевых архитектур программного обеспечения» (PDF) . Калифорнийский университет в Ирвайне .
  284. ^ Литтман, Майкл; Корчмар, Самуэль (11 июня 2014 г.). «Путь к программируемому миру» . Сноска . Архивировано из оригинала 3 июля 2014 года . Проверено 14 июня 2014 г.
  285. ^ Финли, Клинт (6 мая 2014 г.). «Интернет вещей может заполонить нашу среду гаджетами» . Проводной .
  286. ^ Свет, А.; Роуленд, К. (2015). «Глава 11: Ответственное проектирование Интернета вещей» . В Роуленде, К.; Гудман, Э.; Шарлье, М.; и др. (ред.). Проектирование подключенных продуктов: UX для потребительского Интернета вещей . О'Рейли Медиа. стр. 457–64. ISBN  9781449372569 .
  287. ^ Гилберт, Арло (3 апреля 2016 г.). «Тот случай, когда Тони Фаделл продал мне банку хумуса» . Проверено 7 апреля 2016 г.
  288. Перейти обратно: Перейти обратно: а б с Уолш, Кит (5 апреля 2016 г.). «Nest напоминает клиентам, что право собственности уже не то, что раньше» . Фонд электронных границ . Проверено 7 апреля 2016 г.
  289. Перейти обратно: Перейти обратно: а б с д «Укрощение зоопарка терминологии Интернета вещей: что все это значит?» . Информационный век . ООО «Витесс Медиа». 30 июля 2015 г.
  290. Перейти обратно: Перейти обратно: а б «Технологическая рабочая группа» . Консорциум промышленного Интернета . Проверено 21 марта 2017 г.
  291. ^ «Словарный технический отчет» . Консорциум промышленного Интернета . Проверено 21 марта 2017 г.
  292. ^ «Ощущение ускорения» . Интернет вещей Один . Проверено 21 марта 2017 г.
  293. ^ «База данных терминов IoT» . Интернет вещей Один . Проверено 21 марта 2017 г.
  294. ^ «Краткое руководство» . Интернет вещей ОДИН . Проверено 26 июля 2018 г.
  295. ^ «Почему потребительский Интернет вещей застопорился» . Форбс . Проверено 24 марта 2017 г.
  296. Перейти обратно: Перейти обратно: а б с д и «Все. Вещь. Связано. Исследование внедрения «Интернета вещей» среди датских компаний» (PDF) . Эрикссон . Проверено 2 мая 2020 г.
  297. ^ Чжан, Чжи-Кай; Чо, Майкл Ченг Йи; Ван, Цзя-Вэй; Сюй, Цзя-Вэй; Чен, Чун-Куан; Ши, Шиупинг (2014). «Безопасность Интернета вещей: текущие проблемы и возможности исследований». 2014 7-я Международная конференция IEEE по сервис-ориентированным вычислениям и приложениям . стр. 230–234. дои : 10.1109/SOCA.2014.58 . ISBN  978-1-4799-6833-6 . S2CID   18445510 .
  298. ^ Хан, Минхадж Ахмад; Салах, Халед (2018). «Безопасность Интернета вещей: обзор, решения блокчейна и открытые проблемы». Компьютерные системы будущего поколения . 82 : 395–411. дои : 10.1016/j.future.2017.11.022 . S2CID   3639079 .
  299. ^ Чжоу, Вэй; Цзя, Ян; Пэн, Анни; Чжан, Юйцин; Лю, Пэн (2019). «Влияние новых функций Интернета вещей на безопасность и конфиденциальность: новые угрозы, существующие решения и проблемы, которые еще предстоит решить». Журнал IEEE Интернета вещей . 6 (2): 1606–1616. arXiv : 1802.03110 . дои : 10.1109/JIOT.2018.2847733 . S2CID   31057653 .
  300. ^ Суприя, С.; Падаки, Сагар (2016). «Проблемы безопасности и конфиденциальности данных при внедрении решений для Интернета вещей». Международная конференция IEEE 2016 года по Интернету вещей (iThings), IEEE Green Computing and Communications (GreenCom), IEEE Cyber, Physical and Social Computing (CPSCom) и IEEE Smart Data (SmartData) . стр. 410–415. doi : 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.97 . ISBN  978-1-5090-5880-8 . S2CID   34661195 .
  301. ^ «Информация о законодательстве Калифорнии» .
  302. ^ «Законодательное собрание штата Орегон» . Архивировано из оригинала 30 сентября 2020 года . Проверено 14 октября 2020 г.
  303. Перейти обратно: Перейти обратно: а б с д Энтони, Скотт (15 июля 2016 г.). «Прорывные инновации: падение Kodak не было связано с технологиями» . Гарвардское деловое обозрение . Гарвардское деловое издательство . Проверено 30 марта 2017 г.
  304. ^ «Всемирный экономический форум: следующий двигатель экономического роста – масштабирование технологий четвертой промышленной революции в производстве» (PDF) . Всемирный экономический форум . Январь 2018. с. 4.
  305. ^ в 11:15, Кэт Холл, 23 мая 2017 г. «Три четверти проектов Интернета вещей терпят неудачу, - говорит Cisco» . www.theregister.co.uk . Проверено 29 января 2020 г. {{cite web}}: CS1 maint: числовые имена: список авторов ( ссылка )
  306. ^ Прашер, В.С.; Ону, Стивен (15 сентября 2020 г.). «Переворот в Интернете вещей (IoT): преодоление проблем управления» . Журнал современного управления проектами . 8 (2). doi : 10.19255/JMPM02402 (неактивен 31 января 2024 г.). ISSN   2317-3963 . {{cite journal}}: CS1 maint: DOI неактивен по состоянию на январь 2024 г. ( ссылка )

Библиография [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b3f121ce460a3a7139e556d3051a56ec__1718716260
URL1:https://arc.ask3.ru/arc/aa/b3/ec/b3f121ce460a3a7139e556d3051a56ec.html
Заголовок, (Title) документа по адресу, URL1:
Internet of things - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)