Теория обнаружения
Теория обнаружения или теория обнаружения сигналов — это средство измерения способности различать модели, несущие информацию (называемые стимулом в живых организмах, сигналом в машинах), и случайные закономерности, которые отвлекают от информации (называемые шумом , состоящим из фоновых стимулов и случайной активности). машины обнаружения и нервной системы оператора).
В области электроники — восстановление сигнала это отделение подобных закономерностей от маскирующего фона. [1]
Согласно теории, существует ряд факторов, определяющих то, как система обнаружения обнаружит сигнал и где будут его пороговые уровни. Теория может объяснить, как изменение порога повлияет на способность различать, часто показывая, насколько система адаптирована к задаче, цели или цели, на которую она нацелена. Когда детекторной системой является человек, такие характеристики, как опыт, ожидания, физиологическое состояние (например, усталость) и другие факторы могут повлиять на применяемый порог. Например, часовой в военное время может обнаружить более слабые стимулы, чем тот же часовой в мирное время, из-за более низкого критерия, однако он также может с большей вероятностью воспринимать безобидные стимулы как угрозу.
Большая часть ранних работ в области теории обнаружения была проделана исследователями радаров . [2] К 1954 году теория была полностью разработана с теоретической стороны, как описано Петерсоном , Бердсоллом и Фоксом. [3] а фундамент психологической теории был заложен Уилсоном П. Таннером, Дэвидом М. Грином и Джоном А. Светсом также в 1954 году. [4] Теория обнаружения была использована в 1966 году Джоном А. Светсом и Дэвидом М. Грином в психофизике . [5] Грин и Светс раскритиковали традиционные методы психофизики за их неспособность различать реальную чувствительность испытуемых и их (потенциальные) предвзятые реакции . [6]
Теория обнаружения находит применение во многих областях, таких как диагностика любого рода, контроль качества , телекоммуникации и психология . Эта концепция аналогична соотношению сигнал/шум, используемому в науке, и матрицам путаницы, используемым в искусственном интеллекте . Его также можно использовать при управлении тревогами , где важно отделить важные события от фонового шума .
Психология [ править ]
Теория обнаружения сигналов (SDT) используется, когда психологи хотят измерить то, как мы принимаем решения в условиях неопределенности, например, как мы будем воспринимать расстояния в туманных условиях или во время опознания очевидцев . [7] [8] SDT предполагает, что лицо, принимающее решения, является не пассивным получателем информации, а активным лицом, принимающим решения, которое делает трудные перцептивные суждения в условиях неопределенности. В условиях тумана мы вынуждены решать, насколько далеко от нас находится объект, основываясь исключительно на зрительных стимулах, которые ослабляются туманом. Поскольку яркость объекта, например светофора, используется мозгом для определения расстояния до объекта, а туман уменьшает яркость объектов, мы воспринимаем объект как гораздо дальше, чем он есть на самом деле (см. также теория принятия решений ). По данным SDT, во время опознания свидетелей свое решение о том, является ли подозреваемый виновником или нет, свидетели основывают на предполагаемом уровне знакомства с подозреваемым.
Чтобы применить теорию обнаружения сигналов к набору данных, в котором стимулы либо присутствовали, либо отсутствовали, а наблюдатель классифицировал каждое испытание как наличие или отсутствие стимула, испытания сортируются по одной из четырех категорий:
Ответить «Отсутствует» Ответить «Подарок» Стимул присутствует Скучать Ударять Стимул отсутствует Правильный отказ Ложная тревога
На основе пропорций этих типов испытаний можно получить численные оценки чувствительности с помощью таких статистических данных, как индекс чувствительности d' и A', [9] а систематическая ошибка ответа может быть оценена с помощью таких статистических данных, как c и β. [9] β — мера систематической ошибки ответа. [10]
Теорию обнаружения сигналов также можно применять к экспериментам с памятью, когда элементы вносятся в список исследований для последующего тестирования. Список тестов создается путем объединения этих «старых» предметов с новыми, «новыми» предметами, которых не было в списке исследований. На каждое тестовое испытание испытуемый будет отвечать «да, это было в списке исследований» или «нет, этого не было в списке исследований». Предметы, представленные в списке изучения, называются Целями, а новые предметы — Отвлекателями. Сказать «Да» цели считается попаданием, а сказать «Да» отвлекающему устройству — ложной тревогой.
Ответьте «Нет» Ответьте «Да» Цель Скучать Ударять Отвлекатель Правильный отказ Ложная тревога
Приложения [ править ]
Теория обнаружения сигналов имеет широкое применение как у людей, так и у животных . Темы включают память , характеристики стимулов, графики подкрепления и т. д.
Чувствительность или различимость [ править ]
Концептуально чувствительность означает, насколько сложно или легко обнаружить наличие целевого стимула по фоновым событиям. Например, в парадигме узнавающей памяти увеличение времени на изучение слов, которые нужно запомнить, облегчает распознавание ранее увиденных или услышанных слов. Напротив, необходимость запоминать 30 слов, а не 5, усложняет распознавание. Одной из наиболее часто используемых статистических данных для расчета чувствительности является так называемый индекс чувствительности или d' . Существуют также непараметрические меры, такие как площадь под ROC-кривой . [6]
Предвзятость [ править ]
Смещение — это степень, в которой одна реакция более вероятна, чем другая, в среднем для случаев присутствия и отсутствия стимула. То есть приемник в целом может с большей вероятностью отреагировать на наличие стимула или с большей вероятностью отреагировать на отсутствие стимула. Смещение не зависит от чувствительности. Смещение может быть желательным, если ложные тревоги и промахи приводят к различным затратам. Например, если стимулом является террорист, то промах (неспособность обнаружить террориста) может стоить дороже, чем ложная тревога (сообщение о террористе, когда его нет), что делает желательным либеральный стимул реагирования. Напротив, слишком частая подача ложных сигналов тревоги ( «плачущий волк ») может снизить вероятность реакции людей, и эту проблему можно уменьшить за счет консервативной предвзятости в ответах.
Сжатое зондирование [ править ]
Другая область, тесно связанная с теорией обнаружения сигналов, называется сжатым зондированием (или компрессионным зондированием). Целью сжатого измерения является восстановление объектов высокой размерности, но с низкой сложностью, всего лишь по нескольким измерениям. Таким образом, одним из наиболее важных применений сжатого зондирования является восстановление сигналов большой размерности, которые, как известно, являются редкими (или почти редкими) с помощью всего лишь нескольких линейных измерений. Количество измерений, необходимых для восстановления сигналов, намного меньше, чем того требует теорема выборки Найквиста, при условии, что сигнал разреженный, а это означает, что он содержит только несколько ненулевых элементов. Существуют различные методы восстановления сигнала при сжатом зондировании, включая поиск базиса , алгоритм восстановления расширителя. [11] , КоСаМП [12] а также быстрый неитеративный алгоритм . [13] Во всех упомянутых выше методах восстановления большое значение имеет выбор подходящей матрицы измерений с использованием вероятностных или детерминированных конструкций. Другими словами, матрицы измерений должны удовлетворять определенным конкретным условиям, таким как RIP (свойство ограниченной изометрии) или свойство нулевого пространства , чтобы обеспечить надежное разреженное восстановление.
Математика [ править ]
P(H1|y) > P(H2|y) / тестирование MAP [ править ]
В случае принятия решения между двумя гипотезами , H1 , отсутствует, и H2 , присутствует, в случае конкретного наблюдения , y , классический подход состоит в выборе H1, когда p(H1|y) > p(H2|y ) и H2 в обратном случае. [14] В случае, если две апостериорные вероятности равны, можно выбрать по умолчанию один вариант (либо всегда выбирать H1 , либо всегда выбирать H2 ), либо можно случайным образом выбрать либо H1 , либо H2 . Априорные могут определять этот выбор, например , вероятности H1 и H2 всегда выбирая гипотезу с более высокой априорной вероятностью.
При использовании этого подхода обычно известны условные вероятности p(y|H1) и p(y|H2) и априорные вероятности . и . В этом случае,
,
где p(y) — полная вероятность события y ,
.
H2 выбирается в случае, если
и H1 в противном случае.
Часто соотношение называется и называется , отношение правдоподобия .
Используя эту терминологию, H2 выбирается в случае, если . Это называется тестированием MAP, где MAP означает «максимум апостериорно »).
Использование такого подхода сводит к минимуму ожидаемое количество ошибок, которые можно допустить.
Критерий Байеса [ править ]
В некоторых случаях гораздо важнее правильно отреагировать на H1 , чем на H2 . Например, если срабатывает сигнал тревоги, указывающий H1 (приближающийся бомбардировщик несет ядерное оружие ), гораздо важнее сбить бомбардировщик, если H1 = TRUE, чем избегать отправки истребительной эскадрильи для проверки ложного сообщения. сигнал тревоги (т. е. H1 = ЛОЖЬ, H2 = ИСТИНА) (при условии большого запаса истребительных эскадрилий). Критерий Байеса — подход, подходящий для таких случаев. [14]
Здесь утилита связана с каждой из четырех ситуаций:
- : Один отвечает поведением, соответствующим H1, и H1 верно: истребители уничтожают бомбардировщик, неся затраты на топливо, техническое обслуживание и оружие, рискуют, что некоторые из них будут сбиты;
- : Один отвечает поведением, соответствующим H1 и H2, это правда: истребители отправлены, неся расходы на топливо и техническое обслуживание, местоположение бомбардировщика остается неизвестным;
- : Человек реагирует поведением, соответствующим H2, и H1 верно: город разрушен;
- : Один отвечает поведением, соответствующим H2, и H2 соответствует действительности: истребители остаются дома, местонахождение бомбардировщика остается неизвестным;
Как показано ниже, важными являются различия, и .
Аналогично, существуют четыре вероятности: , и т. д. для каждого из случаев (которые зависят от стратегии принятия решения).
Подход с использованием критерия Байеса заключается в максимизации ожидаемой полезности:
Фактически можно максимизировать сумму,
,
и сделаем следующие замены:
где и вероятности априорные , и , и — это область событий наблюдения, y , на которые реагируют так, как если бы H1 был правдой.
и таким образом максимизируются за счет расширения над регионом, где
Это достигается путем принятия решения H2 в случае, если
и H1 в противном случае, где L(y) — определенное таким образом отношение правдоподобия .
распределения нормального Модели
Дас и Гейслер [15] расширил результаты теории обнаружения сигналов для нормально распределенных стимулов и вывел методы расчета частоты ошибок и матрицы путаницы для идеальных наблюдателей и неидеальных наблюдателей для обнаружения и классификации одномерных и многомерных нормальных сигналов из двух или более категорий.
См. также [ править ]
- Бинарная классификация
- Постоянная частота ложных тревог
- Теория принятия решений
- Демодуляция
- Детектор (радио)
- Теория оценки
- Просто заметная разница
- Тест отношения правдоподобия
- Модуляция
- Лемма Неймана – Пирсона.
- Психометрическая функция
- Рабочая характеристика приемника
- Статистическая проверка гипотез
- Статистическая обработка сигналов
- Двухальтернативный вынужденный выбор
- Ошибки I и II рода.
Ссылки [ править ]
- ^ Т. Д. Уилмшерст (1990). Восстановление сигнала от шума в электронных приборах (2-е изд.). ЦРК Пресс. стр. 11 и далее . ISBN 978-0-7503-0058-2 .
- ^ Маркум, Дж.И. (1947). «Статистическая теория обнаружения целей импульсным радаром» . Меморандум об исследовании : 90 . Проверено 28 июня 2009 г.
- ^ Петерсон, В.; Бердсолл, Т.; Фокс, В. (сентябрь 1954 г.). «Теория обнаруживаемости сигналов». Труды профессиональной группы IRE по теории информации . 4 (4): 171–212. дои : 10.1109/TIT.1954.1057460 .
- ^ Таннер, Уилсон П.; Светс, Джон А. (1954). «Теория принятия решений визуального обнаружения». Психологический обзор . 61 (6): 401–409. дои : 10.1037/h0058700 . ПМИД 13215690 .
- ^ Светс, Дж. А. (редактор) (1964) Обнаружение и распознавание сигналов людьми-наблюдателями . Нью-Йорк: Уайли [ нужна страница ]
- ^ Jump up to: Перейти обратно: а б Грин, Д.М., Светс Дж.А. (1966) Теория обнаружения сигналов и психофизика . Нью-Йорк: Уайли. ( ISBN 0-471-32420-5 ) [ нужна страница ]
- ^ Кларк, Стивен Э.; Бенджамин, Аарон С.; Уикстед, Джон Т.; Микес, Лаура; Гронлунд, Скотт Д. (2015). «Идентификация очевидцев и точность системы уголовного правосудия». Политические выводы из наук о поведении и мозге . 2 : 175–186. дои : 10.1177/2372732215602267 . hdl : 11244/49353 . S2CID 18529957 .
- ^ Хау, Райанн Мишель (январь 2005 г.). «Теоретический анализ идентификации свидетелей: теория двойного процесса, теория обнаружения сигналов и уверенность очевидцев» . Коллекция ProQuest Etd для Фиу : 1–98.
- ^ Jump up to: Перейти обратно: а б Станислав, Гарольд; Тодоров, Наташа (март 1999 г.). «Расчет мероприятий теории обнаружения сигналов» . Методы, инструменты и компьютеры исследования поведения . 31 (1): 137–149. дои : 10.3758/BF03207704 . ПМИД 10495845 .
- ^ «Теория обнаружения сигналов» . elvers.us . Проверено 14 июля 2023 г.
- ^ Джафарпур, Сина; Сюй, Вэйю; Хассиби, Бабак; Калдербанк, Роберт (сентябрь 2009 г.). «Эффективное и надежное обнаружение сжатых данных с использованием оптимизированных расширительных графиков» (PDF) . Транзакции IEEE по теории информации . 55 (9): 4299–4308. дои : 10.1109/тит.2009.2025528 . S2CID 15490427 .
- ^ Ниделл, Д.; Тропп, Дж. А. (2009). «CoSaMP: итеративное восстановление сигнала из неполных и неточных выборок». Прикладной и вычислительный гармонический анализ . 26 (3): 301–321. arXiv : 0803.2392 . дои : 10.1016/j.acha.2008.07.002 . S2CID 1642637 .
- ^ Лотфи, М.; Видьясагар, М. « Быстрый неитеративный алгоритм для измерения сжатия с использованием двоичных матриц измерений ».
- ^ Jump up to: Перейти обратно: а б Шонхофф Т.А. и Джордано А.А. (2006) Теория обнаружения и оценки и ее приложения . Нью-Джерси: Pearson Education ( ISBN 0-13-089499-0 )
- ^ Дас, Абранил; Гейслер, Уилсон (2021). «Метод интеграции и классификации нормальных распределений» . Журнал видения . 21 (10): 1. arXiv : 2012.14331 . дои : 10.1167/jov.21.10.1 . ПМЦ 8419883 . ПМИД 34468706 .
Эта статья включает список общих ссылок , но в ней отсутствуют достаточные соответствующие встроенные цитаты . ( Апрель 2009 г. ) |
- Корен С., Уорд Л.М., Эннс Дж.Т. (1994) Ощущение и восприятие . (4-е изд.) Торонто: Харкорт Брейс.
- Кей, СМ. Основы статистической обработки сигналов: теория обнаружения ( ISBN 0-13-504135-X )
- МакНикол, Д. (1972) Основы теории обнаружения сигналов . Лондон: Джордж Аллен и Анвин.
- Ван Трис HL. Теория обнаружения, оценки и модуляции, часть 1 ( ISBN 0-471-09517-6 ; сайт )
- Викенс, Томас Д., (2002) Теория обнаружения элементарных сигналов . Нью-Йорк: Издательство Оксфордского университета. ( ISBN 0-19-509250-3 )