Jump to content

Оптимизация портфеля

Оптимизация портфеля — это процесс выбора оптимального портфеля ( распределения активов ) из множества рассматриваемых портфелей в соответствии с некоторой целью . Цель обычно максимизирует такие факторы, как ожидаемая доходность , и минимизирует затраты, такие как финансовый риск , что приводит к проблеме многокритериальной оптимизации . Рассматриваемые факторы могут варьироваться от материальных (таких как активы , обязательства , доходы или другие фундаментальные показатели ) до нематериальных (например, выборочная продажа активов ).

Современная теория портфеля

[ редактировать ]

Современная теория портфеля была представлена ​​в докторской диссертации Гарри Марковица в 1952 году , где модель Марковица . впервые была определена [1] [2] Модель предполагает, что инвестор стремится максимизировать ожидаемую доходность портфеля при заданной величине риска. Портфели, которые соответствуют этому критерию, т. е. максимизируют ожидаемую доходность при заданном уровне риска, известны как эффективные портфели. По определению, любой другой портфель, приносящий более высокую ожидаемую доходность, также должен иметь чрезмерный риск. Это приводит к компромиссу между желаемой ожидаемой доходностью и допустимым риском. Это соотношение ожидаемой доходности эффективных портфелей к риску графически представлено кривой, известной как эффективная граница . Все эффективные портфели, каждый из которых представлен точкой на границе эффективности, хорошо диверсифицированы . Хотя игнорирование более высоких моментов доходности может привести к значительному переинвестированию в рискованные ценные бумаги, особенно при высокой волатильности, [3] оптимизация портфелей, когда распределение доходности не является гауссовым, является математически сложной задачей. [4]

Методы оптимизации

[ редактировать ]

Задача оптимизации портфеля определяется как с ограничениями задача максимизации полезности . Общие формулировки функций полезности портфеля определяют ее как ожидаемую доходность портфеля (за вычетом транзакционных и финансовых издержек) за вычетом стоимости риска. Последний компонент, стоимость риска, определяется как риск портфеля, умноженный на параметр неприятия риска (или цену за единицу риска). Для распределений доходности, которые являются гауссовыми, это эквивалентно максимизации определенного квантиля доходности, где соответствующая вероятность определяется параметром неприятия риска. Практики часто добавляют дополнительные ограничения для улучшения диверсификации и дальнейшего ограничения риска. Примерами таких ограничений являются ограничения веса портфеля по активам, секторам и регионам.

Конкретные подходы

[ редактировать ]

Оптимизация портфеля часто происходит в два этапа: оптимизация веса классов активов, которые необходимо держать, и оптимизация веса активов внутри одного и того же класса активов. Примером первого может быть выбор пропорций, размещенных в акциях, а не облигаций, а примером второго — выбор пропорций подпортфеля акций, размещенных в акциях X, Y и Z. Акции и облигации имеют фундаментально разные финансовые характеристики. характеристики и имеют разные систематические риски и, следовательно, могут рассматриваться как отдельные классы активов; владение некоторой частью портфеля каждого класса обеспечивает некоторую диверсификацию, а владение различными конкретными активами внутри каждого класса обеспечивает дополнительную диверсификацию. Использование такой двухэтапной процедуры позволяет исключить несистематические риски как на уровне отдельного актива, так и на уровне класса активов.Что касается конкретных формул эффективных портфелей, [5] см. Разделение портфеля в анализе среднего отклонения .

Один из подходов к оптимизации портфеля состоит в том, чтобы указать функцию полезности фон Неймана – Моргенштерна, определенную для конечного богатства портфеля; ожидаемая ценность полезности должна быть максимизирована. Чтобы отразить предпочтение более высокой, а не более низкой доходности, эта целевая функция увеличивается по мере увеличения благосостояния, а для отражения неприятия риска она является вогнутой . Для реалистичных функций полезности при наличии множества активов, которые можно хранить, этот подход, хотя теоретически и является наиболее оправданным, может потребовать больших вычислительных ресурсов.

Гарри Марковиц [6] разработал «метод критической линии», общую процедуру квадратичного программирования , которая может обрабатывать дополнительные линейные ограничения, а также верхние и нижние границы холдингов. Более того, в этом контексте подход обеспечивает метод определения всего набора эффективных портфелей. Его применение здесь было позже объяснено Уильямом Шарпом . [7]

Математические инструменты

[ редактировать ]

Сложность и масштаб оптимизации портфелей по многим активам означают, что работа обычно выполняется с помощью компьютера. Центральное место в этой оптимизации занимает построение ковариационной матрицы для норм доходности активов в портфеле.

Методы включают в себя:

Ограничения оптимизации

[ редактировать ]

Оптимизация портфеля обычно проводится с учетом ограничений, таких как нормативные ограничения или неликвидность. Эти ограничения могут привести к тому, что веса портфеля будут сосредоточены на небольшой подвыборке активов в портфеле. Когда процесс оптимизации портфеля подвержен другим ограничениям, таким как налоги, транзакционные издержки и комиссии за управление, процесс оптимизации может привести к недостаточной диверсификации портфеля. [14]

Регулирование и налоги

[ редактировать ]

Инвесторам может быть запрещено законом владеть некоторыми активами. В некоторых случаях неограниченная оптимизация портфеля может привести к коротким продажам некоторых активов. Однако короткие продажи могут быть запрещены. Иногда нецелесообразно удерживать актив, поскольку связанные с этим налоговые издержки слишком высоки. В таких случаях на процесс оптимизации должны быть наложены соответствующие ограничения.

Транзакционные издержки

[ редактировать ]

Транзакционные издержки — это затраты на торговлю по изменению весов портфеля. Поскольку оптимальный портфель со временем меняется, существует стимул часто проводить повторную оптимизацию. Однако слишком частая торговля повлечет за собой слишком частые транзакционные издержки; поэтому оптимальная стратегия состоит в том, чтобы найти частоту повторной оптимизации и торговли, которая соответствующим образом сочетает избежание транзакционных издержек с избеганием придерживания устаревшего набора пропорций портфеля. Это связано с темой ошибки отслеживания , из-за которой пропорции запасов со временем отклоняются от некоторого эталона при отсутствии ребалансировки.

Риск концентрации

[ редактировать ]

Риск концентрации относится к риску, вызванному удержанием одной позиции или сектора, который достаточно велик, чтобы вызвать материальные потери для всего портфеля в случае возникновения неблагоприятных событий. Если портфель оптимизирован без каких-либо ограничений в отношении риска концентрации, оптимальным портфелем может быть любой портфель рискованных активов, и, следовательно, ничто не мешает ему быть портфелем, инвестирующим исключительно в один актив. Управление риском концентрации должно быть частью комплексной системы управления рисками. [15] и чтобы добиться снижения такого риска, можно добавить ограничения, которые устанавливают верхние пределы веса, который можно приписать любому отдельному компоненту оптимального портфеля.

Улучшение оптимизации портфеля

[ редактировать ]

Корреляции и оценка рисков

[ редактировать ]

Различные подходы к оптимизации портфеля оценивают риск по-разному. Помимо традиционной меры, стандартного отклонения или его квадрата ( дисперсии ), которые не являются надежными мерами риска, другие меры включают коэффициент Сортино , CVaR (условное значение риска) и статистическую дисперсию .

Инвестиции – это перспективная деятельность, и поэтому ковариации доходности необходимо прогнозировать, а не наблюдать.

Оптимизация портфеля предполагает, что у инвестора может быть некоторое неприятие риска , а цены на акции могут демонстрировать значительные различия между их историческими или прогнозируемыми значениями и реальными значениями. В частности, финансовые кризисы характеризуются значительным усилением корреляции движений цен на акции, что может серьезно снизить преимущества диверсификации. [16]

В рамках оптимизации среднего отклонения точная оценка матрицы дисперсии-ковариации имеет первостепенное значение. Количественные методы, использующие моделирование Монте-Карло с копулой Гаусса и четко заданными маргинальными распределениями, эффективны. [17] разрешить процессу моделирования учитывать эмпирические характеристики доходности акций, такие как авторегрессия , асимметричная волатильность, асимметрия и эксцесс Важно . Игнорирование этих атрибутов может привести к серьезной ошибке оценки корреляций, дисперсий и ковариаций, которые имеют отрицательные смещения (до 70% от истинных значений). [18]

Другие стратегии оптимизации, направленные на минимизацию хвостового риска (например, стоимости под риском , условной стоимости под риском ) в инвестиционных портфелях, популярны среди инвесторов, не склонных к риску. Чтобы минимизировать подверженность хвостовому риску, наиболее подходящими являются прогнозы доходности активов с использованием моделирования Монте-Карло с копулами виноградной лозы, чтобы учесть более низкую (левую) зависимость от хвоста (например, Clayton, Rotated Gumbel) для больших портфелей активов. [19] (Хвостовой) паритет рисков фокусируется на распределении риска, а не на распределении капитала.

Совсем недавно менеджеры хедж-фондов стали применять «полномасштабную оптимизацию», при которой любая функция полезности для инвестора может использоваться для оптимизации портфеля. [20] Предполагается, что такая методология более практична и подходит для современных инвесторов, чьи предпочтения риска предполагают снижение хвостового риска , минимизацию отрицательной асимметрии и «толстых хвостов» в распределении доходности инвестиционного портфеля. [21] Там, где такие методологии предполагают использование функций полезности с более высоким моментом, необходимо использовать методологию, которая позволяет прогнозировать совместное распределение , учитывающее асимметричную зависимость. Подходящей методологией, которая позволяет включить в совместное распределение асимметричную зависимость, является каноническая копула виноградной лозы Клейтона. См. Копулу (теорию вероятностей) § Количественные финансы .

Сотрудничество в оптимизации портфеля

[ редактировать ]

Группа инвесторов вместо того, чтобы инвестировать индивидуально, может решить инвестировать весь свой капитал в совместный портфель, а затем разделить (неопределенную) инвестиционную прибыль таким образом, который лучше всего соответствует их предпочтениям в отношении полезности и риска. Оказывается, по крайней мере в ожидаемой полезной модели [22] и модель среднего отклонения, [23] каждый инвестор обычно может получить долю, которую он/она ценит строго больше, чем его/ее оптимальный портфель, от индивидуальной инвестиции.

См. также

[ редактировать ]
  1. ^ Марковиц, HM (март 1952 г.). «Выбор портфолио» . Журнал финансов . 7 (1): 77–91. дои : 10.2307/2975974 . JSTOR   2975974 .
  2. ^ Марковиц, HM (1959). Выбор портфеля: эффективная диверсификация инвестиций . Нью-Йорк: Джон Уайли и сыновья. (перепечатано издательством Йельского университета, 1970 г., ISBN   978-0-300-01372-6 ; 2-е изд. Бэзил Блэквелл, 1991 г., ISBN   978-1-55786-108-5 )
  3. ^ Цвитанич, Якша; Полименис, Василис; Сапатеро, Фернандо (1 января 2008 г.). «Оптимальное распределение портфеля с более высокими моментами». Анналы финансов . 4 (1): 1–28. дои : 10.1007/s10436-007-0071-5 . ISSN   1614-2446 . S2CID   16514619 .
  4. ^ Ким, Ён Шин; Джакометти, Розелла; Рачев, Светлозар; Фабоцци, Фрэнк Дж.; Миньякка, Доменико (21 ноября 2012 г.). «Измерение финансового риска и оптимизация портфеля с помощью негауссовой многомерной модели» . Анналы исследования операций . 201 (1): 325–343. дои : 10.1007/s10479-012-1229-8 . S2CID   45585936 .
  5. ^ Мертон, Роберт. Сентябрь 1972 г. «Аналитический вывод эффективной границы портфеля», Журнал финансового и количественного анализа, 7, 1851–1872.
  6. ^ Марковиц, Гарри (1956). «Оптимизация квадратичной функции с линейными ограничениями». Ежеквартальный журнал военно-морских исследований по логистике . 3 (1–2): 111–133. дои : 10.1002/nav.3800030110 .
  7. ^ Метод критической линии в книге Уильяма Шарпа, Макроинвестиционный анализ (текст в Интернете)
  8. ^ Рокафеллар, Р. Тиррелл; Урясев, Станислав (2000). «Оптимизация условной стоимости под риском» (PDF) . Журнал риска . 2 (3): 21–42. дои : 10.21314/JOR.2000.038 . S2CID   854622 .
  9. ^ Капсос, Михалис; Зимлер, Стив; Христофидес, Никос ; Рустем, Берч (лето 2014 г.). «Оптимизация соотношения омега с помощью линейного программирования» (PDF) . Журнал вычислительных финансов . 17 (4): 49–57. дои : 10.21314/JCF.2014.283 .
  10. ^ Талеби, Араш; Молаи, Шейх (17 сентября 2010 г.). «Исследование производительности и сравнение двух эволюционных алгоритмов оптимизации портфеля: генетическая оптимизация и оптимизация роя частиц». 2010 2-я Международная конференция IEEE по информационной и финансовой инженерии . стр. 430–437. дои : 10.1109/icife.2010.5609394 . ISBN  978-1-4244-6927-7 . S2CID   17386345 .
  11. ^ Шапиро, Александр; Денчева, Даринка ; Рущинский, Анджей (2009). Лекции по стохастическому программированию: Моделирование и теория (PDF) . Серия MPS/SIAM по оптимизации. Том. 9. Филадельфия, Пенсильвания: Общество промышленной и прикладной математики (SIAM). стр. xvi+436. ISBN  978-0-89871-687-0 . МР   2562798 . {{cite book}}: Неизвестный параметр |agency= игнорируется ( помогите )
  12. ^ Чжу, Чжэ; Уэлш, Рой Э. (2018). «Надежное моделирование зависимостей для многомерных ковариационных матриц с финансовыми приложениями» . Энн. Прил. Стат . 12 (2): 1228–1249. дои : 10.1214/17-AOAS1087 . S2CID   23490041 .
  13. ^ Сефиан, Слиман и Бенбузиан, Мохамед (2012). Выбор портфеля с использованием генетического алгоритма. Архивировано 29 апреля 2016 г. в Wayback Machine , Journal of Applied Finance & Banking, Vol. 2, № 4 (2012): стр. 143–154.
  14. ^ Хамфри, Дж.; Бенсон, К.; Лоу, РКЮ; Ли, WL (2015). «Всегда ли диверсификация оптимальна?» (PDF) . Финансовый журнал Тихоокеанского бассейна . 35 (B): B. doi : 10.1016/j.pacfin.2015.09.003 .
  15. ^ «Сосредоточьтесь на риске концентрации | FINRA.org» . www.finra.org . 15 июня 2022 г. Проверено 16 марта 2024 г.
  16. ^ Чуа, Д.; Крисман, М.; Пейдж, С. (2009). «Миф о диверсификации» . Журнал управления портфелем . 36 (1): 26–35. дои : 10.3905/JPM.2009.36.1.026 . S2CID   154921810 .
  17. ^ Лоу, РКЮ; Фафф, Р.; Аас, К. (2016). «Улучшение выбора портфеля среднего и отклонения путем моделирования асимметрии распределения» (PDF) . Журнал экономики и бизнеса . 85 : 49–72. doi : 10.1016/j.jeconbus.2016.01.003 .
  18. ^ Фантаццинни, Д. (2009). «Влияние неправильно определенных маргиналов и копул на расчет стоимости риска: исследование Монте-Карло». Вычислительная статистика и анализ данных . 53 (6): 2168–2188. дои : 10.1016/j.csda.2008.02.002 .
  19. ^ Лоу, РКЮ; Алкок, Дж.; Фафф, Р.; Брэйлсфорд, Т. (2013). «Канонические связки виноградной лозы в контексте современного управления портфелем: стоят ли они того?» (PDF) . Журнал банковского дела и финансов . 37 (8): 3085. doi : 10.1016/j.jbankfin.2013.02.036 . S2CID   154138333 .
  20. ^ Чуа, Дэвид; Крицман, Марк; Пейдж, Себастьян (2009). «Миф о диверсификации». Журнал управления портфелем . 36 (1): 26–35. дои : 10.3905/JPM.2009.36.1.026 . S2CID   154921810 .
  21. ^ Адлер, Тим; Крицман, Марк (2007). «Средняя дисперсия против полномасштабной оптимизации: в выборке и вне выборки». Журнал управления активами . 7 (5): 71–73. дои : 10.2469/dig.v37.n3.4799 .
  22. ^ Ся, Цзяньмин (2004). «Мультиагентные инвестиции на неполных рынках». Финансы и стохастика . 8 (2): 241–259. дои : 10.1007/s00780-003-0115-2 . S2CID   7162635 .
  23. ^ Гречук Б., Молыбоха А., Забаранкин М. (2013). «Кооперативные игры с общими мерами отклонения» , Mathematical Finance, 23 (2), 339–365.

Библиография

[ редактировать ]
  • Бейкер, Х. Кент; Филбек, Грег (2015). Управление инвестиционными рисками . Оксфордский академический. ISBN  978-0199331963 .
  • Фабоцци, Фрэнк Дж.; Серджио М. Фокарди; Петтер Н. Колм (2004). Финансовое моделирование рынка акций: от CAPM к коинтеграции . Хобокен, Нью-Джерси: Уайли . ISBN  0-471-69900-4 .
  • Фабоцци, Фрэнк Дж .; Петтер Н. Колм; Десислава Пачаманова; Серджио М. Фокарди (2007). Надежная оптимизация и управление портфелем . Хобокен, Нью-Джерси: John Wiley & Sons. ISBN   978-0-471-92122-6
  • Гринольд, Ричард; Кан, Рональд (1999). Активное управление портфелем: количественный подход к получению высокой прибыли и контролю рисков (2-е изд.). МакГроу Хилл. ISBN  978-0070248823 .
  • Харви, Кэмпбелл ; Рэттрей, Сэнди; Ван Хемерт, Отто (2021). Стратегическое управление рисками: создание портфелей и управление рисками . Уайли Финанс. ISBN  978-1119773917 .
  • Магинн, Джон Л.; Таттл, Дональд Л.; Пинто, Джеральд Э.; МакЛиви, Деннис В. (2007). Управление инвестиционными портфелями: динамический процесс (3-е изд.). Спрингер. ISBN  978-0470080146 .
  • Палеолого, Джузеппе А. (2021). Расширенное управление портфелем: Руководство Quant для фундаментальных инвесторов (1-е изд.). Уайли. ISBN  978-1119789796 .
  • Расмуссен, М. (2003). Количественная оптимизация портфеля, распределение активов и управление рисками . Пэлгрейв Макмиллан. ISBN  978-1403904584 .
  • Шульмерих, Маркус; Лепорше, Ив-Мишель; Ю, Чинг-Хва (2015). Прикладное управление активами и рисками . Спрингер. ISBN  978-3642554438 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 6a3363f1a39fe4c0b443a13f669b7080__1722316440
URL1:https://arc.ask3.ru/arc/aa/6a/80/6a3363f1a39fe4c0b443a13f669b7080.html
Заголовок, (Title) документа по адресу, URL1:
Portfolio optimization - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)