Эндрю Уайлс
Сэр Эндрю Джон Уайлс, KBE FRS (родился 11 апреля 1953 г.) — английский математик и Королевского общества профессор-исследователь Оксфордского университета , специализирующийся на теории чисел . Он наиболее известен тем, что доказал Великую теорему Ферма , за что был награжден премией Абеля в 2016 году и медалью Копли в 2017 году , а также был назначен кавалером Ордена Британской империи в 2000 году. [1] В 2018 году Уайлс был назначен первым региональным профессором математики в Оксфорде. [4] Уайлс также является стипендиатом Макартура 1997 года .
Уайлс родился в Кембридже в семье богослова Мориса Фрэнка Уайлса и его жены Патрисии. Проведя большую часть своего детства в Нигерии, Уайлс проявил интерес к математике и, в частности, к Великой теореме Ферма. Переехав в Оксфорд и окончив его в 1974 году, он работал над объединением представлений Галуа , эллиптических кривых и модулярных форм , начиная с Барри Мазура обобщений теории Ивасавы . В начале 1980-х годов Уайлс переехал в Принстонский университет из Кембриджа и работал над расширением и применением модульных форм Гильберта . В 1986 году, прочитав основополагающую работу Кена Рибета по Великой теореме Ферма, Уайлс решил доказать теорему модулярности для полустабильных эллиптических кривых , что подразумевало Великую теорему Ферма. К 1993 году ему удалось доказать Великую теорему Ферма, хотя в ней был обнаружен недостаток. После открытия 19 сентября 1994 года Уайлс и его ученик Ричард Тейлор смогли обойти эту ошибку и опубликовали результаты в 1995 году, вызвав всеобщее признание.
Доказывая Великую теорему Ферма, Уайлс разработал для математиков новые инструменты, позволяющие объединить разрозненные идеи и теоремы. Его бывший ученик Тейлор вместе с тремя другими математиками смог доказать полную теорему модульности к 2000 году, используя работу Уайлса. Получив Абелевскую премию в 2016 году, Уайлс задумался о своем наследии, выразив уверенность в том, что он не просто доказал Великую теорему Ферма, но и подтолкнул всю математику как область к программе Ленглендса по объединению теории чисел. [5]
Образование и молодость
[ редактировать ]Уайлс родился 11 апреля 1953 года в Кембридже , Англия, в семье Мориса Фрэнка Уайлса (1923–2005) и Патрисии Уайлс (урожденной Моулл). С 1952 по 1955 год его отец работал капелланом в Ридли-холле в Кембридже , а позже стал королевским профессором богословия в Оксфордском университете . [6]
Уайлс начал свое формальное образование в Нигерии, когда еще совсем маленьким мальчиком жил там со своими родителями. Однако, согласно письмам его родителей, по крайней мере первые несколько месяцев после того, как он должен был ходить на занятия, он отказывался идти. Из этого факта сам Уайлс пришел к выводу, что в ранние годы он не был в восторге от проведения времени в академических учреждениях. Он доверяет буквам, хотя не может припомнить времени, когда бы ему не нравилось решать математические задачи. [7]
Уайлс учился в Королевском колледже в Кембридже . [8] и Школа Лейса, Кембридж . [9] Уайлс утверждает, что он наткнулся на Великую теорему Ферма по дороге домой из школы, когда ему было 10 лет. Он остановился в местной библиотеке, где нашел книгу «Последняя проблема Эрика Темпла Белла » об этой теореме. [10] Очарованный существованием теоремы, которую было так легко сформулировать, что он, десятилетний ребенок, мог ее понять, но которую никто не доказал, он решил стать первым, кто ее докажет. Однако вскоре он понял, что его знания слишком ограничены, поэтому он отказался от своей детской мечты, пока она не была возвращена его вниманию в возрасте 33 лет благодаря Кену Рибету в 1986 году, доказательству гипотезы об эпсилоне , Герхард Фрей с которой ранее связывал . Уравнение Ферма. [11]
Карьера и исследования
[ редактировать ]В 1974 году Уайлс получил степень бакалавра математики Мертон - в колледже Оксфорда . [6] Аспирантурой Уайлса руководил Джон Коутс , начиная с лета 1975 года. Вместе они работали над арифметикой эллиптических кривых с комплексным умножением методами теории Ивасавы . Далее он работал с Барри Мазуром над основной гипотезой теории Ивасавы о рациональных числах , а вскоре после этого обобщил этот результат на полностью реальные поля . [12] [13]
В 1980 году Уайлс получил степень доктора философии в Клэр-колледже в Кембридже . [3] После пребывания в Институте перспективных исследований в Принстоне, штат Нью-Джерси , в 1981 году Уайлс стал профессором математики Принстонского университета . [14]
В 1985–86 годах Уайлс был научным сотрудником Гуггенхайма в Институте высших научных исследований недалеко от Парижа и в Высшей нормальной школе . [ нужна ссылка ]
В 1987 году Уайлс был избран членом Королевского общества . В тот момент, согласно его избирательному свидетельству, он работал «над построением ℓ-адических представлений, присоединенных к модулярным формам Гильберта , и применил их для доказательства «основной гипотезы» для круговых расширений полностью реальных полей». [12]
С 1988 по 1990 год Уайлс был профессором-исследователем Королевского общества в Оксфордском университете , а затем вернулся в Принстон.С 1994 по 2009 год Уайлс был профессором Юджина Хиггинса в Принстоне. Он вернулся в Оксфорд в 2011 году в качестве профессора-исследователя Королевского общества. [14]
В мае 2018 года Уайлс был назначен королевским профессором математики Оксфорда, первым в истории университета. [4]
Доказательство Великой теоремы Ферма.
[ редактировать ]Начиная с середины 1986 года, основываясь на последовательном прогрессе Герхарда Фрея , Жана-Пьера Серра и Кена Рибета , достигнутого в предыдущие несколько лет , стало ясно, что Великая теорема Ферма (утверждение о том, что никакие три положительных целых числа a , b и c не удовлетворяют уравнение а н + б н = с н для любого целого значения n, большего 2 ) можно было доказать как следствие ограниченной формы теоремы о модулярности (недоказанной в то время и тогда известной как «гипотеза Таниямы – Шимуры – Вейля»). [ нужна ссылка ] Теорема о модулярности затрагивала эллиптические кривые, которые также были областью специализации Уайлса, и утверждала, что все такие кривые имеют связанную с ними модульную форму. [15] [16] Эти кривые можно рассматривать как математические объекты, напоминающие решения для поверхности тора, и если бы Великая теорема Ферма была ложной и решения существовали, «получилась бы своеобразная кривая». Таким образом, доказательство теоремы потребует доказательства того, что такая кривая не существует. [17]
Современные математики считали эту гипотезу важной, но чрезвычайно трудной или, возможно, невозможной ее доказать. [18] : 203–205, 223, 226 Например, бывший руководитель Уайлса Джон Коутс заявил, что это «невозможно доказать на самом деле». [18] : 226 и Кен Рибет считал себя «одним из подавляющего большинства людей, которые считали, что [это] совершенно недоступно», добавляя, что «Эндрю Уайлс, вероятно, был одним из немногих людей на земле, у которых хватило смелости мечтать о том, что вы действительно можете пойти и доказать [это]." [18] : 223
Несмотря на это, Уайлс, с его детским увлечением Великой теоремой Ферма, решил взять на себя задачу доказать гипотезу, по крайней мере, в той степени, в которой это необходимо для кривой Фрея . [18] : 226 Он посвятил все свое исследовательское время этой проблеме в течение более шести лет в почти полной секретности, скрывая свои усилия, публикуя предыдущие работы небольшими частями в виде отдельных статей и доверяя только своей жене. [18] : 229–230
Исследование Уайлса включало в себя создание доказательства, опровергающего Великую теорему Ферма, которая, Рибет в своей работе 1986 года, как обнаружил имеет эллиптическую кривую и, следовательно, связанную с ней модульную форму, если она верна. Начав с предположения, что теорема неверна, Уайлс затем опроверг гипотезу Таниямы-Шимуры-Вейля, сформулированную в этом предположении, с теоремой Рибета (которая утверждала, что если бы n было простым числом , ни одна такая эллиптическая кривая не могла бы иметь модулярную форму, поэтому не может существовать никакого странного простого контрпримера к уравнению Ферма), и Уайлс также доказал, что гипотеза применима к особому случаю, известному как полустабильные эллиптические кривые , с которыми связано уравнение Ферма; Другими словами, Уайлс обнаружил, что гипотеза Таниямы-Шимуры-Вейля верна в случае уравнения Ферма, а вывод Рибета о том, что гипотеза, справедливая для полустабильных эллиптических кривых, может означать, что Великая теорема Ферма верна, возобладал, тем самым доказав Последнюю теорему Ферма. Теорема. [19] [20] [21]
В июне 1993 года он впервые представил свое доказательство публике на конференции в Кембридже. Джина Колата из The New York Times резюмировала презентацию следующим образом:
Он читал лекцию каждый день в понедельник, вторник и среду под названием «Модульные формы, эллиптические кривые и представления Галуа». В названии не было никакого намека на то, что будет обсуждаться последняя теорема Ферма, сказал доктор Рибет. ... Наконец, в конце своей третьей лекции доктор Уайлс пришел к выводу, что он доказал общий случай гипотезы Таниямы. Затем, по-видимому, запоздало, он заметил, что это означает, что последняя теорема Ферма верна. КЭД [17]
В августе 1993 года было обнаружено, что доказательство содержало ошибку в нескольких областях, связанных со свойствами группы Сельмера и использованием инструмента, называемого системой Эйлера . [22] Уайлс больше года безуспешно пытался восстановить свое доказательство. По словам Уайлса, решающая идея обойти, а не закрыть эту область, пришла к нему 19 сентября 1994 года, когда он был на грани того, чтобы сдаться. По словам Эрика В. Вайсстейна , обход включал «замену эллиптических кривых представлениями Галуа , сведение проблемы к формуле числа классов , решение этой проблемы и сведение концов», и все это с использованием теории Ивасавы для исправления «результатов, Маттиасом Флахом». основанных на идеях Виктора Колывагина », позволяя подходам Ивасавы и Флаха усиливать друг друга. [21] [22] [23] Вместе со своим бывшим студентом Ричардом Тейлором он опубликовал вторую статью, в которой содержался обход и тем самым завершился доказательство. Обе статьи были опубликованы в мае 1995 года в специальном выпуске журнала Annals of Mathematics . [24] [25]
Наследие
[ редактировать ]Работы Уайлса использовались во многих областях математики. Примечательно, что в 1999 году его бывший ученик Ричард Тейлор и трое других математиков, опираясь на доказательство Уайлса, доказали теорему полной модульности. [26]
В 2016 году, получив Абелевскую премию , Уайлс сказал о своем доказательстве Великой теоремы Ферма: «Методы, которые ее решили, открыли новый способ атаки на одну из больших сетей гипотез современной математики, называемую программой Ленглендса , которая, как «Grand Vision» пытается объединить различные отрасли математики. Оно дало нам новый взгляд на это». [5]
Награды и почести
[ редактировать ]Доказательство Уайлса Великой теоремы Ферма выдержало проверку других мировых экспертов-математиков. Уайлс дал интервью для эпизода BBC документального сериала «Горизонт». [27] о Великой теореме Ферма. Это транслировалось как эпизод научного телесериала PBS «Нова» под названием «Доказательство». [10] Его работа и жизнь также очень подробно описаны в Саймона Сингха популярной книге «Великая теорема Ферма» .
Уайлс был удостоен ряда крупных премий в области математики и естественных наук:
- Джуниора Премия Уайтхеда Лондонского математического общества (1988) [6]
- Избран членом Королевского общества (FRS) в 1989 г. [28] [12]
- Избранный член Американской академии искусств и наук (1994 г.). [29]
- Премия Шока (1995) [14]
- Премия Ферма (1995). [30]
- Премия Вольфа по математике (1995/6) [14]
- Избран иностранным членом Национальной академии наук (1996 г.). [13]
- Премия НАН по математике Национальной академии наук (1996 г.) [31]
- Королевская медаль (1996 г.) [30]
- Премия Островского (1996). [32]
- Премия Коула (1997) [33]
- Стипендия Макартура (1997)
- Премия Вольфскеля (1997). [34] - см. Пола Вольфскеля
- Избранный член Американского философского общества (1997). [35]
- Серебряная мемориальная доска Международного математического союза (1998 г.) в знак признания его достижений вместо медали Филдса , которая доступна только лицам младше 40 лет (Уайлзу был 41 год, когда он доказал теорему в 1994 году). [36]
- Премия короля Фейсала (1998) [37]
- Премия Клэя за исследования (1999) [14]
- Премия Пифагора (Кротон, 2004 г.) [38]
- Премия Шоу (2005) [30]
- Астероид 9999 Уайлс был назван в честь Уайлса в 1999 году. [39]
- Кавалер Ордена Британской Империи (2000). [40]
- здание Оксфордского университета, в котором находится Математический институт . В честь Уайлса названо [41]
- Абелевская премия (2016). [42] [43] [44] [45] [46]
- Медаль Копли (2017) [1]
Ссылки
[ редактировать ]- ^ Jump up to: а б с «Математик сэр Эндрю Уайлс из ФРС выигрывает престижную медаль Копли Королевского общества» . Королевское общество . Проверено 27 мая 2017 г.
- ^ Jump up to: а б Эндрю Уайлс в проекте «Математическая генеалогия»
- ^ Jump up to: а б Уайлс, Эндрю Джон (1978). Законы взаимности и гипотеза Берча и Суиннертона-Дайера (докторская диссертация). Кембриджский университет. OCLC 500589130 . EThOS uk.bl.ethos.477263 – через библиотеку Кембриджского университета.
- ^ Jump up to: а б «Сэр Эндрю Уайлс назначен первым королевским профессором математики в Оксфорде» . Новости и события . Оксфордский университет . 31 мая 2018 года . Проверено 1 июня 2018 г.
- ^ Jump up to: а б Образец, Ян (15 марта 2016 г.). «Премия Абеля, полученная профессором Оксфорда за доказательство Великой теоремы Ферма» . Хранитель . Проверено 20 ноября 2023 г.
- ^ Jump up to: а б с Анон (2017). «Уайлс, сэр Эндрю (Джон)» . Кто есть кто (онлайн- изд. Oxford University Press ). Оксфорд: A&C Black. дои : 10.1093/ww/9780199540884.013.39819 . (Требуется подписка или членство в публичной библиотеке Великобритании .)
- ^ «Интервью с Эндрю Уайлсом» . Абелевская премия. 10 марта 2023 г. Проверено 15 ноября 2023 г. - через YouTube.
- ^ «Выпускники» . Школа Королевского колледжа, Кембридж . Проверено 1 февраля 2022 г.
- ^ «Старый лейзианский профессор сэр Эндрю Уайлс выигрывает медаль Копли» . Фонд школ Лейса и Святой Фейт. 2 ноября 2017 года . Проверено 1 февраля 2022 г.
- ^ Jump up to: а б «Эндрю Уайлс о решении Ферма» . ВГБХ . Ноябрь 2000 года . Проверено 16 марта 2016 г.
- ^ Чанг, Суён (2011). Академическая генеалогия математиков . Всемирная научная. п. 207. ИСБН 9789814282291 .
- ^ Jump up to: а б с «EC/1989/39: Уайлс, сэр Эндрю Джон» . Королевское общество . Архивировано из оригинала 13 июля 2015 года . Проверено 16 марта 2016 г.
- ^ Jump up to: а б «Эндрю Уайлс» . Национальная академия наук . Проверено 16 марта 2016 г.
- ^ Jump up to: а б с д и О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. (сентябрь 2009 г.). «Биография Эндрю Джона Уайлза» . MacTutor Архив истории математики . Проверено 1 февраля 2022 г.
- ^ Браун, Питер (28 мая 2015 г.). «Как едва не сломалось самое известное математическое доказательство» . Наутилус. Архивировано из оригинала 15 марта 2016 года . Проверено 16 марта 2016 г.
- ^ Броуд, Уильям Дж. (31 января 2022 г.). «Профили в науке - Наследник нефти Техаса, который взял на себя невозможную задачу математики - Джеймс М. Вон-младший, владеющий состоянием, утверждает, что он совершил прорыв Ферма после того, как лучшие и умнейшие люди на протяжении веков не могли решить эту головоломку» . Нью-Йорк Таймс . Проверено 2 февраля 2022 г.
- ^ Jump up to: а б Колата, Джина (24 июня 1993 г.). «Наконец-то крик «Эврика!» Вековой математической тайне» . Нью-Йорк Таймс . Архивировано из оригинала 20 ноября 2023 года . Проверено 21 января 2013 г.
- ^ Jump up to: а б с д и Саймон Сингх (1997). Великая теорема Ферма . ISBN 1-85702-521-0
- ^ Стивенс, Гленн (nd), Обзор доказательства Великой теоремы Ферма (PDF) , Бостонский университет
- ^ Бостон, Ник (весна 2003 г.), Доказательство Великой теоремы Ферма (PDF) , Университет Висконсина-Мэдисона
- ^ Jump up to: а б «Последняя теорема Ферма / Полезные заметки» . Телевизионные тропы . 2023 . Проверено 20 ноября 2023 г.
- ^ Jump up to: а б Вайсштейн, Эрик В. (14 мая 2004 г.). «Последняя теорема Ферма — из Wolfram MathWorld» . Вольфрам Рисерч, Инк . Проверено 20 ноября 2023 г.
- ^ Вайсштейн, Эрик В. (26 сентября 2009 г.). «Гипотеза Таниямы-Шимуры — из Wolfram MathWorld» . Вольфрам Рисерч, Инк . Проверено 20 ноября 2023 г.
- ^ Уайлс, Эндрю (май 1995 г.). «Выпуск 3». Анналы математики . 141 : 1–551. JSTOR i310703 .
- ^ «Удовлетворены ли математики наконец доказательством Великой теоремы Ферма, данным Эндрю Уайлсом? Почему эту теорему так трудно доказать?» . Научный американец . 21 октября 1999 года . Проверено 16 марта 2016 г.
- ^ Девлин, Кейт (21 июля 1999 г.). «За пределами последней теоремы Ферма» . Хранитель . Проверено 20 ноября 2023 г.
- ^ «BBC TWO, Последняя теорема Горизонта Ферма» . Би-би-си. 16 декабря 2010 года . Проверено 12 июня 2014 г.
- ^ «Сэр Эндрю Уайлс, КБЕ ФРС» . Лондон: Королевское общество . Архивировано из оригинала 17 ноября 2015 года . Проверено 1 февраля 2022 г.
Одно или несколько предыдущих предложений включают текст с веб-сайта royalsociety.org, где: Весь текст, опубликованный под заголовком «Биография» на страницах профиля участника, доступен по международной лицензии Creative Commons Attribution 4.0 .
- ^ «Эндрю Дж. Уайлс» . Американская академия искусств и наук . Проверено 10 декабря 2021 г.
- ^ Jump up to: а б с Уайлс получает премию Шоу 2005 года . Американское математическое общество . Проверено 16 марта 2016 г.
- ^ «Премия НАН по математике» . Национальная академия наук . Архивировано из оригинала 29 декабря 2010 года . Проверено 13 февраля 2011 г.
- ^ Уайлс получает премию Островского . Американское математическое общество . Проверено 16 марта 2016 г.
- ^ «Премия Коула 1997 года, Уведомления AMS» (PDF) . Американское математическое общество . Архивировано (PDF) из оригинала 9 октября 2022 года . Проверено 13 апреля 2008 г.
- ^ Пауль Вольфскель и премия Вольфскеля . Американское математическое общество . Проверено 16 марта 2016 г.
- ^ «История участников APS» . search.amphilsoc.org . Проверено 10 декабря 2021 г.
- ^ «Эндрю Дж. Уайлс награжден «Серебряной доской IMU» » . Американское математическое общество . 11 апреля 1953 года . Проверено 12 июня 2014 г.
- ^ «Эндрю Уайлс получает премию Фейсала» (PDF) . Американское математическое общество . Архивировано (PDF) из оригинала 9 октября 2022 года . Проверено 12 июня 2014 г.
- ^ «Премио Питагора» (на итальянском языке). Университет Калабрии . Архивировано из оригинала 15 января 2014 года . Проверено 16 марта 2016 г.
- ^ «Обозреватель базы данных малых корпусов JPL» . НАСА . Проверено 11 мая 2009 г.
- ^ «№55710» . Лондонская газета (Приложение). 31 декабря 1999 г. с. 34.
- ^ «Математический институт» . Оксфордский университет . Архивировано из оригинала 13 января 2016 года . Проверено 16 марта 2016 г.
- ^ Кастельвекки, Давиде (2016). «Последняя теорема Ферма принесла Эндрю Уайлсу премию Абеля» . Природа . 531 (7594): 287. Бибкод : 2016Natur.531..287C . дои : 10.1038/nature.2016.19552 . ПМИД 26983518 .
- ^ «Британский математик сэр Эндрю Уайлс получил математическую премию Абеля» . Вашингтон Пост . Ассошиэйтед Пресс. 15 марта 2016 г. Архивировано из оригинала 15 марта 2016 г.
- ^ Маккензи, Шина (16 марта 2016 г.). «300-летняя математическая задача решена, профессор выиграл 700 тысяч долларов – CNN» . Си-Эн-Эн.
- ^ «22 года назад британский математик только что выиграл приз в размере 700 000 долларов за решение этой увлекательной многовековой математической задачи» . Бизнес-инсайдер . Проверено 19 марта 2016 г.
- ^ Айенгар, Риши. «Эндрю Уайлс выигрывает премию Абеля 2016 года за Великую теорему Ферма» . Время . Проверено 19 марта 2016 г.
Внешние ссылки
[ редактировать ]- Профиль из Оксфорда
- Профиль из Принстона. Архивировано 5 ноября 2021 г. на Wayback Machine.
- 1953 года рождения
- Живые люди
- Английские математики XX века
- Английские математики XXI века
- Лауреаты Абелевской премии
- Выпускники Клэр-колледжа, Кембридж
- Выпускники Королевского колледжа Кембриджа
- Выпускники Мертон-колледжа Оксфорда
- Лауреаты премии Clay Research Award
- Стипендиаты Мертон-колледжа, Оксфорд
- Члены Королевского общества
- Последняя теорема Ферма
- Иностранные сотрудники Национальной академии наук
- Приглашенные ученые Института перспективных исследований
- Кавалеры Ордена Британской Империи
- Макартур Феллоуз
- Члены Американского философского общества
- Члены Французской академии наук
- Британские теоретики чисел
- Люди, получившие образование в школе Лейс
- Люди из Кембриджа
- Преподаватели Принстонского университета
- Обладатели медали Копли
- Региональные профессора математики (Оксфордский университет)
- Лауреаты премии Рольфа Шока
- Обладатели Королевской медали
- Попечители Института перспективных исследований
- Лауреаты премии Уайтхеда
- Лауреаты премии Вольфа по математике