История классической механики
Часть серии о |
Классическая механика |
---|
В физике механика — это изучение объектов, их взаимодействия и движения; классическая механика — это механика, ограниченная нерелятивистскими и неквантовыми приближениями. Большинство методов классической механики были разработаны до 1900 года, поэтому термин «классическая механика» относится к этой исторической эпохе, а также к приближениям. Другие области физики, разработанные в ту же эпоху, использующие те же приближения и также считающиеся «классическими», включают термодинамику (см. историю термодинамики ) и электромагнетизм (см. историю электромагнетизма ).
Критическим историческим событием в классической механике стала публикация Исааком Ньютоном своих законов движения и связанная с ним разработка математической технологии исчисления в 1678 году. Аналитические инструменты механики росли в течение следующих двух столетий, включая развитие гамильтоновой механики и принципы действия , концепции, имеющие решающее значение для развития квантовой механики и теории относительности .
Предшественники ньютоновской механики
Античность [ править ]
Древнегреческие философы , Аристотель в частности » утверждал, , были одними из первых, кто предположил, что природой управляют абстрактные принципы. Аристотель в своей книге «На небесах что земные тела поднимаются или опускаются на свое «естественное место», и сформулировал в качестве закона правильное приближение, согласно которому скорость падения объекта пропорциональна его весу и обратно пропорциональна плотности жидкости, в которой он находится. проваливаясь. [1] Аристотель верил в логику и наблюдение, но прошло более полутора тысяч лет, прежде чем Фрэнсис Бэкон впервые разработал научный метод экспериментирования, который он назвал « досадой природы» . [2]
Аристотель видел различие между «естественным движением» и «вынужденным движением» и считал, что «в пустоте», то есть в вакууме , тело, находящееся в покое, останется в покое. [3] и тело, находящееся в движении, будет продолжать совершать то же движение. [4] Таким образом, Аристотель первым приблизился к чему-то похожему на закон инерции. Однако он считал, что вакуум невозможен, потому что окружающий воздух немедленно устремится туда, чтобы заполнить его. Он также считал, что объект перестанет двигаться в неестественном направлении, как только будут устранены приложенные силы. Позже аристотелевцы разработали тщательное объяснение того, почему стрела продолжает лететь по воздуху после того, как покинула лук, предполагая, что стрела создает на своем пути вакуум, в который устремляется воздух, толкая ее сзади. На убеждения Аристотеля повлияло учение Платона о совершенстве круговых равномерных движений небес. В результате он представил естественный порядок, в котором движения небес обязательно были совершенными, в отличие от земного мира изменяющихся элементов, где люди возникают и исчезают.
Существует еще одна традиция, восходящая к древним грекам, где математика использовалась для анализа тел в состоянии покоя или движения, и ее можно обнаружить еще в работах некоторых пифагорейцев . Другие примеры этой традиции включают Евклида ( «О весах» ), Архимеда ( «О равновесии плоскостей» , «О плавающих телах ») и Героя ( «Механика» ). Позже исламские и византийские ученые опирались на эти работы, и в конечном итоге они были вновь представлены или стали доступны Западу в XII веке , а затем снова в эпоху Возрождения .
Средневековая мысль [ править ]
Персидский исламский эрудит Ибн Сина опубликовал свою теорию движения в «Книге исцеления» (1020 г.). Он сказал, что метатель сообщает снаряду импульс, и считал его постоянным, требующим внешних сил, таких как сопротивление воздуха, для его рассеивания. [5] [6] [7] Ибн Сина проводил различие между «силой» и «наклонением» (называемым «майл») и утверждал, что объект приобретает майл, когда объект находится в противоречии со своим естественным движением. Таким образом, он пришел к выводу, что продолжение движения объясняется наклоном, передаваемым объекту, и этот объект будет находиться в движении до тех пор, пока не будет израсходован майл. Он также утверждал, что снаряд в вакууме не остановится, если на него не воздействовать. Эта концепция движения согласуется с первым законом движения Ньютона — инерцией. В нем говорится, что движущийся объект будет оставаться в движении, если на него не воздействует внешняя сила. [8]
В XII веке Хибат Аллах Абуль-Баракат аль-Багдади принял и модифицировал теорию Авиценны о движении снаряда . В своем «Китаб аль-Мутабар» Абу'л-Баракат заявил, что движущийся объект придает сильное влечение ( майл касри ) движущемуся, и что оно уменьшается по мере удаления движущегося объекта от движущегося. [9] Согласно Шломо Пайнсу аль-Багдаади , теория движения была «старейшим отрицанием фундаментального динамического закона Аристотеля [а именно, что постоянная сила производит равномерное движение] [и, таким образом, является] смутным предвосхищением фундаментального закона». закон классической механики [а именно, что сила, приложенная непрерывно, вызывает ускорение]». [10]
В 14 веке французский священник Жан Буридан разработал теорию импульса , возможно, под влиянием Ибн Сины. [11] Альберт , епископ Хальберштадта , развил теорию дальше.
Николь Орем , один из оксфордских калькуляторов в Мертон-колледже Оксфорда , представила теорему о средней скорости, используя геометрические аргументы. [12]
Ренессанс [ править ]
Развитие Галилео Галилеем телескопа и его наблюдения еще больше поставили под сомнение идею о том, что небеса состоят из совершенного, неизменного вещества. Приняв гелиоцентрическую гипотезу Коперника , Галилей считал, что Земля ничем не отличается от других планет. Хотя реальность знаменитого эксперимента с Пизанской башней оспаривается, он действительно проводил количественные эксперименты, катая шары по наклонной плоскости ; его правильная теория ускоренного движения была, по-видимому, выведена из результатов экспериментов. [13] Галилей также обнаружил, что тело, брошенное вертикально, ударяется о землю в то же время, что и тело, брошенное горизонтально, поэтому на равномерно вращающейся Земле все равно будут объекты, падающие на землю под действием силы тяжести. Что еще более важно, он утверждал, что равномерное движение неотличимо от покоя и поэтому составляет основу теории относительности. За исключением принятия коперниканской астрономии, прямое влияние Галилея на науку в 17 веке за пределами Италии, вероятно, было не очень большим. Хотя его влияние на образованных мирян как в Италии, так и за границей было значительным, среди университетских профессоров, за исключением нескольких его собственных учеников, оно было незначительным. [14] [15]
Христиан Гюйгенс был выдающимся математиком и физиком Западной Европы. Он сформулировал закон сохранения упругих столкновений, вывел первые теоремы о центростремительной силе и разработал динамическую теорию колебательных систем. Он также усовершенствовал телескоп, открыл спутник Сатурна Титан и изобрел маятниковые часы. [16]
Механика Ньютона [ править ]
Исаак Ньютон был первым, кто объединил три закона движения (закон инерции, упомянутый выше его второй закон и закон действия и противодействия) и доказал, что эти законы управляют как земными, так и небесными объектами. Ньютон и большинство его современников надеялись, что классическая механика сможет объяснить все сущности, включая (в форме геометрической оптики) свет. В собственном объяснении колец Ньютона Ньютон избегал волновых принципов и предполагал, что легкие частицы изменяются или возбуждаются стеклом и резонируют.
Ньютон также разработал исчисление , необходимое для выполнения математических расчетов, связанных с классической механикой. Однако именно Готфрид Лейбниц независимо от Ньютона разработал исчисление с обозначениями производной и интеграла , которые используются и по сей день. Классическая механика сохраняет точечную систему обозначений Ньютона для производных по времени.
Леонард Эйлер расширил законы движения Ньютона от частиц до твердых тел двумя дополнительными законами . Работа с твердыми материалами под действием сил приводит к деформациям , которые можно измерить количественно. Идею сформулировал Эйлер (1727), а в 1782 году Джордано Риккати начал определять упругость некоторых материалов, за ним последовал Томас Янг . Симеон Пуассон расширил исследование до третьего измерения с помощью коэффициента Пуассона . Габриэль Ламе опирался на исследования по обеспечению устойчивости конструкций и ввел параметры Ламе . [17] Эти коэффициенты создали линейную теорию упругости и положили начало развитию механики сплошной среды .
Аналитическая механика [ править ]
После Ньютона новые формулировки постепенно позволили решить гораздо большее количество проблем. Первый был построен в 1788 году Жозефом Луи Лагранжем , итальянско - французским математиком . В лагранжевой механике решение использует путь наименьшего действия и следует вариационному исчислению . Уильям Роуэн Гамильтон переформулировал лагранжеву механику в 1833 году, в результате чего появилась гамильтонова механика . Помимо решения важных проблем классической физики, эти методы составляют основу квантовой механики : лагранжевы методы превратились в формулировку интеграла по траекториям , а уравнение Шредингера строит гамильтонову механику.
В середине XIX века Гамильтон мог заявить, что классическая механика находится в центре внимания ученых:
«Теоретическая разработка законов движения тел представляет собой проблему такого интереса и важности, что она привлекла внимание всех выдающихся математиков со времени изобретения Галилеем динамики как математической науки и особенно после чудесного расширения, которое было дано этой науке Ньютоном».
- Уильям Роуэн Гамильтон, 1834 г. (Записано в книге «Классическая механика» Дж. Р. Тейлора). [18] : 237 )
Конфликты конца XIX века [ править ]
Хотя классическая механика в значительной степени совместима с другими теориями « классической физики », такими как классическая электродинамика и термодинамика , в конце 19 века были обнаружены некоторые трудности, которые могла решить только современная физика. В сочетании с классической термодинамикой классическая механика приводит к парадоксу Гиббса , в котором энтропия не является четко определенной величиной. Когда эксперименты достигли атомного уровня, классическая механика не смогла объяснить, даже приблизительно, такие базовые вещи, как энергетические уровни и размеры атомов. Попытки решить эти проблемы привели к развитию квантовой механики. Действие на расстоянии все еще было проблемой для электромагнетизма и закона всемирного тяготения Ньютона , их временно объяснили с помощью теорий эфира . Точно так же различное поведение классического электромагнетизма и классической механики при преобразованиях скорости привело к созданию Альберта Эйнштейна специальной теории относительности .
Современная физика [ править ]
В начале 20 века были открыты квантовая механика (1900 г.) и релятивистская механика (1905 г.). Это развитие показало, что классическая механика была всего лишь приближением этих двух теорий.
Теория относительности , представленная Эйнштейном, позже также включала в себя общую теорию относительности (1915 г.), которая переписала гравитационные взаимодействия в терминах кривизны пространства-времени . Релятивистская механика восстанавливает ньютоновскую механику и закон гравитации Ньютона, когда задействованные скорости намного меньше скорости света , а массы меньше звездных объектов.
Квантовая механика, описывающая атомные и субатомные явления, также была обновлена в 1915 году до квантовой теории поля , что привело к созданию Стандартной модели элементарных частиц и элементарных взаимодействий, таких как электромагнетизм, сильное взаимодействие и слабое взаимодействие . Квантовая механика восстанавливает классическую механику в макроскопическом масштабе при наличии декогеренции .
Объединение общей теории относительности и квантовой теории поля в квантовую теорию гравитации до сих пор остается открытой проблемой в физике .
См. также [ править ]
Примечания [ править ]
- ↑ Перейти обратно: Перейти обратно: а б Ровелли, Карло (2015). «Физика Аристотеля: взгляд физика». Журнал Американской философской ассоциации . 1 (1): 23–40. arXiv : 1312.4057 . дои : 10.1017/apa.2014.11 . S2CID 44193681 .
- ^ Питер Пешич (март 1999 г.). «Борьба с Протеем: Фрэнсис Бэкон и «пытки» природы». Исида . 90 (1). Издательство Чикагского университета от имени Общества истории науки: 81–94. дои : 10.1086/384242 . JSTOR 237475 . S2CID 159818014 .
- ^ Аристотель: На небесах (де Каэло), книга 13, раздел 295a
- ^ Аристотель: Книга физики 4 О движении в пустоте
- ^ Эспиноза, Фернандо (2005). «Анализ исторического развития идей о движении и его значения для обучения». Физическое образование . 40 (2): 141. Бибкод : 2005PhyEd..40..139E . дои : 10.1088/0031-9120/40/2/002 . S2CID 250809354 .
- ^ Сейед Хосейн Наср и Мехди Амин Разави (1996). Исламская интеллектуальная традиция в Персии . Рутледж . п. 72. ИСБН 978-0-7007-0314-2 .
- ^ Айдын Сайили (1987). «Ибн Сина и Буридан о движении снаряда». Анналы Нью-Йоркской академии наук . 500 (1): 477–482. Бибкод : 1987NYASA.500..477S . дои : 10.1111/j.1749-6632.1987.tb37219.x . S2CID 84784804 .
- ^ Эспиноза, Фернандо. «Анализ исторического развития представлений о движении и его значения для преподавания». Физическое образование. Том. 40(2).
- ^ Гутман, Оливер (2003). Псевдо-Авиценна, Liber Celi Et Mundi: критическое издание . Издательство «Брилл» . п. 193. ИСБН 90-04-13228-7 .
- ^ Сосны, Шломо (1970). «Абул-Баракат аль-Багдади, Хибат Аллах». Словарь научной биографии . Том. 1. Нью-Йорк: Сыновья Чарльза Скрибнера. стр. 26–28. ISBN 0-684-10114-9 .
( см. Абель Б. Франко (октябрь 2003 г.). «Avempace, Projectile Motion и Impetus Theory», Journal of the History of Ideas 64 (4), стр. 521-546 [528].) - ^ Сайили, Айдын. «Ибн Сина и Буридан о движении снаряда». Анналы Нью-Йоркской академии наук, том. 500(1). стр.477-482.
- ^ «Николас Орем | Французский епископ, экономист и философ | Британника» . www.britanica.com . Проверено 27 марта 2024 г.
- ^ Пальмьери, Паоло (1 июня 2003 г.). «Ментальные модели в ранней математизации природы Галилеем» . Исследования по истории и философии науки . Часть А. 34 (2): 229–264. Бибкод : 2003ШПСА..34..229П . дои : 10.1016/S0039-3681(03)00025-6 . ISSN 0039-3681 .
- ^ «Галилей, Галилей». Полный словарь научной биографии. Получено 6 апреля 2021 г. с сайта Encyclepedia.com: https://www.encyclepedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/galilei-galileo .
- ^ Блошьо, Виктор (12 февраля 2021 г.). «Галилей, невежда: математика против философии в научной революции». arXiv : 2102.06595 [ math.HO ].
- ^ Коэн, Х. Флорис (1991). Йодер, Джоэлла Г. (ред.). «Как Христиан Гюйгенс математизировал природу» . Британский журнал истории науки . 24 (1): 79–84. дои : 10.1017/S0007087400028466 . ISSN 0007-0874 . JSTOR 4027017 . S2CID 122825173 .
- ^ Габриэль Ламе (1852) Уроки математической теории упругости твердых тел (бакалавр)
- ^ Джон Роберт Тейлор (2005). Классическая механика . Университетские научные книги. ISBN 978-1-891389-22-1 .
Ссылки [ править ]
- Трусделл, К. (1968). Очерки истории механики . Берлин, Гейдельберг: Springer Berlin Heidelberg . ISBN 9783642866470 .
- Мэддокс, Рене Дюга; предисловие Луи де Бройля; переведен на английский JR (1988). История механики (изд. Дувра). Нью-Йорк: Dover Publications . ISBN 0-486-65632-2 .
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - Бухвальд, Джед З.; Фокс, Роберт, ред. (2013). Оксфордский справочник по истории физики (Первое изд.). Оксфорд: Издательство Оксфордского университета . стр. 358–405. ISBN 9780199696253 .