Постоянное использование стартового носителя

Часть серии на |
Космический полет |
---|
![]() |
![]() |
У многоразового пускового транспортного средства есть детали, которые можно восстановить и профиксировать, но перевозит полезные нагрузки с поверхности в космос . Ракетные этапы являются наиболее распространенными частями ракурса, направленными на повторное использование. Меньшие детали, такие как ракетные двигатели и бустеры, также могут быть использованы повторно, хотя многоразовый космический корабль может быть запущен в верхней части расходного ракура. Многоразовые пусковые автомобили не должны производить эти детали для каждого запуска, поэтому значительно снижает стоимость запуска . Тем не менее, эти преимущества снижаются за счет восстановления и реконструкции.
Многоразовые пусковые автомобили могут содержать дополнительную авионику и топливо , что делает их более тяжелыми, чем их расходуемые коллеги. Повторные детали могут потребоваться войти в атмосферу и перемещаться по ней, поэтому они часто оснащены тепловыми щитами , сетчатыми плавниками и другими поверхностями управления полетом . Модифицируя их форму, космические санкции могут использовать авиационную механику, чтобы помочь в его восстановлении, таких как скольжение или подъем . В атмосфере также могут потребоваться парашюты или ретророки, чтобы дальше замедлить его. Повторные детали также могут нуждаться в специализированных объектах восстановления, таких как взлетно -посадочные полосы или автономные корабли дронов . Некоторые концепции полагаются на наземные инфраструктуры, такие как массовые водители , чтобы заранее ускорить ракушку.
По крайней мере, в начале 20-го века одноэтапные многолетние существовали в научной фантастике равенские автомобили . В 1960 -х и 1970 -х годах были изготовлены первые многоразовые ракурсные автомобили, названные космическим челноком и Energia . Однако в 1990 -х годах, из -за неспособности обеих программ в соответствии с ожиданиями, концепции постоянного ранения многоразового использования были уменьшены до тестирования прототипа. Рост частных компаний космического полета в 2000 -х и 2010 -х годах привел к возрождению их развития, например, в SpaceShipone , New Shepard , Electron , Falcon 9 и Falcon Heavy . В настоящее время ожидается, что в 2020-х годах в 2020-е годы дебютируют много пусковых автомобилей, таких как Starship , New Glenn , Neutron , Soyuz-7 , Ariane Next , Long March , Terran R и Dawn Mk-II Aurora. [ 1 ]
Влияние повторного использования на стартовых транспортных средствах было фундаментальным в индустрии космических полетов. Настолько, что в 2024 году станция Space Force Space Force Кейп -Канаверал инициировала 50 -летний план вперед для мыса, который включал в себя крупные модернизации инфраструктуры (в том числе в Порт -Канаверал ), чтобы поддержать более высокую ожидаемую каденцию и площадки для посадки для нового поколения транспортных средств. Полем [ 2 ]
Конфигурации
[ редактировать ]Повторные системы запуска могут быть полностью или частично повторно используются.
Полный многоразовый ракурный носитель
[ редактировать ]Несколько компаний в настоящее время разрабатывают полностью повторно используемые стартовые автомобили по состоянию на март 2024 года. Каждый из них работает над двухэтапной системой. SpaceX тестирует Starship , который находится в разработке с 2016 года и совершил первоначальный испытательный рейс в апреле 2023 года. [ 3 ] и еще 3 рейса по состоянию на июнь 2024 года. Blue Origin с проектом Джарвис начал работу по разработке к началу 2021 года, но не объявила дату тестирования и не обсуждал проект публично. [ 4 ] Stoke Space также разрабатывает ракету, которая планируется повторно используется. [ 5 ] [ 6 ]
По состоянию на июнь 2024 года [update], Starship - единственный ракурный носитель, предназначенный для полного повторного использования, который был полностью построен и протестирован. Самый последний испытательный рейс был 6 июня 2024 года, в котором автомобиль завершил суборбитальный запуск и впервые высадил обе стадии. Супер тяжелый бустер мягко коснулся Мексиканского залива . Корабль завершил свой первый успешный возврат и вернулся для контролируемого брызга в Индийском океане. Тест отметил первый экземпляр, который можно считать выполнением всех требований, чтобы быть полностью используемыми. [ 7 ]
Частично многоразовые системы запуска
[ редактировать ]Неполные многоразовые системы запуска, в виде многоэтапных систем орбиты, были до сих пор единственными используемыми повторно используемыми конфигурациями.
Конкретное повторное использование компонента
[ редактировать ]Исторический космический челнок повторно использовал свои твердые ракетные бустеры , его двигатели RS-25 и орбитальный аппарат космического челнока , который действовал как этап орбитальной вставки, но он не использовал внешний бак , который питался двигателями RS-25. Это пример многоразовой системы запуска, которая повторно использует конкретные компоненты ракеты. ULA Вулканский кентавр специфически повторно использует двигатели первой сцены, в то время как резервуар потрачен. Двигатели будут разбрызгать надувную аэрошаллу , а затем будут восстановлены. 23 февраля 2024 года один из девяти двигателей Merlin A Powering A Falcon 9 Booster достигла орбиты в 22 -й раз. Это уже самый известный ракетный двигатель на сегодняшний день [ Цитация необходима ] , превышение космического челнока Главный двигатель №. Рекорд 2019 года в 19 рейсах на его 20 -м полете.
Стадии сфона
[ редактировать ]По состоянию на 2024 год Falcon 9 и Falcon Heavy являются единственными орбитальными ракетами, которые повторно используют свои усилители, хотя множество других систем находятся в разработке. Все самолеты, запускаемые самолетами, повторно используют самолет.
Кроме того, был предложено ряд систем подъема, не являющихся ростами , был предложен и исследован в качестве многократных систем для взлета, из воздушных шаров [ 8 ] [ соответствующий? ] к космическим лифтам . Существующие примеры-это системы, в которых используется подъем с мощным двигателем крылатой горизонтальной реактивной машины. Такие самолеты могут запускать расходы на расходные ракеты и из -за того, что они считаются частично повторно используемыми системами, если самолет рассматривается как первая стадия ракурса. Примером этой конфигурации является орбитальный наук Pegasus . Для судоорбитального полета, который SpaceShiptWo использует для подъема плоскости носителя, его матери и масштабированные композиты белого рыцаря два . Rocket Lab работает над Neutron , а Европейское космическое агентство работает над Themis . Оба транспортных средства планируются восстановить первый этап. [ 9 ] [ 10 ]
Стадии орбитальной вставки
[ редактировать ]До настоящего времени большинство систем запуска достигают орбитальной вставки , по крайней мере, частично потраченных многоканированных ракет , особенно со вторым и третьим этапами. Только космический челнок достиг повторного использования стадии орбитальной вставки, используя двигатели и топливный бак его орбитального аппарата . Космический космический корабль Буран и звездный корабль - это два других многоразовых космических корабля, которые были разработаны для того, чтобы иметь возможность действовать в качестве стадий орбитальной вставки и были произведены, однако первый совершил только один беглый испытательный полет до того, как проект был отменен, а последний еще не работал. , выполнив четыре орбитальных испытательных рейса , по состоянию на июнь 2024 года, которые достигли всех целей миссии на четвертом полете.
Многоразовый космический корабль
[ редактировать ]Системы запуска могут быть объединены с многоразовыми космическими пространствами или капсулами. Космический шаттл орбитаж , Spaceshiptwo , Dawn Mk-II Aurora и индийский RLV-TD являются примерами для многоразового космического транспортного средства ( космического костюма ), а также частью его системы запуска.
В более современном времени система запуска Falcon 9 носила многоразовые транспортные средства, такие как Dragon 2 и X-37 , одновременно транспортируя два многоразовых транспортных средства.
Современные многоразовые орбитальные транспортные средства включают X-37, The Dream Chaser , The Dragon 2, индийский RLV-TD и предстоящий европейский космический гонщик (преемник IXV ).
Как и в случае с запусковными автомобилями, все чистые космические корабля в первые десятилетия человеческой способности к достижению космического полета были разработаны для одноразовых предметов. Это было верно как для спутников , так и для космических зондов, предназначенных для долгого времени в космосе, а также для любого объекта, предназначенного для возвращения на Землю, такие как несущих человека капсулы для или образец, образец, канистры сборов космических веществ, такие как Stardust ( 1999–2006) [ 11 ] или Хаябуса (2005–2010). [ 12 ] [ 13 ] из общего правила космических транспортных средств были американский Исключения , шаттл Советского Союза космический Apparat (VA) (VA) , Orbiter US Space Thfttle (середина 1970-х годов, с 135 рейсами в период с 1981 по 2011 год) и Советским Бураном . (1980-1988, только один не один безумный испытательный полет в 1988 году). Оба эти космических кораблей также были неотъемлемой частью системы запуска (обеспечение ускорения запуска), а также работали в качестве космических кораблей средней продолжительности в космосе . Это начало меняться в середине 2010-х годов.
In the 2010s, the space transport cargo capsule from one of the suppliers resupplying the International Space Station was designed for reuse, and after 2017,[14] NASA began to allow the reuse of the SpaceX Dragon cargo spacecraft on these NASA-contracted transport routes. This was the beginning of design and operation of a reusable space vehicle.
The Boeing Starliner capsules also reduce their fall speed with parachutes and deploy an airbag shortly before touchdown on the ground, in order to retrieve and reuse the vehicle.
As of 2021[update], SpaceX is currently building and testing the Starship spaceship to be capable of surviving multiple hypersonic reentries through the atmosphere so that they become truly reusable long-duration spaceships; no Starship operational flights have yet occurred.
Entry systems
[edit]Heat shield
[edit]With possible inflatable heat shields, as developed by the US (Low Earth Orbit Flight Test Inflatable Decelerator - LOFTID)[15] and China,[16] single-use rockets like the Space Launch System are considered to be retrofitted with such heat shields to salvage the expensive engines, possibly reducing the costs of launches significantly.[17] Heat shields allow an orbiting spacecraft to land safely without expending very much fuel. They need not take the form of inflatable heat shields, they may simply take the form of heat-resistant tiles that prevent heat conduction. Heat shields are also proposed for use in combination with retrograde thrust to allow for full reusability as seen in Starship.
Retrograde thrust
[edit]Reusable launch system stages such as the Falcon 9 and the New Shepard employ retrograde burns for re-entry, and landing.[citation needed]
Landing systems
[edit]Reusable systems can come in single or multiple (two or three) stages to orbit configurations. For some or all stages the following landing system types can be employed.
Types
[edit]Parachutes and airbags
[edit]These are landing systems that employ parachutes and bolstered hard landings, like in a splashdown at sea or a touchdown at land. The latter may require an engine burn just before landing as parachutes alone cannot slow the craft down enough to prevent injury to astronauts. This can be seen in the Soyuz capsule.
Though such systems have been in use since the beginning of astronautics to recover space vehicles, only later have the vehicles been reused.
E.g.:
Horizontal (winged)
[edit]Single or main stages, as well as fly-back boosters can employ a horizontal landing system. These vehicles land on earth much like a plane does, but they usually do not use propellant during landing.
Examples are:
- Space Shuttle orbiter - as part of the main stage
- Buran spaceplane - acted as an orbital insertion stage, however Polyus could also be used as a second stage for the Energia launch vehicle.
- Venturestar - a project of NASA
- Space Shuttle's studied fly-back booster
- Energia II ("Uragan") - an alternative Buran launch system concept
- OK-GLI - another Buran spacecraft version
- Liquid Fly-back Booster - a German concept
- Baikal - a former Russian project
- Reusable Booster System - a U.S. research project
- SpaceShipTwo - a spaceplane for space tourism made by Virgin Galactic
- SpaceShipThree - a spaceplane under development for space tourism made by Virgin Galactic
- Dawn Mk-II Aurora - a spaceplane under development by Dawn Aerospace
- XS-1 - another U.S. research project
- RLV-TD - an ongoing Indian project
- Reaction Engines Skylon SSTO
A variant is an in-air-capture tow back system, advocated by a company called EMBENTION with its FALCon project.[18]
Vehicles that land horizontally on a runway require wings and undercarriage. These typically consume about 9-12% of the landing vehicle mass,[citation needed] which either reduces the payload or increases the size of the vehicle. Concepts such as lifting bodies offer some reduction in wing mass,[citation needed] as does the delta wing shape of the Space Shuttle.
Vertical (retrograde)
[edit]Systems like the McDonnell Douglas DC-X (Delta Clipper) and those by SpaceX are examples of a retrograde system. The boosters of Falcon 9 and Falcon Heavy land using one of their nine engines. The Falcon 9 rocket is the first orbital rocket to vertically land its first stage on the ground. The first stage of Starship is planned to land vertically, while the second is to be caught by arms after performing most of the typical steps of a retrograde landing. Blue Origin's New Shepard suborbital rocket also lands vertically back at the launch site.
Retrograde landing typically requires about 10% of the total first stage propellant, reducing the payload that can be carried due to the rocket equation.[19]
Landing using aerostatic force
[edit]There is also the concept of a launch vehicle with an inflatable, reusable first stage. The shape of this structure will be supported by excess internal pressure (using light gases). It is assumed that the bulk density of the first stage (without propellant) is less than the bulk density of air. Upon returning from flight, such a first stage remains floating in the air (without touching the surface of the Earth). This will ensure that the first stage is retained for reuse. Increasing the size of the first stage increases aerodynamic losses. This results in a slight decrease in payload. This reduction in payload is compensated for by the reuse of the first stage.[20]
Constraints
[edit]Extra weight
[edit]Reusable stages weigh more than equivalent expendable stages. This is unavoidable due to the supplementary systems, landing gear and/or surplus propellant needed to land a stage. The actual mass penalty depends on the vehicle and the return mode chosen.[21]
Refurbishment
[edit]After the launcher lands, it may need to be refurbished to prepare it for its next flight. This process may be lengthy and expensive. The launcher may not be able to be recertified as human-rated after refurbishment, although SpaceX has flown reused Falcon 9 boosters for human missions. There is eventually a limit on how many times a launcher can be refurbished before it has to be retired, but how often a launcher can be reused differs significantly between the various launch system designs.
History
[edit]With the development of rocket propulsion in the first half of the twentieth century, space travel became a technical possibility.
Early ideas of a single-stage reusable spaceplane proved unrealistic and although even the first practical rocket vehicles (V-2) could reach the fringes of space, reusable technology was too heavy. In addition, many early rockets were developed to deliver weapons, making reuse impossible by design. The problem of mass efficiency was overcome by using multiple expendable stages in a vertical launch multistage rocket. USAF and NACA had been studying orbital reusable spaceplanes since 1958, e.g. Dyna-Soar, but the first reusable stages did not fly until the advent of the US Space Shuttle in 1981.
20th century
[edit]
Perhaps the first reusable launch vehicles were the ones conceptualized and studied by Wernher von Braun from 1948 until 1956. The Von Braun Ferry Rocket underwent two revisions: once in 1952 and again in 1956. They would have landed using parachutes.[22][23]
The General Dynamics Nexus was proposed in the 1960s as a fully reusable successor to the Saturn V rocket, having the capacity of transporting up to 450–910 t (990,000–2,000,000 lb) to orbit.[24][25] See also Sea Dragon, and Douglas SASSTO.
The BAC Mustard was studied starting in 1964. It would have comprised three identical spaceplanes strapped together and arranged in two stages. During ascent the two outer spaceplanes, which formed the first stage, would detach and glide back individually to earth. It was canceled after the last study of the design in 1967 due to a lack of funds for development.[26]
NASA started the Space Shuttle design process in 1968, with the vision of creating a fully reusable spaceplane using a crewed fly-back booster. This concept proved expensive and complex, therefore the design was scaled back to reusable solid rocket boosters and an expendable external tank.[27][28] Space Shuttle Columbia launched and landed 27 times and was lost with all crew on the 28th landing attempt; Challenger launched and landed 9 times and was lost with all crew on the 10th launch attempt; Discovery launched and landed 39 times; Atlantis launched and landed 33 times.
In 1986 President Ronald Reagan called for an air-breathing scramjet National Aerospace Plane (NASP)/X-30. The project failed due to technical issues and was canceled in 1993.[29]
In the late 1980s a fully reusable version of the Energia rocket, the Energia II, was proposed. Its boosters and core would have had the capability of landing separately on a runway.[30]
In the 1990s the McDonnell Douglas Delta Clipper VTOL SSTO proposal progressed to the testing phase. The DC-X prototype demonstrated rapid turnaround time and automatic computer control.
In mid-1990s, British research evolved an earlier HOTOL design into the far more promising Skylon design, which remains in development.
From the late 1990s to the 2000s, the European Space Agency studied the recovery of the Ariane 5 solid rocket boosters.[31] The last recovery attempt took place in 2009.[32]
The commercial ventures, Rocketplane Kistler and Rotary Rocket, attempted to build reusable privately developed rockets before going bankrupt.[citation needed]
NASA proposed reusable concepts to replace the Shuttle technology, to be demonstrated under the X-33 and X-34 programs, which were both cancelled in the early 2000s due to rising costs and technical issues.
21st century
[edit]

The Ansari X Prize contest was intended to develop private suborbital reusable vehicles. Many private companies competed, with the winner, Scaled Composites, reaching the Kármán line twice in a two-week period with their reusable SpaceShipOne.
In 2012, SpaceX started a flight test program with experimental vehicles. These subsequently led to the development of the Falcon 9 reusable rocket launcher.[33]
On 23 November 2015 the New Shepard rocket became the first Vertical Take-off, Vertical Landing (VTVL) sub-orbital rocket to reach space by passing the Kármán line (100 km or 62 mi), reaching 329,839 ft (100,535 m) before returning for a propulsive landing.[34][35]
SpaceX achieved the first vertical soft landing of a reusable orbital rocket stage on December 21, 2015, after delivering 11 Orbcomm OG-2 commercial satellites into low Earth orbit.[36]
The first reuse of a Falcon 9 first stage occurred on 30 March 2017.[37] SpaceX now routinely recovers and reuses their first stages, as well as reusing fairings.[38]
In 2019 Rocket Lab announced plans to recover and reuse the first stage of their Electron launch vehicle, intending to use parachutes and mid-air retrieval.[39] On 20 November 2020, Rocket Lab successfully returned an Electron first stage from an orbital launch, the stage softly splashing down in the Pacific Ocean.[40]
China is researching the reusability of the Long March 8 system.[41]
As of May 2020[update], the only operational reusable orbital-class launch systems are the Falcon 9 and Falcon Heavy, the latter of which is based upon the Falcon 9. SpaceX is also developing the fully reusable Starship launch system.[42] Blue Origin is developing its own New Glenn partially reusable orbital rocket, as it is intending to recover and reuse only the first stage.
5 October 2020, Roscosmos signed a development contract for Amur a new launcher with a reusable first stage.[43]
In December 2020, ESA signed contracts to start developing THEMIS, a prototype reusable first stage launcher.[44]
Return to launch site
[edit]After 1980, but before the 2010s, two orbital launch vehicles developed the capability to return to the launch site (RTLS). Both the US Space Shuttle—with one of its abort modes[45][46]—and the Soviet Buran[47] had a designed-in capability to return a part of the launch vehicle to the launch site via the mechanism of horizontal-landing of the spaceplane portion of the launch vehicle. In both cases, the main vehicle thrust structure and the large propellant tank were expendable, as had been the standard procedure for all orbital launch vehicles flown prior to that time. Both were subsequently demonstrated on actual orbital nominal flights, although both also had an abort mode during launch that could conceivably allow the crew to land the spaceplane following an off-nominal launch.
In the 2000s, both SpaceX and Blue Origin have privately developed a set of technologies to support vertical landing of the booster stage of a launch vehicle. After 2010, SpaceX undertook a development program to acquire the ability to bring back and vertically land a part of the Falcon 9 orbital launch vehicle: the first stage. The first successful landing was done in December 2015,[48] since then several additional rocket stages landed either at a landing pad adjacent to the launch site or on a landing platform at sea, some distance away from the launch site.[49] The Falcon Heavy is similarly designed to reuse the three cores comprising its first stage. On its first flight in February 2018, the two outer cores successfully returned to the launch site landing pads while the center core targeted the landing platform at sea but did not successfully land on it.[50]
Blue Origin developed similar technologies for bringing back and landing their suborbital New Shepard, and successfully demonstrated return in 2015, and successfully reused the same booster on a second suborbital flight in January 2016.[51] By October 2016, Blue had reflown, and landed successfully, that same launch vehicle a total of five times.[52] It must however be noted that the launch trajectories of both vehicles are very different, with New Shepard going straight up and down without achieving orbital flight, whereas Falcon 9 has to cancel substantial horizontal velocity and return from a significant distance downrange, while delivering the payload to orbit with the second stage.
Both Blue Origin and SpaceX also have additional reusable launch vehicles under development. Blue is developing the first stage of the orbital New Glenn LV to be reusable, with first flight planned for no earlier than 2024. SpaceX has a new super-heavy launch vehicle under development for missions to interplanetary space. The SpaceX Starship is designed to support RTLS, vertical-landing and full reuse of both the booster stage and the integrated second-stage/large-spacecraft that are designed for use with Starship.[53] Its first launch attempt took place in April 2023; however, both stages were lost during ascent. On the fourth launch attempt however, both the booster and the ship achieved a soft landing in the Gulf of Mexico and the Indian Ocean, respectively.
List of reusable launch vehicles
[edit]Company | Vehicle | Reusable Component | Launched | Recovered | Relaunched | Payload to LEO | First Launch | Status |
---|---|---|---|---|---|---|---|---|
![]() |
Space Shuttle | Orbiter | 135 | 133 | 130 | 27,500 kg | 1981 | Retired (2011) |
Side booster | 270 | 266 | N/A[a] | |||||
![]() |
Ares I | First stage | 1 | 1 | 0 | 25,400 kg | 2009 | Retired (2010) |
![]() |
Falcon 9 | First stage | 375 | 332 | 303 | 17,500 kg (reusable)[54] 22,800 kg (expended) |
2010 | Active |
Fairing half | >486[b] | >300 (Falcon 9 and Heavy)[b] | ||||||
![]() ![]() |
Electron | First stage | 49 | 9 | 0[c] | 325 kg (expended) | 2017 | Active, relaunch planned |
![]() |
Falcon Heavy | Side booster | 20 | 18 | 14 | ~33,000 kg (all cores reusable) 63,800 kg (expended) |
2018 | Active |
Center core | 10 | 0[d] | 0 | |||||
Fairing half | >18[b] | >300 (Falcon 9 and Heavy)[b] | ||||||
![]() |
Starship | First stage | 4 | 0 | 0 | 150,000 kg (reusable) 250,000 kg (expended) |
2023 | Active, recovery planned |
Second stage | 4 | 0 | 0 | |||||
![]() |
Vulcan Centaur | First stage engine module | 1 | 0 | 0 | 27,200 kg | 2024 | Active, recovery planned |
![]() |
Tianlong-3 | First stage | 0 | 0 | 0 | 17,000 kg | 2024 | Planned |
![]() |
New Glenn | First stage, fairing | 0 | 0 | 0 | 45,000 kg | 2024 | Planned |
![]() |
Pallas-1 | First stage | 0 | 0 | 0 | 5,000 kg | 2024 | Planned |
![]() |
Nebula 1 | First stage | 0 | 0 | 0 | 2,000 kg | 2024 | Planned |
![]() |
Blue Whale 1 | First stage | 0 | 0 | 0 | 170 kg | 2024 | Planned |
![]() ![]() |
Neutron | First stage (includes fairing) | 0 | 0 | 0 | 13,000 kg (reusable) 15,000 kg (expended) |
2025 | Planned |
![]() |
Nova | Fully reusable | 0 | 0 | 0 | 3,000 kg (reusable) 5,000 kg (stage 2 expended) 7,000 kg (fully expended) |
2025 | Planned |
![]() |
Kinetica-2 | First stage | 0 | 0 | 0 | 12,000 kg | 2025 | Planned |
![]() |
Hyperbola-3 | First stage | 0 | 0 | 0 | 8,300 kg (reusable) 13,400 kg (expended) |
2025 | Planned |
![]() |
Zhuque-3 | First stage | 0 | 0 | 0 | 18,300 kg (reusable) 21,300 kg (expended) |
2025 | Planned |
![]() |
Nebula 2 | First stage | 0 | 0 | 0 | 20,000 kg | 2025 | Planned |
![]() |
Gravity-2 | First stage | 0 | 0 | 0 | 17,400 kg (reusable) 21,500 kg(expended) |
2025 | Planned |
![]() |
Amur | First stage | 0 | 0 | 0 | 10,500 kg | 2026 | Planned |
![]() |
Terran R | First stage | 0 | 0 | 0 | 23,500 kg (reusable) 33,500 kg (expended) |
2026 | Planned |
![]() |
Miura 5 | First stage | 0 | 0 | 0 | 900 kg | 2026 | Planned |
![]() |
Tianlong-3H | Side booster | 0 | 0 | 0 | 68,000 kg (expended) | 2026 | Planned |
Center core | 0 | 0 | 0 | |||||
![]() |
Gravity-3 | First stage, fairing | 0 | 0 | 0 | 30,600 kg | 2027 | Planned |
![]() |
Long March 10A | First Stage | 0 | 0 | 0 | 14,000 kg (reusable) 18,000 kg (expended) |
2027 | Planned |
![]() |
Long March 9 | First Stage | 0 | 0 | 0 | 100,000 kg | 2033 | Planned |
Second Stage | 0 | 0 | 0 |
- ^ An exact figure for reused SRBs is not possible because the boosters were broken up for parts at the end of recovery and not kept as complete sets of parts.
- ^ Jump up to: a b c d As of 12 January 2024. A presentation slide at the company's all-hands meeting stated that fairing halves of the Falcon 9 and Heavy rockets had been recovered and reflown "more than 300 times".[55]
- ^ Rocket Lab announced in 2024 that it will be reusing a recovered first stage.[56]
- ^ The center booster used for Arabsat-6A was landed but not recovered.
List of reusable spacecraft
[edit]Company | Spacecraft | Launch Vehicle | Launched | Recovered | Relaunched | Launch Mass | First Launch | Status |
---|---|---|---|---|---|---|---|---|
![]() |
Space Shuttle orbiter | Space Shuttle | 135 | 133 | 130 | 110,000 kg | 1981 | Retired (2011) |
![]() |
Buran | Energia | 1 | 1 | 0 | 92,000 kg | 1988 | Retired (1988) |
![]() |
X-37 | Atlas V, Falcon 9, Falcon Heavy | 7 | 6 | 5 | 5,000 kg | 2010 | Active |
![]() |
Dragon | Falcon 9 | 46 | 44 | 24 | 12,519 kg | 2010 | Active |
![]() |
Orion | Space Launch System | 2 | 2 | 0 | 10,400 kg (excluding service module and abort system) | 2014 | Active, relaunch planned |
![]() |
Starliner | Atlas V | 3 | 3 | 1 | 13,000 kg | 2019 | Active |
![]() |
Chinese reusable experimental spacecraft | Long March 2F | 3 | 2 | unknown | unknown | 2020 | Active, reusability unknown |
![]() |
Dream Chaser | Vulcan Centaur | 0 | 0 | 0 | 9,000 kg | 2024 | Planned |
![]() |
Mengzhou | Long March 10A | 0 | 0 | 0 | 14,000 kg | 2027 | Planned |
List of reusable suborbital vehicles
[edit]![]() |
Company | Vehicle | First Launch | Recovered | Relaunched | Notes |
---|---|---|---|---|---|
![]() |
New Shepard | 2015 | 20 | 17 | Fully reusable. |
![]() |
SpaceShipTwo (VSS Unity) | 2018 | 5 | 4 | Fully reusable. |
![]() |
SpaceShipThree (VSS Imagine) | Fully reusable. |
See also
[edit]References
[edit]- ^ "Dawn Aerospace unveils the Mk II Aurora suborbital space plane, capable of multiple same-day flights". TechCrunch. 28 July 2020. Retrieved 2022-08-19.
- ^ Davenport, Justin (2024-05-09). "Space Coast looks toward the future with port and factory expansions". NASASpaceFlight.com. Retrieved 2024-05-15.
- ^ Strickland, Jackie Wattles, Ashley (2023-04-20). "SpaceX's Starship rocket lifts off for inaugural test flight but explodes midair". CNN. Retrieved 2023-04-29.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ Berger, Eric (27 July 2021). "Blue Origin has a secret project named "Jarvis" to compete with SpaceX". Ars Technica. Archived from the original on 30 July 2021. Retrieved 31 July 2021.
- ^ "STOKE Space Raises $65M Series A to Make Space Access Sustainable and Scalable". www.businesswire.com. 2021-12-15. Retrieved 2023-02-05.
- ^ Volosín, Trevor Sesnic, Juan I. Morales (2023-02-04). "Full Reusability By Stoke Space". Everyday Astronaut. Retrieved 2023-02-05.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ "SpaceX Flies IFT-4, Achieves Super Heavy, Starship Controlled Splashdowns - AmericaSpace". www.americaspace.com. 2024-06-06. Retrieved 2024-06-10.
- ^ Reyes, Tim (October 17, 2014). "Balloon launcher Zero2Infinity Sets Its Sights to the Stars". Universe Today. Archived from the original on 13 April 2020. Retrieved 9 July 2015.
- ^ "ESA plans demonstration of a reusable rocket stage". 15 December 2020.
- ^ "Everything you need to know about Themis". 26 June 2023.
- ^ Muir, Hazel (15 January 2006). "Pinch of comet dust lands safely on Earth". New Scientist. Archived from the original on 21 January 2018. Retrieved 20 January 2018.
- ^ "Mission Accomplished For Japan's Asteroid Explorer Hayabusa". Archived from the original on June 16, 2010.
- ^ "Space Probe, Perhaps with a Chunk of Asteroid, Returns to Earth Sunday". Space.com. 13 June 2010. Archived from the original on 16 June 2010. Retrieved 13 June 2010.
- ^ Clark, Stephen. "Cargo manifest for SpaceX's 11th resupply mission to the space station". Spaceflight Now. Archived from the original on 9 August 2018. Retrieved 3 June 2017.
- ^ Marder, Jenny (3 July 2019). "Inflatable Decelerator Will Hitch a Ride on the JPSS-2 Satellite". NOAA. Retrieved 30 October 2019.
- ^ Xinhua Editorial Board (5 May 2020). ""胖五"家族迎新 送新一代载人飞船试验船升空——长征五号B运载火箭首飞三大看点 (LM5 Family in focus: next generation crewed spacecraft and other highlight of the Long March 5B maiden flight)". Xinhua News (in Chinese). Archived from the original on 7 August 2020. Retrieved 29 October 2020.
- ^ Bill D'Zio (7 May 2020). "Is China's inflatable space tech a $400 Million Cost savings for NASA's SLS?". westeastspace.com. Archived from the original on 10 May 2020. Retrieved 29 October 2020.
- ^ "FALCon". embention.com. Archived from the original on 27 October 2020. Retrieved 29 October 2020.
- ^ "SpaceX on Twitter". Twitter. Archived from the original on September 20, 2020. Retrieved January 7, 2016.
- ^ Pidvysotskyi, Valentyn (July 2021), The Concept of an Inflatable Reusable Launch Vehicle, doi:10.31224/osf.io/xbf8z, S2CID 243032818, archived from the original on 2021-08-18, retrieved 2021-08-18
- ^ Sippel, M; Stappert, S; Bussler, L; Dumont, E (September 2017), "Systematic Assessment of Reusable First-Stage Return Options" (PDF), IAC-17-D2.4.4, 68th International Astronautical Congress, Adelaide, Australia., archived (PDF) from the original on 2020-04-13, retrieved 2017-12-26
- ^ "von Braun concept vehicle". www.astronautix.com. Archived from the original on 2020-11-12. Retrieved 2020-11-15.
- ^ Portree, David S. F. "Wernher von Braun's Fantastic Vision: Ferry Rocket | WIRED". Wired. Archived from the original on 2020-11-12. Retrieved 2020-11-15 – via www.wired.com.
- ^ "ch2". history.nasa.gov.
- ^ "Nexus". www.astronautix.com. Archived from the original on 2020-11-09. Retrieved 2020-11-15.
- ^ "Forgotten 1960s 'Thunderbirds' projects brought to life". BAE Systems | United Kingdom. Archived from the original on 2021-01-18. Retrieved 2021-02-07.
- ^ NASA-CR-195281, "Utilization of the external tanks of the space transportation system"
- ^ "STS External Tank Station". Ntrs.nasa.gov. Archived from the original on 7 April 2015. Retrieved 7 January 2015.
- ^ "Copper Canyon". www.astronautix.com. Archived from the original on 2020-09-20. Retrieved 2018-06-08.
- ^ "Б.И.Губанов. Триумф и трагедия "Энергии" глава 41". www.buran.ru. Archived from the original on 2020-11-08. Retrieved 2020-11-14.
- ^ "Recovery of an Ariane 5 booster at sea". www.esa.int. Archived from the original on 2021-10-01. Retrieved 2021-03-03.
- ^ "France in Space #387". Archived from the original on 2009-01-25. Retrieved 2021-03-03.
- ^ Lindsey, Clark (2013-03-28). "SpaceX moving quickly towards fly-back first stage". NewSpace Watch. Archived from the original on 2013-04-16. Retrieved 2013-03-29.
- ^ "Blue Origin Makes Historic Reusable Rocket Landing in Epic Test Flight". Calla Cofield. Space.Com. 2015-11-24. Archived from the original on 2021-02-09. Retrieved 2015-11-25.
- ^ Berger, Eric (24 November 2015). "Jeff Bezos and Elon Musk spar over gravity of Blue Origin rocket landing". Ars Technica. Archived from the original on 13 April 2020. Retrieved 25 November 2015.
- ^ "SpaceX on Twitter". Twitter. Archived from the original on 2020-09-20. Retrieved 2015-12-22.
- ^ "SpaceX successful [sic] launches first recycled rocket – video". The Guardian. Reuters. 31 March 2017. Archived from the original on 9 February 2021. Retrieved 31 March 2017.
- ^ April 2019, Mike Wall 12 (12 April 2019). "SpaceX Recovered Falcon Heavy Nose Cone, Plans to Re-fly it This Year (Photos)". Space.com. Archived from the original on 2021-02-09. Retrieved 2019-04-29.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - ^ "Rocket Lab Announces Reusability Plans For Electron Rocket". Rocket Lab. 6 August 2019. Archived from the original on 21 May 2021. Retrieved 7 December 2019.
- ^ "Rocket Lab launches Electron in test of booster recovery". SpaceNews. 2020-11-20. Archived from the original on 2021-10-01. Retrieved 2020-11-20.
- ^ "China to test rocket reusability with planned Long March 8 launcher". SpaceNews.com. 2018-04-30. Archived from the original on 2021-10-01. Retrieved 2020-10-04.
- ^
Archived at Ghostarchive and the Wayback Machine: Elon Musk (29 September 2017). Becoming a Multiplanetary Species (video). 68th annual meeting of the International Astronautical Congress in Adelaide, Australia: SpaceX. Retrieved 2017-12-31 – via YouTube.
{{cite AV media}}
: CS1 maint: location (link) - ^ "Trouble-free as a Kalashnikov assault rifle: the Amur methane rocket" (in Russian). Roscosmos. 5 October 2020. Archived from the original on 6 October 2020. Retrieved 6 October 2020.
- ^ "ESA plans demonstration of a reusable rocket stage". Space Daily. Archived from the original on 2020-12-16. Retrieved 2020-12-19.
- ^ "Return to Launch Site". NASA.gov. Archived from the original on 15 April 2015. Retrieved 4 October 2016.
- ^ "Space Shuttle Abort Evolution" (PDF). ntrs.nasa.gov. 26 September 2011. Retrieved 4 October 2016.
- ^ Handwerk, Brian (12 April 2016). "The Forgotten Soviet Space Shuttle Could Fly Itself". National Geographic. National Geographic Society. Archived from the original on April 15, 2016. Retrieved 4 October 2016.
- ^ Newcomb, Alyssa; Dooley, Erin (21 December 2015). "SpaceX Historic Rocket Landing Is a Success". ABC News. Retrieved 4 October 2016.
- ^ Sparks, Daniel (17 August 2016). "SpaceX Lands 6th Rocket, Moves Closer to Reusability". Los Motley Fool. Retrieved 27 February 2017.
- ^ Gebhardt, Chris (February 5, 2018). "SpaceX successfully debuts Falcon Heavy in demonstration launch from KSC – NASASpaceFlight.com". NASASpaceFlight.com. Retrieved February 23, 2018.
- ^ Foust, Jeff (22 January 2016). "Blue Origin reflies New Shepard suborbital vehicle". SpaceNews. Retrieved 1 November 2017.
- ^ Foust, Jeff (5 October 2016). "Blue Origin successfully tests New Shepard abort system". SpaceNews. Retrieved 8 October 2016.
- ^ Foust, Jeff (15 October 2017). "Musk offers more technical details on BFR system - SpaceNews.com". SpaceNews.com. Retrieved February 23, 2018.
- ^ Elon Musk (26 February 2024). "Due to continued design improvements, this Falcon 9 carried its highest ever payload of 17.5 tons of useful load to a useful orbit".
- ^ Elon Musk delivers SpaceX update, talks Starship progress and more! on YouTube
- ^ "Rocket Lab Returns Previously Flown Electron to Production Line in Preparation for First Reflight".
Bibliography
[edit]- Heribert Kuczera, et al.: Reusable space transportation systems. Springer, Berlin 2011, ISBN 978-3-540-89180-2.
Внешние ссылки
[ редактировать ]
- Иллюстрация космического челнока на взлете и орбитаре (визуальный словарь - Qainternational)
- Лунный посадочный модуль