Ихтиопланктон
Часть серии о |
Планктон |
---|
Ихтиопланктон (от греческого: ἰχθύς , ихтус , «рыба»; и πλαγκτός, планктос , «бродяга»). [1] ) – это икра и личинки рыб. В основном они встречаются в освещенной солнцем зоне водной толщи на глубине менее 200 метров, которую иногда называют эпипелагией или фотической зоной . Ихтиопланктон является планктоном , то есть они не могут эффективно плавать самостоятельно, а должны дрейфовать по океанским течениям. Икра рыб вообще не умеет плавать и однозначно является планктоном. Личинки ранних стадий плавают плохо, но личинки более поздних стадий плавают лучше и перестают быть планктонными по мере того, как вырастают в молодь . Личинки рыб являются частью зоопланктона , который поедает более мелкий планктон, а икра рыб несет в себе собственный запас пищи. И яйца, и личинки поедаются более крупными животными. [2] [3]
Рыба может производить большое количество икры, которая часто выбрасывается в толщу открытой воды. Рыбья икра обычно имеет диаметр около 1 миллиметра (0,039 дюйма). Только что вылупившуюся молодь яйцекладущих рыб называют личинками . Они обычно плохо сформированы, несут большой желточный мешок (для питания) и по внешнему виду сильно отличаются от молодых и взрослых особей. Личиночный период у яйцекладущих рыб относительно короткий (обычно всего несколько недель), личинки быстро растут и меняют внешний вид и структуру (процесс, называемый метаморфозом ), превращаясь в молодь. Во время этого перехода личинки должны переключиться с желточного мешка на питание добычей зоопланктона , этот процесс обычно зависит от недостаточной плотности зоопланктона, приводящей к голоданию многих личинок.
Ихтиопланктон может быть полезным индикатором состояния и здоровья водной экосистемы . [2] Например, на большинство личинок ихтиопланктона поздних стадий обычно охотятся, поэтому в ихтиопланктоне, как правило, преобладают яйца и личинки ранних стадий. рыбы, такой как анчоусы и сардины , Это означает, что во время нереста образцы ихтиопланктона могут отражать результаты их нереста и обеспечиватьиндекс относительной численности популяции рыбы. [3] Увеличение или уменьшение численности взрослых рыбных запасов можно обнаружить более быстро и чувствительно, наблюдая за связанным с ними ихтиопланктоном, по сравнению с наблюдением за самими взрослыми особями. Кроме того, обычно проще и экономически эффективнее отслеживать тенденции в популяциях икры и личинок, чем отслеживать тенденции в популяциях взрослых рыб. [3]
История
[ редактировать ]Интерес к планктону зародился в Великобритании и Германии в девятнадцатом веке, когда исследователи обнаружили, что в море есть микроорганизмы , и что их можно ловить с помощью мелкоячеистых сетей. Они начали описывать эти микроорганизмы и тестировать различные конфигурации сетей. [3] Исследования ихтиопланктона начались в 1864 году, когда норвежское правительство поручило морскому биологу Г. О. Сарсу исследовать рыболовство у норвежского побережья. Сарс обнаружил, что икра рыб, особенно икра трески , дрейфует в воде. Это установило, что икра рыб может быть пелагической и обитать в толще открытой воды, как и другой планктон. [4] Примерно в начале двадцатого века исследовательский интерес к ихтиопланктону стал более общим, когда выяснилось, что если ихтиопланктон отбирать количественно , то образцы могут указывать на относительный размер или численность нерестящихся рыбных запасов . [3]
Методы отбора проб
[ редактировать ]- Буксир PairoVET
- Бонго буксир
- Получение образца планктона
Научно-исследовательские суда собирают ихтиопланктон из океана с помощью мелкоячеистых сетей. Суда либо буксируют сети по морю, либо закачивают морскую воду на борт, а затем пропускают ее через сеть. [5]
- Существует множество видов планктонных жгутов: [5]
- Жгуты сетей Neuston часто изготавливаются на поверхности или чуть ниже ее с использованием нейлоновой сетки, прикрепленной к прямоугольной раме.
- Буксир PairoVET, используемый для сбора рыбной икры, сбрасывает сеть примерно на 70 метров в море со стационарного исследовательского судна, а затем тащит ее обратно на судно.
- Жгуты кольцевых сетей представляют собой нейлоновую сетку, прикрепленную к круглой раме. Они в значительной степени были заменены сетками для бонго, которые обеспечивают дублирование образцов благодаря своей конструкции с двумя сетками.
- Буксир бонго тащит сети в форме барабанов для бонго с движущегося судна. Сеть часто опускают примерно на 200 метров, а затем позволяют ей подняться на поверхность по мере буксировки. Таким образом, образец можно собрать по всей фототической зоне , где находится большая часть ихтиопланктона.
- Буксировщики MOCNESS и тралы Такера используют несколько сетей, которые механически открываются и закрываются на дискретных глубинах, чтобы получить представление о вертикальном распределении планктона.
- Трал -манта буксирует сеть с движущегося судна по поверхности воды, собирая личинок, таких как грюнион , махи-махи и летучих рыб , обитающих у поверхности.
- После буксировки планктон смывается шлангом к тресковому концу (дну) сети для сбора. Затем образец помещается в консервирующую жидкость перед сортировкой и идентификацией в лаборатории. [5]
- Планктонные насосы. Другой метод сбора ихтиопланктона — использование пробоотборника непрерывного действия для икры рыб (см. иллюстрацию). В сосуд подается вода с глубины около трех метров и фильтруется сеткой. Этот метод можно использовать во время движения судна. [5]
Этапы развития
[ редактировать ]Исследователи ихтиопланктона обычно используют терминологию и стадии развития, введенные в 1984 году Кендаллом и другими. [3] Он состоит из трех основных стадий развития и двух переходных стадий. [6]
Стадии развития по Кендаллу и др. 1984 г. [6] | |||||
Основные этапы | Стадия яйца | От нереста до вылупления. Эта стадия используется вместо эмбриональной стадии, поскольку существуют аспекты, например, связанные с оболочкой яйца, которые не являются просто эмбриональными аспектами. | |||
Личиночная стадия | От вылупления до появления всех лучей плавников роста рыбьей чешуи и начала (чешуйчатости). Ключевым событием является то, что хорда, связанная с хвостовым плавником на вентральной стороне спинного мозга, начинает сгибаться (становится гибкой). | Личиночную стадию можно разделить на стадии префлексии, сгибания и постфлексии. У многих видов форма тела и плавниковые лучи, а также способность передвигаться и питаться наиболее быстро развиваются на стадии сгибания. | |||
Ювенильный этап | Начинается, когда присутствуют все лучи плавников и идет рост чешуи, и завершается, когда молодь становится половозрелой или начинает взаимодействовать с другими взрослыми особями. | ||||
Переходные этапы | Личиночная стадия желточного мешка | От вылупления до рассасывания желточного мешка | |||
Этап трансформации | От личинки до молоди. Эта метаморфоза завершается, когда у личинки появляются черты молоди рыбы . |
Ионоциты кожи
[ редактировать ]Ионоциты (ранее известные как клетки, богатые митохондриями или хлоридные клетки) отвечают за поддержание оптимального осмотического, ионного и кислотно-щелочного уровня в организме рыбы. [7] Ионоциты обычно обнаруживаются в жабрах взрослых особей. Однако у эмбриональных и личиночных рыб жабры часто отсутствуют или имеют недоразвитые. Вместо этого ионоциты обнаруживаются вдоль кожи, желточного мешка и плавников личинки. [8] По мере роста и развития жабр на жаберной дуге и жаберных нитях можно обнаружить ионоциты. [9] [10] У личинок рыб количество, размер и плотность ионоцитов можно определить количественно как относительную площадь ионоцитов, которая была предложена в качестве показателя осмотической, ионной и/или кислотно-щелочной способности организма. [9] [11] Ионоциты также известны как пластичные. Апикальные отверстия ионоцитов могут расширяться в периоды высокой активности. [9] а новые ионоциты могут развиваться вдоль жаберных пластинок в периоды экологического стресса. [12] Из-за обильного присутствия Na + /К + -АТФазу в базолатеральной мембране ионоцитов часто можно обнаружить с помощью иммуногистохимии . [12]
Выживание
[ редактировать ]Пополнение рыбы регулируется выживаемостью личинок рыб. Выживание регулируется обилием добычи, хищничеством и гидрологией . Икра и личинки рыб поедаются многими морскими организмами. [13] Например, ими могут питаться морские беспозвоночные , такие как копеподы , стрелы , медузы , амфиподы , морские улитки и криль . [14] [15] Из-за своего большого количества морские беспозвоночные вызывают высокий общий уровень смертности. [16] Взрослые рыбы также питаются икрой и личинками рыб. Например, еще в 1922 году было замечено, как пикша насыщалась икрой сельди. [14] Другое исследование обнаружило треску в районе нереста сельди с 20 000 икринок сельди в желудках и пришло к выводу, что они могут охотиться на половину общего производства икры. [17] Рыбы также поедают собственную икру. Например, отдельные исследования показали, что северный анчоус ( Engraulis mordax ) ответственен за 28% смертности в собственной яичной популяции. [18] в то время как на перуанский анчоус приходилось 10%. [18] и южноафриканский анчоус ( Engraulis encrasicolus ) 70%. [13]
Самые эффективные хищники примерно в десять раз длиннее личинок, на которых они охотятся. Это справедливо независимо от того, является ли хищник ракообразным, медузой или рыбой. [19]
Рассредоточение
[ редактировать ]У личинок рыб сначала развивается способность плавать вверх и вниз по толще воды на короткие расстояния. Позже у них развивается способность плавать горизонтально на гораздо большие расстояния. Эти изменения в плавании влияют на их расселение. [21]
В 2010 году группа ученых сообщила, что личинки рыб могут дрейфовать по океанским течениям и заселять рыбные запасы в отдаленных местах. Это открытие впервые демонстрирует то, о чем ученые давно подозревали, но так и не доказали: популяции рыб могут быть связаны с отдаленными популяциями посредством процесса дрейфа личинок. [20]
Рыбой, которую они выбрали для исследования, была желтая щука , потому что, когда личинка этой рыбы находит подходящий риф, она остается в этом районе до конца своей жизни. Таким образом, только в виде дрейфующих личинок рыбы могут мигрировать на значительные расстояния от места своего рождения. [22] Тропический желтый хирург пользуется большим спросом в аквариумистике . К концу 1990-х годов их запасы начали сокращаться, поэтому в попытке спасти их девять морских охраняемых территорий у побережья Гавайских островов было создано (МОР). Сейчас в процессе дрейфа личинок рыбы из МОР обосновались в разных местах, и промысел восстанавливается. [22] «Мы ясно показали, что личинки рыб, выродившиеся внутри морских заповедников, могут дрейфовать течениями и пополнять облавливаемые площади на большие расстояния», — сказал один из авторов, морской биолог Марк Хиксон. «Это прямое наблюдение, а не просто модель, что успешные морские заповедники могут поддерживать рыболовство за пределами своих границ». [22]
Галерея
[ редактировать ]- Яйца Coregonus maraena примерно через месяц после оплодотворения.
- ракушки Яйцо
- Икра лосося на разных стадиях развития.
- Самец золотой рыбки стимулирует нерестовую самку и выделяет сперму для внешнего оплодотворения ее икры.
- В течение нескольких дней из уязвимых икринок золотой рыбки вылупляются личинки , из которых быстро развиваются мальки.
- тихоокеанской трески Личинка
- судака Личинка
- голубого тунца Личинка
- Обыкновенная личинка осетра
- Икра атлантической сельди с только что вылупившейся личинкой
- Свежевылупившаяся личинка сельди в капле воды по сравнению со спичечной головкой.
- Личинки сельди ранней стадии, изображенные in situ с желтка . остатками
- Личинка морской солнечной рыбы Мола-Мола длиной 2,7 мм.
- самцового рыбы Личинка
См. также
[ редактировать ]- CalCOFI
- Непрерывный регистратор планктона
- Личинки ракообразных
- Чехол для яиц
- Эмбрион
- LarvalBase - онлайн-база данных по ихтиопланктону.
- Экология морских личинок
- Милт
- Лосось
- Нерестовик
- Триггер нереста
- Гипотеза стабильного океана
- Видеорегистратор планктона
Примечания
[ редактировать ]- ^ Турман, Х.В. (1997). Вводная океанография . Нью-Джерси, США: Колледж Прентис Холл. ISBN 978-0-13-262072-7 .
- ^ Jump up to: Перейти обратно: а б «Что такое ихтиопланктон?» . Юго-западный научный центр рыболовства . 3 сентября 2007 г. Архивировано из оригинала 18 февраля 2018 г. Проверено 22 июля 2011 г.
- ^ Jump up to: Перейти обратно: а б с д и ж Аллен, доктор Ларри Г.; Хорн, доктор Майкл Х. (15 февраля 2006 г.). Экология морских рыб: Калифорния и прилегающие воды . Издательство Калифорнийского университета. стр. 269–319. ISBN 9780520932470 .
- ^ Гейр Хестмарк. «ГО Сарс» . Норвежский биографический лексикон (на норвежском языке) . Проверено 30 июля 2011 г. ( Google Переводчик )
- ^ Jump up to: Перейти обратно: а б с д и Методы отбора проб ихтиопланктона Юго-западный научный центр рыболовства, НОАА . Проверено 11 июля 2020 г.
- ^ Jump up to: Перейти обратно: а б Кендалл-младший А.В., Альстром Э.Х. и Мозер Х.Г. (1984) «Этапы ранней жизни рыб и их характеры» [ постоянная мертвая ссылка ] Американское общество ихтиологов и герпетологов , Специальная публикация 1 : 11–22.
- ^ Эванс, Дэвид Х.; Пьермарини, Питер М.; Чоу, Кейт П. (январь 2005 г.). «Многофункциональные рыбные жабры: доминирующее место газообмена, осморегуляции, регулирования кислотно-щелочного баланса и выделения азотистых отходов». Физиологические обзоры . 85 (1): 97–177. doi : 10.1152/physrev.00050.2003 . ISSN 0031-9333 . ПМИД 15618479 .
- ^ Варсамос, Стаматис; Небель, Кэтрин; Шармантье, Ги (август 2005 г.). «Онтогенез осморегуляции у постэмбриональных рыб: обзор». Сравнительная биохимия и физиология. Часть A: Молекулярная и интегративная физиология . 141 (4): 401–429. дои : 10.1016/j.cbpb.2005.01.013 . ПМИД 16140237 .
- ^ Jump up to: Перейти обратно: а б с Кван, Гарфилд Т.; Векслер, Жанна Б.; Вегнер, Николас К.; Тресгеррес, Мартин (февраль 2019 г.). «Онтогенетические изменения кожных и жаберных ионоцитов и морфология личинок желтоперого тунца (Thunnus albacares)» . Журнал сравнительной физиологии Б. 189 (1): 81–95. дои : 10.1007/s00360-018-1187-9 . ISSN 0174-1578 . ПМИД 30357584 . S2CID 53025702 .
- ^ Варсамос, Стаматис; Диас, Жан; Шармантье, Ги; Бласко, Клодин; Конн, Роберт; Флик, Герт (1 июня 2002 г.). «Расположение и морфология хлоридных клеток в постэмбриональном развитии европейского морского окуня Dicentrarchus labrax». Анатомия и эмбриология . 205 (3): 203–213. дои : 10.1007/s00429-002-0231-3 . ISSN 0340-2061 . ПМИД 12107490 . S2CID 22660781 .
- ^ Кван, Гарфилд; Финнерти, Шейн; Вегнер, Николас; Тресгеррес, Мартин (2019). «Количественное определение кожных ионоцитов в мелких водных организмах» . Био-протокол . 9 (9): е3227. дои : 10.21769/BioProtoc.3227 . ISSN 2331-8325 . ПМЦ 7854070 . ПМИД 33655013 .
- ^ Jump up to: Перейти обратно: а б Варсамос, Стаматис; Диас, Жан Пьер; Шармантье, Ги; Флик, Герт; Бласко, Клодин; Конн, Роберт (15 июня 2002 г.). «Бранхиальные хлоридные клетки морского окуня (Dicentrarchus labrax), адаптированные к пресной, морской воде и морской воде двойной концентрации». Журнал экспериментальной зоологии . 293 (1): 12–26. дои : 10.1002/jez.10099 . ISSN 0022-104X . ПМИД 12115915 .
- ^ Jump up to: Перейти обратно: а б Бакс, Нью-Джерси (1998) «Значение и прогнозирование хищничества в морском рыболовстве» [ мертвая ссылка ] Журнал ICES морской науки , 55 : 997–1030.
- ^ Jump up to: Перейти обратно: а б Бейли, К.М., и Хауд, Э.Д. (1989) «Хищничество на икрах и личинках морских рыб и проблема пополнения» « Достижения в морской биологии» , 25 : 1–83.
- ^ Коуэн-младший Дж.Х., Хоуд Э.Д. и Роуз К.А. (1996) Уязвимость личинок морских рыб перед хищниками в зависимости от размера: индивидуальный численный эксперимент" [ мертвая ссылка ] ICES J. Mar. Sci. , 53 (1): 23–37.
- ^ Перселл, Дж. Э. и Гровер, Дж. Дж. (1990) «Хищничество и ограничение пищи как причины смертности личинок сельди на нерестилищах в Британской Колумбии». Серия достижений морской экологии , 59 : 55–61.
- ^ Йоханнессен, А. (1980) «Хищничество на сельди ( Clupea harengus яйцах и молодых личинках )». ICES CM 1980/H:33.
- ^ Jump up to: Перейти обратно: а б Сантандер, Х.; Альхейт, Дж.; МакКолл, AD; Аламо, А. (1983) Смертность яиц перуанского анчоуса ( Engraulis Ringens ), вызванная каннибализмом и хищничеством сардин ( Sardinops sagax ) [ постоянная мертвая ссылка ] Отчет ФАО по рыболовству , 291 (2-3): 443–453. Рим.
- ^ Паради А.Р., Пепин П. и Браун Дж.А. (1996) «Уязвимость икры и личинок рыб перед хищниками: обзор влияния относительного размера добычи и хищника» Канадский журнал рыболовства и водных наук , 53 : (6) 1226– 1235.
- ^ Jump up to: Перейти обратно: а б Кристи М.Р., Тиссо Б.Н., Альбинс М.А., Битс3 Дж.П., Цзя Й., Ортис Д.Л., Томпсон С.Е., Хиксон М.А. (2010) Связность личинок в эффективной сети морских охраняемых территорий PLoS ONE , 5 (12) дои : 10.1371/journal.pone.0015715
- ^ Коуэн Р.К., CB Paris и Шринивасан (2006) «Масштабирование связности морских популяций». Science , 311 (5760): 522–527. дои : 10.1126/science.1122039 . PDF
- ^ Jump up to: Перейти обратно: а б с Дрейфующие личинки рыб позволяют морским заповедникам восстановиться Fisheries ScienceDaily , 26 декабря 2010 г.
Ссылки
[ редактировать ]- Альстром, Эльберт Х. и Мозер, Х. Джеффри (1976) «Икра и личинки рыб и их роль в систематических исследованиях в рыболовстве» Revue des Travaux de l'Institut des Pêches Maritimes , 40 (3-4): 379–398 .
- Балон, Юджин К. (1990) «Эпигенез эпигенетика: развитие некоторых альтернативных концепций раннего онтогенеза и эволюции рыб. Guelph Ichthyology Reviews» , 1 : 1–48.
- Блабер, Стивен Дж. М. (2000) Тропические эстуарные рыбы: экология, эксплуатация и сохранение Джон Уайли и сыновья, стр. 153–156. ISBN 978-0-632-05655-2 .
- Броуман, Ховард И. и Скифтесвик, Энн Берит (2003) Большой рыбный взрыв: материалы 26-й ежегодной конференции по личинкам рыб, Институт морских исследований. ISBN 978-82-7461-059-0 .
- Финн, Родерик Найджел и Капур, Б.Г. (2008) по физиологии личинок рыб . Научные издательства ISBN 9781578083886 .
- Коуэн, Дж. Х. младший и Р. Ф. Шоу (2002), «Вербовка» глава . 4. С. 88–111. В: Л. А. Фуйман и Р. Г. Вернер (ред.) Рыболовная наука: уникальный вклад ранних этапов жизни , Джон Уайли и сыновья. ISBN 978-0-632-05661-3 .+
- Чемберс Р.К. и Триппель Е.А. (1997) История раннего развития и пополнение популяции рыб Спрингер. ISBN 978-0-412-64190-9 .
- Худ Э.Д. (2010) «Личинки рыб», стр. 286–295. В: Дж. Х. Стил, С. А. Торп и К. К. Турекян, Морская биология , Academic Press. ISBN 978-0-08-096480-5 .
- Кендалл младший, Артур В. (2011) Идентификация яиц и личинок морских рыб Издательство Токайского университета, 2011. ISBN 978-4-486-03758-3 .
- Миллер, Брюс С. и Кендалл, Артур В. (2009) История ранней жизни морских рыб, University of California Press. ISBN 978-0-520-24972-1 .
- Миллер Т.Дж. (2002) «Собрания, сообщества и взаимодействия видов», страницы 183–205. В: Ли А. Фуйман и Роберт Г. Вернер, Рыболовная наука: уникальный вклад ранних этапов жизни , Джон Уайли и сыновья. ISBN 978-0-632-05661-3 .
- Информационная система ихтиопланктона Центр рыболовства Аляски, НОАА .
- Секция истории ранней жизни Американского общества рыболовства .
- Лаборатория личинок рыб Университета штата Колорадо .
- Последние достижения в изучении икры и личинок рыб. Архивировано 4 марта 2016 г. в Wayback Machine Sci. Март , 70С2: 2006.
- Путеводители и ключи к личинкам и ранней молоди рыб. Колледж природных ресурсов Уорнера, Университет штата Колорадо .
Внешние ссылки
[ редактировать ]- Презентация методологии исследования ихтиопланктона Ёсинобу Кониси, SEAFDEC-MFRDMD .
- Вылупление яиц лосося в Seymour Hatchery, видео на YouTube .