Предел последовательности

схема шестиугольника и пятиугольника, описанных вне круга
Последовательность, заданная периметрами правильных n- сторонних многоугольников , описывающих единичную окружность, имеет предел, равный периметру окружности, т.е. . Соответствующая последовательность для вписанных многоугольников имеет тот же предел.
1 0.841471
2 0.958851
...
10 0.998334
...
100 0.999983

Как положительное целое число становится все больше и больше, значение становится сколь угодно близким к . Мы говорим, что «предел последовательности равно ."

В математике предел последовательности — это значение, к которому «стремятся» члены последовательности , и его часто обозначают с помощью символ (например, ). [1] Если такой предел существует, последовательность называется сходящейся . [2] Последовательность, которая не сходится, называется расходящейся . [3] Говорят, что предел последовательности является фундаментальным понятием, на котором в конечном итоге основывается весь математический анализ . [1]

Пределы могут быть определены в любом метрическом или топологическом пространстве , но обычно сначала они встречаются в действительных числах .

История [ править ]

Греческий философ Зенон Элейский известен формулировкой парадоксов, включающих ограничивающие процессы .

Левкипп , Демокрит , Антифон , Евдокс и Архимед разработали метод исчерпания , который использует бесконечную последовательность приближений для определения площади или объема. Архимеду удалось суммировать то, что сейчас называют геометрической прогрессией .

Грегуар де Сен-Венсан дал первое определение предела (конца) геометрической серии в своей работе Opus Geometricum (1647): « Конечная точка прогрессии — это конец ряда, которого не может достичь ни одна прогрессия, даже если она продолжается в бесконечности, но к которому она может приблизиться ближе, чем к данному отрезку». [4]

Пьетро Менголи предвосхитил современную идею ограничения последовательности своим исследованием квазипропорций в Geometriae speciosae elementa (1659 г.). Он использовал термин «квазибесконечный» для обозначения неограниченности и «квазинулевой» для обозначения исчезновения .

Ньютон рассматривал ряды в своих работах « Анализ с бесконечными рядами» (написан в 1669 г., распространен в рукописи, опубликован в 1711 г.), «Метод флюксий и бесконечных рядов» (написан в 1671 г., опубликован в английском переводе в 1736 г., латинский оригинал опубликован гораздо позже). и Tractatus de Quadratura Curvarum (написанный в 1693 году, опубликованный в 1704 году как приложение к его «Оптике» ). В последней работе Ньютон рассматривает биномиальное разложение , который он затем линеаризует, принимая предел как имеет тенденцию .

В 18 веке математикам, таким как Эйлер, удалось суммировать некоторые расходящиеся ряды, остановившись в нужный момент; их не очень заботило, существует ли предел, лишь бы его можно было вычислить. В конце века Лагранж в своей «Теории аналитических функций» (1797) высказал мнение, что отсутствие строгости препятствует дальнейшему развитию исчисления. Гаусс в своем этюде о гипергеометрических рядах (1813) впервые строго исследовал условия, при которых ряд сходится к пределу.

Современное определение предела (для любого существует индекс так что...) было дано Бернаром Больцано ( Der binomische Lehrsatz , Прага 1816, на что в то время мало обращали внимания) и Карлом Вейерштрассом в 1870-х годах.

Действительные числа [ править ]

График сходящейся последовательности { a n } показан синим цветом. Здесь видно, что последовательность сходится к пределу 0 с увеличением n .

В действительных числах число является пределом последовательности , если числа в последовательности становятся все ближе и ближе к , а не на какое-либо другое число.

Примеры [ править ]

  • Если для постоянного , затем . [доказательство 1] [5]
  • Если , затем . [доказательство 2] [5]
  • Если когда четный, и когда странно, тогда . (Тот факт, что в любое время странно, не имеет значения.)
  • Учитывая любое действительное число, можно легко построить последовательность, сходящуюся к этому числу, используя десятичные приближения. Например, последовательность сходится к . Десятичное представление - предел предыдущей последовательности, определяемый формулой
  • Нахождение предела последовательности не всегда очевидно. Два примера: (пределом которого является число e ) и среднее арифметико-геометрическое . Теорема о сжатии часто оказывается полезной при установлении таких пределов.

Определение [ править ]

Мы звоним предел последовательности , что написано

, или
,

если выполняется следующее условие:

Для каждого действительного числа , существует натуральное число такая, что для любого натурального числа , у нас есть . [6]

Другими словами, для каждой меры близости , члены последовательности в конечном итоге настолько близки к пределу. Последовательность говорят, что он сходится или стремится к пределу .

Символически это:

.

Если последовательность сходится к некоторому пределу , то оно сходится и это единственный предел; в противном случае расходится . Последовательность, предел которой равен нулю, иногда называется нулевой последовательностью .

Иллюстрация [ править ]

Свойства [ править ]

Некоторые другие важные свойства пределов реальных последовательностей включают следующее:

  • Если он существует, предел последовательности уникален. [5]
  • Пределы последовательностей хорошо ведут себя по отношению к обычным арифметическим операциям . Если и существует, то
[5]
[5]
[5]
предоставил [5]
  • Для любой непрерывной функции , если существует, то тоже существует. Действительно, любая действительная функция является непрерывным тогда и только тогда, когда он сохраняет пределы последовательностей (хотя это не обязательно верно при использовании более общих понятий непрерывности).
  • Если для всех больше, чем некоторые , затем .
  • ( Теорема о сжатии ) Если для всех больше, чем некоторые , и , затем .
  • ( Теорема о монотонной сходимости ) Если ограничен монотонен и всех для больше, чем некоторые , то оно сходится.
  • Последовательность сходится тогда и только тогда, когда сходится каждая подпоследовательность.
  • Если каждая подпоследовательность последовательности имеет свою собственную подпоследовательность, сходящуюся к той же точке, то исходная последовательность сходится к этой точке.

Эти свойства широко используются для доказательства пределов без необходимости непосредственно использовать громоздкое формальное определение. Например, если доказано, что , становится легко показать (используя приведенные выше свойства), что (предполагая, что ).

Бесконечные пределы [ править ]

Последовательность говорят, стремится к бесконечности , написано

, или
,

если имеет место следующее:

Для каждого действительного числа , существует натуральное число такая, что для любого натурального числа , у нас есть ; то есть члены последовательности в конечном итоге превышают любые фиксированные .

Символически это:

.

Аналогично мы говорим, что последовательность стремится к минус бесконечности , записывая

, или
,

если имеет место следующее:

Для каждого действительного числа , существует натуральное число такая, что для любого натурального числа , у нас есть ; то есть члены последовательности в конечном итоге меньше любых фиксированных .

Символически это:

.

Если последовательность стремится к бесконечности или минус бесконечности, то она расходится. Однако расходящаяся последовательность не обязательно должна стремиться к плюс-минус бесконечности, и последовательность приводит один такой пример.

Метрические пространства [ править ]

Определение [ править ]

точка метрического пространства является пределом последовательности если:

Для каждого действительного числа , существует натуральное число такая, что для любого натурального числа , у нас есть .

Символически это:

.

Это совпадает с определением, данным для действительных чисел, когда и .

Свойства [ править ]

  • Если он существует, предел последовательности уникален, поскольку отдельные точки разделены некоторым положительным расстоянием, поэтому для меньше половины этого расстояния, члены последовательности не могут находиться на расстоянии обеих точек.
  • Для любой непрерывной функции f , если существует, то . Фактически, функция f непрерывна тогда и только тогда, когда она сохраняет пределы последовательностей.

Последовательности Коши [ править ]

График последовательности Коши ( x n ), показанный синим цветом, как против н . Визуально мы видим, что последовательность приближается к предельной точке, поскольку члены последовательности становятся ближе друг к другу по мере увеличения n . В действительных числах каждая последовательность Коши сходится к некоторому пределу.

Последовательность Коши — это последовательность, члены которой в конечном итоге становятся сколь угодно близкими друг к другу после того, как было отброшено достаточно много начальных членов. Понятие последовательности Коши важно при изучении последовательностей в метрических пространствах и, в частности, в реальном анализе . Одним из особенно важных результатов реального анализа является критерий Коши сходимости последовательностей : последовательность действительных чисел сходится тогда и только тогда, когда она является последовательностью Коши. Это остается верным и в других полных метрических пространствах .


Топологические пространства [ править ]

Определение [ править ]

точка топологического пространства это ограничить или предельная точка [7] [8] последовательности если:

Для каждого района из , существует некоторый такой, что для каждого , у нас есть . [9]

Это совпадает с определением, данным для метрических пространств, если является метрическим пространством и топология, созданная .

Предел последовательности точек в топологическом пространстве является частным случаем предела функции : область определения в космосе , с индуцированной топологией аффинно расширенной системы действительных чисел , диапазон равен и аргумент функции имеет тенденцию , которая в этом пространстве является предельной точкой .

Свойства [ править ]

В хаусдорфовом пространстве пределы последовательностей уникальны, если они существуют. Это не обязательно должно быть так в нехаусдорфовых пространствах; в частности, если две точки и , топологически неразличимы то любая последовательность, сходящаяся к должен сходиться к и наоборот.

Гипердействительные числа [ править ]

Определение предела с использованием гипердействительных чисел формализует интуитивное представление о том, что для «очень большого» значения индекса соответствующий член «очень близок» к пределу. Точнее, реальная последовательность стремится к L, если для любого бесконечного сверхъестественного , термин бесконечно близок к (т.е. разница бесконечно мал ). Эквивалентно, L является стандартной частью :

.

Таким образом, предел можно определить по формуле

.

где предел существует тогда и только тогда, когда правая часть не зависит от выбора бесконечного .

Последовательность более чем одного индекса [ править ]

Иногда можно также рассмотреть последовательность с более чем одним индексом, например, двойную последовательность. . Эта последовательность имеет предел если он становится все ближе и ближе к когда и n, и m становятся очень большими.

Пример [ править ]

  • Если для постоянного , затем .
  • Если , затем .
  • Если , то предела не существует. В зависимости от относительной «скорости роста» и , эта последовательность может приблизиться к любому значению между и .

Определение [ править ]

Мы звоним двойной предел последовательности , написано

, или
,

если выполняется следующее условие:

Для каждого действительного числа , существует натуральное число такая, что для каждой пары натуральных чисел , у нас есть . [10]

Другими словами, для каждой меры близости , члены последовательности в конечном итоге настолько близки к пределу. Последовательность говорят, что он сходится или стремится к пределу .

Символически это:

.

Двойной предел отличается от ограничения сначала в n , а затем в m . Последний известен как итерированный предел . Учитывая, что существуют и двойной предел, и повторный предел, они имеют одно и то же значение. Однако возможно, что один из них существует, а другой нет.

Бесконечные пределы [ править ]

Последовательность говорят, стремится к бесконечности , написано

, или
,

если имеет место следующее:

Для каждого действительного числа , существует натуральное число такая, что для каждой пары натуральных чисел , у нас есть ; то есть члены последовательности в конечном итоге превышают любые фиксированные .

Символически это:

.

Аналогично, последовательность стремится к минус бесконечности , записано

, или
,

если имеет место следующее:

Для каждого действительного числа , существует натуральное число такая, что для каждой пары натуральных чисел , у нас есть ; то есть члены последовательности в конечном итоге меньше любых фиксированных .

Символически это:

.

Если последовательность стремится к бесконечности или минус бесконечности, то она расходится. Однако расходящаяся последовательность не обязательно должна стремиться к плюс-минус бесконечности, и последовательность приводит один такой пример.

Поточечные пределы и равномерные пределы [ править ]

Для двойной последовательности , мы можем взять предел по одному из индексов, скажем, , чтобы получить одну последовательность . Фактически, есть два возможных значения при принятии этого предела. Первый из них называется поточечным пределом и обозначается

, или
,

что означает:

Для каждого действительного числа и каждое фиксированное натуральное число , существует натуральное число такая, что для любого натурального числа , у нас есть . [11]

Символически это:

.

Когда такой предел существует, мы говорим, что последовательность сходится поточечно к .

Второй называется равномерным пределом и обозначается

,
,
, или
,

что означает:

Для каждого действительного числа , существует натуральное число такая, что для любого натурального числа и для каждого натурального числа , у нас есть . [11]

Символически это:

.

В этом определении выбор не зависит от . Другими словами, выбор ко равномерно применим всем натуральным числам . Следовательно, легко видеть, что равномерная сходимость является более сильным свойством, чем поточечная сходимость: существование равномерного предела влечет за собой существование и равенство поточечного предела:

Если равномерно, тогда точечно.

Когда такой предел существует, мы говорим, что последовательность сходится равномерно к .

Итерированный лимит [ править ]

Для двойной последовательности , мы можем взять предел по одному из индексов, скажем, , чтобы получить одну последовательность , а затем возьмем предел по другому индексу, а именно , чтобы получить номер . Символически,

.

Этот предел известен как итерированный предел двойной последовательности. Порядок взятия пределов может повлиять на результат, т.е.

в общем.

Достаточное условие равенства даёт теорема Мура-Осгуда , которая требует предела быть единообразным в . [10]

См. также [ править ]

Примечания [ править ]

  1. ^ Jump up to: Перейти обратно: а б Текущий (1961), с. 29.
  2. ^ Вайсштейн, Эрик В. «Сходящаяся последовательность» . mathworld.wolfram.com . Проверено 18 августа 2020 г.
  3. ^ Текущий (1961), с. 39.
  4. ^ Ван Лой, Х. (1984). Хронология и исторический анализ математических рукописей Григория Великого (1584–1667). Математическая история, 11 (1), 57–75.
  5. ^ Jump up to: Перейти обратно: а б с д и ж г «Пределы последовательностей | Brilliant Math & Science Wiki» . блестящий.орг . Проверено 18 августа 2020 г.
  6. ^ Вайсштейн, Эрик В. «Лимит» . mathworld.wolfram.com . Проверено 18 августа 2020 г.
  7. ^ Дугунджи 1966 , стр. 209–210.
  8. ^ Часар 1978 , с. 61.
  9. ^ Зейдлер, Эберхард (1995). Прикладной функциональный анализ: основные принципы и их приложения (1-е изд.). Нью-Йорк: Springer-Verlag. п. 29. ISBN  978-0-387-94422-7 .
  10. ^ Jump up to: Перейти обратно: а б Закон, Элиас (2011). «Глава 4. Пределы функций и непрерывность». Математический анализ, том I. п. 223. ИСБН  9781617386473 .
  11. ^ Jump up to: Перейти обратно: а б Хабиль, Эйсса (2005). «Двойные последовательности и двойные серии» . Проверено 28 октября 2022 г.

Доказательства [ править ]

  1. ^ Доказательство : Выберите . Для каждого ,
  2. ^ Доказательство : выберите ( функция пола ). Для каждого , .

Ссылки [ править ]

Внешние ссылки [ править ]