Jump to content

сверхновая

(Перенаправлено из взрыва сверхновой )

SN 1994D (яркое пятно внизу слева), сверхновая типа Ia в родительской галактике NGC 4526.

Сверхновая сверхновые ( мн.: или яркий сверхновые ) мощный и взрыв звезды . — Сверхновая возникает на последних стадиях эволюции или массивной звезды когда белый карлик начинает безудержный ядерный синтез . Исходный объект, называемый прародителем , либо коллапсирует в нейтронную звезду или черную дыру , либо полностью разрушается, образуя диффузную туманность . Пиковая оптическая светимость сверхновой может быть сравнима со светимостью всей галактики , прежде чем она исчезнет в течение нескольких недель или месяцев.

Последней сверхновой, наблюдавшейся непосредственно в Млечном Пути, была Сверхновая Кеплера в 1604 году, появившаяся вскоре после Сверхновой Тихо в 1572 году, обе из которых были видны невооруженным глазом . столетие . Были обнаружены остатки более поздних сверхновых, а наблюдения сверхновых в других галактиках позволяют предположить, что они происходят в Млечном Пути в среднем примерно три раза за Сверхновую в Млечном Пути почти наверняка можно было бы наблюдать в современные астрономические телескопы. Последней сверхновой, наблюдаемой невооруженным глазом, была SN 1987A , которая представляла собой взрыв голубой звезды-сверхгиганта в Большом Магеллановом Облаке , галактике-спутнике Млечного Пути.

Теоретические исследования показывают, что большинство сверхновых запускается одним из двух основных механизмов: внезапным возобновлением ядерного синтеза в белом карлике или внезапным гравитационным коллапсом массивной звезды ядра .

  • При повторном возгорании белого карлика температура объекта повышается настолько, что вызывает неконтролируемый ядерный синтез, полностью разрушающий звезду. Возможные причины - накопление материала от двойного компаньона посредством аккреции или слияния звезд .
  • В случае внезапного взрыва массивной звезды ядро ​​массивной звезды претерпит внезапный коллапс, как только оно не сможет произвести достаточно энергии в результате термоядерного синтеза, чтобы противодействовать собственной гравитации звезды, что должно произойти, как только звезда начнет плавить железо , но может произойти. на более ранней стадии плавления металлов .

Сверхновые могут выбрасывать несколько солнечных масс материала со скоростью до нескольких процентов от скорости света . Это запускает расширяющуюся ударную волну в окружающую межзвездную среду , сметая расширяющуюся оболочку из газа и пыли, наблюдаемую как остаток сверхновой. Сверхновые являются основным источником элементов в межзвездной среде от кислорода до рубидия . Расширяющиеся ударные волны сверхновых могут спровоцировать образование новых звезд . Сверхновые являются основным источником космических лучей . Они также могут производить гравитационные волны .

Этимология

[ редактировать ]

Слово «сверхновая» имеет множественного числа форму «сверхновые» ( /- v / ) или «сверхновые» и часто сокращается до SN или SNe. Оно происходит от латинского слова nova , означающего « новая » , которое относится к временной новой яркой звезде. Добавление приставки «супер-» отличает сверхновые от обычных новых, которые гораздо менее ярки. Слово «сверхновая» было придумано Вальтером Бааде и Фрицем Цвикки , которые начали использовать его на лекциях по астрофизике в 1931 году. [ 1 ] [ 2 ] Его первое использование в журнальной статье произошло в следующем году в публикации Кнута Лундмарка , который, возможно, придумал его независимо. [ 2 ] [ 3 ]

История наблюдений

[ редактировать ]

По сравнению со всей историей звезды, внешний вид сверхновой очень краток, иногда длится несколько месяцев, так что шансы увидеть ее невооруженным глазом составляют примерно один раз в жизни. Лишь небольшая часть из 100 миллиардов звезд в типичной галактике способна стать сверхновой, причем эта способность ограничена звездами с большой массой и звездами в редких видах двойных звездных систем, по крайней мере, с одним белым карликом . [ 4 ]

Ранние открытия

[ редактировать ]

Самая ранняя запись о возможной сверхновой, известной как HB9, вероятно, была замечена неизвестным доисторическим народом Индийского субконтинента и записана на наскальных рисунках в районе Бурзахама в Кашмире , датированных 4500 ± 1000 годами до нашей эры . [ 5 ] Позже SN 185 была задокументирована китайскими астрономами в 185 году нашей эры. Самой яркой зарегистрированной сверхновой была SN 1006 , которая наблюдалась в 1006 году нашей эры в созвездии Люпуса . Об этом событии рассказали наблюдатели в Китае, Японии, Ираке, Египте и Европе. [ 6 ] [ 7 ] [ 8 ] Широко наблюдаемая сверхновая SN 1054 породила Крабовидную туманность . [ 9 ]

Сверхновые SN 1572 и SN 1604 , последние сверхновые Млечного Пути, которые можно было наблюдать невооруженным глазом, оказали заметное влияние на развитие астрономии в Европе, поскольку они использовались для аргументации против аристотелевской идеи о том, что Вселенная за пределами Луны и планет представляет собой статична и неизменна. [ 10 ] Иоганн Кеплер начал наблюдать SN 1604 на пике 17 октября 1604 года и продолжал оценивать ее яркость, пока год спустя она не исчезла из поля зрения невооруженного глаза. [ 11 ] Это была вторая сверхновая, наблюдавшаяся за поколение, после того, как Тихо Браге наблюдал SN 1572 в Кассиопее . [ 12 ]

Есть некоторые свидетельства того, что самая молодая известная сверхновая в нашей галактике, G1.9+0,3 , возникла в конце 19-го века, значительно позже, чем Кассиопея А примерно в 1680 году. [ 13 ] Ни того, ни другого в то время не было отмечено. В случае G1.9+0.3 сильное поглощение пыли вдоль плоскости галактического диска могло достаточно затемнить событие, чтобы оно осталось незамеченным. Ситуация с Кассиопеей А менее ясна; Было обнаружено эхо инфракрасного света , показывающее, что он не находился в области особенно сильного вымирания. [ 14 ]

В тексте 1414 года цитируется сообщение 1055 года: с тех пор, как «появилась зловещая звезда, прошел целый год, и до сих пор ее блеск не потускнел». [ 15 ]
Исторические сверхновые в Местной группе
год наблюдалось в максимальная видимая яркость уверенность [ 16 ] принадлежащий

Идентификация серийного номера

185 созвездие Центавра −6 м возможная SN, но может быть кометой [ 17 ] [ 18 ]
386 созвездие Стрельца +1.5 м [ 19 ] неясно, SN или классическая новая [ 20 ]
393 созвездие Скорпиона −3 м возможный серийный номер [ 20 ]
1006 созвездие Люпуса −7.5 ± 0.4 м [ 21 ] достоверно: SNR известно
1054 созвездие Тельца −6 м точно: SNR и пульсар известны
1181 созвездие Кассиопеи −2 м вероятный тип Iax SN, связанный с остатком Pa30 [ 22 ]
1572 созвездие Кассиопеи −4 м достоверно: SNR известно
1604 созвездие Змееносца −2 м достоверно: SNR известно
1680 ? созвездие Кассиопеи +6 м SNR известно, неясно, наблюдалось ли SN
1800–1900 созвездие Стрельца ? м SNR известно, но не наблюдается
1885 Галактика Андромеды +6 м определенный
1987 Большое Магелланово Облако +3 м определенный

Результаты телескопа

[ редактировать ]

С развитием астрономического телескопа стало возможным наблюдение и открытие более слабых и далеких сверхновых. Первым таким наблюдением была SN 1885A в Галактике Андромеды . Вторая сверхновая, SN 1895B , была обнаружена в NGC 5253 десять лет спустя. [ 23 ] Первые работы над тем, что первоначально считалось просто новой категорией новых звезд, были выполнены в 1920-х годах. Их по-разному называли «Новыми высшего класса», «Гауптновыми» или «гигантскими новыми». [ 24 ] Считается, что название «сверхновые» было придумано Вальтером Бааде и Цвикки на лекциях в Калифорнийском технологическом институте в 1931 году. Оно использовалось как «сверхновые» в журнальной статье, опубликованной Кнутом Лундмарком в 1933 году. [ 25 ] и в статье Бааде и Цвики 1934 года. [ 26 ] К 1938 году дефис больше не использовался и использовалось современное название. [ 27 ]

Американские астрономы Рудольф Минковский и Фриц Цвикки разработали современную схему классификации сверхновых, начиная с 1941 года. [ 28 ] В 1960-х годах астрономы обнаружили, что сверхновые максимальной интенсивности можно использовать в качестве стандартных свечей и, следовательно, индикаторов астрономических расстояний. [ 29 ] Некоторые из самых далеких сверхновых, наблюдавшихся в 2003 году, оказались более тусклыми, чем ожидалось. Это подтверждает мнение о том, что расширение Вселенной ускоряется . [ 30 ] Были разработаны методы реконструкции событий сверхновых, о наблюдении которых нет письменных свидетельств. Дата появления сверхновой Кассиопеи А была определена по световым эхо от туманностей . [ 31 ] а возраст остатка сверхновой RX J0852.0-4622 оценивался по измерениям температуры. [ 32 ] и выбросы гамма-лучей в результате радиоактивного распада титана-44 . [ 33 ]

Джейдс Глубокое Поле. Команда астрономов, изучающая данные JADES, выявила около 80 объектов (обведены зеленым), яркость которых со временем менялась. Большинство этих объектов, известных как транзиенты, являются результатом взрыва звезд или сверхновых. [ 34 ]

Самая яркая сверхновая, когда-либо зарегистрированная, — ASASSN-15lh , находится на расстоянии 3,82 гигасветовых года . Впервые она была обнаружена в июне 2015 года и достигла пика в 570 миллиардов L , что вдвое превышает болометрическую светимость любой другой известной сверхновой. [ 35 ] Природа этой сверхновой обсуждается, и было предложено несколько альтернативных объяснений, таких как приливное разрушение звезды черной дырой. [ 36 ]

SN 2013fs была зарегистрирована через три часа после вспышки сверхновой 6 октября 2013 года промежуточной Паломарской переходной фабрикой . Это одна из самых ранних сверхновых, обнаруженных после взрыва, и самая ранняя, для которой были получены спектры, начиная с шести часов после фактического взрыва. Звезда расположена в спиральной галактике NGC 7610 , на расстоянии 160 миллионов световых лет в созвездии Пегаса. [ 37 ] [ 38 ]

Сверхновая SN 2016gkg была обнаружена астрономом-любителем Виктором Бусо из Росарио , Аргентина, 20 сентября 2016 года. [ 39 ] [ 40 ] Это был первый случай, когда наблюдался первоначальный «ударный выброс» оптической сверхновой. [ 39 ] Звезда-прародитель была идентифицирована на изображениях космического телескопа Хаббла, сделанных до ее коллапса. Астроном Алекс Филиппенко отметил: «Наблюдения за звездами в первые моменты их взрыва дают информацию, которую невозможно напрямую получить каким-либо другим способом». [ 39 ]

Космический телескоп Джеймса Уэбба (JWST) значительно продвинул наше понимание сверхновых. [ 41 ] идентифицировав около 80 новых экземпляров в рамках программы JWST Advanced Deep Extragalactic Survey (JADES). Сюда входит самая далекая спектроскопически подтвержденная сверхновая с красным смещением 3,6, что указывает на то, что ее взрыв произошел, когда Вселенной было всего 1,8 миллиарда лет. Эти выводы [ 42 ] предлагают важную информацию о звездной эволюции ранней Вселенной и частоте сверхновых в годы ее становления.

Программы открытия

[ редактировать ]
Остаток сверхновой SNR E0519-69.0 в Большом Магеллановом Облаке

Поскольку сверхновые — относительно редкие события в галактике, происходящие в Млечном Пути примерно три раза в столетие, [ 43 ] Получение хорошего образца сверхновых для изучения требует регулярного мониторинга многих галактик. Сегодня астрономы-любители и профессиональные астрономы ежегодно находят несколько сотен объектов, некоторые из которых близки к максимальной яркости, другие - на старых астрономических фотографиях или пластинках. Сверхновые в других галактиках невозможно предсказать с сколько-нибудь значимой точностью. Обычно, когда они обнаруживаются, они уже находятся в стадии разработки. [ 44 ] Чтобы использовать сверхновые в качестве эталонных свечей для измерения расстояний, необходимо наблюдение за их пиковой светимостью. Поэтому важно обнаружить их задолго до того, как они достигнут максимума. Астрономы-любители , которых значительно больше, чем профессиональных астрономов, сыграли важную роль в обнаружении сверхновых, обычно рассматривая некоторые из более близких галактик через оптический телескоп и сравнивая их с более ранними фотографиями. [ 45 ]

К концу 20-го века астрономы все чаще обращались к телескопам с компьютерным управлением и ПЗС-матрицам для поиска сверхновых. Хотя такие системы популярны среди любителей, существуют и профессиональные установки, такие как телескоп автоматического формирования изображения Кацмана . [ 46 ] ( Проект системы раннего предупреждения о сверхновой SNEWS) использует сеть детекторов нейтрино для раннего предупреждения о сверхновой в галактике Млечный Путь. [ 47 ] [ 48 ] Нейтрино — это субатомные частицы , которые в больших количествах производятся сверхновой, и они незначительно поглощаются межзвездным газом и пылью галактического диска. [ 49 ]

«Звезда, готовая взорваться», туманность SBW1 окружает массивного голубого сверхгиганта в туманности Киля .

Поиски сверхновых делятся на два класса: те, которые сосредоточены на относительно близких событиях, и те, которые смотрят дальше. Из-за расширения Вселенной расстояние до удаленного объекта с известным спектром излучения можно оценить путем измерения его доплеровского сдвига (или красного смещения ); в среднем более удаленные объекты удаляются с большей скоростью, чем близлежащие, и поэтому имеют более высокое красное смещение. Таким образом, поиск разделен между высоким красным смещением и низким красным смещением, при этом граница попадает в диапазон красного смещения z = 0,1–0,3, где z - безразмерная мера частотного сдвига спектра. [ 50 ]

Поиски сверхновых с высоким красным смещением обычно включают наблюдение кривых блеска сверхновых. Они полезны для стандартных или калиброванных свечей для создания диаграмм Хаббла и космологических прогнозов. Спектроскопия сверхновых, используемая для изучения физики и окружающей среды сверхновых, более практична при низком, чем при высоком красном смещении. [ 51 ] [ 52 ] Наблюдения с низким красным смещением также закрепляют нижний конец кривой Хаббла , которая представляет собой график зависимости расстояния от красного смещения для видимых галактик. [ 53 ] [ 54 ]

Поскольку программы исследований быстро увеличивают количество обнаруженных сверхновых, были собраны сопоставленные коллекции наблюдений (кривые затухания света, астрометрия, наблюдения перед сверхновыми, спектроскопия). Набор данных Пантеона, собранный в 2018 году, детализировал 1048 сверхновых. [ 55 ] В 2021 году этот набор данных был расширен до 1701 кривой блеска для 1550 сверхновых, взятых из 18 различных обзоров, что означает увеличение на 50% менее чем за 3 года. [ 56 ]

Соглашение об именах

[ редактировать ]
Многоволновое рентгеновское , инфракрасное и оптическое компиляционное изображение Кеплера остатка сверхновой , SN 1604.

Об открытиях сверхновых сообщается в Международного астрономического союза , Центральное бюро астрономических телеграмм которое рассылает циркуляр с названием, присвоенным этой сверхновой. [ 57 ] Название формируется из префикса SN , за которым следует год открытия, дополненный одно- или двухбуквенным обозначением. Первые 26 сверхновых года обозначаются заглавной буквой А до Я. от Далее используются пары строчных букв: aa , ab и так далее. Следовательно, например, SN 2003C обозначает третью сверхновую, зарегистрированную в 2003 году. [ 58 ] Последняя сверхновая 2005 года, SN 2005nc, была 367-й (14 × 26 + 3 = 367). С 2000 года профессиональные астрономы и астрономы-любители ежегодно обнаруживают несколько сотен сверхновых (572 в 2007 году, 261 в 2008 году, 390 в 2009 году, 231 в 2013 году). [ 59 ] [ 60 ]

Исторические сверхновые известны просто по году их возникновения: SN 185, SN 1006, SN 1054, SN 1572 (называемая Новой Тихо ) и SN 1604 ( Звезда Кеплера ). [ 61 ] С 1885 г. применяется дополнительное буквенное обозначение, даже если в этом году была открыта только одна сверхновая (например, SN 1885A, SN 1907A и т. д.); Последнее произошло с СН 1947А. SN для SuperNova — это стандартный префикс. До 1987 года двухбуквенные обозначения требовались редко; с 1988 года они нужны каждый год. С 2016 года рост числа открытий регулярно приводил к дополнительному использованию трехбуквенных обозначений. [ 62 ] После zz следует ааа, затем ааб, аак и так далее. Например, последняя сверхновая, сохранившаяся в Каталоге сверхновых Азиаго на момент его закрытия 31 декабря 2017 года, имеет обозначение SN 2017jzp. [ 63 ]

Классификация

[ редактировать ]

Астрономы классифицируют сверхновые по их кривым блеска и линиям поглощения различных химических элементов , которые появляются в их спектрах . Если спектр сверхновой содержит линии водорода (известные как серия Бальмера в визуальной части спектра), она классифицируется как Тип II ; в противном случае это Тип I. В каждом из этих двух типов есть подразделения по наличию линий от других элементов или по форме кривой блеска (график видимой величины сверхновой как функции времени). [ 64 ] [ 65 ]

Таксономия сверхновых [ 64 ] [ 65 ]
Тип I
Нет водорода
Тип Iа
Представляет линию однократно ионизированного кремния (Si II) с длиной волны 615,0 нм (нанометров), вблизи пикового света.
Тепловой побег
Тип Ib/c
Слабое поглощение кремния или его отсутствие.
Тип Ib
Показывает линию неионизированного гелия (He I) при 587,6 нм.
Коллапс ядра
Тип Ic
Слабый гелий или его отсутствие
Тип II
Показывает водород
Тип II-П/-Л/н
Спектр типа II повсюду
Тип II-П/Л
Никаких узких линий
Тип II-П
Достигает «плато» на кривой блеска.
Тип II-L
Отображает «линейное» уменьшение кривой блеска (линейное по величине в зависимости от времени). [ 66 ]
Тип IIIn
Некоторые узкие линии
Тип IIб
Спектр меняется и становится похожим на Тип Ib.
Кривая блеска для типа Iа СН 2018гв

Сверхновые типа I подразделяются на основе их спектров: тип Ia демонстрирует сильную линию поглощения ионизированного кремния . Сверхновые типа I без этой сильной линии классифицируются как типы Ib и Ic, при этом тип Ib показывает сильные линии нейтрального гелия, а тип Ic их лишен. Исторически кривые блеска сверхновых I типа считались во многом схожими, но слишком похожими, чтобы можно было проводить полезные различия. [ 66 ] Несмотря на то, что вариации кривых блеска изучаются, классификация по-прежнему осуществляется на основе спектра, а не формы кривой блеска. [ 65 ]

Небольшое количество сверхновых типа Ia демонстрирует необычные особенности, такие как нестандартная светимость или расширенные кривые блеска, и их обычно классифицируют, ссылаясь на самый ранний пример, демонстрирующий подобные особенности. Например, сверхсветовую SN 2008ha часто называют SN 2002cx- подобной или класса Ia-2002cx. [ 67 ]

Небольшая часть сверхновых типа Ic демонстрирует сильно расширенные и смешанные эмиссионные линии, которые, как считается, указывают на очень высокие скорости расширения выбросов. Они были классифицированы как тип Ic-BL или Ic-bl. [ 68 ]

Сверхновые, богатые кальцием, — это редкий тип очень быстрых сверхновых с необычно сильными линиями кальция в спектрах. [ 69 ] [ 70 ] Модели предполагают, что они происходят, когда материал аккрецируется из звезды, богатой гелием, а не из звезды, богатой водородом . Из-за линий гелия в их спектрах они могут напоминать сверхновые типа Ib, но считается, что у них совсем другие прародители. [ 71 ]

Кривые блеска используются для классификации сверхновых типа II-P и типа II-L. [ 65 ] [ 72 ]

Сверхновые типа II также можно подразделить на основе их спектров. В то время как большинство сверхновых типа II демонстрируют очень широкие эмиссионные линии , которые указывают на скорость расширения во многие тысячи километров в секунду , некоторые, такие как SN 2005gl , имеют относительно узкие особенности в своих спектрах. Они называются типом IIn, где «n» означает «узкий». [ 65 ]

Несколько сверхновых, таких как SN 1987K. [ 73 ] и SN 1993J , по-видимому, меняют тип: на ранних этапах они показывают линии водорода, но в течение периода от недель до месяцев в них начинают доминировать линии гелия. Термин «тип IIb» используется для описания комбинации признаков, обычно связанных с типами II и Ib. [ 65 ]

Сверхновые типа II с нормальными спектрами, в которых преобладают широкие линии водорода, сохраняющиеся на протяжении всего периода спада, классифицируются на основе их кривых блеска. Самый распространенный тип демонстрирует характерное «плато» на кривой блеска вскоре после пика яркости, где визуальная яркость остается относительно постоянной в течение нескольких месяцев, прежде чем возобновится снижение. Их называют типом II-P, что означает плато. Реже встречаются сверхновые типа II-L, у которых нет четко выраженного плато. «L» означает «линейный», хотя кривая блеска на самом деле не является прямой линией. [ 65 ]

Сверхновые, не подпадающие под обычные классификации, называются пекулярными, или «печ». [ 65 ]

Типы III, IV и V

[ редактировать ]

Цвикки определил дополнительные типы сверхновых на основе очень немногих примеров, которые не полностью соответствовали параметрам сверхновых типа I или типа II. SN 1961i в NGC 4303 была прототипом и единственным членом класса сверхновых III типа, отличавшегося широким максимумом кривой блеска и широкими бальмеровскими линиями водорода, которые медленно развивались в спектре. [ 66 ] SN 1961f в NGC 3003 была прототипом и единственным представителем класса типа IV, с кривой блеска, аналогичной сверхновой типа II-P, с линиями поглощения водорода , но слабыми линиями излучения водорода . [ 66 ] Класс типа V был придуман для SN 1961V в NGC 1058 , необычной слабой сверхновой или самозванке сверхновой с медленным ростом яркости, многомесячным максимумом и необычным спектром излучения. сходство SN 1961V с Большим взрывом Эта Киля . Отмечено [ 74 ] Сверхновые M101 (1909 г.) и M83 (1923 и 1957 гг.) также считались возможными сверхновыми типа IV или V. [ 75 ]

Теперь все эти типы будут рассматриваться как своеобразные сверхновые типа II (IIpec), для которых было обнаружено еще много примеров, хотя до сих пор спорят, была ли SN 1961V настоящей сверхновой после вспышки LBV или самозванцем. [ 66 ] [ 76 ]

Текущие модели

[ редактировать ]
В галактике NGC 1365 сверхновая (яркая точка чуть выше центра галактики) быстро становится ярче, а затем медленнее гаснет. [ 77 ]

Коды типов сверхновых, как показано в таблице выше, являются таксономическими : номер типа основан на свете, наблюдаемом от сверхновой, а не обязательно на его причине. Например, сверхновые типа Ia рождаются в результате безудержного термоядерного синтеза, зажигающегося на выродившихся предшественниках белых карликов, тогда как спектрально подобные сверхновые типа Ib/c образуются из массивных звезд-предшественников в результате коллапса ядра.

Тепловой побег

[ редактировать ]
Образование сверхновой типа Ia.

Звезда-белый карлик может накопить достаточно материала от своего звездного компаньона, чтобы поднять температуру своего ядра настолько, чтобы зажечь термоядерный синтез , после чего он подвергается безудержному ядерному синтезу, полностью разрушающему его. Теоретически существует три пути, по которым может произойти эта детонация: стабильная аккреция материала от компаньона, столкновение двух белых карликов или аккреция, вызывающая воспламенение оболочки, которая затем воспламеняет ядро. Доминирующий механизм образования сверхновых типа Ia остается неясным. [ 78 ] Несмотря на эту неопределенность в том, как образуются сверхновые типа Ia, сверхновые типа Ia имеют очень однородные свойства и являются полезными стандартными свечами на межгалактических расстояниях. Некоторые калибровки необходимы для компенсации постепенного изменения свойств или различных частот сверхновых с аномальной светимостью при высоком красном смещении, а также для небольших изменений яркости, определяемых формой или спектром кривой блеска. [ 79 ] [ 80 ]

Нормальный тип Ia

[ редактировать ]

Есть несколько способов формирования сверхновой этого типа, но у них есть общий основной механизм. Если бы углеродно - кислородный белый карлик аккрецировал достаточно материи, чтобы достичь предела Чандрасекара примерно в 1,44 солнечных массы [ 81 ] (для невращающейся звезды), она больше не сможет поддерживать большую часть своей массы из-за давления электронного вырождения. [ 82 ] [ 83 ] и начал бы разрушаться. Однако в настоящее время считается, что этот предел обычно не достигается; увеличение температуры и плотности внутри ядра вызывает синтез углерода по мере того, как звезда приближается к пределу (с точностью до 1%) [ 84 ] до начала коллапса. [ 81 ] Напротив, для ядра, состоящего в основном из кислорода, неона и магния, коллапсирующий белый карлик обычно образует нейтронную звезду . В этом случае при коллапсе будет выброшена лишь часть массы звезды. [ 83 ]

Голубое пятно в центре красного кольца — изолированная нейтронная звезда в Малом Магеллановом Облаке .

В течение нескольких секунд после коллапса значительная часть вещества белого карлика подвергается ядерному синтезу, высвобождая достаточное количество энергии ( 1–2 × 10 44  Дж ) [ 85 ] отвязать . звезду от сверхновой [ 86 ] Генерируется расширяющаяся наружу ударная волна , скорость материи которой достигает порядка 5 000–20 000 км/с , или примерно 3% скорости света. Также наблюдается значительное увеличение светимости, достигающей абсолютной величины -19,3 (или в 5 миллиардов раз ярче Солнца) с небольшими изменениями. [ 87 ]

Моделью формирования этой категории сверхновых является тесная двойная звездная система. Более крупная из двух звезд первой эволюционирует за пределы главной последовательности и расширяется, образуя красный гигант . Две звезды теперь имеют общую оболочку, в результате чего их взаимная орбита сжимается. Затем гигантская звезда теряет большую часть своей оболочки, теряя массу до тех пор, пока не перестанет продолжать ядерный синтез . В этот момент она становится белым карликом, состоящим в основном из углерода и кислорода. [ 88 ] В конце концов, вторичная звезда также эволюционирует из главной последовательности, образуя красного гиганта. Материя гиганта аккрецируется белым карликом, в результате чего масса последнего увеличивается. Точные детали инициирования и образования тяжелых элементов в результате катастрофического события остаются неясными. [ 89 ]

Сверхновые типа Ia после события образуют характерную кривую блеска — график зависимости светимости от времени. Эта светимость возникает в результате радиоактивного распада никеля - 56 через кобальт -56 на железо -56. [ 87 ] Пиковая светимость кривой блеска чрезвычайно постоянна для нормальных сверхновых типа Ia, имея максимальную абсолютную звездную величину около -19,3. Это связано с тем, что типичные сверхновые типа Ia возникают из звезды-прародителя определенного типа путем постепенного набора массы и взрываются, когда они приобретают постоянную типичную массу, что приводит к очень похожим условиям и поведению сверхновых. Это позволяет использовать их в качестве второстепенных. [ 90 ] стандартная свеча для измерения расстояния до родительских галактик. [ 91 ]

Вторая модель образования сверхновых типа Ia предполагает слияние двух звезд белых карликов, общая масса которых на мгновение превышает предел Чандрасекара. [ 92 ] Иногда ее называют моделью двойного вырождения, поскольку обе звезды являются вырожденными белыми карликами. Из-за возможных комбинаций массы и химического состава пары события этого типа могут сильно различаться. [ 93 ] а во многих случаях сверхновые могут вообще не существовать, и в этом случае их кривая блеска будет менее яркой, чем у более нормальной сверхновой типа Ia. [ 94 ]

Нестандартный тип Ia

[ редактировать ]

Аномально яркие сверхновые типа Ia возникают, когда масса белого карлика уже превышает предел Чандрасекара. [ 95 ] возможно, еще больше усиливается за счет асимметрии, [ 96 ] но выброшенный материал будет иметь кинетическую энергию меньше нормальной. Этот сценарий сверхмассы Чандрасекара может произойти, например, когда дополнительная масса поддерживается дифференциальным вращением . [ 97 ]

Для нестандартных сверхновых типа Ia формальной подклассификации не существует. Было предложено отнести группу сверхновых сверхновых, возникающих при аккреции гелия на белый карлик, к типу Iax . [ 98 ] [ 99 ] Этот тип сверхновой не всегда может полностью уничтожить прародителя белого карлика и может оставить после себя звезду-зомби . [ 100 ]

Один конкретный тип сверхновых возникает в результате взрыва белых карликов, например, типа Ia, но содержит в своих спектрах линии водорода, возможно, потому, что белый карлик окружен оболочкой из околозвездного материала, богатого водородом . Эти сверхновые получили названия типа Ia/IIn , ​​типа Ian , типа IIa и типа IIan . [ 101 ]

Четверная звезда HD 74438 , принадлежащая рассеянному скоплению IC 2391 созвездия Вела , по прогнозам, станет нестандартной сверхновой типа Ia. [ 102 ] [ 103 ]

Коллапс ядра

[ редактировать ]
Слои массивной эволюционировавшей звезды непосредственно перед коллапсом ядра (не в масштабе)

Очень массивные звезды могут подвергнуться коллапсу ядра, когда ядерный синтез становится неспособным поддерживать ядро ​​против собственной гравитации; Прохождение этого порога является причиной всех типов сверхновых, кроме типа Ia. Коллапс может вызвать сильное изгнание внешних слоев звезды, что приведет к возникновению сверхновой. Однако, если высвобождение гравитационной потенциальной энергии недостаточно, звезда может вместо этого коллапсировать в черную дыру или нейтронную звезду с небольшой излучаемой энергией. [ 104 ]

Коллапс ядра может быть вызван несколькими различными механизмами: превышением предела Чандрасекара ; захват электрона ; парная нестабильность ; или фотораспад . [ 104 ] [ 105 ] [ 106 ]

  • Когда у массивной звезды образуется железное ядро, превышающее массу Чандрасекара, она больше не сможет поддерживать себя за счет давления электронного вырождения и дальше коллапсирует, превращаясь в нейтронную звезду или черную дыру.
  • Захват электронов магнием в вырожденном ядре O/Ne/Mg (звезда-прародитель с массой 8–10 солнечных) удаляет поддержку и вызывает гравитационный коллапс с последующим взрывным синтезом кислорода с очень похожими результатами.
  • Образование электрон-позитронных пар в большом ядре после горения гелия устраняет термодинамическую поддержку и вызывает первоначальный коллапс с последующим безудержным синтезом, что приводит к образованию сверхновой с парной нестабильностью.
  • Достаточно большое и горячее ядро ​​звезды может генерировать гамма-лучи, достаточно энергичные, чтобы напрямую инициировать фотораспад, что приведет к полному коллапсу ядра.

В таблице ниже перечислены известные причины коллапса ядра массивных звезд, типы звезд, в которых они возникают, связанный с ними тип сверхновой и образующиеся остатки. Металличность . — это доля элементов, отличных от водорода или гелия, по сравнению с Солнцем Начальная масса - это масса звезды до вспышки сверхновой, кратная массе Солнца, хотя масса во время вспышки сверхновой может быть намного меньше. [ 104 ]

Сверхновые типа IIв в таблице не указаны. Они могут быть произведены различными типами коллапса ядра в разных звездах-прародителях, возможно, даже в результате воспламенения белых карликов типа Ia, хотя кажется, что большинство из них будет вызвано коллапсом железного ядра светящихся сверхгигантов или гипергигантов (включая LBV). Узкие спектральные линии, в честь которых они названы, возникают из-за того, что сверхновая расширяется в небольшое плотное облако околозвездного материала. [ 107 ] Похоже, что значительная часть предполагаемых сверхновых типа IIn являются самозванцами сверхновых, массивными извержениями LBV-подобных звезд, подобными Великому извержению Эта Киля . В этих событиях материал, ранее выброшенный из звезды, создает узкие линии поглощения и вызывает ударную волну за счет взаимодействия с недавно выброшенным материалом. [ 108 ]

Сценарии коллапса ядра по массе и металличности [ 104 ]
Причина коллапса Приблизительная начальная масса звезды-прародителя ( солнечные массы ) Тип сверхновой Остаток
Захват электрона в вырожденном ядре O+Ne+Mg 9–10 Слабый II-P Нейтронная звезда
Коллапс железного ядра 10–25 Слабый II-P Нейтронная звезда
25–40 с низкой или солнечной металличностью. Нормальный II-P Черная дыра после падения материала на первоначальную нейтронную звезду
25–40 с очень высокой металличностью. II-L или II-б Нейтронная звезда
40–90 с низкой металличностью Никто Черная дыра
≥ 40 с околосолнечной металличностью Слабая Ib/c или гиперновая с гамма-всплеском (GRB) Черная дыра после падения материала на первоначальную нейтронную звезду
≥ 40 с очень высокой металличностью кондиционер Нейтронная звезда
≥ 90 с низкой металличностью Нет, возможен GRB Черная дыра
Нестабильность пары 140–250 с низкой металличностью II-P, иногда гиперновая, возможен гамма-всплеск Нет остатка
Фотораспад ≥ 250 с низкой металличностью Нет (или яркая сверхновая?), возможны гамма-всплески. Массивная черная дыра

Подробный процесс

[ редактировать ]
Внутри массивной эволюционировавшей звезды (а) луковично-слоистые оболочки элементов подвергаются слиянию, образуя железное ядро ​​(б), которое достигает массы Чандрасекара и начинает разрушаться. Внутренняя часть активной зоны сжимается до нейтронов (в), в результате чего падающий материал отскакивает (г) и образует распространяющийся наружу ударный фронт (красный). Ударная волна начинает затухать (е), но возобновляется, вероятно, за счет нагрева нейтрино . Окружающий материал взрывается (f), оставляя только выродившийся остаток. [ 109 ]

Когда ядро ​​звезды больше не поддерживается гравитацией, оно коллапсирует само по себе со скоростью, достигающей 70 000 км/с (0,23 с ). [ 110 ] что приводит к быстрому увеличению температуры и плотности. Дальнейшее зависит от массы и структуры коллапсирующего ядра: вырожденные ядра с малой массой образуют нейтронные звезды, вырожденные ядра с большей массой в основном полностью коллапсируют в черные дыры, а невырожденные ядра подвергаются неуправляемому термоядерному синтезу. [ 109 ] [ 111 ]

Первоначальный коллапс вырожденных ядер ускоряется бета-распадом , фотораспадом и захватом электронов, что вызывает всплеск электронных нейтрино . По мере увеличения плотности эмиссия нейтрино прекращается, поскольку они попадают в ядро. Внутреннее ядро ​​со временем обычно достигает 30 км в диаметре. [ 112 ] с плотностью, сравнимой с плотностью атомного ядра , и давление вырождения нейтрона пытается остановить коллапс. Если масса ядра превышает примерно 15 масс Солнца, то нейтронного вырождения недостаточно, чтобы остановить коллапс, и образуется черная дыра без сверхновой. [ 105 ]

В ядрах с меньшей массой коллапс останавливается, и вновь сформированное нейтронное ядро ​​имеет начальную температуру около 100 миллиардов Кельвинов , что в 6000 раз превышает температуру ядра Солнца . [ 109 ] При этой температуре пары нейтрино-антинейтрино всех ароматов эффективно образуются за счет теплового излучения . Этих тепловых нейтрино в несколько раз больше, чем нейтрино электронного захвата. [ 113 ] Около 10 46 джоули, примерно 10% массы покоя звезды, преобразуются в десятисекундную вспышку нейтрино, которая является основным результатом события. [ 112 ] [ 114 ] Внезапно остановившееся коллапс ядра отскакивает и производит ударную волну, которая останавливается во внешнем ядре в течение миллисекунд. [ 115 ] поскольку энергия теряется за счет диссоциации тяжелых элементов. Процесс, который не совсем понятен необходимо, чтобы внешние слои ядра реабсорбировались примерно через 10 44 джоули [ 114 ] (1 противник ) от импульса нейтрино , создающего видимую яркость, хотя существуют и другие теории, которые могли привести к взрыву. [ 112 ]

Некоторое количество материала из внешней оболочки выпадает обратно на нейтронную звезду, а для ядер размером более 8 M этого достаточно, чтобы образовать черную дыру. Этот запасной вариант уменьшит создаваемую кинетическую энергию и массу выброшенного радиоактивного материала, но в некоторых ситуациях он также может генерировать релятивистские струи , которые приводят к гамма-всплеску или исключительно яркой сверхновой. [ 116 ]

Коллапс массивного невырожденного ядра спровоцирует дальнейший термоядерный синтез. [ 111 ] Когда коллапс ядра инициируется парной нестабильностью ( фотоны превращаются в электрон - позитронные пары, тем самым уменьшая радиационное давление), начинается синтез кислорода и коллапс может быть остановлен. При массе ядра 40–60 M коллапс останавливается, и звезда остается неповрежденной, но коллапс произойдет снова, когда образуется более крупное ядро. Для ядер размером около 60–130 M синтез кислорода и более тяжелых элементов настолько энергичен, что вся звезда разрушается, вызывая сверхновую. В верхнем конце диапазона масс сверхновая необычайно ярка и чрезвычайно долговечна из-за большого количества выброшенных солнечных масс. 56 Ни. При еще большей массе ядра температура ядра становится достаточно высокой, чтобы обеспечить фотораспад, и ядро ​​полностью коллапсирует в черную дыру. [ 117 ] [ 105 ]

Атипичный сверхсветовой тип II SN 1997D

Звезды с начальной массой менее 8 M никогда не развивают достаточно большое ядро, чтобы коллапсировать, и в конечном итоге теряют свою атмосферу, становясь белыми карликами. Звезды с как минимум 9 M (возможно, даже с 12 M [ 118 ] ) развиваются сложным образом, постепенно сжигая более тяжелые элементы при более высоких температурах в их ядрах. [ 112 ] [ 119 ] Звезда становится слоистой, как луковица, при этом горение более легко сплавляющихся элементов происходит в более крупных оболочках. [ 104 ] [ 120 ] Хотя в народе их описывают как луковицу с железным ядром, наименее массивные прародители сверхновых имеют только кислородно- неоновые ( -магниевые ) ядра. Эти звезды super-AGB могут образовывать большинство сверхновых с коллапсом ядра, хотя они менее яркие и поэтому наблюдаются реже, чем звезды более массивных прародителей. [ 118 ]

Если коллапс ядра происходит во время фазы сверхгиганта, когда у звезды еще есть водородная оболочка, результатом является сверхновая типа II. [ 121 ] Скорость потери массы светящихся звезд зависит от металличности и светимости . Чрезвычайно яркие звезды с металличностью, близкой к солнечной, потеряют весь свой водород до того, как достигнут коллапса ядра, и поэтому не образуют сверхновую типа II. [ 121 ] При низкой металличности все звезды достигнут коллапса ядра с водородной оболочкой, но достаточно массивные звезды коллапсируют непосредственно в черную дыру, не создавая видимой сверхновой. [ 104 ]

Звезды с начальной массой, примерно в 90 раз превышающей солнечную, или немного меньше при высокой металличности, образуют сверхновую типа II-P, которая является наиболее часто наблюдаемым типом. При умеренной и высокой металличности звезды вблизи верхнего края этого диапазона масс потеряют большую часть своего водорода, когда произойдет коллапс ядра, и в результате возникнет сверхновая типа II-L. [ 122 ] При очень низкой металличности звезды размером около 140–250 M достигнут коллапса ядра из-за парной нестабильности, хотя у них все еще есть водородная атмосфера и кислородное ядро, и в результате возникнет сверхновая с характеристиками типа II, но с очень большой массой выброшенного ядра. 56 Ni и высокая яркость. [ 104 ] [ 123 ]

Тип Ib и Ic

[ редактировать ]
Тип Iб СН 2008Д [ 124 ] в дальнем верхнем конце галактики, показанном в рентгеновских лучах (слева) и видимом свете (справа), [ 125 ] с более яркой СН 2007уй ближе к центру

Эти сверхновые, как и сверхновые типа II, представляют собой массивные звезды, претерпевающие коллапс ядра. В отличие от прародителей сверхновых типа II, звезды, ставшие сверхновыми типов Ib и Ic, потеряли большую часть своей внешней (водородной) оболочки из-за сильных звездных ветров или взаимодействия с компаньоном. [ 126 ] Эти звезды известны как звезды Вольфа – Райе , и они встречаются с металличностью от умеренной до высокой, где континуальные ветры вызывают достаточно высокие скорости потери массы. Наблюдения сверхновых типа Ib/c не соответствуют наблюдаемому или ожидаемому появлению звезд Вольфа – Райе. Альтернативные объяснения этого типа коллапса ядра сверхновой связаны с тем, что звезды лишились водорода в результате бинарных взаимодействий. Двойные модели лучше соответствуют наблюдаемым сверхновым при условии, что подходящих двойных гелиевых звезд никогда не наблюдалось. [ 127 ]

Сверхновые типа Ib являются более распространенными и возникают в результате звезд Вольфа – Райе типа WC, в атмосфере которых все еще есть гелий. В узком диапазоне масс звезды развиваются дальше, прежде чем достигнут коллапса ядра и становятся звездами WO с очень небольшим количеством оставшегося гелия, и это прародители сверхновых типа Ic. [ 128 ]

Несколько процентов сверхновых типа Ic связаны с гамма-всплесками (GRB), хотя также считается, что любая сверхновая типа Ib или Ic, лишенная водорода, может производить гамма-всплески, в зависимости от обстоятельств геометрии. [ 129 ] Механизмом образования этого типа гамма-всплесков являются струи, создаваемые магнитным полем быстро вращающегося магнетара, образующегося в коллапсирующем ядре звезды. Струи также будут передавать энергию расширяющейся внешней оболочке, создавая сверхяркую сверхновую . [ 116 ] [ 130 ] [ 131 ]

Сверхновые с ультра-разделением возникают, когда взрывающаяся звезда была лишена (почти) всего металлического ядра в результате массопереноса в тесной двойной системе. [ 132 ] [ 133 ] В результате из взрывающейся звезды выбрасывается очень мало материала (около 0,1 M ). В самых крайних случаях сверхновые сверхновые могут возникать в обнаженных металлических ядрах, масса которых едва превышает предел Чандрасекара. СН 2005ек [ 134 ] может быть первым наблюдательным примером ультраполосчатой ​​сверхновой, порождающей относительно тусклую и быстро затухающую кривую блеска. Природа сверхновых сверхновых может быть как сверхновой с коллапсом железного ядра, так и сверхновой с электронным захватом, в зависимости от массы коллапсирующего ядра. Считается, что сверхновые с ультра-полосками связаны со вторым взрывом сверхновой в двойной системе, в результате которого образуется, например, плотная система двойной нейтронной звезды. [ 135 ] [ 136 ]

В 2022 году группа астрономов под руководством исследователей из Института науки Вейцмана сообщила о первом взрыве сверхновой, что является прямым доказательством существования звезды-прародителя Вольфа-Райе. SN 2019hgp была сверхновой типа Icn, а также первой, в которой был обнаружен элемент неон. [ 137 ] [ 138 ]

Сверхновые с электронным захватом

[ редактировать ]

предсказал сверхновую «третьего типа» В 1980 году Кеничи Номото из Токийского университета и назвал ее сверхновой с электронным захватом. Он возникнет, когда звезда «находится в переходном диапазоне (от ~ 8 до 10 масс Солнца) между образованием белого карлика и сверхновыми с коллапсом железного ядра» и с вырожденным ядром O + Ne + Mg, [ 139 ] взорвалась после того, как в ее ядре закончилось ядерное топливо, в результате чего гравитация сжала электроны в ядре звезды в их атомные ядра, [ 140 ] [ 141 ] что приводит к взрыву сверхновой и оставляет после себя нейтронную звезду. [ 104 ] В июне 2021 года статья в журнале Nature Astronomy сообщила, что сверхновая SN 2018zd 2018 года (в галактике NGC 2146 , примерно в 31 миллион световых лет от Земли) оказалась первым наблюдением сверхновой, захватившей электроны. [ 139 ] [ 140 ] [ 141 ] Взрыв сверхновой 1054 года, создавший Крабовидную туманность в нашей галактике, считался лучшим кандидатом на роль сверхновой с захватом электронов, и статья 2021 года повышает вероятность того, что это было правильно. [ 140 ] [ 141 ]

Неудачные сверхновые

[ редактировать ]

Коллапс ядра некоторых массивных звезд может не привести к появлению видимой сверхновой. Это происходит, если первоначальный коллапс ядра не может быть обращен вспять механизмом, вызывающим взрыв, обычно из-за того, что ядро ​​слишком массивно. Эти события трудно обнаружить, но крупные опросы выявили возможных кандидатов. [ 142 ] [ 143 ] Красный сверхгигант N6946-BH1 в NGC 6946 в марте 2009 года испытал скромную вспышку, а затем исчез из поля зрения. лишь слабый инфракрасный источник. На месте звезды остается [ 144 ]

Кривые блеска

[ редактировать ]
Типичные кривые блеска нескольких типов сверхновых; на практике масштабы и продолжительность варьируются в пределах каждого типа. См. Карттунен и др. для типов Iа, Iб, II-Л и II-П; [ 145 ] Моджаз и др. для типов Iв и IIб; [ 146 ] и Нихолм и др. для типа IIIn. [ 147 ]

Выбрасываемые газы быстро тускнеют без затрат энергии на поддержание их температуры. Источник этой энергии, которая может поддерживать оптическое свечение сверхновой в течение нескольких месяцев, поначалу был загадкой. Некоторые считали источником вращательную энергию центрального пульсара. [ 148 ] Хотя энергия, которая изначально питает каждый тип сверхновых, доставляется быстро, в кривых блеска преобладает последующий радиоактивный нагрев быстро расширяющихся выбросов. Сильно радиоактивная природа выбрасываемых газов была впервые рассчитана на основе звукового нуклеосинтеза в конце 1960-х годов, и с тех пор было продемонстрировано, что это верно для большинства сверхновых. [ 149 ] Лишь после SN 1987A прямое наблюдение линий гамма-излучения однозначно идентифицировало основные радиоактивные ядра. [ 150 ]

Благодаря прямым наблюдениям теперь известно, что большая часть кривой блеска (графика светимости как функции времени) после появления сверхновой типа II , такой как SN 1987A, объясняется предсказанными радиоактивными распадами. [ 9 ] Хотя световое излучение состоит из оптических фотонов, именно радиоактивная энергия, поглощаемая выброшенными газами, сохраняет остаток достаточно горячим, чтобы излучать свет. Радиоактивный распад 56 Ни через своих дочерей 56 Что это такое 56 гамма-излучения Fe производит фотоны , в основном с энергией 847 кэВ и 1238 кэВ , которые поглощаются и доминируют в нагреве и, следовательно, в светимости выброса в промежуточное время (несколько недель) и в более позднее время (несколько месяцев). [ 151 ] Энергия пика кривой блеска SN1987A была обеспечена распадом 56 Ни к 56 Co (период полураспада 6 дней), в то время как энергия для более поздней кривой блеска, в частности, очень близко соответствует периоду полураспада 77,3 дня. 56 Co распадается на 56 Фе. Более поздние измерения космическими гамма-телескопами небольшой доли 56 Ко и 57 Со-гамма-лучи, вышедшие из остатка SN 1987A без поглощения, подтвердили более ранние предсказания о том, что эти два радиоактивных ядра были источниками энергии. [ 150 ]

Мессье 61 со сверхновой SN2020jfo, снимок астронома-любителя в 2020 году.

Фаза позднего затухания визуальных кривых блеска для разных типов сверхновых зависит от радиоактивного нагрева, но они различаются по форме и амплитуде из-за лежащих в основе механизмов, способа образования видимого излучения, эпохи его наблюдения и прозрачности. выбрасываемого материала. [ 152 ] Кривые блеска могут существенно отличаться на других длинах волн. Например, в ультрафиолетовых длинах волн имеется ранний чрезвычайно яркий пик продолжительностью всего несколько часов, соответствующий прорыву ударной волны, вызванной начальным событием, но этот прорыв почти не обнаруживается оптически. [ 153 ] [ 154 ]

Кривые блеска типа Ia в основном очень однородны, с постоянной максимальной абсолютной величиной и относительно крутым спадом светимости. Выход их оптической энергии обусловлен радиоактивным распадом выброшенного никеля-56 (период полураспада 6 дней), который затем распадается на радиоактивный кобальт-56 (период полураспада 77 дней). Эти радиоизотопы возбуждают окружающий материал до накала. [ 87 ] Современные исследования космологии опираются на 56 Радиоактивность Ni обеспечивает энергию для оптической яркости сверхновых типа Ia, которые являются «стандартными свечами» космологии, но чьи диагностические гамма-лучи с энергией 847 кэВ и 1238 кэВ были впервые обнаружены только в 2014 году. [ 155 ] Начальные фазы кривой блеска резко падают по мере уменьшения эффективного размера фотосферы и истощения захваченного электромагнитного излучения. Кривая блеска продолжает снижаться в диапазоне B, хотя примерно через 40 дней она может показывать небольшое плечо, но это лишь намек на вторичный максимум, который возникает в инфракрасном диапазоне, когда некоторые ионизированные тяжелые элементы рекомбинируются с образованием инфракрасное излучение и выбросы становятся для него прозрачными. Кривая визуального блеска продолжает снижаться со скоростью, немного превышающей скорость распада радиоактивного кобальта (который имеет более длительный период полураспада и контролирует более позднюю кривую), поскольку выброшенный материал становится более рассеянным и менее способным преобразовывать высокую энергию. радиацию в зрительную радиацию. Через несколько месяцев кривая блеска снова меняет скорость снижения, поскольку эмиссия позитронов из оставшегося кобальта-56 становится доминирующей, хотя эта часть кривой блеска мало изучена. [ 156 ]

Кривые блеска типов Ib и Ic аналогичны кривым блеска типа Ia, хотя и с более низкой средней пиковой светимостью. Визуальный световой поток снова возникает из-за радиоактивного распада, преобразующегося в визуальное излучение, но масса образовавшегося никеля-56 гораздо меньшая. Пиковая светимость значительно варьируется, и иногда встречаются даже сверхновые типа Ib/c, на порядки более или менее яркие, чем норма. Наиболее яркие сверхновые типа Ic называются гиперновыми и имеют тенденцию иметь расширенные кривые блеска в дополнение к повышенной пиковой светимости. Считается, что источником дополнительной энергии являются релятивистские струи, вызванные образованием вращающейся черной дыры, которые также производят гамма-всплески. [ 157 ] [ 158 ]

Кривые блеска сверхновых II типа характеризуются гораздо более медленным спадом, чем I типа, порядка 0,05 звездной величины в сутки. [ 72 ] исключая фазу плато. В визуальном световом потоке в течение нескольких месяцев преобладает кинетическая энергия, а не радиоактивный распад, в первую очередь из-за существования водорода в выбросах из атмосферы сверхгигантской звезды-прародителя. При первоначальном разрушении этот водород нагревается и ионизируется. Кривые блеска большинства сверхновых типа II демонстрируют продолжительное плато, поскольку водород рекомбинирует, излучая видимый свет и становясь более прозрачным. Затем следует снижение кривой блеска, вызванное радиоактивным распадом, хотя и медленнее, чем в сверхновых типа I, из-за эффективности преобразования в свет всего водорода. [ 66 ]

In type II-L the plateau is absent because the progenitor had relatively little hydrogen left in its atmosphere, sufficient to appear in the spectrum but insufficient to produce a noticeable plateau in the light output. In type IIb supernovae the hydrogen atmosphere of the progenitor is so depleted (thought to be due to tidal stripping by a companion star) that the light curve is closer to a type I supernova and the hydrogen even disappears from the spectrum after several weeks.[66]

Type IIn supernovae are characterised by additional narrow spectral lines produced in a dense shell of circumstellar material. Their light curves are generally very broad and extended, occasionally also extremely luminous and referred to as a superluminous supernova. These light curves are produced by the highly efficient conversion of kinetic energy of the ejecta into electromagnetic radiation by interaction with the dense shell of material. This only occurs when the material is sufficiently dense and compact, indicating that it has been produced by the progenitor star itself only shortly before the supernova occurs.[159][160]

Large numbers of supernovae have been catalogued and classified to provide distance candles and test models.[161][162] Average characteristics vary somewhat with distance and type of host galaxy, but can broadly be specified for each supernova type.

Physical properties of supernovae by type[163][164]
Typea Average peak absolute magnitudeb Approximate energy (foe)c Days to peak luminosity Days from peak to 10% luminosity
Ia −19 1 approx. 19 around 60
Ib/c (faint) around −15 0.1 15–25 unknown
Ib around −17 1 15–25 40–100
Ic around −16 1 15–25 40–100
Ic (bright) to −22 above 5 roughly 25 roughly 100
II-b around −17 1 around 20 around 100
II-L around −17 1 around 13 around 150
II-P (faint) around −14 0.1 roughly 15 unknown
II-P around −16 1 around 15 Plateau then around 50
IInd around −17 1 12–30 or more 50–150
IIn (bright) to −22 above 5 above 50 above 100

Notes:

  1. ^ Faint types may be a distinct sub-class. Bright types may be a continuum from slightly over-luminous to hypernovae.
  2. ^ These magnitudes are measured in the R band. Measurements in V or B bands are common and will be around half a magnitude brighter for supernovae.
  3. ^ Order of magnitude kinetic energy. Total electromagnetic radiated energy is usually lower, (theoretical) neutrino energy much higher.
  4. ^ Probably a heterogeneous group, any of the other types embedded in nebulosity.

Asymmetry

[edit]
The pulsar in the Crab Nebula is travelling at 375 km/s relative to the nebula.[165]

A long-standing puzzle surrounding type II supernovae is why the remaining compact object receives a large velocity away from the epicentre;[166] pulsars, and thus neutron stars, are observed to have high peculiar velocities, and black holes presumably do as well, although they are far harder to observe in isolation. The initial impetus can be substantial, propelling an object of more than a solar mass at a velocity of 500 km/s or greater. This indicates an expansion asymmetry, but the mechanism by which momentum is transferred to the compact object remains a puzzle. Proposed explanations for this kick include convection in the collapsing star, asymmetric ejection of matter during neutron star formation, and asymmetrical neutrino emissions.[166][167]

One possible explanation for this asymmetry is large-scale convection above the core. The convection can create variations in the local abundances of elements, resulting in uneven nuclear burning during the collapse, bounce and resulting expansion.[168] Another possible explanation is that accretion of gas onto the central neutron star can create a disk that drives highly directional jets, propelling matter at a high velocity out of the star, and driving transverse shocks that completely disrupt the star. These jets might play a crucial role in the resulting supernova.[169][170] (A similar model is used for explaining long gamma-ray bursts.) The dominant mechanism may depend upon the mass of the progenitor star.[167]

Initial asymmetries have also been confirmed in type Ia supernovae through observation. This result may mean that the initial luminosity of this type of supernova depends on the viewing angle. However, the expansion becomes more symmetrical with the passage of time. Early asymmetries are detectable by measuring the polarisation of the emitted light.[171]

Energy output

[edit]
The radioactive decays of nickel-56 and cobalt-56 that produce a supernova visible light curve[87][172]

Although supernovae are primarily known as luminous events, the electromagnetic radiation they release is almost a minor side-effect. Particularly in the case of core collapse supernovae, the emitted electromagnetic radiation is a tiny fraction of the total energy released during the event.[173]

There is a fundamental difference between the balance of energy production in the different types of supernova. In type Ia white dwarf detonations, most of the energy is directed into heavy element synthesis and the kinetic energy of the ejecta.[174] In core collapse supernovae, the vast majority of the energy is directed into neutrino emission, and while some of this apparently powers the observed destruction, 99%+ of the neutrinos escape the star in the first few minutes following the start of the collapse.[47]

Standard type Ia supernovae derive their energy from a runaway nuclear fusion of a carbon-oxygen white dwarf. The details of the energetics are still not fully understood, but the result is the ejection of the entire mass of the original star at high kinetic energy. Around half a solar mass of that mass is 56Ni generated from silicon burning. 56Ni is radioactive and decays into 56Co by beta plus decay (with a half life of six days) and gamma rays. 56Co itself decays by the beta plus (positron) path with a half life of 77 days into stable 56Fe. These two processes are responsible for the electromagnetic radiation from type Ia supernovae. In combination with the changing transparency of the ejected material, they produce the rapidly declining light curve.[172]

Core collapse supernovae are on average visually fainter than type Ia supernovae,[145][146][147] but the total energy released is far higher, as outlined in the following table.

Energetics of supernovae
Supernova Approximate total energy
x1044 joules (foe)c
Ejected Ni
(solar masses)
Neutrino energy
(foe)
Kinetic energy
(foe)
Electromagnetic radiation
(foe)
Type Ia[172][175][176] 1.5 0.4 – 0.8 0.1 1.3 – 1.4 ~0.01
Core collapse[177][178] 100 (0.01) – 1 100 1 0.001 – 0.01
Hypernova 100 ~1 1–100 1–100 ~0.1
Pair instability[117] 5–100 0.5 – 50 low? 1–100 0.01 – 0.1

In some core collapse supernovae, fallback onto a black hole drives relativistic jets which may produce a brief energetic and directional burst of gamma rays and also transfers substantial further energy into the ejected material. This is one scenario for producing high-luminosity supernovae and is thought to be the cause of type Ic hypernovae and long-duration gamma-ray bursts.[179] If the relativistic jets are too brief and fail to penetrate the stellar envelope then a low-luminosity gamma-ray burst may be produced and the supernova may be sub-luminous.[180]

When a supernova occurs inside a small dense cloud of circumstellar material, it will produce a shock wave that can efficiently convert a high fraction of the kinetic energy into electromagnetic radiation. Even though the initial energy was entirely normal the resulting supernova will have high luminosity and extended duration since it does not rely on exponential radioactive decay. This type of event may cause type IIn hypernovae.[181][182]

Although pair-instability supernovae are core collapse supernovae with spectra and light curves similar to type II-P, the nature after core collapse is more like that of a giant type Ia with runaway fusion of carbon, oxygen and silicon. The total energy released by the highest-mass events is comparable to other core collapse supernovae but neutrino production is thought to be very low, hence the kinetic and electromagnetic energy released is very high. The cores of these stars are much larger than any white dwarf and the amount of radioactive nickel and other heavy elements ejected from their cores can be orders of magnitude higher, with consequently high visual luminosity.[183]

Progenitor

[edit]
Occasional supernovae appear in this sped-up artist's impression of distant galaxies. Each exploding star briefly rivals the brightness of its host galaxy.

The supernova classification type is closely tied to the type of progenitor star at the time of the collapse. The occurrence of each type of supernova depends on the star's metallicity, since this affects the strength of the stellar wind and thereby the rate at which the star loses mass.[184]

Type Ia supernovae are produced from white dwarf stars in binary star systems and occur in all galaxy types.[185] Core collapse supernovae are only found in galaxies undergoing current or very recent star formation, since they result from short-lived massive stars. They are most commonly found in type Sc spirals, but also in the arms of other spiral galaxies and in irregular galaxies, especially starburst galaxies.[186][187][188]

Type Ib and Ic supernovae are hypothesised to have been produced by core collapse of massive stars that have lost their outer layer of hydrogen and helium, either via strong stellar winds or mass transfer to a companion.[158] They normally occur in regions of new star formation, and are extremely rare in elliptical galaxies.[71] The progenitors of type IIn supernovae also have high rates of mass loss in the period just prior to their explosions.[189] Type Ic supernovae have been observed to occur in regions that are more metal-rich and have higher star-formation rates than average for their host galaxies.[190] The table shows the progenitor for the main types of core collapse supernova, and the approximate proportions that have been observed in the local neighbourhood.

Fraction of core collapse supernovae types by progenitor[127]
Type Progenitor star Fraction
Ib WC Wolf–Rayet or helium star 9.0%
Ic WO Wolf–Rayet 17.0%
II-P Supergiant 55.5%
II-L Supergiant with a depleted hydrogen shell 3.0%
IIn Supergiant in a dense cloud of expelled material (such as LBV) 2.4%
IIb Supergiant with highly depleted hydrogen (stripped by companion?) 12.1%
IIpec Blue supergiant 1.0%
Supernova types by initial mass-metallicity
Remnants of single massive stars

There are a number of difficulties reconciling modelled and observed stellar evolution leading up to core collapse supernovae. Red supergiants are the progenitors for the vast majority of core collapse supernovae, and these have been observed but only at relatively low masses and luminosities, below about 18 M and 100,000 L, respectively. Most progenitors of type II supernovae are not detected and must be considerably fainter, and presumably less massive. This discrepancy has been referred to as the red supergiant problem.[191] It was first described in 2009 by Stephen Smartt, who also coined the term. After performing a volume-limited search for supernovae, Smartt et al. found the lower and upper mass limits for type II-P supernovae to form to be 8.5+1
−1.5
 M and 16.5±1.5 M, respectively. The former is consistent with the expected upper mass limits for white dwarf progenitors to form, but the latter is not consistent with massive star populations in the Local Group.[192] The upper limit for red supergiants that produce a visible supernova explosion has been calculated at 19+4
−2
 M
.[191]

It is thought that higher mass red supergiants do not explode as supernovae, but instead evolve back towards hotter temperatures. Several progenitors of type IIb supernovae have been confirmed, and these were K and G supergiants, plus one A supergiant.[193] Yellow hypergiants or LBVs are proposed progenitors for type IIb supernovae, and almost all type IIb supernovae near enough to observe have shown such progenitors.[194][195]

Инфографика, показывающая стрелки между кругами, обозначающие эволюцию звезд и ее зависимость от массы.
Approximate stellar evolution pathways of supernova progenitor stars (and lower mass stars) with circle size reflecting relative size and color related to temperature

Blue supergiants form an unexpectedly high proportion of confirmed supernova progenitors, partly due to their high luminosity and easy detection, while not a single Wolf–Rayet progenitor has yet been clearly identified.[193][196] Models have had difficulty showing how blue supergiants lose enough mass to reach supernova without progressing to a different evolutionary stage. One study has shown a possible route for low-luminosity post-red supergiant luminous blue variables to collapse, most likely as a type IIn supernova.[197] Several examples of hot luminous progenitors of type IIn supernovae have been detected: SN 2005gy and SN 2010jl were both apparently massive luminous stars, but are very distant; and SN 2009ip had a highly luminous progenitor likely to have been an LBV, but is a peculiar supernova whose exact nature is disputed.[193]

The progenitors of type Ib/c supernovae are not observed at all, and constraints on their possible luminosity are often lower than those of known WC stars.[193] WO stars are extremely rare and visually relatively faint, so it is difficult to say whether such progenitors are missing or just yet to be observed. Very luminous progenitors have not been securely identified, despite numerous supernovae being observed near enough that such progenitors would have been clearly imaged.[196] Population modelling shows that the observed type Ib/c supernovae could be reproduced by a mixture of single massive stars and stripped-envelope stars from interacting binary systems.[127] The continued lack of unambiguous detection of progenitors for normal type Ib and Ic supernovae may be due to most massive stars collapsing directly to a black hole without a supernova outburst. Most of these supernovae are then produced from lower-mass low-luminosity helium stars in binary systems. A small number would be from rapidly rotating massive stars, likely corresponding to the highly energetic type Ic-BL events that are associated with long-duration gamma-ray bursts.[193]

External impact

[edit]

Supernovae events generate heavier elements that are scattered throughout the surrounding interstellar medium. The expanding shock wave from a supernova can trigger star formation. Galactic cosmic rays are generated by supernova explosions.

Source of heavy elements

[edit]
Periodic table showing the source of each element in the interstellar medium

Supernovae are a major source of elements in the interstellar medium from oxygen through to rubidium,[198][199][200] though the theoretical abundances of the elements produced or seen in the spectra varies significantly depending on the various supernova types.[200] Type Ia supernovae produce mainly silicon and iron-peak elements, metals such as nickel and iron.[201][202] Core collapse supernovae eject much smaller quantities of the iron-peak elements than type Ia supernovae, but larger masses of light alpha elements such as oxygen and neon, and elements heavier than zinc. The latter is especially true with electron capture supernovae.[203] The bulk of the material ejected by type II supernovae is hydrogen and helium.[204] The heavy elements are produced by: nuclear fusion for nuclei up to 34S; silicon photodisintegration rearrangement and quasiequilibrium during silicon burning for nuclei between 36Ar and 56Ni; and rapid capture of neutrons (r-process) during the supernova's collapse for elements heavier than iron. The r-process produces highly unstable nuclei that are rich in neutrons and that rapidly beta decay into more stable forms. In supernovae, r-process reactions are responsible for about half of all the isotopes of elements beyond iron,[205] although neutron star mergers may be the main astrophysical source for many of these elements.[198][206]

In the modern universe, old asymptotic giant branch (AGB) stars are the dominant source of dust from oxides, carbon and s-process elements.[198][207] However, in the early universe, before AGB stars formed, supernovae may have been the main source of dust.[208]

Role in stellar evolution

[edit]

Remnants of many supernovae consist of a compact object and a rapidly expanding shock wave of material. This cloud of material sweeps up surrounding interstellar medium during a free expansion phase, which can last for up to two centuries. The wave then gradually undergoes a period of adiabatic expansion, and will slowly cool and mix with the surrounding interstellar medium over a period of about 10,000 years.[209]

Supernova remnant N 63A lies within a clumpy region of gas and dust in the Large Magellanic Cloud.

The Big Bang produced hydrogen, helium and traces of lithium, while all heavier elements are synthesised in stars, supernovae, and collisions between neutron stars (thus being indirectly due to supernovae). Supernovae tend to enrich the surrounding interstellar medium with elements other than hydrogen and helium, which usually astronomers refer to as "metals".[210] These ejected elements ultimately enrich the molecular clouds that are the sites of star formation.[211] Thus, each stellar generation has a slightly different composition, going from an almost pure mixture of hydrogen and helium to a more metal-rich composition. Supernovae are the dominant mechanism for distributing these heavier elements, which are formed in a star during its period of nuclear fusion. The different abundances of elements in the material that forms a star have important influences on the star's life,[210][212] and may influence the possibility of having planets orbiting it: more giant planets form around stars of higher metallicity.[213][214]

The kinetic energy of an expanding supernova remnant can trigger star formation by compressing nearby, dense molecular clouds in space.[215] The increase in turbulent pressure can also prevent star formation if the cloud is unable to lose the excess energy.[216]

Evidence from daughter products of short-lived radioactive isotopes shows that a nearby supernova helped determine the composition of the Solar System 4.5 billion years ago, and may even have triggered the formation of this system.[217]

Fast radio bursts (FRBs) are intense, transient pulses of radio waves that typically last no more than milliseconds. Many explanations for these events have been proposed; magnetars produced by core-collapse supernovae are leading candidates.[218][219][220][221]

Cosmic rays

[edit]

Supernova remnants are thought to accelerate a large fraction of galactic primary cosmic rays, but direct evidence for cosmic ray production has only been found in a small number of remnants. Gamma rays from pion-decay have been detected from the supernova remnants IC 443 and W44. These are produced when accelerated protons from the remnant impact on interstellar material.[222]

Gravitational waves

[edit]

Supernovae are potentially strong galactic sources of gravitational waves,[223] but none have so far been detected. The only gravitational wave events so far detected are from mergers of black holes and neutron stars, probable remnants of supernovae.[224] Like the neutrino emissions, the gravitational waves produced by a core-collapse supernova are expected to arrive without the delay that affects light. Consequently, they may provide information about the core-collapse process that is unavailable by other means. Most gravitational-wave signals predicted by supernova models are short in duration, lasting less than a second, and thus difficult to detect. Using the arrival of a neutrino signal may provide a trigger that can identify the time window in which to seek the gravitational wave, helping to distinguish the latter from background noise.[225]

Effect on Earth

[edit]

A near-Earth supernova is a supernova close enough to the Earth to have noticeable effects on its biosphere. Depending upon the type and energy of the supernova, it could be as far as 3,000 light-years away. In 1996 it was theorised that traces of past supernovae might be detectable on Earth in the form of metal isotope signatures in rock strata. Iron-60 enrichment was later reported in deep-sea rock of the Pacific Ocean.[226][227][228] In 2009, elevated levels of nitrate ions were found in Antarctic ice, which coincided with the 1006 and 1054 supernovae. Gamma rays from these supernovae could have boosted atmospheric levels of nitrogen oxides, which became trapped in the ice.[229]

Historically, nearby supernovae may have influenced the biodiversity of life on the planet. Geological records suggest that nearby supernova events have led to an increase in cosmic rays, which in turn produced a cooler climate. A greater temperature difference between the poles and the equator created stronger winds, increased ocean mixing, and resulted in the transport of nutrients to shallow waters along the continental shelves. This led to greater biodiversity.[230][231]

Type Ia supernovae are thought to be potentially the most dangerous if they occur close enough to the Earth. Because these supernovae arise from dim, common white dwarf stars in binary systems, it is likely that a supernova that can affect the Earth will occur unpredictably and in a star system that is not well studied. The closest-known candidate is IK Pegasi, about 150 light-years away.[232]

According to a 2003 estimate, a type II supernova would have to be closer than eight parsecs (26 light-years) to destroy half of the Earth's ozone layer, and there are no such candidates closer than about 500 light-years.[233]

Milky Way candidates

[edit]
The nebula around Wolf–Rayet star WR124, which is located at a distance of about 21,000 light-years[234]

The next supernova in the Milky Way will likely be detectable even if it occurs on the far side of the galaxy. It is likely to be produced by the collapse of an unremarkable red supergiant, and it is very probable that it will already have been catalogued in infrared surveys such as 2MASS. There is a smaller chance that the next core collapse supernova will be produced by a different type of massive star such as a yellow hypergiant, luminous blue variable, or Wolf–Rayet. The chances of the next supernova being a type Ia produced by a white dwarf are calculated to be about a third of those for a core collapse supernova. Again it should be observable wherever it occurs, but it is less likely that the progenitor will ever have been observed. It is not even known exactly what a type Ia progenitor system looks like, and it is difficult to detect them beyond a few parsecs. The total supernova rate in the Milky Way is estimated to be between 2 and 12 per century, although one has not actually been observed for several centuries.[144]

Statistically, the most common variety of core-collapse supernova is type II-P, and the progenitors of this type are red supergiants.[235] It is difficult to identify which of those supergiants are in the final stages of heavy element fusion in their cores and which have millions of years left. The most-massive red supergiants shed their atmospheres and evolve to Wolf–Rayet stars before their cores collapse. All Wolf–Rayet stars end their lives from the Wolf–Rayet phase within a million years or so, but again it is difficult to identify those that are closest to core collapse. One class that is expected to have no more than a few thousand years before exploding are the WO Wolf–Rayet stars, which are known to have exhausted their core helium.[236] Only eight of them are known, and only four of those are in the Milky Way.[237]

A number of close or well-known stars have been identified as possible core collapse supernova candidates: the high-mass blue stars Spica and Rigel,[238] the red supergiants Betelgeuse, Antares, and VV Cephei A;[239][240][241] the yellow hypergiant Rho Cassiopeiae;[242] the luminous blue variable Eta Carinae that has already produced a supernova impostor;[243] and the brightest component, a Wolf–Rayet star, in the Regor or Gamma Velorum system.[244] Others have gained notoriety as possible, although not very likely, progenitors for a gamma-ray burst; for example WR 104.[245]

Identification of candidates for a type Ia supernova is much more speculative. Any binary with an accreting white dwarf might produce a supernova although the exact mechanism and timescale is still debated. These systems are faint and difficult to identify, but the novae and recurrent novae are such systems that conveniently advertise themselves. One example is U Scorpii.[246] The nearest known type Ia supernova candidate is IK Pegasi (HR 8210), located at a distance of 150 light-years,[247] but observations suggest it could be as long as 1.9 billion years before the white dwarf can accrete the critical mass required to become a type Ia supernova.[248]

Map showing some of the closest core-collapse supernova candidates to Earth within one kiloparsec, most of which are K-type red supergiants.[241]

See also

[edit]

References

[edit]
  1. ^ Zwicky, Fritz (1 January 1940). "Types of Novae". Reviews of Modern Physics. 12 (1): 66–85. Bibcode:1940RvMP...12...66Z. doi:10.1103/RevModPhys.12.66. ISSN 0034-6861.
  2. ^ Jump up to: a b Osterbrock, D. E. (1 December 2001). "Who Really Coined the Word Supernova? Who First Predicted Neutron Stars?". American Astronomical Society Meeting Abstracts. 199: 15.01. Bibcode:2001AAS...199.1501O.
  3. ^ "supernova". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  4. ^ Murdin, P.; Murdin, L. (1978). Supernovae. New York, New York: Press Syndicate of the University of Cambridge. pp. 1–3. ISBN 978-0521300384.
  5. ^ Joglekar, H.; Vahia, M. N.; Sule, A. (2011). "Oldest sky-chart with Supernova record (in Kashmir)" (PDF). Purātattva: Journal of the Indian Archaeological Society (41): 207–211. Archived (PDF) from the original on 10 May 2019. Retrieved 29 May 2019.
  6. ^ Murdin, Paul; Murdin, Lesley (1985). Supernovae. Cambridge University Press. pp. 14–16. ISBN 978-0521300384.
  7. ^ Burnham, Robert Jr. (1978). The Celestial handbook. Dover. pp. 1117–1122.
  8. ^ Winkler, P. F.; Gupta, G.; Long, K. S. (2003). "The SN 1006 Remnant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum". Astrophysical Journal. 585 (1): 324–335. arXiv:astro-ph/0208415. Bibcode:2003ApJ...585..324W. doi:10.1086/345985. S2CID 1626564.
  9. ^ Jump up to: a b Fraknoi, Andrew; et al. (2022). Astronomy 2e. OpenStax. p. 767. ISBN 978-1-951-69350-3.
  10. ^ Clark, D. H.; Stephenson, F. R. (1982). "The Historical Supernovae". Supernovae: A survey of current research; Proceedings of the Advanced Study Institute, Cambridge, England, 29 June – 10 July 1981. Dordrecht: D. Reidel. pp. 355–370. Bibcode:1982ASIC...90..355C.
  11. ^ Baade, W. (1943). "No. 675. Nova Ophiuchi of 1604 as a supernova". Contributions from the Mount Wilson Observatory / Carnegie Institution of Washington. 675: 1–9. Bibcode:1943CMWCI.675....1B.
  12. ^ Motz, L.; Weaver, J. H. (2001). The Story of Astronomy. Basic Books. p. 76. ISBN 978-0-7382-0586-1.
  13. ^ Chakraborti, S.; Childs, F.; Soderberg, A. (25 February 2016). "Young Remnants of type Ia Supernovae and Their Progenitors: A Study Of SNR G1.9+0.3". The Astrophysical Journal. 819 (1): 37. arXiv:1510.08851. Bibcode:2016ApJ...819...37C. doi:10.3847/0004-637X/819/1/37. S2CID 119246128.
  14. ^ Krause, O. (2008). "The Cassiopeia A Supernova was of type IIb". Science. 320 (5880): 1195–1197. arXiv:0805.4557. Bibcode:2008Sci...320.1195K. doi:10.1126/science.1155788. PMID 18511684. S2CID 40884513.
  15. ^ Pankenier, David W. (2006). "Notes on translations of the East Asian records relating to the supernova of AD 1054". Journal of Astronomical History and Heritage. 9 (1): 77. Bibcode:2006JAHH....9...77P. doi:10.3724/SP.J.1440-2807.2006.01.06. S2CID 54914821.
  16. ^ "SNRcat – High Energy Observations of Galactic Supernova Remnants". University of Manitoba. Retrieved 16 October 2020.
  17. ^ Chin, Y.-N.; Huang, Y.-L. (September 1994). "Identification of the guest star of AD 185 as a comet rather than a supernova". Nature (in German). 371 (6496): 398–399. Bibcode:1994Natur.371..398C. doi:10.1038/371398a0. ISSN 0028-0836. S2CID 4240119. Retrieved 8 November 2021.
  18. ^ Zhao, Fu-Yuan; Strom, R. G.; Jiang, Shi-Yang (October 2006). "The Guest Star of AD185 must have been a Supernova". Chinese Journal of Astronomy and Astrophysics (in German). 6 (5): 635–640. Bibcode:2006ChJAA...6..635Z. doi:10.1088/1009-9271/6/5/17. ISSN 1009-9271.
  19. ^ Moore, Patrick (2000). The Data Book of Astronomy. CRC Press. pp. 295–296. ISBN 978-1-4200-3344-1.
  20. ^ Jump up to: a b Hoffmann, Susanne M.; Vogt, Nikolaus (1 July 2020). "A search for the modern counterparts of the Far Eastern guest stars 369 CE, 386 CE and 393 CE". Monthly Notices of the Royal Astronomical Society (in German). 497 (2): 1419–1433. arXiv:2007.01013. Bibcode:2020MNRAS.497.1419H. doi:10.1093/mnras/staa1970.
  21. ^ Winkler, P. Frank; Gupta, G. (2003), "The SN 1006 Reminant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum", The Astrophysical Journal (in German), 585 (1): 324–335, arXiv:astro-ph/0208415, Bibcode:2003ApJ...585..324W, doi:10.1086/345985, S2CID 1626564
  22. ^ Ritter, Andreas; Parker, Quentin A.; Lykou, Foteini; Zijlstra, Albert A.; Guerrero, Martín A. (1 September 2021), "The Remnant and Origin of the Historical Supernova 1181 AD", The Astrophysical Journal Letters (in German), 918 (2): L33, arXiv:2105.12384, Bibcode:2021ApJ...918L..33R, doi:10.3847/2041-8213/ac2253, hdl:10261/255617, ISSN 2041-8205, S2CID 235195784
  23. ^ Schaefer, Bradley E. (July 1995). "The Peak Brightness of SN 1895B in NGC 5253 and the Hubble Constant". Astrophysical Journal Letters. 447: L13. Bibcode:1995ApJ...447L..13S. doi:10.1086/309549. S2CID 227285055.
  24. ^ Dick, Steven J. (2019). Classifying the Cosmos: How We Can Make Sense of the Celestial Landscape. Springer International Publishing. p. 191. ISBN 9783030103804.
  25. ^ Osterbrock, D. E. (2001). "Who Coined the Word Supernova? Who First Predicted Neutron Stars?". Bulletin of the American Astronomical Society. 33: 1330. Bibcode:2001AAS...199.1501O.
  26. ^ Baade, Walter; Zwicky, Fritz (1934). "On Super-novae". Proceedings of the National Academy of Sciences. 20 (5): 254–259. Bibcode:1934PNAS...20..254B. doi:10.1073/pnas.20.5.254. PMC 1076395. PMID 16587881.
  27. ^ Murdin, P.; Murdin, L. (1985). Supernovae (2nd ed.). Cambridge University Press. p. 42. ISBN 978-0-521-30038-4.
  28. ^ da Silva, L. A. L. (1993). "The Classification of Supernovae". Astrophysics and Space Science. 202 (2): 215–236. Bibcode:1993Ap&SS.202..215D. doi:10.1007/BF00626878. S2CID 122727067.
  29. ^ Kowal, C. T. (1968). "Absolute magnitudes of supernovae". Astronomical Journal. 73: 1021–1024. Bibcode:1968AJ.....73.1021K. doi:10.1086/110763.
  30. ^ Leibundgut, B. (2003). "A cosmological surprise: The universe accelerates". Europhysics News. 32 (4): 121–125. Bibcode:2001ENews..32..121L. doi:10.1051/epn:2001401.
  31. ^ Fabian, A. C. (2008). "A Blast from the Past". Science. 320 (5880): 1167–1168. doi:10.1126/science.1158538. PMID 18511676. S2CID 206513073.
  32. ^ Aschenbach, B. (1998). "Discovery of a young nearby supernova remnant". Nature. 396 (6707): 141–142. Bibcode:1998Natur.396..141A. doi:10.1038/24103. S2CID 4426317.
  33. ^ Iyudin, A. F.; Schönfelder, V.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Lichti, G. G.; Van Der Meulen, R. D.; Ryan, J.; Winkler, C. (1998). "Emission from 44Ti associated with a previously unknown Galactic supernova". Nature. 396 (6707): 142–144. Bibcode:1998Natur.396..142I. doi:10.1038/24106. S2CID 4430526.
  34. ^ "NASA's Webb Opens New Window on Supernova Science - NASA Science". science.nasa.gov. Retrieved 11 June 2024.
  35. ^ Dong, Subo; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W. -S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Brown, J. S.; Bufano, F.; Chen, Ping; Conseil, E.; Danilet, A. B.; Falco, E.; Grupe, D.; Kiyota, S.; Masi, G.; Nicholls, B.; Olivares E., F.; Pignata, G.; Pojmanski, G.; Simonian, G. V.; Szczygiel, D. M.; Woźniak, P. R. (2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375. S2CID 31444274.
  36. ^ Leloudas, G.; et al. (2016). "The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole". Nature Astronomy. 1 (2): 0002. arXiv:1609.02927. Bibcode:2016NatAs...1E...2L. doi:10.1038/s41550-016-0002. S2CID 73645264.
  37. ^ Sample, I. (13 February 2017). "Massive supernova visible millions of light-years from Earth". The Guardian. Archived from the original on 13 February 2017. Retrieved 13 February 2017.
  38. ^ Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C. (13 February 2017). "Confined dense circumstellar material surrounding a regular type II supernova". Nature Physics. 13 (5): 510–517. arXiv:1701.02596. Bibcode:2017NatPh..13..510Y. doi:10.1038/nphys4025. S2CID 29600801.
  39. ^ Jump up to: a b c Astronomy Now journalist (23 February 2018). "Amateur astronomer makes once-in-lifetime discovery". Astronomy Now. Archived from the original on 16 May 2018. Retrieved 15 May 2018.
  40. ^ Bersten, M. C.; Folatelli, G.; García, F.; Van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; De Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N. (21 February 2018). "A surge of light at the birth of a supernova". Nature. 554 (7693): 497–499. arXiv:1802.09360. Bibcode:2018Natur.554..497B. doi:10.1038/nature25151. PMID 29469097. S2CID 4383303.
  41. ^ "James Webb Telescope Revolutionizes Supernova Research". www.jameswebbdiscovery.com. Retrieved 11 June 2024.
  42. ^ "NASA's Webb Opens New Window on Supernova Science - NASA Science". science.nasa.gov. Retrieved 11 June 2024.
  43. ^ Reynolds, S. P.; Borkowski, K. J.; Green, D. A.; Hwang, U.; Harrus, I. M.; Petre, R. (2008). "The Youngest Galactic Supernova Remnant: G1.9+0.3". The Astrophysical Journal Letters. 680 (1): L41–L44. arXiv:0803.1487. Bibcode:2008ApJ...680L..41R. doi:10.1086/589570. S2CID 67766657.
  44. ^ Colgate, S. A.; McKee, C. (1969). "Early Supernova Luminosity". The Astrophysical Journal. 157: 623. Bibcode:1969ApJ...157..623C. doi:10.1086/150102.
  45. ^ Zuckerman, B.; Malkan, M. A. (1996). The Origin and Evolution of the Universe. Jones & Bartlett Learning. p. 68. ISBN 978-0-7637-0030-0. Archived from the original on 20 August 2016.
  46. ^ Filippenko, A. V.; Li, W.-D.; Treffers, R. R.; Modjaz, M. (2001). "The Lick Observatory Supernova Search with the Katzman Automatic Imaging Telescope". In Paczynski, B.; Chen, W.-P.; Lemme, C. (eds.). Small Telescope Astronomy on Global Scale. ASP Conference Series. Vol. 246. San Francisco: Astronomical Society of the Pacific. p. 121. Bibcode:2001ASPC..246..121F. ISBN 978-1-58381-084-2.
  47. ^ Jump up to: a b Antonioli, P.; Fienberg, R. T.; Fleurot, F.; Fukuda, Y.; Fulgione, W.; Habig, A.; Heise, J.; McDonald, A. B.; Mills, C.; Namba, T.; Robinson, L. J.; Scholberg, K.; Schwendener, M.; Sinnott, R. W.; Stacey, B.; Suzuki, Y.; Tafirout, R.; Vigorito, C.; Viren, B.; Virtue, C.; Zichichi, A. (2004). "SNEWS: The SuperNova Early Warning System". New Journal of Physics. 6: 114. arXiv:astro-ph/0406214. Bibcode:2004NJPh....6..114A. doi:10.1088/1367-2630/6/1/114. S2CID 119431247.
  48. ^ Scholberg, K. (2000). "SNEWS: The supernova early warning system". AIP Conference Proceedings. 523: 355–361. arXiv:astro-ph/9911359. Bibcode:2000AIPC..523..355S. CiteSeerX 10.1.1.314.8663. doi:10.1063/1.1291879. S2CID 5803494.
  49. ^ Beacom, J. F. (1999). "Supernova neutrinos and the neutrino masses". Revista Mexicana de Fisica. 45 (2): 36. arXiv:hep-ph/9901300. Bibcode:1999RMxF...45...36B.
  50. ^ Frieman, J. A.; et al. (2008). "The Sloan Digital Sky Survey-Ii Supernova Survey: Technical Summary". The Astronomical Journal. 135 (1): 338–347. arXiv:0708.2749. Bibcode:2008AJ....135..338F. doi:10.1088/0004-6256/135/1/338. S2CID 53135988.
  51. ^ Perlmutter, S. A. (1997). "Scheduled discovery of 7+ high-redshift SNe: First cosmology results and bounds on q0". In Ruiz-Lapuente, P.; Canal, R.; Isern, J. (eds.). Thermonuclear Supernovae, Proceedings of the NATO Advanced Study Institute. NATO Advanced Science Institutes Series C. Vol. 486. Dordrecth: Kluwer Academic Publishers. p. 749. arXiv:astro-ph/9602122. Bibcode:1997ASIC..486..749P. doi:10.1007/978-94-011-5710-0_46.
  52. ^ Linder, E. V.; Huterer, D. (2003). "Importance of supernovae at z > 1.5 to probe dark energy". Physical Review D. 67 (8): 081303. arXiv:astro-ph/0208138. Bibcode:2003PhRvD..67h1303L. doi:10.1103/PhysRevD.67.081303. S2CID 8894913.
  53. ^ Perlmutter, S. A.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Lee, J. C.; Pain, R.; Pennypacker, C. R.; Small, I. A.; Ellis, R. S.; McMahon, R. G.; Boyle, B. J.; Bunclark, P. S.; Carter, D.; Irwin, M. J.; Glazebrook, K.; Newberg, H. J. M.; Filippenko, A. V.; Matheson, T.; Dopita, M.; Couch, W. J. (1997). "Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35". The Astrophysical Journal. 483 (2): 565. arXiv:astro-ph/9608192. Bibcode:1997ApJ...483..565P. doi:10.1086/304265. S2CID 118187050.
  54. ^ Копен, Ю.; Уайт, Н.; Бонгард, С.; Ганглер, Э.; Соже, Л.; Смаджа, Г.; Антилогус, П.; Гаравини, Г.; Жиль, С.; Боль, Р.; Олдеринг, Г.; Бейли, С.; Ли, Британская Колумбия; Локен, С.; Ньюджент, ЧП; Перлмуттер, ЮАР; Скальцо, Р.; Томас, RC; Ван, Л.; Уивер, бакалавр искусств; Пеконтал, Э.; Кесслер, Р.; Балтай, Ц.; Рабиновиц, Д.; Бауэр, А. (2006). «Близлежащая фабрика сверхновых» (PDF ) Новые обзоры астрономии 50 (4–5): 637–640. arXiv : astro-ph/0401513 . Бибкод : 2006НовыйAR..50..436C . CiteSeerX   10.1.1.316.4895 . дои : 10.1016/j.newar.2006.02.035 . Архивировано (PDF) сентября. из оригинала 22 Получено 25 октября.
  55. ^ Сколник, DM; Джонс, DO; Рест, А. (2018). «Полный образец кривой блеска спектроскопически подтвержденной SNe Ia из Pan-STARRS1 и космологические ограничения из объединенного образца пантеона» . Астрофизический журнал . 859 (2): 101. arXiv : 1710.00845 . Бибкод : 2018ApJ...859..101S . дои : 10.3847/1538-4357/aab9bb . S2CID   54676349 .
  56. ^ Сколник, DM; Браут, Д.; Карр, А. (2021). «Анализ Пантеона +: полный набор данных и кривая блеска» . Письма астрофизического журнала . 938 (2): 113. arXiv : 2112.03863 . Бибкод : 2022ApJ...938..113S . дои : 10.3847/1538-4357/ac8b7a . S2CID   246652657 .
  57. ^ «О каких видах обнаруженных объектов следует сообщать для публикации IAUC» . cbat.eps.harvard.edu . Проверено 8 марта 2023 г.
  58. ^ Киршнер, Р.П. (1980). «Сверхновые типа I: взгляд наблюдателя» (PDF) . Материалы конференции AIP . 63 : 33–37. Бибкод : 1980AIPC...63...33K . дои : 10.1063/1.32212 . hdl : 2027.42/87614 . Архивировано (PDF) из оригинала 7 августа 2020 г. Проверено 20 марта 2020 г.
  59. ^ «Список сверхновых» . Центральное бюро астрономических телеграмм МАС . Архивировано из оригинала 12 ноября 2010 года . Проверено 25 октября 2010 г.
  60. ^ «Каталог сверхновых Падуя-Азиаго» . Падуанская астрономическая обсерватория . Архивировано из оригинала 10 января 2014 года . Проверено 10 января 2014 г.
  61. ^ Стивенсон, Ф. Ричард; Грин, Дэвид А. (2002). Исторические сверхновые и их остатки . Оксфорд: Кларендон Пресс. стр. 1–5, 60, 82. ISBN.  0-19-850766-6 . OCLC   50403827 .
  62. ^ «Открытый каталог сверхновых» . Архивировано из оригинала 3 марта 2016 года . Проверено 5 февраля 2020 г.
  63. ^ Padova-Asiago Supernova Group, Каталог сверхновых Asiago , по состоянию на 27 декабря 2023 г.
  64. ^ Jump up to: а б Каппелларо, Э.; Туратто, М. (2001). «Влияние двойных звезд на исследования звездного населения». Влияние двойных звезд на исследования звездного населения . Библиотека астрофизики и космических наук. Том. 264. Дордрехт: Kluwer Academic Publishers . п. 199. arXiv : astro-ph/0012455 . Бибкод : 2001ASSL..264..199C . дои : 10.1007/978-94-015-9723-4_16 . ISBN  978-0-7923-7104-5 .
  65. ^ Jump up to: а б с д и ж г час Туратто, М. (2003). «Классификация сверхновых». Сверхновые и гамма-всплески . Конспект лекций по физике . Том. 598. стр. 21–36. arXiv : astro-ph/0301107 . CiteSeerX   10.1.1.256.2965 . дои : 10.1007/3-540-45863-8_3 . ISBN  978-3-540-44053-6 . S2CID   15171296 .
  66. ^ Jump up to: а б с д и ж г Доггетт, Дж. Б.; Бранч, Д. (1985). «Сравнительное исследование кривых блеска сверхновых» . Астрономический журнал . 90 : 2303. Бибкод : 1985AJ.....90.2303D . дои : 10.1086/113934 .
  67. ^ Фоли, Райан Дж.; Чорнок, Райан; Филиппенко Алексей Владимирович; Ганешалингам, Мохан; Киршнер, Роберт П.; Ли, Вэйдун; Ценко, С. Брэдли; Чаллис, Питер Дж.; Фридман, Эндрю С.; Моджаз, Марьям; Сильверман, Джеффри М.; Вуд-Васи, В. Майкл (2009). «SN 2008ha: сверхновая чрезвычайно низкой светимости и исключительно низкой энергии». Астрономический журнал . 138 (2): 376. arXiv : 0902.2794 . Бибкод : 2009AJ....138..376F . дои : 10.1088/0004-6256/138/2/376 . S2CID   13855329 .
  68. ^ Бьянко, ФБ; Моджаз, М.; Хикен, М.; Фридман, А.; Киршнер, Р.П.; Блум, Дж.С.; Чаллис, П.; Мэрион, GH; Вуд-Вэйси, В.М.; Рест, А. (2014). «Многоцветные оптические и ближние инфракрасные кривые блеска 64 сверхновых с коллапсом ядра с разрезанной оболочкой». Приложение к астрофизическому журналу . 213 (2): 19. arXiv : 1405.1428 . Бибкод : 2014ApJS..213...19B . дои : 10.1088/0067-0049/213/2/19 . S2CID   119243970 .
  69. ^ Лайман, доктор медицинских наук; Леван, Эй Джей; Джеймс, Пенсильвания; Ангус, ЧР; Церковь, РП; Дэвис, МБ; Танвир, Северная Каролина (11 мая 2016 г.). «Наблюдения космическим телескопом Хаббл родительских галактик и окружения сверхновых, богатых кальцием» . Ежемесячные уведомления Королевского астрономического общества . 458 (2): 1768–1777. arXiv : 1602.08098 . дои : 10.1093/mnras/stw477 . ISSN   0035-8711 .
  70. ^ Ньюджент, Питер (2 июня 2017 г.). «Сверхновые: Взрыв в пузыре» . Природная астрономия . 1 (6): 0140. Бибкод : 2017NatAs...1E.140N . дои : 10.1038/s41550-017-0140 . ISSN   2397-3366 . ОСТИ   1456969 . S2CID   125998037 .
  71. ^ Jump up to: а б Перец, Х.Б.; Гал-Ям, А.; Маццали, Пенсильвания; Арнетт, Д.; Каган, Д.; Филиппенко А.В.; Ли, В.; Аркави, И.; Ценко, С.Б.; Фокс, Д.Б.; Леонард, округ Колумбия; Мун, Д.-С.; Сэнд, диджей; Содерберг, AM; Андерсон, JP; Джеймс, Пенсильвания; Фоли, Р.Дж.; Ганешалингам, М.; Офек, Е.О.; Билдстен, Л.; Нелеманс, Г.; Шен, К.Дж.; Вайнберг, Нью-Йорк; Мецгер, Б.Д.; Пиро, Алабама; Кваерт, Э.; Киве, М.; Познанский, Д. (2010). «Слабая сверхновая от белого карлика с спутником, богатым гелием». Природа . 465 (7296): 322–325. arXiv : 0906.2003 . Бибкод : 2010Natur.465..322P . дои : 10.1038/nature09056 . ПМИД   20485429 . S2CID   4368207 .
  72. ^ Jump up to: а б Барбон, Р.; Чиатти, Ф.; Розино, Л. (1979). «Фотометрические свойства сверхновых II типа». Астрономия и астрофизика . 72 : 287. Бибкод : 1979A&A....72..287B .
  73. ^ Филиппенко, А.В. (1988). «Сверхновая 1987K: тип II в молодости, тип Ib в старости». Астрономический журнал . 96 : 1941. Бибкод : 1988AJ.....96.1941F . дои : 10.1086/114940 .
  74. ^ Цвики, Ф. (1964). «NGC 1058 и ее сверхновая 1961 года» . Астрофизический журнал . 139 : 514. Бибкод : 1964ApJ...139..514Z . дои : 10.1086/147779 .
  75. ^ Цвики, Ф. (1962). «Новые наблюдения, важные для космологии». В МакВитти, GC (ред.). Проблемы внегалактических исследований, Материалы симпозиума МАС . Том. 15. Нью-Йорк: Макмиллан Пресс . п. 347. Бибкод : 1962IAUS...15..347Z .
  76. ^ Филиппенко, Алексей В. (сентябрь 1997 г.). «Оптические спектры сверхновых» . Ежегодный обзор астрономии и астрофизики . 35 (1): 309–355. Бибкод : 1997ARA&A..35..309F . дои : 10.1146/annurev.astro.35.1.309 . ISSN   0066-4146 . SN 1961V в NGC 1058 (Тип V) имела самую причудливую кривую блеска, когда-либо зарегистрированную.
  77. ^ «Взлет и падение сверхновой» . Картинка недели ESO . Архивировано из оригинала 2 июля 2013 года . Проверено 14 июня 2013 г.
  78. ^ Пиро, Алабама; Томпсон, штат Техас; Кочанек, CS (2014). «Согласование производства 56Ni в сверхновых типа Ia со сценариями двойного вырождения» . Ежемесячные уведомления Королевского астрономического общества . 438 (4): 3456. arXiv : 1308.0334 . Бибкод : 2014MNRAS.438.3456P . дои : 10.1093/mnras/stt2451 . S2CID   27316605 .
  79. ^ Чен, В.-К.; Ли, Х.-Д. (2009). «О прародителях сверхновых супер-Чандрасекара массы типа Ia». Астрофизический журнал . 702 (1): 686–691. arXiv : 0907.0057 . Бибкод : 2009ApJ...702..686C . дои : 10.1088/0004-637X/702/1/686 . S2CID   14301164 .
  80. ^ Хауэлл, округ Колумбия; Салливан, М.; Конли, Эй Джей; Карлберг, Р.Г. (2007). «Предсказанная и наблюдаемая эволюция средних свойств сверхновых типа Ia с красным смещением». Письма астрофизического журнала . 667 (1): L37–L40. arXiv : astro-ph/0701912 . Бибкод : 2007ApJ...667L..37H . дои : 10.1086/522030 . S2CID   16667595 .
  81. ^ Jump up to: а б Маццали, Пенсильвания; Рёпке, ФК; Бенетти, С.; Хиллебрандт, В. (2007). «Общий механизм взрыва сверхновых типа Ia». Наука . 315 (5813): 825–828. arXiv : astro-ph/0702351 . Бибкод : 2007Sci...315..825M . дои : 10.1126/science.1136259 . ПМИД   17289993 . S2CID   16408991 .
  82. ^ Либ, Э.Х.; Яу, Х.-Т. (1987). «Тщательное исследование теории коллапса звезды Чандрасекара» . Астрофизический журнал . 323 (1): 140–144. Бибкод : 1987ApJ...323..140L . дои : 10.1086/165813 . Архивировано из оригинала 3 марта 2020 года . Проверено 20 марта 2020 г.
  83. ^ Jump up to: а б Канал, Р.; Гутьеррес, JL (1997). «Возможное соединение белого карлика и нейтронной звезды». В Изерне, Дж.; Эрнанц, М.; Грасиа-Берро, Э. (ред.). Белые карлики: материалы 10-го Европейского семинара по белым карликам . Библиотека астрофизики и космических наук. Том. 214. Дордрехт: Kluwer Academic Publishers . п. 49. arXiv : astro-ph/9701225 . Бибкод : 1997ASSL..214...49C . дои : 10.1007/978-94-011-5542-7_7 . ISBN  978-0-7923-4585-5 . S2CID   9288287 .
  84. ^ Уиллер, Дж. К. (2000). Космические катастрофы: сверхновые, гамма-всплески и приключения в гиперпространстве . Издательство Кембриджского университета . п. 96. ИСБН  978-0-521-65195-0 . Архивировано из оригинала 10 сентября 2015 года.
  85. ^ Хохлов А.М.; Мюллер, Э.; Хёфлих, Пенсильвания (1993). «Кривые блеска моделей сверхновых типа IA с разными механизмами взрыва». Астрономия и астрофизика . 270 (1–2): 223–248. Бибкод : 1993A&A...270..223K .
  86. ^ Рёпке, ФК; Хиллебрандт, В. (2004). «Дело против соотношения углерода и кислорода в прародителе как источника пиковых изменений светимости сверхновых типа Ia». Письма по астрономии и астрофизике . 420 (1): Л1–Л4. arXiv : astro-ph/0403509 . Бибкод : 2004A&A...420L...1R . дои : 10.1051/0004-6361:20040135 . S2CID   2849060 .
  87. ^ Jump up to: а б с д Хиллебрандт, В.; Нимейер, Дж. К. (2000). «Модели взрыва сверхновой типа IA». Ежегодный обзор астрономии и астрофизики . 38 (1): 191–230. arXiv : astro-ph/0006305 . Бибкод : 2000ARA&A..38..191H . дои : 10.1146/annurev.astro.38.1.191 . S2CID   10210550 .
  88. ^ Пачинский, Б. (1976). «Двоичные файлы общего конверта». В Эгглтоне, П.; Миттон, С.; Уилан, Дж. (ред.). Строение и эволюция тесных двойных систем . Симпозиум МАС № 73. Дордрехт: Д. Рейдель . стр. 75–80. Бибкод : 1976IAUS...73...75P .
  89. ^ Полудненко Алексей Юрьевич; Чемберс, Джессика; Ахмед, Карим; Гамезо, Вадим Н.; Тейлор, Брайан Д. (ноябрь 2019 г.). «Единый механизм неограниченного перехода от горения к детонации в земных химических системах и сверхновых типа Ia» . Наука . 366 (6465): eaau7365. arXiv : 1911.00050 . Бибкод : 2019Sci...366.7365P . дои : 10.1126/science.aau7365 . ISSN   0036-8075 . ПМИД   31672866 . S2CID   207817150 . Теоретические модели SNIa остаются ограниченными из-за неопределенности в механизмах взрыва. [...] Взрывы СНиа вызываются быстрым термоядерным горением в 12 С/ 16 О звезды-белые карлики (WD) с массой, близкой или ниже предела массы Чандрасекара ≈1,4 солнечных масс [...] Однако, помимо этого общего утверждения, точные механизмы SNIa остаются неясными, с рядом возможных сценарии.
  90. ^ Макри, Л.М.; Станек, Казахстан; Берсье, Д.; Гринхилл, LJ; Рид, MJ (2006). «Новое расстояние цефеид до галактики-хозяина мазера NGC 4258 и его влияние на постоянную Хаббла». Астрофизический журнал . 652 (2): 1133–1149. arXiv : astro-ph/0608211 . Бибкод : 2006ApJ...652.1133M . дои : 10.1086/508530 . S2CID   15728812 .
  91. ^ Колгейт, ЮАР (1979). «Сверхновые как стандартная свеча космологии». Астрофизический журнал . 232 (1): 404–408. Бибкод : 1979ApJ...232..404C . дои : 10.1086/157300 .
  92. ^ Руис-Лапуэнте, П.; Блинников С.; Канал, Р.; Мендес, Дж.; Сорокина Е.; Виско, А.; Уолтон, Н. (2000). «Прародители сверхновых типа IA». Мемуары Итальянского астрономического общества . 71 : 435. Бибкод : 2000MmSAI..71..435R .
  93. ^ Дэн, М.; Россвог, С.; Гильошон, Ж.; Рамирес-Руис, Э. (2012). «Как слияние двух белых карликов зависит от соотношения их масс: стабильность орбит и взрывы при контакте» . Ежемесячные уведомления Королевского астрономического общества . 422 (3): 2417. arXiv : 1201.2406 . Бибкод : 2012MNRAS.422.2417D . дои : 10.1111/j.1365-2966.2012.20794.x . S2CID   119159904 .
  94. ^ Маоз, Дэн; Маннуччи, Филиппо; Нелеманс, Гийс (18 августа 2014 г.). «Наблюдательные подсказки к прародителям сверхновых типа Ia» . Ежегодный обзор астрономии и астрофизики . 52 (1): 107–170. arXiv : 1312.0628 . Бибкод : 2014ARA&A..52..107M . doi : 10.1146/annurev-astro-082812-141031 . ISSN   0066-4146 . S2CID   55533680 .
  95. ^ Хауэлл, округ Колумбия; Салливан, М.; Ньюджент, ЧП; Эллис, РС; Конли, Эй Джей; Ле Борнь, Д.; Карлберг, Р.Г.; Гай, Дж.; Балам, Д.; Баса, С.; Фуше, Д.; Хук, И.М.; Сяо, EY; Нил, доктор юридических наук; Боль, Р.; Перретт, КМ; Притчет, CJ (2006). «Сверхновая SNLS-03D3bb типа Ia от звезды белого карлика сверхмассы Чандрасекара». Природа . 443 (7109): 308–311. arXiv : astro-ph/0609616 . Бибкод : 2006Natur.443..308H . дои : 10.1038/nature05103 . ПМИД   16988705 . S2CID   4419069 .
  96. ^ Танака, М.; Кавабата, Канзас; Яманака, М.; Маэда, К.; Хаттори, Т.; Аоки, К.; Номото, К.И.; Айе, М.; Сасаки, Т.; Маццали, Пенсильвания; Пиан, Э. (2010). «Спектрополяриметрия чрезвычайно яркой сверхновой типа Ia 2009dc: почти сферический взрыв белого карлика массы сверхЧандрасекара». Астрофизический журнал . 714 (2): 1209. arXiv : 0908.2057 . Бибкод : 2010ApJ...714.1209T . дои : 10.1088/0004-637X/714/2/1209 . S2CID   13990681 .
  97. ^ Финк, М.; Кромер, М.; Хиллебрандт, В.; Рёпке, ФК; Пакмор, Р.; Зайтенцаль, ИК; Сим, ЮАР (октябрь 2018 г.). «Термоядерные взрывы быстро дифференциально вращающихся белых карликов: кандидаты в сверхсветящиеся сверхновые типа Ia?». Астрономия и астрофизика . 618 : А124. arXiv : 1807.10199 . Бибкод : 2018A&A...618A.124F . дои : 10.1051/0004-6361/201833475 . S2CID   118965737 . А124.
  98. ^ Ван, Б.; Лю, Д.; Цзя, С.; Хан, З. (2014). «Двойные гелиевые взрывы прародителей сверхновых типа Ia». Труды Международного астрономического союза . 9 (S298): 442. arXiv : 1301.1047 . Бибкод : 2014IAUS..298..442W . дои : 10.1017/S1743921313007072 . S2CID   118612081 .
  99. ^ Фоли, Р.Дж.; Чаллис, П.Дж.; Чорнок, Р.; Ганешалингам, М.; Ли, В.; Мэрион, GH; Моррелл, Нью-Йорк; Пиньята, Г.; Стритцингер, доктор медицины; Сильверман, Дж. М.; Ван, X.; Андерсон, JP; Филиппенко А.В.; Фридман, WL; Хамуи, М.; Джа, Юго-Запад; Киршнер, Р.П.; Маккалли, К.; Перссон, SE; Филлипс, ММ; Райхарт, Делавэр; Содерберг, AM (2013). «Сверхновые типа Iax: новый класс звездного взрыва». Астрофизический журнал . 767 (1): 57. arXiv : 1212.2209 . Бибкод : 2013ApJ...767...57F . дои : 10.1088/0004-637X/767/1/57 . S2CID   118603977 .
  100. ^ Маккалли, К.; Джа, Юго-Запад; Фоли, Р.Дж.; Билдстен, Л.; Фонг, В.-Ф.; Киршнер, Р.П.; Мэрион, GH; Рисс, АГ; Стритцингер, доктор медицины (2014). «Светящаяся синяя система-прародитель сверхновой типа Iax 2012Z». Природа . 512 (7512): 54–56. arXiv : 1408.1089 . Бибкод : 2014Natur.512...54M . дои : 10.1038/nature13615 . ПМИД   25100479 . S2CID   4464556 .
  101. ^ Сильверман, Дж. М.; Ньюджент, ЧП; Гал-Ям, А.; Салливан, М.; Хауэлл, округ Колумбия; Филиппенко А.В.; Аркави, И.; Бен-Ами, С.; Блум, Дж.С.; Ценко, С.Б.; Цао, Ю.; Чорнок, Р.; Клубб, К.И.; Катушка, АЛ; Фоли, Р.Дж.; Грэм, ML; Гриффит, резюме; Хореш, А.; Касливал, ММ; Кулкарни, СР; Леонард, округ Колумбия; Ли, В.; Мэтисон, Т.; Миллер, А.А.; Моджаз, М.; Офек, Е.О.; Пан, Ю.-К.; Перли, Д.А.; Познанский, Д.; Куимби, РМ (2013). «Сверхновые типа Ia сильно взаимодействуют со своей околозвездной средой». Серия дополнений к астрофизическому журналу . 207 (1): 3. arXiv : 1304.0763 . Бибкод : 2013ApJS..207....3S . дои : 10.1088/0067-0049/207/1/3 . S2CID   51415846 .
  102. ^ Гилмор, Джерри; Рандич, София (март 2012 г.). «Общественное спектроскопическое исследование Gaia-ESO». Посланник . 147 (147). Гархинг, Германия: Европейская южная обсерватория: 25–31. Бибкод : 2012Msngr.147...25G .
  103. ^ Мерль, Тибо; Хамерс, Адриан С.; Ван Эк, Софи; Йориссен, Ален; Ван дер Свальмен, Матье; Поллард, Карен; Смильянич, Родольфо; Пурбе, Дмитрий; Цвиттер, Томаж; Травен, Грегор; Гилмор, Джерри; Рандич, София; Гонно, Анаис; Хурихан, Анна; Сакко, Джермано; Уорли, К. Клэр (12 мая 2022 г.). «Спектроскопическая четверка как возможный прародитель сверхновых сверхновых типа Ia субЧандрасекара». Природная астрономия . 6 (6): 681–688. arXiv : 2205.05045 . Бибкод : 2022НатАс...6..681М . дои : 10.1038/s41550-022-01664-5 . S2CID   248665714 .
  104. ^ Jump up to: а б с д и ж г час Хегер, А.; Фрайер, CL; Вусли, ЮВ; Лангер, Н.; Хартманн, Д.Х. (2003). «Как массивные одиночные звезды заканчивают свою жизнь». Астрофизический журнал . 591 (1): 288–300. arXiv : astro-ph/0212469 . Бибкод : 2003ApJ...591..288H . дои : 10.1086/375341 . S2CID   59065632 .
  105. ^ Jump up to: а б с Ренцо, М.; Фармер, Р.; Джастэм, С.; Гетберг, Ю.; Де Минк, SE; Сапартас, Э.; Маршан, П.; Смит, Н. (2020). «Прогнозы безводородных выбросов сверхновых с пульсационной парной нестабильностью». Астрономия и астрофизика . 640 : А56. arXiv : 2002.05077 . Бибкод : 2020A&A...640A..56R . дои : 10.1051/0004-6361/202037710 . S2CID   211082844 .
  106. ^ Номото, К.; Танака, М.; Томинага, Н.; Маэда, К. (2010). «Гиперновые, гамма-всплески и первые звезды». Новые обзоры астрономии . 54 (3–6): 191. Бибкод : 2010NewAR..54..191N . дои : 10.1016/j.newar.2010.09.022 .
  107. ^ Мория, Ти Джей (2012). «Прародители рекомбинирующих остатков сверхновых». Астрофизический журнал . 750 (1): Л13. arXiv : 1203.5799 . Бибкод : 2012ApJ...750L..13M . дои : 10.1088/2041-8205/750/1/L13 . S2CID   119209527 .
  108. ^ Смит, Н.; Ганешалингам, М.; Чорнок, Р.; Филиппенко А.В.; Ли, В.; Сильверман, Дж. М.; Стил, Теннесси; Гриффит, резюме; Жубер, Н.; Ли, Нью-Йорк; Лоу, ТБ; Мобберли, член парламента; Уинслоу, DM (2009). «Sn 2008S: Крутой супер-Эддингтонский ветер в самозванце сверхновой». Астрофизический журнал . 697 (1): Л49. arXiv : 0811.3929 . Бибкод : 2009ApJ...697L..49S . дои : 10.1088/0004-637X/697/1/L49 . S2CID   17627678 .
  109. ^ Jump up to: а б с Янка, Х.-Т.; Ланганке, К.; Марек, А.; Мартинес-Пинедо, Г.; Мюллер, Б. (2007). «Теория сверхновых с коллапсом ядра». Отчеты по физике . 442 (1–6): 38–74. arXiv : astro-ph/0612072 . Бибкод : 2007PhR...442...38J . doi : 10.1016/j.physrep.2007.02.002 . S2CID   15819376 .
  110. ^ Фрайер, CL; Новое, ККБ (2003). «Гравитационные волны от гравитационного коллапса» . Живые обзоры в теории относительности . 6 (1): 2. arXiv : gr-qc/0206041 . Бибкод : 2003LRR.....6....2F . дои : 10.12942/lrr-2003-2 . ПМЦ   5253977 . ПМИД   28163639 .
  111. ^ Jump up to: а б Херли-младший; Полс, Орегон; Тут, Калифорния (1 июля 2000 г.). «Комплексные аналитические формулы звездной эволюции в зависимости от массы и металличности» . Ежемесячные уведомления Королевского астрономического общества . 315 (3): 543–569. arXiv : astro-ph/0001295 . Бибкод : 2000MNRAS.315..543H . дои : 10.1046/j.1365-8711.2000.03426.x . ISSN   0035-8711 .
  112. ^ Jump up to: а б с д Вусли, ЮВ; Янка, Х.-Т. (2005). «Физика сверхновых с коллапсом ядра». Физика природы . 1 (3): 147–154. arXiv : astro-ph/0601261 . Бибкод : 2005NatPh...1..147W . CiteSeerX   10.1.1.336.2176 . дои : 10.1038/nphys172 . S2CID   118974639 .
  113. ^ Гриббин-младший; Гриббин, М. (2000). Звездная пыль: сверхновые и жизнь – космическая связь . Издательство Йельского университета . п. 173. Бибкод : 2000sslc.book.....G . ISBN  978-0-300-09097-0 .
  114. ^ Jump up to: а б Барвик, Южный Уэльс; Биком, Дж. Ф.; Чианчоло, В.; Додельсон, С.; Фэн, Дж. Л.; Фуллер, Г.М.; Каплингхат, М.; Маккей, Д.В.; Месарош, П.; Меззакаппа, А.; Мураяма, Х.; Олив, К.А.; Станев Т.; Уокер, Т.П. (2004). «Исследование нейтрино APS: отчет Рабочей группы по нейтринной астрофизике и космологии». arXiv : astro-ph/0412544 .
  115. ^ Майра, ES; Берроуз, А. (1990). «Нейтрино сверхновых типа II. Первые 100 миллисекунд» . Астрофизический журнал . 364 : 222–231. Бибкод : 1990ApJ...364..222M . дои : 10.1086/169405 .
  116. ^ Jump up to: а б Пиран, Цви; Накар, Эхуд; Маццали, Паоло; Пиан, Елена (2019). «Релятивистские джеты в сверхновых с коллапсом ядра» . Астрофизический журнал . 871 (2): Л25. arXiv : 1704.08298 . Бибкод : 2019ApJ...871L..25P . doi : 10.3847/2041-8213/aaffce . S2CID   19266567 .
  117. ^ Jump up to: а б Касен, Д.; Вусли, ЮВ; Хегер, А. (2011). «Парная нестабильность сверхновых: кривые блеска, спектры и ударный прорыв». Астрофизический журнал . 734 (2): 102. arXiv : 1101.3336 . Бибкод : 2011ApJ...734..102K . дои : 10.1088/0004-637X/734/2/102 . S2CID   118508934 .
  118. ^ Jump up to: а б Поеларендс, AJT; Хервиг, Ф.; Лангер, Н.; Хегер, А. (2008). «Канал Supernova звезд Super-AGB». Астрофизический журнал . 675 (1): 614–625. arXiv : 0705.4643 . Бибкод : 2008ApJ...675..614P . дои : 10.1086/520872 . S2CID   18334243 .
  119. ^ Гилмор, Г. (2004). «Короткая зрелищная жизнь суперзвезды». Наука . 304 (5679): 1915–1916. дои : 10.1126/science.1100370 . ПМИД   15218132 . S2CID   116987470 .
  120. ^ Фор, Г.; Менсинг, ТМ (2007). «Жизнь и смерть звезд». Введение в планетологию . стр. 35–48. дои : 10.1007/978-1-4020-5544-7_4 . ISBN  978-1-4020-5233-0 .
  121. ^ Jump up to: а б Хориучи, С.; Накамура, К.; Такиваки, Т.; Котаке, К.; Танака, М. (2014). «Проблемы красного сверхгиганта и скорости сверхновых: последствия для физики сверхновых с коллапсом ядра» . Ежемесячные уведомления Королевского астрономического общества: письма . 445 : L99–L103. arXiv : 1409.0006 . Бибкод : 2014MNRAS.445L..99H . дои : 10.1093/mnrasl/slu146 .
  122. ^ Фаран, Т.; Познанский, Д.; Филиппенко А.В.; Чорнок, Р.; Фоли, Р.Дж.; Ганешалингам, М.; Леонард, округ Колумбия; Ли, В.; Моджаз, М.; Сердюк, ФЖД; Сильверман, Дж. М. (2014). «Образец сверхновых типа II-L» . Ежемесячные уведомления Королевского астрономического общества . 445 (1): 554–569. arXiv : 1409.1536 . Бибкод : 2014MNRAS.445..554F . дои : 10.1093/mnras/stu1760 .
  123. ^ Фармер, Р.; Ренцо, М.; де Минк, SE; Маршан, П.; Джастэм, С. (2019). «Не забывайте о разрыве: расположение нижнего края разрыва в массах черной дыры сверхновой с парной нестабильностью» . Астрофизический журнал . 887 (1): 53. arXiv : 1910.12874 . Бибкод : 2019ApJ...887...53F . дои : 10.3847/1538-4357/ab518b .
  124. ^ Малезани, Д.; Финбо, JPU; Хьорт, Дж.; Лелудас, Г.; Соллерман, Дж.; Стритцингер, доктор медицины; Вресвейк, премьер-министр; Уотсон, диджей; Горосабел, Дж.; Михаловский, MJ; Тён, CC; Огюстейн, Т.; Берсье, Д.; Якобссон, П.; Яунсен, АО; Леду, К.; Леван, Эй Джей; Милванг-Йенсен, Б.; Рол, Э.; Танвир, Северная Каролина; Виерсма, К.; Сюй, Д.; Альберт, Л.; Бэйлисс, MB; Галл, К.; Гроув, Л.Ф.; Кестер, Б.П.; Лейтет, Э.; Пурсимо, Т.; Скиллен, И. (2009). «Ранняя спектроскопическая идентификация SN 2008D». Письма астрофизического журнала . 692 (2): Л84. arXiv : 0805.1188 . Бибкод : 2009ApJ...692L..84M . дои : 10.1088/0004-637X/692/2/L84 . S2CID   1435322 .
  125. ^ Свирский, Г.; Накар, Э. (2014). «Sn 2008D: Взрыв Вольфа-Райе на сильном ветру». Астрофизический журнал . 788 (1): Л14. arXiv : 1403.3400 . Бибкод : 2014ApJ...788L..14S . дои : 10.1088/2041-8205/788/1/L14 . S2CID   118395580 .
  126. ^ Полс, О. (1997). «Тесные двойные прародители сверхновых типов Ib/Ic и IIb/II-L». В Люнге К.-К. (ред.). Материалы Третьей конференции Тихоокеанского региона по последним разработкам в области исследований двойных звезд . Серия конференций ASP . Том. 130. стр. 153–158. Бибкод : 1997ASPC..130..153P .
  127. ^ Jump up to: а б с Элдридж, Джей-Джей; Фрейзер, М.; Смартт, С.Дж.; Маунд, младший; Крокетт, Р. Марк (2013). «Гибель массивных звезд - II. Ограничения наблюдения за прародителями сверхновых типа Ibc» . Ежемесячные уведомления Королевского астрономического общества . 436 (1): 774. arXiv : 1301.1975 . Бибкод : 2013MNRAS.436..774E . дои : 10.1093/mnras/stt1612 . S2CID   118535155 .
  128. ^ Юн, Сон Чул (2017). «На пути к лучшему пониманию эволюции звезд Вольфа – Райе и прародителей сверхновых типа Ib/Ic» . Ежемесячные уведомления Королевского астрономического общества . 470 (4): 3970–3980. arXiv : 1706.04716 . Бибкод : 2017MNRAS.470.3970Y . дои : 10.1093/mnras/stx1496 .
  129. ^ Райдер, SD; Сэдлер, Э.М.; Субраманян Р.; Вейлер, КВ; Панагия, Н.; Стокдейл, CJ (2004). «Модуляции кривой радиоблеска сверхновой типа IIb 2001ig: свидетельство существования двойной прародительницы Вольфа-Райе?» . Ежемесячные уведомления Королевского астрономического общества . 349 (3): 1093–1100. arXiv : astro-ph/0401135 . Бибкод : 2004MNRAS.349.1093R . дои : 10.1111/j.1365-2966.2004.07589.x . S2CID   18132819 .
  130. ^ Инсерра, К.; Смартт, С.Дж.; Джеркстранд, А.; Валенти, С.; Фрейзер, М.; Райт, Д.; Смит, К.; Чен, Т.-В.; Котак, Р.; Пасторелло, А.; Николл, М.; Бресолин, Сан-Франциско; Кудрицкий, Р.П.; Бенетти, С.; Боттичелла, Монтана; Бергетт, штат Вашингтон; Чемберс, КК; Эргон, М.; Флюэллинг, Х.; Финбо, JPU; Гейер, С.; Ходапп, КВ; Хауэлл, округ Колумбия; Хубер, М.; Кайзер, Н.; Лелудас, Г.; Мэгилл, Л.; Магнье, Э.А.; Маккрам, Миннесота; Меткалф, Н.; Цена, Пенсильвания; Рест, А.; Соллерман, Дж.; Суини, В.; Таддия, Ф.; Таубенбергер, С.; Тонри, Дж.Л.; Вейнскот, Р.Дж.; Уотерс, К.; Янг, Д. (2013). «Сверхяркие сверхновые типа Ic: ловля магнетара за хвост». Астрофизический журнал . 770 (2): 28. arXiv : 1304.3320 . Бибкод : 2013ApJ...770..128I . дои : 10.1088/0004-637X/770/2/128 . S2CID   13122542 .
  131. ^ Николл, М.; Смартт, С.Дж.; Джеркстранд, А.; Инсерра, К.; Маккрам, М.; Котак, Р.; Фрейзер, М.; Райт, Д.; Чен, ТВ; Смит, К.; Янг, Д.Р.; Сим, ЮАР ; Валенти, С.; Хауэлл, Д.А.; Бресолин, Ф.; Кудрицкий, Р.П.; Тонри, JL; Хубер, Мэн; Рест, А.; Пасторелло, А.; Томаселла, Л.; Каппелларо, Э.; Бенетти, С.; Маттила, С.; Рак, Э.; Кангас, Т.; Лелудас, Г.; Соллерман, Дж.; Таддия, Ф.; Бергер, Э. (2013). «Медленно затухающие сверхяркие сверхновые, не являющиеся взрывами парной нестабильности». Природа 502 (7471): 346–349. arXiv : 1310.4446 . Бибкод : 2013Nature.502..346N . дои : 10.1038/nature12569 . ПМИД   24132291 . S2CID   4472977 .
  132. ^ Таурис, ТМ; Лангер, Н.; Мория, Ти Джей; Подсядловский, П.; Юн, Южная Каролина; Блинников, С.И. (2013). «Ультра-полосатые сверхновые типа Ic в результате тесной двойной эволюции». Письма астрофизического журнала . 778 (2): Л23. arXiv : 1310.6356 . Бибкод : 2013ApJ...778L..23T . дои : 10.1088/2041-8205/778/2/L23 . S2CID   50835291 .
  133. ^ Таурис, Томас М.; Лангер, Норберт; Подсядловский, Филипп (11 июня 2015 г.). «Ультраполосатые сверхновые: прародители и судьба» . Ежемесячные уведомления Королевского астрономического общества . 451 (2): 2123–2144. arXiv : 1505.00270 . Бибкод : 2015MNRAS.451.2123T . дои : 10.1093/mnras/stv990 . eISSN   1365-2966 . ISSN   0035-8711 .
  134. ^ Драут, MR; Содерберг, AM; Маццали, Пенсильвания; Паррент, Джей Ти; Маргутти, Р.; Милисавлевич, Д.; Сандерс, штат Невада; Чорнок, Р.; Фоли, Р.Дж.; Киршнер, Р.П.; Филиппенко А.В.; Ли, В.; Браун, ПиДжей; Ценко, С.Б.; Чакраборти, С.; Чаллис, П.; Фридман, А.; Ганешалингам, М.; Хикен, М.; Дженсен, К.; Моджаз, М.; Перец, Х.Б.; Сильверман, Дж. М.; Вонг, Д.С. (2013). «Быстрый и яростный распад необычной сверхновой типа Ic 2005ek». Астрофизический журнал . 774 (58): 44. arXiv : 1306.2337 . Бибкод : 2013ApJ...774...58D . дои : 10.1088/0004-637X/774/1/58 . S2CID   118690361 .
  135. ^ Таурис, ТМ; Крамер, М.; Фрейре, PCC; Векс, Н.; Янка, Х.-Т.; Лангер, Н.; Подсядловский, к.ф.; Боззо, Э.; Чатый, С.; Круков, МЮ; Хеувел, EPJ; Антониадис, Дж.; Бретон, РП; Чемпион, DJ (13 сентября 2017). «Образование двойных нейтронных звездных систем» . Астрофизический журнал . 846 (2): 170.arXiv : 1706.09438 . Бибкод : 2017ApJ...846..170T . дои : 10.3847/1538–4357/aa7e89 . eISSN   1538-4357 . S2CID   119471204 .
  136. ^ Де, К.; Касливал, ММ; Офек, Е.О.; Мориа, Ти Джей; Берк, Дж.; Цао, Ю.; Ценко, СБ; Доран, Великобритания; Дагган, GE; Фендер, РП; Франссон, К.; Гал-Ям, А.; Хореш, А.; Кулкарни, СР; Лахер, Р.Р.; Луннан, Р.; Манулис, И.; Маски, Ф.; Маццали, Пенсильвания; Ньюджент, ЧП; Перли, Д.А.; Петрушевская, Т.; Пиро, Алабама; Рамси, К.; Соллерман, Дж.; Салливан, М.; Таддия, Ф. (12 октября 2018 г.). «Горячая и быстрая сверхновая, которая, вероятно, образовала компактную двойную нейтронную звезду». Наука 362 (6411): 201–206. arXiv : 1810.05181 . Бибкод : 2018Sci... 362..201D дои : 10.1126/science.aas8693 . eISSN   1095-9203 . ISSN   0036-8075 . ПМИД   30309948 . S2CID   52961306 .
  137. ^ Гал-Ям, А.; Брух, Р.; Шульце, С.; Ян, Ю.; Перли, Д.А.; Ирани, И.; Соллерман, Дж.; Кул, ЕС; Суманьяк, Монтана; Ярон, О.; Стротьоханн, Нидерланды; Циммерман, Э.; Барбарино, К.; Кулкарни, СР; Касливал, ММ; Де, К.; Яо, Ю.; Фремлинг, К.; Ян, Л.; Офек, Е.О.; Франссон, К.; Филиппенко А.В.; Чжэн, В.; Бринк, Т.Г.; Медник, СМ; Фоли, Р.Дж.; Браун, Дж.; Зиберт, М.; Лелудас, Г.; Кабрера-Лаверс, Алабама (2022 г.). «Звезда WC/WO, взрывающаяся внутри расширяющейся углеродно-кислородно-неоновой туманности». Природа . 601 (7892): 201–204. arXiv : 2111.12435 . Бибкод : 2022Natur.601..201G . дои : 10.1038/s41586-021-04155-1 . ПМИД   35022591 . S2CID   244527654 .
  138. ^ «Астрономы обнаружили первый взрыв сверхновой звезды Вольфа-Райе» . Институт астрофизики Канарских островов • IAC . 12 января 2022 г. Проверено 9 февраля 2022 г.
  139. ^ Jump up to: а б Хирамацу Д; Хауэлл Д; Ван С; и др. (28 июня 2021 г.). «Происхождение сверхновой 2018zd в результате электронного захвата» . Нат Астрон . 5 (9): 903–910. arXiv : 2011.02176 . Бибкод : 2021NatAs...5..903H . дои : 10.1038/s41550-021-01384-2 . S2CID   226246044 . Архивировано из оригинала 30 июня 2021 года . Проверено 1 июля 2021 г.
  140. ^ Jump up to: а б с «Наблюдается новый, третий тип сверхновой» . Обсерватория В.М.Кека . 28 июня 2021 года. Архивировано из оригинала 29 июня 2021 года . Проверено 1 июля 2021 г.
  141. ^ Jump up to: а б с «Астрономы открыли новый тип сверхновой» . Новости РТЕ . ПА . 28 июня 2021 года. Архивировано из оригинала 30 июня 2021 года . Проверено 1 июля 2021 г. В 1980 году Кеничи Номото из Токийского университета предсказал третий тип, названный сверхновой с захватом электрона. ... При взрыве сверхновой с захватом электронов, когда в ядре заканчивается топливо, гравитация заставляет электроны ядра проникать в их атомные ядра, в результате чего звезда коллапсирует сама на себя.
  142. ^ Рейнольдс, ТМ; Фрейзер, М.; Гилмор, Г. (2015). «Прошло без шума: архивный обзор HST по исчезающим массивным звездам» . Ежемесячные уведомления Королевского астрономического общества . 453 (3): 2886–2901. arXiv : 1507.05823 . Бибкод : 2015MNRAS.453.2885R . дои : 10.1093/mnras/stv1809 . S2CID   119116538 .
  143. ^ Герке, младший; Кочанек, CS; Станек, Казахстан (2015). «Поиски неудавшихся сверхновых с помощью Большого бинокулярного телескопа: первые кандидаты» . Ежемесячные уведомления Королевского астрономического общества . 450 (3): 3289–3305. arXiv : 1411.1761 . Бибкод : 2015MNRAS.450.3289G . дои : 10.1093/mnras/stv776 . S2CID   119212331 .
  144. ^ Jump up to: а б Адамс, С.М.; Кочанек, CS; Биком, Дж. Ф.; Вагинс, М.Р.; Станек, Казахстан (2013). «Наблюдение следующей галактической сверхновой». Астрофизический журнал . 778 (2): 164. arXiv : 1306.0559 . Бибкод : 2013ApJ...778..164A . дои : 10.1088/0004-637X/778/2/164 . S2CID   119292900 .
  145. ^ Jump up to: а б Карттунен, Х.; Крегер, П.; Оджа, Х.; Путанен, М.; Доннер, К.Дж., ред. (2016). Фундаментальная астрономия . Спрингер. стр. 309. ISBN  978-3-662-53044-3 .
  146. ^ Jump up to: а б Моджаз, М.; Гутьеррес, CP; Аркави, И. (август 2019 г.). «Новые режимы наблюдения сверхновых с коллапсом ядра». Природная астрономия . 3 (8): 717–724. arXiv : 1908.02476 . Бибкод : 2019НатАс...3..717М . дои : 10.1038/s41550-019-0856-2 . S2CID   199472802 .
  147. ^ Jump up to: а б Нихольм, А.; и др. (2020). «Свойства кривой блеска сверхновой типа II, измеренные на основе нецелевой исследовательской выборки». Астрономия и астрофизика . 637 : А73. arXiv : 1906.05812 . Бибкод : 2020A&A...637A..73N . дои : 10.1051/0004-6361/201936097 . S2CID   189762490 .
  148. ^ Мишель, Ф. Кертис; Питомник, Калифорния; Фаулер, Уильям А. (13 ноября 1987 г.). «Когда будет виден пульсар в сверхновой 1987a?». Наука . 238 (4829): 938–940. Бибкод : 1987Sci...238..938M . дои : 10.1126/science.238.4829.938 . ПМИД   17829358 . S2CID   46408677 .
  149. ^ Боданский, Д.; Клейтон, Д.Д.; Фаулер, Вашингтон (1968). «Нуклеосинтез при горении кремния» . Письма о физических отзывах . 20 (4): 161. Бибкод : 1968PhRvL..20..161B . дои : 10.1103/PhysRevLett.20.161 . Архивировано из оригинала 13 февраля 2020 года . Проверено 16 июня 2019 г.
  150. ^ Jump up to: а б Мац, С.М.; Поделись, ГХ; Лейзинг, доктор медицины; Чупп, Эл.; Вестранд, WT; Перселл, WR; Стрикман, М.С.; Реппин, К. (1988). «Излучение гамма-лучей от SN1987A». Природа . 331 (6155): 416. Бибкод : 1988Natur.331..416M . дои : 10.1038/331416a0 . S2CID   4313713 .
  151. ^ Касен, Д.; Вусли, SE (2009). «Сверхновые типа II: модельные кривые блеска и стандартные свечные отношения». Астрофизический журнал . 703 (2): 2205. arXiv : 0910.1590 . Бибкод : 2009ApJ...703.2205K . дои : 10.1088/0004-637X/703/2/2205 . S2CID   42058638 .
  152. ^ Надь, АП; Винко, Дж. (2016). «Двухкомпонентная модель для подбора кривых блеска сверхновых с коллапсом ядра». Астрономия и астрофизика . 589 : А53. arXiv : 1602.04001 . Бибкод : 2016A&A...589A..53N . дои : 10.1051/0004-6361/201527931 . S2CID   53380594 .
  153. ^ Томинага, Н.; Блинников С.; Бакланов П.; Морокума, Т.; Номото, К.; Сузуки, Т. (1 ноября 2009 г.). «Свойства плато сверхновой SNLS-04D2dc типа II: многоцветные кривые блеска ударного прорыва и плато» . Астрофизический журнал . 705 (1): Л10–Л14. arXiv : 0908.2162 . Бибкод : 2009ApJ...705L..10T . дои : 10.1088/0004-637X/705/1/L10 . ISSN   0004-637X .
  154. ^ де ла Роза, Джени; Роминг, Пит; Причард, Тайлер; Фрайер, Крис (22 марта 2016 г.). «Характеристика кривых блеска от среднего ультрафиолета до оптического света близлежащих сверхновых типа II» . Астрофизический журнал . 820 (1): 74. Бибкод : 2016ApJ...820...74D . дои : 10.3847/0004-637X/820/1/74 . ISSN   1538-4357 .
  155. ^ Чуразов Е.; Сюняев Р.; Изерн, Дж.; Кнёдльседер, Дж.; Жан, П.; Лебрен, Ф.; Чугай, Н.; Гребенев С.; Браво, Э.; Сазонов С.; Рено, М. (2014). «Линии гамма-излучения кобальта-56 от сверхновой типа Ia 2014J». Природы . 512 (7515): 406–8. arXiv : 1405.3332 . Бибкод : 2014Natur.512..406C . дои : 10.1038/nature13672 . ПМИД   25164750 . S2CID   917374 .
  156. ^ Зайтенцаль, ИК; Таубенбергер, С.; Сим, SA (2009). «Кривые блеска сверхновых позднего времени: эффект внутренней конверсии и оже-электронов» . Ежемесячные уведомления Королевского астрономического общества . 400 (1): 531–535. arXiv : 0908.0247 . Бибкод : 2009MNRAS.400..531S . дои : 10.1111/j.1365-2966.2009.15478.x . S2CID   10283901 .
  157. ^ Цветков, Д.Ю. (1987). «Кривые блеска сверхновой типа Ib: SN 1984l в NGC 991». Советские астрономические письма . 13 : 376–378. Бибкод : 1987СвАЛ...13..376Т .
  158. ^ Jump up to: а б Филиппенко, А.В. (2004). «Сверхновые и их массивные звездные прародители». Судьба самых массивных звезд . 332 : 34. arXiv : astro-ph/0412029 . Бибкод : 2005ASPC..332...33F .
  159. ^ Филиппенко А.В. (1997). «Оптические спектры сверхновых». Ежегодный обзор астрономии и астрофизики . 35 : 309–355. Бибкод : 1997ARA&A..35..309F . дои : 10.1146/annurev.astro.35.1.309 .
  160. ^ Пасторелло, А.; Туратто, М.; Бенетти, С.; Каппелларо, Э.; Данцигер, Эй-Джей; Маццали, Пенсильвания; Патат, Ф.; Филиппенко А.В.; Шлегель, диджей; Мэтисон, Т. (2002). «Сверхновая типа II 1995Г: взаимодействие с околозвездной средой » Ежемесячные уведомления Королевского астрономического общества . 333 (1): 27–38. arXiv : astro-ph/0201483 . Бибкод : 2002МНРАС.333...27П . дои : 10.1046/j.1365-8711.2002.05366.x . S2CID   119347211 .
  161. ^ Оре, К; Магейн, П; Бьерно, Дж. (21 сентября 2018 г.). «Независимая от космологии калибровка данных о сверхновых типа Ia» . Ежемесячные уведомления Королевского астрономического общества . 479 (3): 3996–4003. arXiv : 1806.10900 . Бибкод : 2018MNRAS.479.3996H . дои : 10.1093/mnras/sty1715 . ISSN   0035-8711 .
  162. ^ де Йегер, Т.; Гэлбани, Л.; Гонсалес-Гайтан, С.; Кесслер, Р.; Филиппенко А.В.; Ферстер, Ф.; Хамуи, М.; Браун, ПиДжей; Дэвис, ТМ; Гутьеррес, CP; Инсерра, К.; Льюис, ГФ; Мёллер, А.; Сколник, Д.; Смит, М. (11 июля 2020 г.). «Изучение сверхновых типа II как космологических стандартных свечей с помощью Обзора темной энергии» . Ежемесячные уведомления Королевского астрономического общества . 495 (4): 4860–4892. arXiv : 1806.10900 . Бибкод : 2018MNRAS.479.3996H . дои : 10.1093/mnras/staa1402 . ISSN   0035-8711 .
  163. ^ Ли, В.; Лиман, Дж.; Чорнок, Р.; Филиппенко А.В.; Познанский, Д.; Ганешалингам, М.; Ван, X.; Моджаз, М.; Джа, С.; Фоли, Р.Дж.; Смит, Н. (2011). «Скорость ближайших сверхновых по данным Ликской обсерватории «Поиск сверхновых – II. Наблюдаемые функции светимости и доли сверхновых в полной выборке» . Ежемесячные уведомления Королевского астрономического общества . 412 (3): 1441. arXiv : 1006.4612 . Бибкод : 2011MNRAS.412.1441L . дои : 10.1111/j.1365-2966.2011.18160.x . S2CID   59467555 .
  164. ^ Ричардсон, Д.; Бранч, Д.; Кейсбир, Д.; Миллард, Дж.; Томас, RC; Барон, Э. (2002). «Сравнительное исследование распределения сверхновых по абсолютным величинам». Астрономический журнал . 123 (2): 745–752. arXiv : astro-ph/0112051 . Бибкод : 2002AJ....123..745R . дои : 10.1086/338318 . S2CID   5697964 .
  165. ^ Фрайл, Д.А.; Джакани, Е.Б.; Госс, В. Миллер; Дубнер, генеральный директор (1996). «Туманность Пульсар Ветер вокруг PSR B1853 + 01 в остатке сверхновой W44». Письма астрофизического журнала . 464 (2): Л165–Л168. arXiv : astro-ph/9604121 . Бибкод : 1996ApJ...464L.165F . дои : 10.1086/310103 . S2CID   119392207 .
  166. ^ Jump up to: а б Хёфлих, Пенсильвания; Кумар, П.; Уилер, Дж. Крейг (2004). «Удар нейтронной звезды и асимметрия сверхновой». Космические взрывы в трех измерениях: асимметрия сверхновых и гамма-всплески . Издательство Кембриджского университета . п. 276. arXiv : astro-ph/0312542 . Бибкод : 2004cetd.conf..276L . {{cite book}}: |journal= игнорируется ( помогите )
  167. ^ Jump up to: а б Янка, Ханс-Томас; Вонгватанарат, Анноп; Крамер, Майкл (1 февраля 2022 г.). «Откат сверхновой как происхождение вращений нейтронных звезд и выравнивания спин-удара» . Астрофизический журнал . 926 (1): 9. arXiv : 2104.07493 . Бибкод : 2022ApJ...926....9J . дои : 10.3847/1538-4357/ac403c . ISSN   0004-637X .
  168. ^ Фрайер, CL (2004). «Удар нейтронной звезды в результате асимметричного коллапса». Астрофизический журнал . 601 (2): L175–L178. arXiv : astro-ph/0312265 . Бибкод : 2004ApJ...601L.175F . дои : 10.1086/382044 . S2CID   1473584 .
  169. ^ Гилкис, А.; Сокер, Н. (2014). «Последствия турбулентности для струй при взрывах сверхновых с коллапсом ядра». Астрофизический журнал . 806 (1): 28. arXiv : 1412.4984 . Бибкод : 2015ApJ...806...28G . дои : 10.1088/0004-637X/806/1/28 . S2CID   119002386 .
  170. ^ Хохлов А.М.; Хёфлих, Пенсильвания; Оран, ES; Уиллер, Дж. Крейг; Ван, Л.; Ччелканова, А.Ю. (1999). «Джет-индуцированные взрывы сверхновых с коллапсом ядра». Астрофизический журнал . 524 (2): L107. arXiv : astro-ph/9904419 . Бибкод : 1999ApJ...524L.107K . дои : 10.1086/312305 . S2CID   37572204 .
  171. ^ Ван, Л.; Баде, Д.; Хёфлих, Пенсильвания; Хохлов А.М.; Уилер, Джей Си; Касен, Д.; Ньюджент, ЧП; Перлмуттер, ЮАР; Франссон, К.; Лундквист, П. (2003). «Спектрополяриметрия SN 2001el в NGC 1448: асферичность нормальной сверхновой типа Ia». Астрофизический журнал . 591 (2): 1110–1128. arXiv : astro-ph/0303397 . Бибкод : 2003ApJ... 591.1110W дои : 10.1086/375444 . S2CID   2923640 .
  172. ^ Jump up to: а б с Маццали, Пенсильвания; Номото, К.И.; Каппелларо, Э.; Накамура, Т.; Умеда, Х.; Ивамото, К. (2001). «Могут ли различия в содержании никеля в моделях массы Чандрасекара объяснить связь между яркостью и скоростью снижения нормальных сверхновых типа Ia?» . Астрофизический журнал . 547 (2): 988. arXiv : astro-ph/0009490 . Бибкод : 2001ApJ...547..988M . дои : 10.1086/318428 . S2CID   9324294 .
  173. ^ Янка, Х.-Т. (2002). «Тайны сверхновых». Наука . 297 (5584): 1134–1135. дои : 10.1126/science.1075935 . ПМИД   12183617 . S2CID   34349443 .
  174. ^ Номото, Кен'Ичи; Ивамото, Коичи; Кишимото, Нобухиро (1997). «Сверхновые типа Ia: их происхождение и возможные применения в космологии». Наука . 276 (5317): 1378–1382. arXiv : astro-ph/9706007 . Бибкод : 1997Sci...276.1378N . дои : 10.1126/science.276.5317.1378 . ПМИД   9190677 . S2CID   2502919 .
  175. ^ Ивамото, К. (2006). «Нейтринное излучение сверхновых типа Ia». Материалы конференции AIP . 847 : 406–408. Бибкод : 2006AIPC..847..406I . дои : 10.1063/1.2234440 .
  176. ^ Хайден, Британская Колумбия; Гарнавич, премьер-министр; Кесслер, Р.; Фриман, Дж.А.; Джа, Юго-Запад; Бассетт, Б.; Чинабро, Д.; Дилдей, Б.; Касен, Д.; Марринер, Дж.; Никол, RC; Рисс, АГ; Сако, М.; Шнайдер, ДП; Смит, М.; Соллерман, Дж. (2010). «Взлет и падение кривых блеска сверхновых типа Ia в обзоре сверхновых SDSS-II». Астрофизический журнал . 712 (1): 350–366. arXiv : 1001.3428 . Бибкод : 2010ApJ...712..350H . дои : 10.1088/0004-637X/712/1/350 . S2CID   118463541 .
  177. ^ Янка, Х.-Т. (2012). «Механизмы взрыва сверхновых с коллапсом ядра» . Ежегодный обзор ядерной науки и науки о элементарных частицах . 62 (1): 407–451. arXiv : 1206.2503 . Бибкод : 2012ARNPS..62..407J . doi : 10.1146/annurev-nucl-102711-094901 . S2CID   118417333 .
  178. ^ Смартт, Стивен Дж.; Номото, Кеничи; Каппелларо, Энрико; Накамура, Такаёси; Умеда, Хидеюки; Ивамото, Коичи (2009). «Прародители сверхновых с коллапсом ядра». Ежегодный обзор астрономии и астрофизики . 47 (1): 63–106. arXiv : 0908.0700 . Бибкод : 2009ARA&A..47...63S . doi : 10.1146/annurev-astro-082708-101737 . S2CID   55900386 .
  179. ^ Дессар, Л.; Берроуз, А.; Ливне, Э.; Отт, CD (20 января 2008 г.). «Фаза протонейтронной звезды модели коллапсара и путь к длинным мягким гамма-всплескам и гиперновым» . Астрофизический журнал . 673 (1): L43–L46. arXiv : 0710.5789 . Бибкод : 2008ApJ...673L..43D . дои : 10.1086/527519 . ISSN   0004-637X .
  180. ^ Сенно, Николай; Мурасе, Кохта; Месарош, Питер (8 апреля 2016 г.). «Задушенные джеты и гамма-всплески малой светимости как скрытые источники нейтрино» . Физический обзор D . 93 (8): 083003. arXiv : 1512.08513 . Бибкод : 2016PhRvD..93h3003S . дои : 10.1103/PhysRevD.93.083003 . ISSN   2470-0010 . S2CID   16452722 .
  181. ^ Вусли, ЮВ; Блинников С.; Хегер, Александр (15 ноября 2007 г.). «Пульсационная парная нестабильность как объяснение наиболее ярких сверхновых» . Природа . 450 (7168): 390–392. arXiv : 0710.3314 . Бибкод : 2007Natur.450..390W . дои : 10.1038/nature06333 . ISSN   0028-0836 . ПМИД   18004378 . S2CID   2925738 .
  182. ^ Барков Максим Владимирович; Комиссаров, Сергей С. (21 июля 2011 г.). «Переработка нейтронных звезд в обычных оболочках и взрывы гиперновых: Переработка нейтронных звезд и гиперновых» . Ежемесячные уведомления Королевского астрономического общества . 415 (1): 944–958. arXiv : 1012.4565 . Бибкод : 2011MNRAS.415..944B . дои : 10.1111/j.1365-2966.2011.18762.x .
  183. ^ Райт, Уоррен П.; Гилмер, Мэтью С.; Фрелих, Карла; Неллер, Джеймс П. (13 ноября 2017 г.). «Нейтринный сигнал от сверхновых с парной нестабильностью» . Физический обзор D . 96 (10): 103008. arXiv : 1706.08410 . Бибкод : 2017PhRvD..96j3008W . дои : 10.1103/PhysRevD.96.103008 . ISSN   2470-0010 . S2CID   119487775 .
  184. ^ Гансс, Р; Залогодатель, Дж.Л.; Сансом, А.Е.; Джеймс, Пенсильвания; Пульс, Дж; Хабергем-Моусон, С.М. (22 марта 2022 г.). «Оценка металличности областей коллапса ядра сверхновой H ii в галактиках в пределах 30 Мпк» . Ежемесячные уведомления Королевского астрономического общества . 512 (1): 1541–1556. arXiv : 2203.03308 . Бибкод : 2022MNRAS.512.1541G . дои : 10.1093/mnras/stac625 . ISSN   0035-8711 .
  185. ^ Прочаска, JX; Блум, Дж.С.; Чен, Х.-В.; Фоли, Р.Дж.; Перли, Д.А.; Рамирес-Руис, Э.; Гранот, Дж.; Ли, Вашингтон; Пули, Д.; Алатало, К.; Херли, К.; Купер, MC; Дюпри, АК; Герке, Б.Ф.; Хансен, BMS (10 мая 2006 г.). «Галактические хозяева и крупномасштабные среды коротких жестких гамма-всплесков» . Астрофизический журнал . 642 (2): 989–994. arXiv : astro-ph/0510022 . Бибкод : 2006ApJ...642..989P . дои : 10.1086/501160 . ISSN   0004-637X .
  186. ^ Петросян, Арташес; Навасардян, Рипсиме; Каппелларо, Энрико; Маклин, Брайан; Аллен, Рон; Панагия, Нино; Лейтерер, Клаус; МакКенти, Джон; Туратто, Массимо (март 2005 г.). «Активные и звездообразующие галактики и их сверхновые» . Астрономический журнал . 129 (3): 1369–1380. Бибкод : 2005AJ....129.1369P . дои : 10.1086/427712 . ISSN   0004-6256 .
  187. ^ Шао, X.; Лян, ЮК; Деннефельд, М.; Чен, XY; Чжун, GH; Хаммер, Ф.; Дэн, LC; Флорес, Х.; Чжан, Б.; Ши, ВБ; Чжоу, Л. (25 июля 2014 г.). «Сравнение родительских галактик сверхновых типов Ia, II и Ibc» . Астрофизический журнал . 791 (1): 57. arXiv : 1407.0483 . Бибкод : 2014ApJ...791...57S . дои : 10.1088/0004-637X/791/1/57 . ISSN   0004-637X .
  188. ^ Таггарт, К; Перли, Д.А. (5 апреля 2021 г.). «Популяции галактик-хозяев сверхновых с коллапсом ядра, сверхяркостью и гамма-всплесками при низком красном смещении: важность карликовых галактик и галактик со звездообразованием» . Ежемесячные уведомления Королевского астрономического общества . 503 (3): 3931–3952. arXiv : 1911.09112 . Бибкод : 2021MNRAS.503.3931T . дои : 10.1093/mnras/stab174 . ISSN   0035-8711 .
  189. ^ Мория, Такаши Дж.; Маэда, Кейичи; Таддия, Франческо; Соллерман, Йеспер; Блинников Сергей Игоревич; Сорокина, Елена Ивановна (11 апреля 2014 г.). «История потери массы прародителей сверхновых типа II за десятилетия до их взрыва» . Ежемесячные уведомления Королевского астрономического общества . 439 (3): 2917–2926. arXiv : 1401.4893 . Бибкод : 2014MNRAS.439.2917M . дои : 10.1093/mnras/stu163 . ISSN   1365-2966 .
  190. ^ Гэлбани, Л.; Андерсон, JP; Санчес, Сан-Франциско; Кунчараякти, Х.; Педраш, С.; Гонсалес-Гайтан, С.; Станишев, В.; Домингес, И.; Морено-Райя, Мэн; Вуд-Вэйси, В.М.; Мурао, AM; Пондер, К.А.; Баденес, К.; Молла, М.; Лопес-Санчес, AR (13 марта 2018 г.). «ПИСКО: Сборник хостов сверхновых интегрального поля PMAS / PPak» . Астрофизический журнал . 855 (2): 107. arXiv : 1802.01589 . Бибкод : 2018ApJ...855..107G . дои : 10.3847/1538-4357/aaaf20 . ISSN   1538-4357 .
  191. ^ Jump up to: а б Дэвис, Бен; Бизор, Эмма Р. (2020). « 'О проблеме красных сверхгигантов': опровержение и консенсус относительно верхнего предела массы предшественников II-P» . Ежемесячные уведомления Королевского астрономического общества: письма . 496 (1): Л142–Л146. arXiv : 2005.13855 . Бибкод : 2020MNRAS.496L.142D . дои : 10.1093/mnrasl/slaa102 .
  192. ^ Смартт, С.Дж.; Элдридж, Джей-Джей; Крокетт, РМ; Маунд, младший (май 2009 г.). «Гибель массивных звезд - I. Ограничения наблюдения за прародителями сверхновых типа II-P» . Ежемесячные уведомления Королевского астрономического общества . 395 (3): 1409–1437. arXiv : 0809.0403 . Бибкод : 2009MNRAS.395.1409S . дои : 10.1111/j.1365-2966.2009.14506.x . ISSN   0035-8711 . S2CID   3228766 .
  193. ^ Jump up to: а б с д и Смартт, Стивен Дж.; Томпсон, Тодд А.; Кочанек, Кристофер С. (2009). «Прародители сверхновых с коллапсом ядра». Ежегодный обзор астрономии и астрофизики . 47 (1): 63–106. arXiv : 0908.0700 . Бибкод : 2009ARA&A..47...63S . doi : 10.1146/annurev-astro-082708-101737 . S2CID   55900386 .
  194. ^ Уолмсвелл, Джей-Джей; Элдридж, Джей-Джей (2012). «Околозвездная пыль как решение проблемы прародителя сверхновой красного сверхгиганта» . Ежемесячные уведомления Королевского астрономического общества . 419 (3): 2054. arXiv : 1109.4637 . Бибкод : 2012MNRAS.419.2054W . дои : 10.1111/j.1365-2966.2011.19860.x . S2CID   118445879 .
  195. ^ Георгий, К. (2012). «Желтые сверхгиганты как прародители сверхновых: признак сильной потери массы красных сверхгигантов?». Астрономия и астрофизика . 538 : L8 – L2. arXiv : 1111.7003 . Бибкод : 2012A&A...538L...8G . дои : 10.1051/0004-6361/201118372 . S2CID   55001976 .
  196. ^ Jump up to: а б Юн, Южная Каролина; Грефенер, Г.; Винк, Дж.С.; Козырева А.; Иззард, Р.Г. (2012). «О природе и обнаруживаемости прародителей сверхновых типа Ib/c». Астрономия и астрофизика . 544 : Л11. arXiv : 1207.3683 . Бибкод : 2012A&A...544L..11Y . дои : 10.1051/0004-6361/201219790 . S2CID   118596795 .
  197. ^ Гро, Дж. Х.; Мейне, Г.; Экстрем, С. (2013). «Эволюция массивных звезд: светящиеся синие переменные как неожиданные прародители сверхновых». Астрономия и астрофизика . 550 : L7. arXiv : 1301.1519 . Бибкод : 2013A&A...550L...7G . дои : 10.1051/0004-6361/201220741 . S2CID   119227339 .
  198. ^ Jump up to: а б с Джонсон, Дженнифер А. (2019). «Заполнение таблицы Менделеева: Нуклеосинтез элементов» . Наука . 363 (6426): 474–478. Бибкод : 2019Sci...363..474J . дои : 10.1126/science.aau9540 . ПМИД   30705182 . S2CID   59565697 .
  199. ^ Франсуа, П.; Маттеуччи, Ф.; Кайрел, Р.; Злоба, М.; Злоба, Ф.; Кьяппини, К. (2004). «Эволюция Млечного Пути с самых ранних этапов: ограничения звездного нуклеосинтеза». Астрономия и астрофизика . 421 (2): 613–621. arXiv : astro-ph/0401499 . Бибкод : 2004A&A...421..613F . дои : 10.1051/0004-6361:20034140 . S2CID   16257700 .
  200. ^ Jump up to: а б Труран, JW (1977). «Нуклеосинтез сверхновой». В Шрамме, Д.Н. (ред.). Сверхновые . Библиотека астрофизики и космических наук. Том. 66. Спрингер . стр. 145–158. Бибкод : 1977ASSL...66..145T . дои : 10.1007/978-94-010-1229-4_14 . ISBN  978-94-010-1231-7 .
  201. ^ Номото, Кен'Ичи; Люн, Шинг-Чи (2018). «Одиночные вырожденные модели сверхновых типа Ia: эволюция прародителей и результаты нуклеосинтеза». Обзоры космической науки . 214 (4): 67. arXiv : 1805.10811 . Бибкод : 2018ССРв..214...67Н . дои : 10.1007/s11214-018-0499-0 . S2CID   118951927 .
  202. ^ Маэда, К.; Рёпке, ФК; Финк, М.; Хиллебрандт, В.; Травальо, К.; Тилеманн, Ф.-К. (2010). «Нуклеосинтез в двумерных моделях замедленной детонации взрывов сверхновых типа Ia». Астрофизический журнал . 712 (1): 624–638. arXiv : 1002.2153 . Бибкод : 2010ApJ...712..624M . дои : 10.1088/0004-637X/712/1/624 . S2CID   119290875 .
  203. ^ Ванахо, Шинья; Янка, Ханс-Томас; Мюллер, Бернхард (2011). «Сверхновые с электрозахватом как происхождение элементов за пределами железа». Астрофизический журнал . 726 (2): Л15. arXiv : 1009.1000 . Бибкод : 2011ApJ...726L..15W . дои : 10.1088/2041-8205/726/2/L15 . S2CID   119221889 .
  204. ^ Эйхлер, М.; Накамура, К.; Такиваки, Т.; Курода, Т.; Котаке, К.; Хемпель, М.; Кабесон, Р.; Либендорфер, М.; Тилеманн, ФК (2018). «Нуклеосинтез в двумерных сверхновых с коллапсом ядра прародителей 11,2 и 17,0 M⊙: значение для производства Mo и Ru». Журнал физики G: Ядерная физика и физика элементарных частиц . 45 (1): 014001. arXiv : 1708.08393 . Бибкод : 2018JPhG...45a4001E . дои : 10.1088/1361-6471/aa8891 . S2CID   118936429 .
  205. ^ Цянь, Ю.-З.; Фогель, П.; Вассербург, Дж.Дж. (1998). «Разнообразные источники сверхновых для r-процесса». Астрофизический журнал . 494 (1): 285–296. arXiv : astro-ph/9706120 . Бибкод : 1998ApJ...494..285Q . дои : 10.1086/305198 . S2CID   15967473 .
  206. ^ Сигел, Дэниел М.; Барнс, Дженнифер; Мецгер, Брайан Д. (2019). «Коллапсары как основной источник элементов r-процесса». Природа . 569 (7755): 241–244. arXiv : 1810.00098 . Бибкод : 2019Natur.569..241S . дои : 10.1038/s41586-019-1136-0 . ПМИД   31068724 . S2CID   73612090 .
  207. ^ Гонсалес, Г.; Браунли, Д.; Уорд, П. (2001). «Галактическая обитаемая зона: галактическая химическая эволюция». Икар . 152 (1): 185. arXiv : astro-ph/0103165 . Бибкод : 2001Icar..152..185G . дои : 10.1006/icar.2001.6617 . S2CID   18179704 .
  208. ^ Ро, Чонхи; Милисавлевич, Дэнни; Саранги, Аркапрабха; Маргутти, Рафаэлла; Чорнок, Райан; Отдыхай, Армин; Грэм, Мелисса; Крейг Уиллер, Дж.; ДеПой, Даррен; Ван, Лифан; Маршалл, Дженнифер; Уильямс, Грант; Стрит, Рэйчел; Скидмор, Уоррен; Хаоцзин, Ян; Блум, Джошуа; Старрфилд, Самнер ; Ли, Цзянь-Сю; Каупертуэйт, Филип С.; Стрингфеллоу, Гай С.; Коппеянс, Динн; Местность, Джакомо; Шраван, Нихарика; Гебалле, Томас Р.; Эванс, Аневрин; Мэрион, Хоуи (2019). «Научный доклад Astro2020: Являются ли сверхновые производителями пыли в ранней Вселенной?». Бюллетень Американского астрономического общества . 51 (3): 351.arXiv : 1904.08485 . Бибкод : 2019BAAS...51c.351R .
  209. ^ Кокс, ДП (1972). «Охлаждение и эволюция остатка сверхновой» . Астрофизический журнал . 178 : 159. Бибкод : 1972ApJ...178..159C . дои : 10.1086/151775 .
  210. ^ Jump up to: а б Джонсон, Дженнифер А. (февраль 2019 г.). «Заполнение таблицы Менделеева: Нуклеосинтез элементов» . Наука . 363 (6426): 474–478. Бибкод : 2019Sci...363..474J . дои : 10.1126/science.aau9540 . ISSN   0036-8075 . ПМИД   30705182 . S2CID   59565697 .
  211. ^ Сандстрем, КМ; Болатто, AD; Станимирович, С. ; Ван Лун, Дж. Т.; Смит, JDT (2009). «Измерение образования пыли в остатке сверхновой 1E 0102.2–7219, коллапсирующего ядра малого Магелланова облака». Астрофизический журнал . 696 (2): 2138–2154. arXiv : 0810.2803 . Бибкод : 2009ApJ...696.2138S . дои : 10.1088/0004-637X/696/2/2138 . S2CID   8703787 .
  212. ^ Саларис, Маурицио; Кассизи, Санти (август 2017 г.). «Перенос химических элементов в моделях звездной эволюции» . Королевское общество открытой науки . 4 (8): 170192. arXiv : 1707.07454 . Бибкод : 2017RSOS....470192S . дои : 10.1098/rsos.170192 . ISSN   2054-5703 . ПМК   5579087 . ПМИД   28878972 .
  213. ^ Фишер, Дебра А.; Валенти, Джефф (2005). «Корреляция планеты и металличности» . Астрофизический журнал . 622 (2): 1102–1117. Бибкод : 2005ApJ...622.1102F . дои : 10.1086/428383 . S2CID   121872365 .
  214. ^ Чжу, Вэй; Донг, Субо (2021). «Статистика экзопланет и теоретические последствия». Ежегодный обзор астрономии и астрофизики . 59 : 291–336. arXiv : 2103.02127 . Бибкод : 2021ARA&A..59..291Z . doi : 10.1146/annurev-astro-112420-020055 . S2CID   232105177 .
  215. ^ Прейбиш, Т.; Зиннекер, Х. (2001). «Запуск звездообразования в ассоциации OB Скорпиона-Центавра (Sco OB2)». От тьмы к свету: происхождение и эволюция молодых звездных скоплений . 243 : 791. arXiv : astro-ph/0008013 . Бибкод : 2001ASPC..243..791P .
  216. ^ Кребс, Дж.; Хиллебрандт, В. (1983). «Взаимодействие фронтов ударных сверхновых и близлежащих межзвездных облаков». Астрономия и астрофизика . 128 (2): 411. Бибкод : 1983A&A...128..411K .
  217. ^ Кэмерон, AGW; Труран, JW (1977). «Триггер сверхновой для формирования Солнечной системы». Икар . 30 (3): 447. Бибкод : 1977Icar...30..447C . дои : 10.1016/0019-1035(77)90101-4 .
  218. ^ Бхандан, Шивани (1 июня 2020 г.). «Главные галактики и прародители быстрых радиовсплесков, локализованные с помощью австралийского следопыта с массивом квадратных километров» . Письма астрофизического журнала . 895 (2): Л37. arXiv : 2005.13160 . Бибкод : 2020ApJ...895L..37B . дои : 10.3847/2041-8213/ab672e . S2CID   218900539 .
  219. ^ Чжан, Бин (5 ноября 2020 г.). «Физические механизмы быстрых радиовсплесков» . Природа . 587 (7832): 45–53. arXiv : 2011.03500 . Бибкод : 2020Natur.587...45Z . дои : 10.1038/s41586-020-2828-1 . ISSN   0028-0836 . ПМИД   33149290 . S2CID   226259246 .
  220. ^ Чу, Дженнифер (13 июля 2022 г.). «Астрономы обнаружили радио «сердцебиение» в миллиардах световых лет от Земли» . Новости МТИ . Массачусетский технологический институт . Проверено 19 марта 2023 г.
  221. ^ Петров, Э.; Хессельс, JWT; Лоример, ДР (29 марта 2022 г.). «Быстрые радиовсплески на заре 2020-х годов» . Обзор астрономии и астрофизики . 30 (1): 2. arXiv : 2107.10113 . Бибкод : 2022A&ARv..30....2P . дои : 10.1007/s00159-022-00139-w . ISSN   1432-0754 . S2CID   253690001 .
  222. ^ Акерманн, М.; и др. (2013). «Обнаружение характерных признаков пионного распада в остатках сверхновых». Наука . 339 (6121): 807–11. arXiv : 1302.3307 . Бибкод : 2013Sci...339..807A . дои : 10.1126/science.1231160 . ПМИД   23413352 . S2CID   29815601 .
  223. ^ Отт, компакт-диск; О'Коннор, EP; Госсан, SE; Абдикамалов Э.; Гамма, UCT; Драско, С. (2012). «Сверхновые с коллапсом ядра, нейтрино и гравитационные волны». Ядерная физика Б: Приложения к сборнику трудов . 235 : 381–387. arXiv : 1212.4250 . Бибкод : 2013НуФС.235..381О . doi : 10.1016/j.nuclphysbps.2013.04.036 . S2CID   34040033 .
  224. ^ Морозова Виктория; Радиче, Дэвид; Берроуз, Адам; Вартанян, Давид (2018). «Сигнал гравитационной волны от сверхновых с коллапсом ядра» . Астрофизический журнал . 861 (1): 10. arXiv : 1801.01914 . Бибкод : 2018ApJ...861...10M . дои : 10.3847/1538-4357/aac5f1 . S2CID   118997362 .
  225. ^ Аль Харуси, С.; БенЦви, Ю.Ю.; Бобовски, Дж. С.; Бонивенто, В.; Брдар, В.; Бруннер, Т.; Каден, Э.; Кларк, М.; Колейро, А.; Коломер-Молла, М.; Креспо-Анадон, Дж.И.; Депоян, А.; Дорник, Д.; Фишер, В.; и др. (1 марта 2021 г.). «SNEWS 2.0: система раннего предупреждения о сверхновых нового поколения для мультимессенджерной астрономии» . Новый журнал физики . 23 (3): 031201. arXiv : 2011.00035 . Бибкод : 2021NJPh...23c1201A . дои : 10.1088/1367-2630/abde33 . ISSN   1367-2630 . S2CID   226227393 .
  226. ^ Филдс, Б.Д.; Хохмут, Калифорния; Эллис, Дж. (2005). «Глубоководные океанические коры как телескопы: использование живых радиоизотопов для исследования нуклеосинтеза сверхновых». Астрофизический журнал . 621 (2): 902–907. arXiv : astro-ph/0410525 . Бибкод : 2005ApJ...621..902F . дои : 10.1086/427797 . S2CID   17932224 .
  227. ^ Колено, К.; Корщинек, Г.; Фастерманн, Т.; Дорфи, Э.; Ругель, Г.; Валлнер, А. (2004). " 60 Аномалия железа в глубоководной марганцевой коре и последствия для близлежащего источника сверхновой». Physical Review Letters . 93 (17): 171103–171106. Bibcode : 2004PhRvL..93q1103K . doi : 10.1103/PhysRevLett.93.171103 . PMID   15525 .С2КИД 065   23162505 .
  228. ^ Филдс, Б.Д.; Эллис, Дж. (1999). «О глубоководном Fe-60 как окаменелости околоземной сверхновой». Новая астрономия . 4 (6): 419–430. arXiv : astro-ph/9811457 . Бибкод : 1999NewA....4..419F . дои : 10.1016/S1384-1076(99)00034-2 . S2CID   2786806 .
  229. ^ «Коротко». Научный американец . 300 (5): 28. 2009. Бибкод : 2009SciAm.300e..28. . doi : 10.1038/scientificamerican0509-28a .
  230. ^ Петерсен, Кэролин Коллинз (22 марта 2023 г.). «Помогли ли сверхновые сделать жизнь более разнообразной?» . Вселенная сегодня . Проверено 23 марта 2023 г.
  231. ^ Свенсмарк, Хенрик (16 марта 2023 г.). «Постоянное влияние сверхновых на биоразнообразие в фанерозое» . Экология и эволюция . 13 (3). Интернет-библиотека Wiley: e9898. Бибкод : 2023EcoEv..13E9898S . дои : 10.1002/ece3.9898 . ПМК   10019915 . ПМИД   36937070 . е9898.
  232. ^ Горелик, М. (2007). «Угроза сверхновой». Небо и телескоп . 113 (3): 26. Бибкод : 2007S&T...113c..26G .
  233. ^ Герелс, Н.; Лэрд, CM; Джекман, Швейцария; Канниццо, Дж. К.; Мэттсон, Би Джей; Чен, В. (2003). «Разрушение озона из-за близлежащих сверхновых». Астрофизический журнал . 585 (2): 1169–1176. arXiv : astro-ph/0211361 . Бибкод : 2003ApJ...585.1169G . дои : 10.1086/346127 . S2CID   15078077 .
  234. ^ Ван дер Слейс, MV; Ламерс, HJGLM (2003). «Динамика туманности М1-67 вокруг убегающей звезды Вольфа-Райе WR 124». Астрономия и астрофизика . 398 : 181–194. arXiv : astro-ph/0211326 . Бибкод : 2003A&A...398..181В . дои : 10.1051/0004-6361:20021634 . S2CID   6142859 .
  235. ^ Кристофари, П; Марковит, А; Рено, М; Дваркадас, В.В.; Татищев, В; Джачинти, Дж; Перетти, Э; Сол, Х (18 февраля 2022 г.). «Первые дни коллапса ядра сверхновых типа II-P в гамма-диапазоне» . Ежемесячные уведомления Королевского астрономического общества . 511 (3): 3321–3329. arXiv : 2201.09583 . дои : 10.1093/mnras/stac217 . ISSN   0035-8711 .
  236. ^ Трампер, Ф.; Страал, С.М.; Саньял, Д.; Сана, Х.; Де Котер, А.; Грефенер, Г.; Лангер, Н.; Винк, Дж.С.; Де Минк, SE ; Капер, Л. (2015). «Массивные звезды на грани взрыва: свойства кислородной последовательности звезд Вольфа-Райе». Астрономия и астрофизика . 581 : А110. arXiv : 1507.00839 . Бибкод : 2015A&A...581A.110T . дои : 10.1051/0004-6361/201425390 . S2CID   56093231 .
  237. ^ Трампер, Ф.; Грефенер, Г.; Хартуг, Огайо; Сана, Х.; Де Котер, А.; Винк, Дж.С.; Эллербрук, Луизиана; Лангер, Н.; Гарсия, М.; Капер, Л.; Де Минк, SE (2013). «О природе звезд WO: количественный анализ звезды WO3 DR1 в IC 1613». Астрономия и астрофизика . 559 : А72. arXiv : 1310.2849 . Бибкод : 2013A&A...559A..72T . дои : 10.1051/0004-6361/201322155 . S2CID   216079684 .
  238. ^ Файерстоун, РБ (июнь 2014 г.). «Наблюдение 23 взорвавшихся сверхновых» . Астрофизический журнал . 789 (1): 29. Бибкод : 2014ApJ...789...29F . дои : 10.1088/0004-637X/789/1/29 . ISSN   0004-637X .
  239. ^ Инглис, М. (2015). «Звездная смерть: сверхновые, нейтронные звезды и черные дыры». Астрофизика – это просто! . Серия Патрика Мура по практической астрономии. стр. 203–223. дои : 10.1007/978-3-319-11644-0_12 . ISBN  978-3-319-11643-3 .
  240. ^ «ВВ Цефей» . stars.astro.illinois.edu . Проверено 14 апреля 2024 г.
  241. ^ Jump up to: а б Мухопадхьяй, Майнак; Лунардини, Сесилия; Тиммс, Форекс; Зубер, Кай (1 августа 2020 г.). «Предсверхновые нейтрино: направленная чувствительность и перспективы идентификации предшественников» . Астрофизический журнал . 899 (2): 153. arXiv : 2004.02045 . Бибкод : 2020ApJ...899..153M . дои : 10.3847/1538-4357/ab99a6 . ISSN   0004-637X .
  242. ^ Лобель, А.; Стефаник, Р.П.; Торрес, Г.; Дэвис, Р.Дж.; Ильин И.; Розенбуш, А.Е. (2004). «Спектроскопия тысячелетней вспышки и современная изменчивость желтого гипергиганта Ро Кассиопеи». Звезды как Солнца: Деятельность . 219 : 903. arXiv : astro-ph/0312074 . Бибкод : 2004IAUS..219..903L .
  243. ^ Ван Букель, Р.; Кервелла, П.; Шеллер, М.; Хербст, Т.; Бранднер, В.; Де Котер, А.; Уотерс, LBFM; Хиллиер, диджей; Пареске, Ф.; Ленцен, Р.; Лагранж, А.-М. (2003). «Прямое измерение размера и формы современного звездного ветра Эта Киля». Астрономия и астрофизика . 410 (3): Л37. arXiv : astro-ph/0310399 . Бибкод : 2003A&A...410L..37V . дои : 10.1051/0004-6361:20031500 . S2CID   18163131 .
  244. ^ Тилеманн, Ф.-К.; Хирши, Р.; Либендорфер, М.; Диль, Р. (2011). «Массивные звезды и их сверхновые». Астрономия с радиоактивностью . Конспект лекций по физике. Том. 812. стр. 153–231. arXiv : 1008.2144 . Бибкод : 2011ЛНП...812..153Т . дои : 10.1007/978-3-642-12698-7_4 . ISBN  978-3-642-12697-0 . S2CID   119254840 .
  245. ^ Тутхилл, П.Г.; Моннье, доктор медицинских наук; Лоуренс, Н.; Данчи, туалет; Овоцкий, СП; Гейли, КГ (2008). «Прототип вертушки со встречным ветром WR 104». Астрофизический журнал . 675 (1): 698–710. arXiv : 0712.2111 . Бибкод : 2008ApJ...675..698T . дои : 10.1086/527286 . S2CID   119293391 .
  246. ^ Торогуд, Т.Д.; Диллон, В.С.; Литтлфэр, SP; Марш, ТР; Смит, Д.А. (2002). «Рекуррентная новая U Скорпиона - прародитель сверхновой типа Ia». Физика катаклизмических переменных и связанных с ними объектов . Том. 261. Сан-Франциско, Калифорния: Тихоокеанское астрономическое общество . arXiv : astro-ph/0109553 . Бибкод : 2002ASPC..261...77T .
  247. ^ Ландсман, В.; Саймон, Т.; Бержерон, П. (1999). «Горячие белые карлики-компаньоны HR 1608, HR 8210 и HD 15638» . Публикации Тихоокеанского астрономического общества . 105 (690): 841–847. Бибкод : 1993PASP..105..841L . дои : 10.1086/133242 .
  248. ^ Бич, Мартин (декабрь 2011 г.). «Прошлая, настоящая и будущая угроза сверхновой биосфере Земли» . Астрофизика и космическая наука . 336 (2): 287–302. Бибкод : 2011Ap&SS.336..287B . дои : 10.1007/s10509-011-0873-9 . ISSN   0004-640X . S2CID   119803426 .

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 523cbd32301d6af1e3f5b68bb8b638ad__1721945160
URL1:https://arc.ask3.ru/arc/aa/52/ad/523cbd32301d6af1e3f5b68bb8b638ad.html
Заголовок, (Title) документа по адресу, URL1:
Supernova - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)