Терпен
Терпены ( / ˈ t ɜːr p iː n / ) представляют собой класс натуральных продуктов , состоящих из соединений с формулой (C 5 H 8 ) n для n ≥ 2. Терпены являются основными строительными блоками биосинтеза. , состоящие из более чем 30 000 соединений, Эти ненасыщенные углеводороды производятся преимущественно растениями , особенно хвойными . [ 1 ] [ 2 ] [ 3 ] У растений терпены и терпеноиды являются важными медиаторами экологических взаимодействий , в то время как некоторые насекомые используют некоторые терпены в качестве формы защиты. Другие функции терпеноидов включают модуляцию роста клеток и удлинение растений, сбор света и фотозащиту, а также контроль проницаемости и текучести мембран.
Терпены классифицируются по количеству атомов углерода: монотерпены (С 10 ), сесквитерпены (С 15 ), дитерпены (С 20 ), например. Терпен альфа-пинен обычного растворителя скипидара . является основным компонентом
Одним из терпенов, который имеет широкое применение, является натуральный каучук (т.е. полиизопрен ). возможность использования других терпенов в качестве предшественников для производства синтетических полимеров Была исследована . Было показано, что многие терпены обладают фармакологическим действием. Терпены также являются компонентами некоторых традиционных лекарств, таких как ароматерапия , и активными ингредиентами пестицидов в сельском хозяйстве. [ 4 ]
История и терминология
[ редактировать ]Термин терпен был введен в 1866 году немецким химиком Августом Кекуле для обозначения всех углеводородов, имеющих брутто-формулу C 10 H 16 , одним из которых был камфен . Раньше многие углеводороды, имеющие брутто-формулу C 10 H 16, назывались «камфенами», однако многие другие углеводороды того же состава имели другие названия. Кекуле ввел термин «терпен», чтобы избежать путаницы. [ 5 ] [ 6 ] Название «терпен» — это сокращенная форма слова «терпентин», устаревшего написания « скипидар ». [ 7 ]
Хотя иногда они используются взаимозаменяемо с «терпенами», терпеноиды (или изопреноиды ) представляют собой модифицированные терпены, которые содержат дополнительные функциональные группы , обычно кислородсодержащие. [ 8 ] Однако термины терпены и терпеноиды часто используются как синонимы. Кроме того, терпены производятся из терпеноидов, и многие терпеноиды производятся из терпенов. Оба имеют сильный и часто приятный запах, который может защитить своих хозяев или привлечь опылителей. Количество терпенов и терпеноидов оценивается в 55 000 химических соединений. [ 9 ]
1939 года Нобелевская премия по химии была присуждена Леопольду Ружичке «за работу над полиметиленами и высшими терпенами». [ 10 ] [ 11 ] «включая первый химический синтез мужских половых гормонов ». [ 12 ]
Биологическая функция
[ редактировать ]Терпены являются основными строительными блоками биосинтеза. Стероиды , например, являются производными тритерпена сквалена . Терпены и терпеноиды также являются основными компонентами эфирных масел многих видов растений и цветов. [ 13 ] У растений терпены и терпеноиды являются важными медиаторами экологических взаимодействий . Например, они играют роль в защите растений от травоядных , устойчивости к болезням , привлечении мутуалистов, таких как опылители , а также потенциальной коммуникации между растениями . [ 14 ] [ 15 ] Похоже, они играют роль антифидантов . [ 2 ] Другие функции терпеноидов включают модуляцию роста клеток и удлинение растений, сбор света и фотозащиту, а также контроль проницаемости и текучести мембран. [ 16 ]
В теплую погоду деревья выделяют большее количество терпенов. [ 17 ] где они могут функционировать как естественный механизм засева облаков . Облака отражают солнечный свет, позволяя регулировать температуру леса. [ 18 ]
Некоторые насекомые используют терпены в качестве защиты. Например, термиты подсемейства Nasutitermitinae отпугивают хищных насекомых с помощью специального механизма, называемого родничковой пушкой , который выбрасывает смолистую смесь терпенов. [ 19 ]
Приложения
[ редактировать ]Одним из терпенов, который имеет широкое применение, является натуральный каучук (т.е. полиизопрен ). Возможность использования других терпенов в качестве прекурсоров для производства синтетических полимеров изучалась в качестве альтернативы использованию сырья на основе нефти. Однако немногие из этих приложений были коммерциализированы. [ 20 ] Однако многие другие терпены имеют меньшее коммерческое и промышленное применение. Например, скипидар , смесь терпенов (например, пинена ), получаемый при перегонке сосновой смолы , используется как органический растворитель и как химическое сырье (главным образом для производства других терпеноидов). [ 7 ] Канифоль , еще один побочный продукт смолы хвойных деревьев, широко используется в качестве ингредиента в различных промышленных продуктах, таких как чернила , лаки и клеи . Канифоль также используется скрипачами (и игроками на аналогичных смычковых инструментах) для увеличения трения волос смычка , танцорами балета на подошвах обуви для сохранения сцепления с полом, гимнастами, чтобы сохранять хватку во время выступления, и бейсболистами. питчеры, чтобы улучшить свой контроль над бейсболом. [ 21 ] Терпены широко используются в качестве ароматизаторов и ароматизаторов в потребительских товарах, таких как парфюмерия , косметика и чистящие средства , а также в продуктах питания и напитках. Например, аромат и вкус хмеля частично обусловлены сесквитерпенами (в основном α-гумуленом и β-кариофилленом ), которые влияют на пива . качество [ 22 ] Некоторые образуют гидропероксиды, которые ценятся в качестве катализаторов в производстве полимеров.
Было показано, что многие терпены обладают фармакологическим действием, хотя большинство исследований основаны на лабораторных исследованиях, а клинические исследования на людях являются предварительными. [ 23 ] Терпены также являются компонентами некоторых традиционных лекарств, таких как ароматерапия . [ 24 ]
Отражая свою защитную роль в растениях, терпены используются в качестве активных ингредиентов пестицидов в сельском хозяйстве. [ 25 ]
Физические и химические свойства
[ редактировать ]Терпены бесцветны, хотя нечистые образцы часто имеют желтый цвет. Точки кипения зависят от размера молекул: терпены, сесквитерпены и дитерпены соответственно при 110, 160 и 220 °C. Будучи в высшей степени неполярными, они нерастворимы в воде. Будучи углеводородами, они легко воспламеняются и имеют низкий удельный вес (плавают на воде). Это легкие на ощупь масла, значительно менее вязкие , чем привычные растительные масла, такие как кукурузное масло (28 сП ), с вязкостью от 1 сП (как вода) до 6 сП. Терпены являются местными раздражителями и при проглатывании могут вызвать желудочно-кишечные расстройства.
Терпеноиды (моно-, полуторные, ди- и т. д.) имеют схожие физические свойства, но имеют тенденцию быть более полярными и, следовательно, немного более растворимыми в воде и несколько менее летучими, чем их терпеновые аналоги. Высокополярными производными терпеноидов являются гликозиды , связанные с сахарами. Это водорастворимые твердые вещества.
Биосинтез
[ редактировать ]Изопрен как строительный блок
[ редактировать ]Концептуально полученные из изопренов , структуры и формулы терпенов следуют биогенетическому правилу изопрена или C5 . правилу , как описано в 1953 году Леопольдом Ружичкой [ 26 ] и коллеги. [ 27 ] Изопреновые единицы C 5 представлены в форме диметилаллилпирофосфата (DMAPP) и изопентенилпирофосфата (IPP). DMAPP и IPP являются структурными изомерами друг друга. Эта пара строительных блоков производится двумя различными метаболическими путями : мевалонатным (MVA) и немевалонатным (MEP) путем . Эти два пути являются взаимоисключающими у большинства организмов, за исключением некоторых бактерий и наземных растений. [ нужна ссылка ] В целом, большинство архей и эукариот используют путь MVA, тогда как бактерии в основном используют путь MEP. IPP и DMAPP являются конечными продуктами путей MVA и MEP, и относительное содержание этих двух единиц изопрена регулируется ферментативно в организмах-хозяевах.
Организм | Пути |
---|---|
Бактерии | MVA или MEP |
Архея | МВА |
Зеленые водоросли | депутат Европарламента |
Растения | МВА и МООС |
Животные | МВА |
Грибы | МВА |
Мевалонатный путь
[ редактировать ]Этот путь конъюгирует три молекулы ацетил-КоА .
Путь мевалоната (MVA) распространен во всех трех сферах жизни; археи, бактерии и эукариоты. Путь MVA повсеместно распространен у архей и нефотосинтезирующих эукариот, тогда как у бактерий этот путь редок. У фотосинтезирующих эукариот некоторые виды обладают путем MVA, тогда как другие имеют путь MEP или оба пути MVA и MEP. Это связано с приобретением пути МВП общим предком Archaeplastida (водоросли + наземные растения) посредством эндосимбиоза предковых цианобактерий , обладавших путем МВП. Пути MVA и MEP избирательно утрачивались в отдельных фотосинтетических линиях.
Кроме того, архейный путь MVA не полностью гомологичен эукариотическому пути MVA. [ 28 ] Вместо этого эукариотический путь MVA ближе к бактериальному пути MVA.
Немевалонатный путь
[ редактировать ]Немевалонатный путь или путь 2- C -метил-D-эритрит-4-фосфата (MEP) начинается с пирувата и глицеральдегид-3-фосфата (G3P) в качестве источника углерода.
C 5 IPP и C 5 DMAPP являются конечными продуктами любого пути и являются предшественниками терпеноидов с различным числом атомов углерода (обычно от C 5 до C 40 ), боковыми цепями (бактериальных) хлорофиллов , гемов и хинонов . Синтез всех высших терпеноидов протекает через образование геранилпирофосфата (ГПП), фарнезилпирофосфата (ФПП) и геранилгеранилпирофосфата (ГГПП).
Фаза геранилпирофосфата и далее
[ редактировать ]Как в путях MVA, так и в MEP IPP изомеризуется в DMAPP ферментом изопентенилпирофосфатизомеразой. IPP и DMAPP конденсируются с образованием геранилпирофосфата , предшественника монотерпенов и монотерпеноидов.
Геранилпирофосфат также превращается в фарнезилпирофосфат и геранилгеранилпирофосфат , соответственно предшественники C 15 и C 20 в сесквитерпены и дитерпены (а также сесквитерпеноиды и дитерпеноиды). [ 2 ] Биосинтез осуществляется терпенсинтазой . [ 29 ] [ 30 ]
Терпены в терпеноиды
[ редактировать ]Геномы многих видов растений содержат гены, кодирующие ферменты терпеноидсинтазы, придающие терпенам их базовую структуру, и цитохромы P450 , которые модифицируют эту базовую структуру. [ 2 ] [ 31 ]
Структура
[ редактировать ]Терпены можно представить как результат соединения звеньев изопрена (C 5 H 8 ) «голова к хвосту» с образованием цепочек и колец. [ 32 ] Некоторые терпены связаны «хвост к хвосту», а более крупные разветвленные терпены могут быть связаны «хвост к середине».
Формула
[ редактировать ]Строго говоря, все монотерпены имеют одну и ту же химическую формулу C 10 H 16 . Аналогично все сесквитерпены и дитерпены имеют формулы C 15 H 24 и C 20 H 32 соответственно. Структурное разнообразие моно-, сескви- и дитерпенов является следствием изомерии.
Хиральность
[ редактировать ]Терпены и терпеноиды обычно хиральны . Хиральные соединения могут существовать в виде несуперпозиционных зеркальных изображений, которые проявляют различные физические свойства, такие как запах или токсичность.
Ненасыщенность
[ редактировать ]Большинство терпенов и терпеноидов содержат группы C=C, т.е. обладают ненасыщенностью. Поскольку терпены не несут никаких функциональных групп, кроме ненасыщенности, они структурно различны. Ненасыщенность связана с ди- и тризамещенными алкенами . Ди- и тризамещенные алкены устойчивы к полимеризации (низкие температуры ), но подвержены кислотно-индуцированному образованию карбокатионов .
Классификация
[ редактировать ]-
Лимонен , монотерпен .
-
Карвон представляет собой монотерпеноид, модифицированный монотерпен.
-
Хинокитиол – монотерпеноид, производное трополона .
-
Гумулен , сесквитерпен .
-
Геосмин – сесквитерпеноид.
Терпены можно классифицировать по количеству изопреновых единиц в молекуле; префикс в названии указывает количество пар изопрена, необходимых для сборки молекулы. Обычно терпены содержат 2, 3, 4 или 6 изопреновых единиц; тетратерпены (8 изопреновых единиц) образуют отдельный класс соединений, называемых каротиноидами; остальные редки.
- Основной единицей изопрена является гемитерпен . Он может образовывать кислородсодержащие производные, такие как пренол и изовалериановая кислота, аналогичные терпеноидам.
- Монотерпены состоят из двух изопреновых единиц и имеют молекулярную формулу C 10 H 16 . Примеры монотерпенов и монотерпеноидов включают гераниол , терпинеол (присутствует в сирени ), лимонен (присутствует в цитрусовых), мирцен (присутствует в хмеле ), линалоол (присутствует в лаванде ), хинокитиол (присутствует в кипарисах ) или пинен (присутствует в сосне). деревья). [ 33 ] [ 34 ] Иридоиды происходят от монотерпенов. Примеры иридоидов включают аукубин и каталпол .
- Сесквитерпены состоят из трех изопреновых единиц и имеют молекулярную формулу C 15 H 24 . Примеры сесквитерпенов и сесквитерпеноидов включают гумулен , фарнезен , фарнезол , геосмин . [ 34 ] ( Префикс сескви- означает полтора.)
- Дитерпены состоят из четырех изопреновых единиц и имеют молекулярную формулу C 20 H 32 . Они происходят из геранилгеранилпирофосфата . Примерами дитерпенов и дитерпеноидов являются кафестол , кахвеол , кембрен и таксадиен (предшественник таксола ). Дитерпены также составляют основу биологически важных соединений, таких как ретинол , ретиналь и фитол .
- Сестертерпены, терпены, имеющие 25 атомов углерода и пять изопреновых единиц, встречаются редко по сравнению с другими размерами. ( Приставка сестер- означает два с половиной.) Примером сестертерпеноида является геранилфарнезол .
- Тритерпены состоят из шести изопреновых единиц и имеют молекулярную формулу C 30 H 48 . Линейный тритерпеновый сквален , основной компонент жира печени акулы , получается в результате восстановительного взаимодействия двух молекул фарнезилпирофосфата . Затем сквален подвергается биосинтетической обработке с образованием ланостерола или циклоартенола , структурных предшественников всех стероидов .
- Сесквартерпены состоят из семи изопреновых единиц и имеют молекулярную формулу C 35 H 56 . Сесквартерпены обычно имеют микробное происхождение. Примерами сесквартерпеноидов являются ферругикадиол и тетрапренилкуркумен.
- Тетратерпены содержат восемь изопреновых единиц и имеют молекулярную формулу C 40 H 64 . Биологически важные тетратерпеноиды включают ациклический ликопин , моноциклический гамма-каротин и бициклические альфа- и бета-каротины .
- Политерпены состоят из длинных цепочек множества изопреновых звеньев. Натуральный каучук состоит из полиизопрена, в котором двойные связи цис-цис . Некоторые заводы производят полиизопрен с двойными транс -связями, известный как гуттаперча .
- Ноизопреноиды, характеризующиеся укорочением цепи или кольца за счет удаления метиленовой группы или замены одной или нескольких метильных боковых цепей атомами водорода. К ним относятся C 13 -норизопреноид 3-оксо-α-ионол, присутствующий в листьях Муската Александрийского , и производные 7,8-дигидроионона, такие как мегастигман-3,9-диол и 3-оксо-7,8-дигидро-α-. ионол обнаружен в листьях Шираза (оба сорта винограда вида Vitis vinifera ) [ 35 ] или вино [ 36 ] [ 37 ] (отвечает за некоторые пряные ноты в Шардоне ), может вырабатываться грибковыми пероксидазами. [ 38 ] или гликозидазы . [ 39 ]
Промышленные синтезы
[ редактировать ]Хотя терпены и терпеноиды встречаются широко, их извлечение из природных источников часто проблематично. Следовательно, они производятся путем химического синтеза, обычно из продуктов нефтехимии . В одном из способов ацетон и ацетилен конденсируются с образованием 2-метилбут-3-ин-2-ола , который дополняют ацетоуксусным эфиром с образованием геранилового спирта . Другие получают из тех терпенов и терпеноидов, которые легко выделить в больших количествах, например, из бумажной промышленности и производства таллового масла . Например, α-пинен , который легко получить из природных источников, превращается в цитронеллаль и камфору . Цитронеллаль также превращается в оксид розы и ментол . [ 1 ]
Ссылки
[ редактировать ]- ^ Jump up to: а б Эберхард Брейтмайер (2006). Терпены: ароматизаторы, ароматизаторы, фармацевтика, феромоны . Вайли-ВЧ. дои : 10.1002/9783527609949 . ISBN 9783527609949 .
- ^ Jump up to: а б с д и Дэвис, Эдвард М.; Крото, Родни (2000). «Ферменты циклизации в биосинтезе монотерпенов, сесквитерпенов и дитерпенов». Биосинтез . Том. 209. стр. 53–95. дои : 10.1007/3-540-48146-X_2 . ISBN 978-3-540-66573-1 .
{{cite book}}
:|journal=
игнорируется ( помогите ) - ^ «Что такое терпены» . www.rereterpenes.com . 13 апреля 2021 г.
- ^ Стокер, Х. Стивен (2007). Общая, органическая и биологическая химия, 4-е издание . Компания Хоутон Миффлин. п. 337. ИСБН 978-0-618-73063-6 .
- ^ Кекуле, август (1866 г.). химии Учебник органической (на немецком языке). Том 2. Эрланген (Германия): Фердинанд Энке. стр. 464–465.
Со стр. 464–465: «По названию терпены, которые мы обозначаем... указаны под разными названиями». (Названием «терпен» мы обозначаем вообще углеводороды, составленные по [эмпирической] формуле С 10 Н 16 (см. §. 1540)
- ^ Дев, Сух (1989). «Глава 8. Изопреноиды: 8.1. Терпеноиды.». В Роу, Джон В. (ред.). Натуральные продукты древесных растений: химические вещества, посторонние для клеточной стенки лигноцеллюлозы . Берлин и Гейдельберг, Германия: Springer-Verlag. стр. 691–807. ; см. стр. 691.
- ^ Jump up to: а б Эггерсдорфер, Манфред (2000). «Терпены». Энциклопедия промышленной химии Ульмана . Вайнхайм: Wiley-VCH. дои : 10.1002/14356007.a26_205 . ISBN 978-3527306732 .
- ^ «Золотая книга ИЮПАК – терпеноиды» . дои : 10.1351/goldbook.T06279 .
{{cite journal}}
: Для цитирования журнала требуется|journal=
( помощь ) - ^ Чен, Кэ; Бэран, Фил С. (июнь 2009 г.). «Полный синтез терпенов эвдесмана путем сайт-селективного окисления C – H». Природа . 459 (7248): 824–828. Бибкод : 2009Natur.459..824C . дои : 10.1038/nature08043 . ПМИД 19440196 . S2CID 4312428 .
- ^ Грандин, Карл, изд. (1966). «Леопольд Ружичка». Нобелевские лекции по химии: 1922–1941 гг . Амстердам: Издательство Elsevier .
Теперь доступно с «Биография Леопольда Ружички» . nobelprize.org . Нобелевский фонд . 1939 год . Проверено 6 июля 2017 г. - ^ «Нобелевская премия по химии 1939 года» .
- ^ Хиллер, Стивен Г.; Токарный станок, Ричард (2019). «Терпены, гормоны и жизнь: новый взгляд на правило изопрена» . Журнал эндокринологии . 242 (2): Р9–Р22. дои : 10.1530/JOE-19-0084 . ПМИД 31051473 .
- ^ Омар, Джон; Оливарес, Майтане; Алонсо, Ибоне; Вальехо, Азиер; Айзпуруа-Олайсола, Ойер; Эчебаррия, Нестор (апрель 2016 г.). «Количественный анализ биоактивных соединений ароматических растений с помощью динамической парофазной экстракции и множественной парофазной экстракции, газовой хроматографии и масс-спектрометрии: количественный анализ биологически активных соединений…» . Журнал пищевой науки . 81 (4): C867–C873. дои : 10.1111/1750-3841.13257 . ПМИД 26925555 . S2CID 21443154 .
- ^ Мартин, Д.М.; Гершензон Дж.; Больманн, Дж. (июль 2003 г.). «Индукция биосинтеза летучих терпенов и суточная эмиссия метилжасмонатом в листве ели европейской» . Физиология растений . 132 (3): 1586–1599. дои : 10.1104/стр.103.021196 . ПМК 167096 . ПМИД 12857838 .
- ^ Пичерский, Э. (10 февраля 2006 г.). «Биосинтез летучих веществ растений: разнообразие и изобретательность природы» . Наука . 311 (5762): 808–811. Бибкод : 2006Sci...311..808P . дои : 10.1126/science.1118510 . ПМК 2861909 . ПМИД 16469917 .
- ^ Робертс, Сьюзен С. (2007). «Производство и разработка терпеноидов в культуре растительных клеток». Химическая биология природы . 3 (7): 387–395. дои : 10.1038/nchembio.2007.8 . ISSN 1552-4450 . ПМИД 17576426 .
- ^ «Введение в терпены» .
- ^ Адам, Дэвид (31 октября 2008 г.). «Ученые обнаружили в деревьях химические вещества, сгущающие облака, которые могут стать новым оружием в борьбе с глобальным потеплением» . Хранитель .
- ^ Наттинг, WL; Блюм, MS; Фалес, HM (1974). «Поведение североамериканского термита Tenuirostritermes tenuirostris с особым упором на секрецию лобной железы солдата, его химический состав и использование в обороне» . Психика . 81 (1): 167–177. дои : 10.1155/1974/13854 .
- ^ Сильвестр, Армандо Джей Ди; Гандини, Алессандро (2008). «Терпены: основные источники, свойства и применение». Мономеры, полимеры и композиты из возобновляемых ресурсов . стр. 17–38. дои : 10.1016/B978-0-08-045316-3.00002-8 . ISBN 9780080453163 .
- ^ Робертс, Мэдди Шоу (22 января 2019 г.). «Что такое канифоль – и зачем она скрипачам?» . Классический ФМ . Проверено 22 июля 2022 г.
- ^ Стинакерс, Б.; Де Куман, Л.; Де Вос, Д. (2015). «Химические превращения характерных вторичных метаболитов хмеля в зависимости от свойств пива и процесса пивоварения: обзор». Пищевая химия . 172 : 742–756. doi : 10.1016/j.foodchem.2014.09.139 . ПМИД 25442616 .
- ^ Козиол, Агата; Стриевская, Агнешка; Либровский, Тадеуш; Салат, Кинга; Гавель, Магдалена; Моничевский, Анджей; Лочинский, Станислав (2014). «Обзор фармакологических свойств и потенциальных применений природных монотерпенов». Мини-обзоры по медицинской химии . 14 (14): 1156–1168. дои : 10.2174/1389557514666141127145820 . ПМИД 25429661 .
- ^ Кояма, Сатико; Хейнбокель, Томас (2020). «Влияние эфирных масел и терпенов на пути их поступления и применения» . Международный журнал молекулярных наук . 21 (5): 1558. doi : 10.3390/ijms21051558 . ПМК 7084246 . ПМИД 32106479 .
- ^ Исман, MB (2000). «Эфирные масла растений для борьбы с вредителями и болезнями». Защита урожая . 21 (8–10): 603–608. Бибкод : 2000CrPro..19..603I . дои : 10.1016/S0261-2194(00)00079-X . S2CID 39469817 .
- ^ Ружичка, Л. (1953). «Правило изопрена и биогенез терпеновых соединений». Эксперименты . 9 (10): 357–367. дои : 10.1007/BF02167631 . ПМИД 13116962 . S2CID 44195550 .
- ^ Эшенмозер, Альберт; Аригони, Дуилио (декабрь 2005 г.). «Возврат через 50 лет:« Стереохимическая интерпретация биогенетического правила изопрена для тритерпенов » ». Helvetica Chimica Acta . 88 (12): 3011–3050. дои : 10.1002/hlca.200590245 .
- ^ Хаякава, Хадзиме; Мотояма, Кенто; Собуэ, Фумиаки; Ито, Томокадзу; Кавайде, Хироши; Ёсимура, Тору; Хемми, Хисаши (2 октября 2018 г.). «Модифицированный мевалонатный путь археи Aeropyrum pernix протекает через транс-ангидромевалонат-5-фосфат» . Труды Национальной академии наук . 115 (40): 10034–10039. Бибкод : 2018PNAS..11510034H . дои : 10.1073/pnas.1809154115 . ISSN 0027-8424 . ПМК 6176645 . ПМИД 30224495 .
- ^ Кумари, И.; Ахмед, М.; Ахтер, Ю. (2017). «Эволюция каталитического микроокружения регулирует разнообразие субстратов и продуктов триходиенсинтазы и других ферментов терпеновой складки». Биохимия . 144 : 9–20. дои : 10.1016/j.biochi.2017.10.003 . ПМИД 29017925 .
- ^ Пазуки, Л.; Ниинемец, Ю. (2016). «Многосубстратные терпенсинтазы: их возникновение и физиологическое значение» . Границы в науке о растениях . 7 : 1019. doi : 10.3389/fpls.2016.01019 . ПМЦ 4940680 . ПМИД 27462341 .
- ^ Бутанаев А.М.; Моисей, Т.; Зи, Дж.; Нельсон, ДР; Магфорд, Южная Каролина; Питерс, Р.Дж.; Осборн, А. (2015). «Исследование диверсификации терпенов в нескольких секвенированных геномах растений» . Труды Национальной академии наук . 112 (1): Е81–Е88. Бибкод : 2015PNAS..112E..81B . дои : 10.1073/pnas.1419547112 . ПМК 4291660 . ПМИД 25502595 .
- ^ Ружичка, Леопольд (1953). «Правило изопрена и биогенез терпеновых соединений». Клеточные и молекулярные науки о жизни . 9 (10): 357–367. дои : 10.1007/BF02167631 . ПМИД 13116962 . S2CID 44195550 .
- ^ Брейтмайер, Эберхард (2006). Терпены: ароматизаторы, ароматизаторы, фармацевтика, феромоны . Джон Уайли и сыновья. стр. 1–13. ISBN 978-3527317868 .
- ^ Jump up to: а б Людвичук А.; Скаличка-Возняк, К.; Георгиев М.И. (2017). «Терпеноиды». Фармакогнозия : 233–266. дои : 10.1016/B978-0-12-802104-0.00011-1 . ISBN 9780128021040 .
- ^ Гуната, З.; Вирт, Дж. Л.; Го, В.; Баумс, Р.Л. (2001). ароматические соединения каротиноидного происхождения; Глава 13: Состав норизопреноидного агликона листьев и ягод винограда сортов Мускат Александрийский и Шираз . Серия симпозиумов ACS. Том. 802. стр. 255–261. дои : 10.1021/bk-2002-0802.ch018 . ISBN 978-0-8412-3729-2 .
- ^ Винтерхальтер, П.; Сефтон, Массачусетс; Уильямс, П.Дж. (1990). «Летучие соединения C 13 -норизопреноида в вине Рислинг образуются из нескольких предшественников» . Американский журнал энологии и виноградарства . 41 (4): 277–283. дои : 10.5344/aev.1990.41.4.277 . S2CID 101007887 .
- ^ Винхоулс, Дж.; Коимбра, Массачусетс; Роча, SM (2009). «Быстрый инструмент для оценки ноизопреноидов C 13 в винах». Журнал хроматографии А. 1216 (47): 8398–8403. дои : 10.1016/j.chroma.2009.09.061 . ПМИД 19828152 .
- ^ Зелена, К.; Хардебуш, Б.; Хюльсдау, Б.; Бергер, Р.Г.; Зорн, Х. (2009). «Получение норизопреноидных ароматов из каротиноидов грибковыми пероксидазами». Журнал сельскохозяйственной и пищевой химии . 57 (21): 9951–9955. дои : 10.1021/jf901438m . ПМИД 19817422 .
- ^ Кабароглу, Т.; Селли, С.; Канбаш, А.; Лепутр, Ж.-П.; Гуната, З. (2003). «Усиление вкуса вина за счет использования экзогенных грибковых гликозидаз». Ферментные и микробные технологии . 33 (5): 581–587. дои : 10.1016/S0141-0229(03)00179-0 .
Внешние ссылки
[ редактировать ]- Терпены Национальной медицинской библиотеки США в медицинских предметных рубриках (MeSH)
- Папа, Фрэнк Джордж (1911). Чисхолме, Хью (ред.). Британская энциклопедия . Том. 26 (11-е изд.). Издательство Кембриджского университета. стр. 647–652. Обзор химии терпенов. . В