Деннис Салливан
Деннис Салливан | |
---|---|
Рожденный | Деннис Парнелл Салливан 12 февраля 1941 г. Порт-Гурон , Мичиган , США |
Образование | Университет Райса ( бакалавр ) Принстонский университет ( магистр , доктор философии ) |
Известный | |
Награды |
|
Научная карьера | |
Поля | Топология |
Учреждения | Университет Стоуни-Брук Городской университет Нью-Йорка |
Диссертация | Триангуляция гомотопических эквивалентностей (1966) |
Докторантура | Уильям Браудер |
Докторанты | Гарольд Абельсон Кертис Т. МакМаллен |
Деннис Парнелл Салливан (родился 12 февраля 1941 года) — американский математик, известный своими работами в области алгебраической топологии , геометрической топологии и динамических систем . Он возглавляет кафедру Альберта Эйнштейна в Центре аспирантуры Городского университета Нью-Йорка и является заслуженным профессором Университета Стоуни-Брук .
Салливан был удостоен премии Вольфа по математике в 2010 году и премии Абеля в 2022 году.
Ранняя жизнь и образование
[ редактировать ]Салливан родился в Порт-Гуроне, штат Мичиган , 12 февраля 1941 года. [1] [2] его семья переехала в Хьюстон . Вскоре после этого [1] [2]
Он поступил в Университет Райса, чтобы изучать химическую инженерию , но на втором курсе переключился на математику после того, как столкнулся с особенно мотивирующей математической теоремой. [2] [3] Изменение было вызвано частным случаем теоремы униформизации , согласно которой, по его собственным словам:
[Любая] поверхность, топологически подобная воздушному шару, и независимо от ее формы — банан или статуя Давида Микеланджело — может быть помещена в идеально круглую сферу так, чтобы растяжение или сжатие, необходимое в каждой точке, было одинаковым. во всех направлениях в каждой такой точке. [4]
Он получил степень бакалавра гуманитарных наук в Университете Райса в 1963 году. [2] Он получил степень доктора философии в Принстонском университете в 1966 году, защитив диссертацию «Триангуляция гомотопических эквивалентностей » под руководством Уильяма Браудера . [2] [5]
Карьера
[ редактировать ]Салливан работал в Уорикском университете по стипендии НАТО с 1966 по 1967 год. [6] Он был научным сотрудником Миллера в Калифорнийском университете в Беркли с 1967 по 1969 год, а затем научным сотрудником Слоана в Массачусетском технологическом институте с 1969 по 1973 год. [6] Он был приглашенным научным сотрудником Института перспективных исследований в 1967–1968, 1968–1970 и снова в 1975 году. [7]
Салливан был доцентом Университета Париж-Юг стал постоянным профессором Института высших научных исследований (IHÉS). с 1973 по 1974 год, а затем в 1974 году [6] [8] В 1981 году он стал заведующим кафедрой естественных наук (математики) Альберта Эйнштейна в аспирантуре Городского университета Нью-Йорка. [9] и сократил свои обязанности в IHÉS до перерыва. [1] Он поступил на математический факультет Университета Стоуни-Брук в 1996 году. [6] и покинул IHÉS в следующем году. [6] [8]
Салливан участвовал в основании Центра геометрии и физики Саймонса и является членом его попечительского совета. [10]
Исследовать
[ редактировать ]Топология
[ редактировать ]Геометрическая топология
[ редактировать ]Наряду с Браудером и другими его учениками Салливан был одним из первых, кто применил теорию хирургии , особенно для классификации многомерных многообразий . [2] [3] [1] Его дипломная работа была посвящена Hauptvermutung . [1]
Во влиятельных заметках 1970 года Салливан выдвинул радикальную концепцию, согласно которой в рамках гомотопической теории пространства можно напрямую «разбить на коробки». [11] (или локализованный ), процедура, которая до сих пор применялась к алгебраическим конструкциям, сделанным из них. [3] [12]
Гипотеза Салливана , доказанная в своей первоначальной форме Хейнсом Миллером , утверждает, что классифицирующее пространство BG конечной группы G достаточно отличается от любого конечного комплекса CW X , что оно отображается в такой X лишь «с трудом»; в более формальной формулировке пространство всех отображений BG в X как точечное пространство и с учетом компактно-открытой топологии слабо стягиваемо . [13] Гипотеза Салливана также была впервые представлена в его заметках 1970 года. [3] [12] [13]
Салливан и Дэниел Квиллен (независимо) создали теорию рациональной гомотопии в конце 1960-х и 1970-х годах. [14] [15] [3] [16] Он исследует «рационализации» односвязных топологических пространств с гомотопическими группами и сингулярными группами гомологий , тензорированными рациональными числами , игнорируя элементы кручения и упрощая некоторые вычисления. [16]
Клейнианские группы
[ редактировать ]Салливан и Уильям Терстон обобщили Липмана Берса с гипотезу плотности однократно вырожденных клейновых поверхностных групп на все конечно порожденные клейновы группы в конце 1970-х - начале 1980-х годов. [17] [18] Гипотеза утверждает, что каждая конечно порожденная клейнова группа является алгебраическим пределом геометрически конечных клейновых групп, и была независимо доказана Ошикой и Намази-Сото в 2011 и 2012 годах соответственно. [17] [18]
Конформные и квазиконформные отображения
[ редактировать ]Теорема Конна-Дональдсона-Салливана-Телемана об индексе является расширением теоремы Атьи-Зингера об индексе на квазиконформные многообразия благодаря совместной статье Саймона Дональдсона и Салливана в 1989 году и совместной статье Алена Конна , Салливана и Николае Телемана в 1994 году. . [19] [20]
В 1987 году Салливан и Бертон Роден доказали гипотезу Терстона об аппроксимацииотображения Римана упаковками кругов . [21]
Струнная топология
[ редактировать ]Салливан и Мойра Час начали заниматься струнной топологией , которая исследует алгебраические структуры на гомологии пространств свободных петель . [22] [23] Они разработали произведение Часа-Салливана, чтобы дать частичный сингулярный гомологический аналог чашечного произведения из сингулярных когомологий . [22] [23] Струнная топология использовалась во многих предложениях по построению топологических квантовых теорий поля в математической физике. [24]
Динамические системы
[ редактировать ]В 1975 году Салливан и Билл Парри представили топологический инвариант Парри – Салливана для потоков в одномерных динамических системах. [25] [26]
В 1985 году Салливан доказал теорему о неблуждающей области . [3] Математик Энтони Филипс описал этот результат как ведущий к «возрождению голоморфной динамики после 60 лет застоя». [1]
Награды и почести
[ редактировать ]- Премия Освальда Веблена 1971 года по геометрии [27]
- 1981 Премия Эли Картана , Французская академия наук. [2] [8]
- 1983 Член Национальной академии наук. [28]
- 1991 Член Американской академии искусств и наук. [29]
- 1994 года в области науки Международная премия короля Фейсала [6]
- 2004 г. Национальная медаль науки [6]
- 2006 года Премия Стила за жизненные достижения [6]
- Премия Вольфа 2010 года по математике за «его вклад в алгебраическую топологию и конформную динамику» [30]
- Член Американского математического общества, 2012 г. [31]
- 2014 г. Премия Бальзана по математике (чистой или прикладной) [2] [32]
- 2022 г. Абелевская премия [2] [33]
Личная жизнь
[ редактировать ]Салливан женат на коллеге-математике Мойре Час . [3] [4]
См. также
[ редактировать ]- Карта сборки
- Гипотеза о двойном пузыре
- Гибкий многогранник
- Формальное многообразие
- Поверхность Лохнесского чудовища
- Нормальный инвариант
- Лемма о кольцах
- Теорема Раммлера – Салливана
- Задача Рузьевича
Ссылки
[ редактировать ]- ^ Перейти обратно: а б с д и ж Филлипс, Энтони (2005), «Деннис Салливан – Краткая история» , в Любиче, Михаил ; Тахтаджян, Леон Арменович (ред.), Графы и закономерности в математике и теоретической физике , Труды симпозиумов по чистой математике, вып. 73, Провиденс: Американское математическое общество , с. xiii, ISBN 0-8218-3666-8 , заархивировано из оригинала 28 июля 2014 года , получено 31 марта 2016 года .
- ^ Перейти обратно: а б с д и ж г час я Чанг, Кеннет (23 марта 2022 г.). «Премия Абеля 2022 года достаётся математику из Нью-Йорка» . Нью-Йорк Таймс . Архивировано из оригинала 23 марта 2022 года . Проверено 23 марта 2022 г.
- ^ Перейти обратно: а б с д и ж г Цепелевич, Джордана (23 марта 2022 г.). «Деннис Салливан, объединивший топологию и хаос, получает премию Абеля» . Журнал Кванта . Архивировано из оригинала 23 марта 2022 года . Проверено 23 марта 2022 г.
- ^ Перейти обратно: а б Десикан, Шубашри (23 марта 2022 г.). «Премия Абеля 2022 года достаётся американскому математику Деннису П. Салливану» . Индус . Проверено 25 марта 2022 г.
- ^ Деннис Салливан в проекте «Математическая генеалогия»
- ^ Перейти обратно: а б с д и ж г час «Деннис Парнелл Салливан награжден премией Абеля 2022 года по математике» . Университет Стоуни-Брук . 23 марта 2022 года. Архивировано из оригинала 24 марта 2022 года . Проверено 23 марта 2022 г.
- ^ «Деннис П. Салливан» . Институт перспективных исследований . 9 декабря 2019 года. Архивировано из оригинала 23 марта 2022 года . Проверено 23 марта 2022 г.
- ^ Перейти обратно: а б с «Деннис Салливан, математик» . Институт перспективных научных исследований . Архивировано из оригинала 22 ноября 2021 года . Проверено 23 марта 2022 г.
- ^ «В центре внимания научного факультета: Деннис Салливан» . Высший центр CUNY . 29 апреля 2017 года. Архивировано из оригинала 24 марта 2022 года . Проверено 23 марта 2022 г.
- ^ «Деннис Салливан награжден Абелевской премией 2022 года по математике» . Центр Саймонса по геометрии и физике . 23 марта 2022 г. . Проверено 25 марта 2022 г.
- ^ Цепелевич, Джордана (23 марта 2022 г.). «Деннис Салливан, объединивший топологию и хаос, получает премию Абеля» . Журнал Кванта . Проверено 24 марта 2022 г.
- ^ Перейти обратно: а б Салливан, Деннис П. (2005). Раницки, Эндрю (ред.). Геометрическая топология: локализация, периодичность и симметрия Галуа: Заметки MIT 1970 года (PDF) . К-монографии по математике. Дордрехт: Спрингер. ISBN 1-4020-3511-Х . Архивировано (PDF) из оригинала 18 апреля 2007 г. Проверено 8 октября 2006 г.
- ^ Перейти обратно: а б Миллер, Хейнс (1984). «Гипотеза Салливана о картах классификационных пространств». Анналы математики . 120 (1): 39–87. дои : 10.2307/2007071 . JSTOR 2007071 .
- ^ Куиллен, Дэниел (1969), «Рациональная теория гомотопий», Annals of Mathematics , 90 (2): 205–295, doi : 10.2307/1970725 , JSTOR 1970725 , MR 0258031
- ^ Салливан, Деннис (1977). «Бесконечно малые вычисления в топологии» . Публикации Mathématiques de l'IHÉS . 47 : 269–331. дои : 10.1007/BF02684341 . МР 0646078 . S2CID 42019745 . Архивировано из оригинала 3 мая 2007 года . Проверено 1 ноября 2007 г.
- ^ Перейти обратно: а б Хесс, Кэтрин (1999). «История рациональной теории гомотопий». У Джеймса, Иоан М. (ред.). История топологии . Амстердам: Северная Голландия. стр. 757–796. дои : 10.1016/B978-044482375-5/50028-6 . ISBN 0-444-82375-1 . МР 1721122 .
- ^ Перейти обратно: а б Намази, Хосейн; Соуто, Хуан (2012). «Нереализуемость и конечные расслоения: доказательство гипотезы плотности» . Акта Математика . 209 (2): 323–395. дои : 10.1007/s11511-012-0088-0 . ISSN 0001-5962 . S2CID 10138438 .
- ^ Перейти обратно: а б Ошика, Кеничи (2011). «Реализация концевых инвариантов посредством пределов минимально параболических, геометрически конечных групп» . Геометрия и топология . 15 (2): 827–890. arXiv : math/0504546 . дои : 10.2140/gt.2011.15.827 . ISSN 1364-0380 . S2CID 14463721 . Архивировано из оригинала 25 мая 2014 года . Проверено 24 марта 2022 г.
- ^ Дональдсон, Саймон К .; Салливан, Деннис (1989). «Квазиконформные 4-многообразия» . Акта Математика . 163 : 181–252. дои : 10.1007/BF02392736 . Збл 0704.57008 .
- ^ Конн, Ален ; Салливан, Деннис; Телеман, Николае (1994). «Квазиконформные отображения, операторы в гильбертовом пространстве и локальные формулы для характеристических классов» . Топология . 33 (4): 663–681. дои : 10.1016/0040-9383(94)90003-5 . Збл 0840.57013 .
- ^ Роден, Бертон ; Салливан, Деннис (1987), «Сходимость упаковок кругов к отображению Римана» , Journal of Differential Geometry , 26 (2): 349–360, doi : 10.4310/jdg/1214441375 , заархивировано из оригинала 27 октября 2020 г. , получено 23 марта 2022 г.
- ^ Перейти обратно: а б Час, Мойра; Салливан, Деннис (1999). «Струнная топология». arXiv : math/9911159v1 .
- ^ Перейти обратно: а б Коэн, Ральф Луи ; Джонс, Джон Д.С.; Ян, Джун (2004). «Алгебра гомологии петель сфер и проективных пространств». В Ароне, Грегори; Хаббак, Джон; Леви, Ран; Вайс, Майкл (ред.). Методы категориальной декомпозиции в алгебраической топологии: Международная конференция по алгебраической топологии, остров Скай, Шотландия, июнь 2001 г. Биркхойзер . стр. 77–92.
- ^ Таманой, Хиротака (2010). «Петлевые копродукции в строковой топологии и тривиальность операций TQFT высшего рода». Журнал чистой и прикладной алгебры . 214 (5): 605–615. arXiv : 0706.1276 . дои : 10.1016/j.jpaa.2009.07.011 . МР 2577666 . S2CID 2147096 .
- ^ Парри, Билл ; Салливан, Деннис (1975). «Топологический инвариант потоков в одномерных пространствах» . Топология . 14 (4): 297–299. дои : 10.1016/0040-9383(75)90012-9 .
- ^ Салливан, Майкл С. (1997). «Инвариант базисных множеств потоков Смейла» . Эргодическая теория и динамические системы . 17 (6): 1437–1448. дои : 10.1017/S0143385797097617 . S2CID 96462227 .
- ^ «Премия Освальда Веблена по геометрии» . Архивировано из оригинала 5 января 2020 года . Проверено 17 августа 2020 г.
- ^ «Национальная академия наук» . Архивировано из оригинала 15 мая 2021 года . Проверено 17 августа 2020 г.
- ^ «Американская академия искусств и наук» . Архивировано из оригинала 24 марта 2022 года . Проверено 17 августа 2020 г.
- ^ «Объявлены лауреаты премии Вольфа» . Национальные новости Израиля . Архивировано из оригинала 24 марта 2022 года . Проверено 23 марта 2022 г.
- ^ Список членов Американского математического общества. Архивировано 5 декабря 2012 г., на archive.today , получено 5 августа 2013 г.
- ^ Кехо, Элейн (январь 2015 г.). «Салливан награжден премией Бальзана» . Уведомления Американского математического общества . 62 (1): 54–55. дои : 10.1090/noti1198 .
- ^ «2022: Деннис Парнелл Салливан | Абелевская премия» . abelprize.no . Архивировано из оригинала 23 марта 2022 года . Проверено 23 марта 2022 г.
Внешние ссылки
[ редактировать ]- О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. , «Деннис Салливан» , Архив истории математики MacTutor , Университет Сент-Эндрюс
- Деннис Салливан в проекте «Математическая генеалогия»
- Домашняя страница Салливана в Городском университете Нью-Йорка
- Домашняя страница Салливана в Университете Стоуни-Брук
- Деннис Салливан. Архивировано 28 мая 2018 года в фонде Wayback Machine International Balzan Prize Foundation .
- 1941 года рождения
- Живые люди
- Американские математики XX века
- Американские математики XXI века
- Лауреаты Абелевской премии
- Теоретики динамических систем
- Преподаватели Высшего центра CUNY
- Члены Американского математического общества
- Гомотопическая теория
- Математики из Мичигана
- Члены Национальной академии наук США
- Лауреаты Национальной медали науки
- Выпускники Принстонского университета
- Кавалеры Большого креста Национального ордена за научные заслуги (Бразилия)
- Выпускники Университета Райса
- Преподаватели Университета Стоуни-Брук
- Американские топологи
- Лауреаты премии Вольфа по математике