Материаловедение
Эта статья включает список общих ссылок , но в ней отсутствуют достаточные соответствующие встроенные цитаты . ( Август 2023 г. ) |
Материаловедение — это междисциплинарная область исследования и открытия материалов . Материаловедение — это инженерная область поиска применений материалов в других областях и отраслях.
Интеллектуальное происхождение материаловедения уходит корнями в эпоху Просвещения , когда исследователи начали использовать аналитическое мышление в области химии , физики и техники, чтобы понять древние феноменологические наблюдения в металлургии и минералогии . [1] [2] Материаловедение по-прежнему включает в себя элементы физики, химии и техники. Таким образом, эта область долгое время рассматривалась академическими учреждениями как часть этих смежных областей. Начиная с 1940-х годов материаловедение стало более широко признаваться как специфическая и самостоятельная область науки и техники, и крупные технические университеты по всему миру создали специальные школы для его изучения.
Ученые-материаловеды подчеркивают, как история материала ( обработка ) влияет на его структуру и, следовательно, на свойства и характеристики материала . Понимание взаимосвязей обработка-структура-свойства называется парадигмой материалов. Эта парадигма используется для улучшения понимания в различных областях исследований, включая нанотехнологии , биоматериалы и металлургию .
Материаловедение также является важной частью судебно-медицинской экспертизы и анализа отказов — исследования материалов, продуктов, конструкций или компонентов, которые выходят из строя или не функционируют должным образом, вызывая травмы людей или ущерб имуществу. Подобные расследования являются ключом к пониманию, например, причин различных авиационных происшествий и происшествий .
История [ править ]
Выбор материала той или иной эпохи часто является определяющим моментом. Такие фазы, как каменный век , бронзовый век , железный век и стальной век , являются историческими, хотя и произвольными примерами. возникшее изначально из производства керамики и ее предполагаемой производной металлургии, является одной из старейших форм инженерной и прикладной науки. Материаловедение, [3] Современное материаловедение развилось непосредственно из металлургии , которая сама возникла из использования огня. Крупный прорыв в понимании материалов произошел в конце 19 века, когда американский ученый Джозайя Уиллард Гиббс продемонстрировал, что термодинамические свойства, связанные со структурой атомов в различных фазах, связаны с физическими свойствами материала. [4] Важными элементами современного материаловедения стали продукты космической гонки ; понимание и разработка металлических сплавов , а также кремнеземных и углеродных материалов, используемых при создании космических аппаратов, позволяющих исследовать космос. Материаловедение стимулировало и стимулировало развитие революционных технологий, таких как каучуки , пластмассы , полупроводники и биоматериалы .
До 1960-х годов (а в некоторых случаях и десятилетия спустя) многие факультеты материаловедения были кафедрами металлургии или керамики , что отражало акцент XIX и начала XX веков на металлах и керамике. Росту материаловедения в Соединенных Штатах частично способствовало Агентство перспективных исследовательских проектов , которое в начале 1960-х годов финансировало ряд университетских лабораторий, «чтобы расширить национальную программу фундаментальных исследований и обучения в области материаловедения. " [5] По сравнению с машиностроением, зарождающаяся область материаловедения сосредоточилась на рассмотрении материалов на макроуровне и на подходе, согласно которому материалы разрабатываются на основе знаний о поведении на микроскопическом уровне. [6] Благодаря расширению знаний о связи между атомными и молекулярными процессами, а также об общих свойствах материалов, дизайн материалов стал основываться на конкретных желаемых свойствах. [6] Область материаловедения с тех пор расширилась и теперь включает все классы материалов, включая керамику, полимеры , полупроводники, магнитные материалы, биоматериалы и наноматериалы , которые обычно подразделяются на три отдельные группы: керамика, металлы и полимеры. Заметным изменением в материаловедении за последние десятилетия стало активное использование компьютерного моделирования для поиска новых материалов, прогнозирования свойств и понимания явлений.
Основы [ править ]
Материал определяется как вещество (чаще всего твердое, но могут быть включены и другие конденсированные фазы), которое предназначено для использования в определенных целях. [7] Вокруг нас множество материалов; их можно найти в чем угодно из b [8] Разрабатываемые новые и передовые материалы включают наноматериалы , биоматериалы , [9] и энергетические материалы, и это лишь некоторые из них. [10]
Основой материаловедения является изучение взаимодействия между структурой материалов, методами обработки этого материала и полученными свойствами материала. Сложная комбинация этих факторов обеспечивает эффективность материала в конкретном применении. Многие характеристики во многих масштабах длины влияют на характеристики материала, начиная от составляющих его химических элементов, его микроструктуры и макроскопических особенностей обработки. Наряду с законами термодинамики и кинетики материаловеды стремятся понять и улучшить материалы.
Структура [ править ]
Структура является одним из наиболее важных компонентов области материаловедения. Само определение этой области гласит, что она связана с исследованием «отношений, существующих между структурами и свойствами материалов». [11] Материаловедение исследует структуру материалов от атомного уровня до макромасштаба. [3] Характеристика — это способ, с помощью которого ученые-материаловеды исследуют структуру материала. Сюда входят такие методы, как дифракция рентгеновских лучей , электронов или нейтронов , а также различные формы спектроскопии и химического анализа, такие как рамановская спектроскопия , энергодисперсионная спектроскопия , хроматография , термический анализ , с помощью электронного микроскопа анализ и т. д.
Структура изучается на следующих уровнях.
Атомная структура [ править ]
Атомная структура связана с атомами материалов и с тем, как они устроены, образуя молекулы, кристаллы и т. д. Большая часть электрических, магнитных и химических свойств материалов возникает на этом уровне структуры. Используемые масштабы длин указаны в ангстремах ( Å ). Химическая связь и расположение атомов (кристаллография) имеют основополагающее значение для изучения свойств и поведения любого материала.
Связывание [ править ]
Чтобы получить полное представление о структуре материала и о том, как она связана со своими свойствами, ученый-материаловед должен изучить, как различные атомы, ионы и молекулы расположены и связаны друг с другом. Это предполагает изучение и использование квантовой химии или квантовой физики . Физика твердого тела , химия твердого тела и физическая химия также участвуют в изучении связей и структуры.
Кристаллография [ править ]
Кристаллография – наука, изучающая расположение атомов в кристаллических твёрдых телах. Кристаллография — полезный инструмент для материаловедов. Одно из фундаментальных понятий кристаллической структуры материала включает элементарную ячейку, которая представляет собой наименьшую единицу кристаллической решетки (пространственной решетки), которая повторяется, образуя макроскопическую кристаллическую структуру. Наиболее распространенные конструкционные материалы включают решетки с параллелепипедом и шестиугольной решеткой. [13] Новые и перспективные материалы, которые разрабатываются, включают наноматериалы . В монокристаллах эффекты кристаллического расположения атомов часто легко увидеть макроскопически, поскольку естественные формы кристаллов отражают атомную структуру. Кроме того, физические свойства часто контролируются кристаллическими дефектами. Понимание кристаллических структур — важная предпосылка для понимания кристаллографических дефектов . Примеры кристаллических дефектов включают дислокации, включая края, винты, вакансии, собственные межузельные элементы и т. д., которые являются линейными, плоскими и трехмерными типами дефектов. [14] Новые и перспективные материалы, которые разрабатываются, включают наноматериалы и биоматериалы . [15] Преимущественно материалы встречаются не в виде монокристалла, а в поликристаллической форме, в виде агрегата мелких кристаллов или зерен различной ориентации. В связи с этим важную роль в структурном определении играет метод порошковой дифракции , использующий дифрактограммы поликристаллических образцов с большим количеством кристаллов. Большинство материалов имеют кристаллическую структуру, но некоторые важные материалы не имеют регулярной кристаллической структуры. [16] Полимеры имеют различную степень кристалличности, и многие из них совершенно некристаллические. Стекло , некоторые виды керамики и многие природные материалы аморфны и не обладают дальним порядком в расположении атомов. Изучение полимеров сочетает в себе элементы химической и статистической термодинамики для термодинамического и механического описания физических свойств.
Наноструктура [ править ]
Материалы, атомы и молекулы которых образуют составляющие на наноуровне (т.е. образуют наноструктуру), называются наноматериалами. Наноматериалы являются предметом интенсивных исследований в области материаловедения из-за уникальных свойств, которые они проявляют.
Наноструктура имеет дело с объектами и структурами в диапазоне 1–100 нм. [17] Во многих материалах атомы или молекулы агломерируются вместе, образуя объекты наномасштаба. Это обуславливает множество интересных электрических, магнитных, оптических и механических свойств.
При описании наноструктур необходимо различать количество измерений на наномасштабе .
Нанотекстурированные поверхности имеют одно измерение в наномасштабе, т. е. только толщина поверхности объекта составляет от 0,1 до 100 нм.
Нанотрубки имеют два измерения на наноуровне, т. е. диаметр трубки составляет от 0,1 до 100 нм; его длина могла быть значительно больше.
Наконец, сферические наночастицы имеют три измерения в наномасштабе, т.е. размер частицы составляет от 0,1 до 100 нм в каждом пространственном измерении. Термины «наночастицы» и «ультрамелкие частицы » (UFP) часто используются как синонимы, хотя UFP может достигать микрометрового диапазона. Термин «наноструктура» часто используется применительно к магнитной технологии. Наноразмерную структуру в биологии часто называют ультраструктурой .
Микроструктура [ править ]
Микроструктура определяется как структура подготовленной поверхности или тонкой фольги материала, выявляемая под микроскопом с увеличением более 25×. Речь идет об объектах размером от 100 нм до нескольких см. Микроструктура материала (которая в общих чертах подразделяется на металлические, полимерные, керамические и композитные) может сильно влиять на физические свойства, такие как прочность, ударная вязкость, пластичность, твердость, коррозионная стойкость, поведение при высоких/низких температурах, износостойкость и т. д. . [18] Большинство традиционных материалов (таких как металлы и керамика) имеют микроструктуру.
Изготовление идеального кристалла материала физически невозможно. Например, любой кристаллический материал будет содержать такие дефекты , как выделения , границы зерен ( отношение Холла-Петча ), вакансии, межузельные атомы или атомы замещения. [19] Микроструктура материалов выявляет эти более крупные дефекты, а достижения в области моделирования позволили лучше понять, как дефекты можно использовать для улучшения свойств материала.
Макроструктура [ править ]
Макроструктура – это внешний вид материала в масштабе от миллиметров до метров, это структура материала, видимая невооруженным глазом.
Свойства [ править ]
Материалы обладают множеством свойств, включая следующие.
- Механические свойства см. Сопротивление материалов.
- Химические свойства см. Химия.
- Электрические свойства см. Электричество.
- Термические свойства см. Термодинамика.
- Оптические свойства см. Оптика и фотоника.
- Магнитные свойства, см. Магнетизм.
Свойства материала определяют его удобство использования и, следовательно, его применение в технике.
Обработка [ править ]
Синтез и обработка предполагают создание материала с желаемой микронаноструктурой. Материал не может быть использован в промышленности, если не разработан экономически обоснованный способ его производства. Поэтому разработка методов обработки материалов, которые были бы достаточно эффективными и экономичными, жизненно важна для области материаловедения. Разные материалы требуют разных методов обработки или синтеза. Например, обработка металлов исторически определила такие эпохи, как бронзовый век и железный век , и изучается в рамках отрасли материаловедения, называемой физической металлургией . Химические и физические методы также используются для синтеза других материалов, таких как полимеры , керамика , полупроводники и тонкие пленки . В начале 21 века разрабатываются новые методы синтеза наноматериалов, таких как графен .
Термодинамика [ править ]
Термодинамика занимается теплом и температурой и их связью с энергией и работой . Он определяет макроскопические переменные, такие как внутренняя энергия , энтропия и давление , которые частично описывают тело материи или излучения. В нем говорится, что поведение этих переменных подчиняется общим ограничениям, общим для всех материалов. Эти общие ограничения выражены в четырех законах термодинамики. Термодинамика описывает объемное поведение тела, а не микроскопическое поведение очень большого числа его микроскопических составляющих, таких как молекулы. Поведение этих микроскопических частиц описывается статистической механикой , а законы термодинамики выводятся из нее .
Изучение термодинамики имеет фундаментальное значение для материаловедения. Он формирует основу для рассмотрения общих явлений в материаловедении и технике, включая химические реакции, магнетизм, поляризуемость и упругость. [20] В нем объясняются фундаментальные инструменты, такие как фазовые диаграммы , и такие понятия, как фазовое равновесие .
Кинетика [ править ]
Химическая кинетика — это изучение скорости, с которой системы, находящиеся вне равновесия, изменяются под действием различных сил. В применении к материаловедению он изучает, как материал изменяется со временем (переходит из неравновесного состояния в равновесное) под действием определенного поля. Он детализирует скорость различных процессов, развивающихся в материалах, включая форму, размер, состав и структуру. Диффузия важна при изучении кинетики, поскольку это наиболее распространенный механизм изменения материалов. [21] Кинетика важна при обработке материалов, поскольку, помимо прочего, она подробно описывает, как микроструктура изменяется под воздействием тепла.
Исследования [ править ]
Материаловедение — очень активная область исследований. Вместе с кафедрами материаловедения исследованиями материалов физики , химии и многие инженерные занимаются кафедры. Исследование материалов охватывает широкий круг тем; Следующий неисчерпывающий список выделяет несколько важных областей исследований.
Наноматериалы [ править ]
Наноматериалы, в принципе, описывают материалы, размер отдельной единицы которых (по крайней мере, в одном измерении) составляет от 1 до 1000 нанометров (10 −9 метр), но обычно составляет 1–100 нм. Исследования наноматериалов используют подход к нанотехнологиям , основанный на материаловедении , с использованием достижений в области метрологии и синтеза материалов, которые были разработаны для поддержки исследований в области микропроизводства . Материалы со структурой наномасштаба часто обладают уникальными оптическими, электронными или механическими свойствами. Область наноматериалов слабо организована, как и традиционная область химии, на органические (углеродные) наноматериалы, такие как фуллерены, и неорганические наноматериалы на основе других элементов, таких как кремний. Примеры наноматериалов включают фуллерены , углеродные нанотрубки , нанокристаллы и т. д.
Биоматериалы [ править ]
Биоматериал — это любая материя, поверхность или конструкция, которая взаимодействует с биологическими системами . [22] Биоматериаловедение включает в себя элементы медицины, биологии, химии, тканевой инженерии и материаловедения.
Биоматериалы могут быть получены из природы или синтезированы в лаборатории с использованием различных химических подходов с использованием металлических компонентов, полимеров , биокерамики или композитных материалов . Они часто предназначены или адаптированы для медицинских применений, например, в качестве биомедицинских устройств, которые выполняют, дополняют или заменяют естественные функции. Такие функции могут быть безобидными, например, для сердечного клапана , или могут быть биоактивными с более интерактивными функциями, такими как гидроксилапатитом покрытые тазобедренные имплантаты, . Биоматериалы также используются каждый день в стоматологии, хирургии и доставке лекарств. Например, в организм можно поместить конструкцию с импрегнированными фармацевтическими продуктами, что обеспечивает пролонгированное высвобождение лекарственного средства в течение длительного периода времени. Биоматериал также может представлять собой аутотрансплантат , аллотрансплантат или ксенотрансплантат, используемый в качестве материала для трансплантации органов .
и магнитные , оптические Электронные
Полупроводники, металлы и керамика сегодня используются для создания очень сложных систем, таких как интегральные электронные схемы, оптоэлектронные устройства, а также магнитные и оптические носители информации. Эти материалы составляют основу нашего современного компьютерного мира, и поэтому исследование этих материалов имеет жизненно важное значение.
Полупроводники являются традиционным примером материалов такого типа. Это материалы, обладающие промежуточными свойствами между проводниками и изоляторами . Их электропроводность очень чувствительна к концентрации примесей, что позволяет использовать легирование для достижения желаемых электронных свойств. Следовательно, полупроводники составляют основу традиционного компьютера.
Эта область также включает в себя новые области исследований, такие как сверхпроводящие материалы, спинтроника , метаматериалы и т. д. Изучение этих материалов предполагает знание материаловедения и физики твердого тела или физики конденсированного состояния .
материаловедение Вычислительное
С продолжающимся ростом вычислительной мощности стало возможным моделирование поведения материалов. Это позволяет ученым-материаловедам понимать поведение и механизмы, разрабатывать новые материалы и объяснять ранее плохо изученные свойства. Усилия, связанные с интегрированной вычислительной инженерией материалов, в настоящее время сосредоточены на сочетании вычислительных методов с экспериментами, чтобы радикально сократить время и усилия по оптимизации свойств материалов для конкретного применения. Это включает в себя моделирование материалов во всех масштабах длины с использованием таких методов, как теория функционала плотности , молекулярная динамика , Монте-Карло , динамика дислокаций, фазовое поле , метод конечных элементов и многие другие. [25]
Промышленность [ править ]
Радикальные достижения в области материалов могут стимулировать создание новых продуктов или даже новых отраслей, но стабильные отрасли также нанимают ученых-материаловедов для постепенного улучшения и устранения проблем с используемыми в настоящее время материалами. Промышленные применения материаловедения включают проектирование материалов, соотношение затрат и выгод при промышленном производстве материалов, методы обработки ( литье , прокатка , сварка , ионная имплантация , выращивание кристаллов , осаждение тонких пленок , спекание , выдувание стекла и т. д.) и аналитические методы. (методы характеризации, такие как электронная микроскопия , рентгеновская дифракция , калориметрия , ядерная микроскопия (HEFIB) , резерфордовское обратное рассеяние , нейтронная дифракция , малоугловое рентгеновское рассеяние (SAXS) и т. д.).
Помимо характеристики материалов, ученый-материаловед или инженер также занимается извлечением материалов и преобразованием их в полезные формы. Таким образом слитков , литье литья , методы , доменная экстракция и электролитическая экстракция — все это часть необходимых знаний инженера-материаловика. Часто присутствие, отсутствие или изменение незначительных количеств вторичных элементов и соединений в сыпучем материале сильно влияет на конечные свойства производимых материалов. Например, стали классифицируются на основе 1/10 и 1/100 весовых процентов углерода и других легирующих элементов, которые они содержат. Таким образом, методы экстракции и очистки, используемые для извлечения железа в доменной печи, могут повлиять на качество производимой стали.
Твердые материалы обычно группируются в три основные категории: керамика, металлы и полимеры. Эта широкая классификация основана на эмпирическом составе и атомной структуре твердых материалов, и большинство твердых веществ попадают в одну из этих широких категорий. [26] Предметом, который часто изготавливается из каждого из этих типов материалов, является контейнер для напитков. Соответственно, типы материалов, используемых для изготовления контейнеров для напитков, имеют различные преимущества и недостатки в зависимости от используемого материала. Керамические (стеклянные) контейнеры оптически прозрачны, непроницаемы для углекислого газа, относительно недороги и легко перерабатываются, но при этом они тяжелые и легко ломаются. Металл (алюминиевый сплав) относительно прочен, является хорошим барьером для диффузии углекислого газа и легко перерабатывается. Однако банки непрозрачны, их производство дорогое, их легко помять и проколоть. Полимеры (полиэтиленовый пластик) относительно прочны, оптически прозрачны, недороги и легки, пригодны для вторичной переработки, но не так непроницаемы для углекислого газа, как алюминий и стекло.
Керамика и стаканы [ править ]
Еще одним применением материаловедения является изучение керамики и стекла , обычно наиболее хрупких материалов, имеющих промышленное значение. Многие керамики и стекла демонстрируют ковалентную или ионно-ковалентную связь с SiO 2 ( кремнеземом ) как фундаментальным строительным блоком. Керамика – не путать с сырой, необожженной глиной – обычно имеет кристаллическую форму. Подавляющее большинство коммерческих стекол содержат оксид металла, сплавленный с кремнеземом. При высоких температурах, используемых для изготовления стекла, материал представляет собой вязкую жидкость, которая при охлаждении затвердевает и переходит в неупорядоченное состояние. Важными примерами являются оконные стекла и очки. Стеклянные волокна также используются для телекоммуникаций и оптической передачи на большие расстояния. Устойчивое к царапинам стекло Corning Gorilla Glass — хорошо известный пример применения технологий материаловедения для радикального улучшения свойств обычных компонентов.
Инженерная керамика известна своей жесткостью и стабильностью при высоких температурах, сжатии и электрическом напряжении. Глинозем, карбид кремния и карбид вольфрама изготавливаются из мелкого порошка их составляющих в процессе спекания со связующим. Горячее прессование обеспечивает получение материала более высокой плотности. Химическое осаждение из паровой фазы позволяет разместить пленку керамики на другом материале. Керметы – это керамические частицы, содержащие некоторые металлы. Износостойкость инструментов достигается за счет цементированных карбидов с металлической фазой кобальта и никеля, обычно добавляемой для изменения свойств.
Керамику можно значительно укрепить для инженерных целей, используя принцип отклонения трещины . [27] Этот процесс включает в себя стратегическое добавление частиц второй фазы в керамическую матрицу, оптимизируя их форму, размер и распределение для направления и контроля распространения трещин. Такой подход повышает вязкость разрушения, открывая путь к созданию современной высокопроизводительной керамики в различных отраслях промышленности. [28]
Композиты [ править ]
Другое применение материаловедения в промышленности — изготовление композиционных материалов . Это структурированные материалы, состоящие из двух или более макроскопических фаз.
Область применения варьируется от структурных элементов, таких как железобетон, до теплоизоляционных плиток, которые играют ключевую и неотъемлемую роль в системе тепловой защиты космического корабля НАСА , которая используется для защиты поверхности шаттла от тепла при входе в атмосферу. в атмосферу Земли. Одним из примеров является армированный углерод-углерод (RCC), светло-серый материал, который выдерживает температуру входа в атмосферу до 1510 °C (2750 °F) и защищает передние кромки крыла и носовую часть космического челнока. [29] RCC представляет собой ламинированный композиционный материал, изготовленный из графитовой вискозной ткани и пропитанный фенольной смолой . После отверждения при высокой температуре в автоклаве ламинат фурфуриловым пиролизуется . для превращения смолы в углерод, пропитывается спиртом в вакуумной камере и отверждается пиролизом для превращения фурфурилового спирта в углерод Чтобы обеспечить стойкость к окислению и возможность повторного использования, внешние слои RCC превращаются в карбид кремния .
Другие примеры можно увидеть в «пластмассовых» корпусах телевизоров, мобильных телефонов и т.п. Эти пластиковые оболочки обычно представляют собой композитный материал, состоящий из термопластической матрицы, такой как акрилонитрил-бутадиен-стирол (АБС), в которую мел карбоната кальция , тальк , стеклянные волокна или углеродные волокна добавлены для дополнительной прочности, объема или электростатического диспергирования . Эти добавки можно назвать армирующими волокнами или диспергаторами, в зависимости от их назначения.
Полимеры [ править ]
Полимеры – это химические соединения, состоящие из большого количества одинаковых компонентов, связанных между собой в виде цепей. [30] Полимеры — это сырье (смолы), используемое для изготовления так называемых пластмасс и резины . Пластмассы и резина являются конечным продуктом, созданным после добавления одного или нескольких полимеров или добавок к смоле во время обработки, которой затем придается окончательная форма. Пластмассы, широко используемые в прошлом и в настоящее время, включают полиэтилен , полипропилен , поливинилхлорид (ПВХ), полистирол , нейлон , полиэфиры , акрил , полиуретаны и поликарбонаты . Каучуки включают натуральный каучук, бутадиен-стирольный каучук, хлоропрен и бутадиеновый каучук . Пластмассы обычно подразделяются на товарные , специальные и инженерные пластмассы .
Поливинилхлорид (ПВХ) широко используется, недорог, а ежегодные объемы производства велики. Он подходит для широкого спектра применений: от искусственной кожи до электроизоляции и прокладки кабелей, упаковки и контейнеров . Его изготовление и обработка просты и хорошо отработаны. Универсальность ПВХ обусловлена широким спектром пластификаторов и других добавок, которые он допускает. [31] Термин «добавки» в науке о полимерах относится к химическим веществам и соединениям, добавляемым к полимерной основе для изменения свойств ее материала.
Поликарбонат обычно считается конструкционным пластиком (другие примеры включают PEEK , ABS). Такие пластмассы ценятся за свою превосходную прочность и другие особые свойства материала. Они обычно не используются для одноразового применения, в отличие от товарного пластика.
Специальные пластмассы – это материалы с уникальными характеристиками, такими как сверхвысокая прочность, электропроводность, электрофлуоресценция, высокая термостойкость и т. д.
Разделительные линии между различными типами пластмасс основаны не на материале, а на их свойствах и применении. Например, полиэтилен (ПЭ) представляет собой дешевый полимер с низким коэффициентом трения, обычно используемый для изготовления одноразовых мешков для покупок и мусора и считается товарным пластиком, тогда как полиэтилен средней плотности (MDPE) используется для подземных газо- и водопроводных труб, а также Другая разновидность, называемая полиэтиленом сверхвысокой молекулярной массы (СВМПЭ), представляет собой конструкционный пластик, который широко используется в качестве направляющих для промышленного оборудования и втулок с низким коэффициентом трения в имплантированных тазобедренных суставах .
Металлические сплавы [ править ]
Сплавы железа ( сталь , нержавеющая сталь , чугун , инструментальная сталь , легированные стали ) составляют сегодня наибольшую долю металлов как по количеству, так и по коммерческой ценности.
Железо, легированное различным содержанием углерода, дает низко- , средне- и высокоуглеродистые стали . Железо-углеродистый сплав считается сталью только в том случае, если уровень углерода составляет от 0,01% до 2,00% по весу. Что касается сталей, твердость и предел прочности стали связаны с количеством присутствующего углерода, причем увеличение уровня углерода также приводит к снижению пластичности и ударной вязкости. Однако процессы термообработки, такие как закалка и отпуск, могут существенно изменить эти свойства. Напротив, некоторые металлические сплавы обладают уникальными свойствами: их размер и плотность остаются неизменными в широком диапазоне температур. [32] Чугун определяется как сплав железа с углеродом, содержащий более 2,00%, но менее 6,67% углерода. Нержавеющая сталь определяется как обычный стальной сплав с содержанием легирующего хрома более 10% по весу . никель и молибден В нержавеющие стали обычно также добавляют .
Другими важными металлическими сплавами являются сплавы алюминия , титана , меди и магния . Сплавы меди известны давно (со времен бронзового века ), тогда как сплавы трех других металлов разработаны сравнительно недавно. Из-за химической активности этих металлов необходимые процессы электролитической экстракции были разработаны сравнительно недавно. Сплавы алюминия, титана и магния также известны и ценятся за их высокое соотношение прочности к весу и, в случае магния, за их способность обеспечивать электромагнитное экранирование. [33] Эти материалы идеально подходят для ситуаций, когда высокое соотношение прочности и веса более важно, чем объемная стоимость, например, в аэрокосмической промышленности и некоторых областях автомобилестроения.
Полупроводники [ править ]
Полупроводник — это материал, который имеет удельное сопротивление между проводником и изолятором . Современная электроника работает на полупроводниках, и в 2021 году рынок этой отрасли оценивается в 530 миллиардов долларов США. [34] Его электронные свойства могут быть существенно изменены путем намеренного введения примесей в процессе, называемом легированием. Полупроводниковые материалы используются для создания диодов , транзисторов , светоизлучающих диодов (СИД), а также аналоговых и цифровых электрических схем , а также для их многочисленных применений. Полупроводниковые устройства заменили термоэмиссионные устройства, такие как электронные лампы, в большинстве применений. Полупроводниковые устройства производятся как в виде отдельных дискретных устройств, так и в виде интегральных схем (ИС), которые состоят из ряда — от нескольких до миллионов — устройств, изготовленных и соединенных между собой на одной полупроводниковой подложке . [35]
Из всех полупроводников, используемых сегодня, кремний составляет наибольшую долю как по количеству, так и по коммерческой ценности. Монокристаллический кремний используется для производства пластин, используемых в полупроводниковой и электронной промышленности . Арсенид галлия (GaAs) — второй по популярности используемый полупроводник. Благодаря более высокой подвижности электронов и скорости насыщения по сравнению с кремнием, этот материал является предпочтительным материалом для приложений высокоскоростной электроники. Эти превосходные свойства являются вескими причинами для использования схем GaAs в мобильных телефонах, спутниковой связи, микроволновых двухточечных линиях связи и высокочастотных радиолокационных системах. Другие полупроводниковые материалы включают германий , карбид кремния и нитрид галлия и имеют различные применения.
Связь с другими полями [ править ]
Материаловедение развивалось, начиная с 1950-х годов, поскольку было признано, что для создания, открытия и проектирования новых материалов необходимо подходить к этому единым образом. Таким образом, материаловедение и инженерия возникли разными способами: переименование и/или объединение существующих металлургии и керамики кафедр ; отделение от существующих исследований в области физики твердого тела (которые сами по себе перерастают в физику конденсированного состояния ); привлечение относительно новых технологий в области полимерной инженерии и науки о полимерах ; рекомбинация из предыдущего, а также химии , химической технологии , машиностроения и электротехники ; и многое другое.
Область материаловедения и инженерии важна как с научной точки зрения, так и с точки зрения приложений. Материалы имеют первостепенное значение для инженеров (или других прикладных областей), поскольку использование соответствующих материалов имеет решающее значение при проектировании систем. В результате материаловедение становится все более важной частью образования инженера.
Физика материалов — это использование физики для описания физических свойств материалов. Это синтез физических наук , таких как химия , механика твердого тела , физика твердого тела и материаловедение. Физика материалов считается подмножеством физики конденсированного состояния и применяет фундаментальные концепции конденсированного состояния к сложным многофазным средам, включая материалы, представляющие технологический интерес. Текущие области, в которых работают физики материалов, включают электронные, оптические и магнитные материалы, новые материалы и структуры, квантовые явления в материалах, неравновесную физику и физику мягкого конденсированного состояния. Новые экспериментальные и вычислительные инструменты постоянно совершенствуют способы моделирования и изучения систем материалов, а также являются областями, в которых работают физики материалов.
Эта область по своей сути является междисциплинарной , и ученые-материаловеды или инженеры должны знать и использовать методы физика, химика и инженера. И наоборот, такие области, как науки о жизни и археология, могут стимулировать разработку новых материалов и процессов с использованием биоинспирированных и палеоинспирированных подходов. Таким образом, сохраняются тесные связи с этими областями. И наоборот, многие физики, химики и инженеры работают в области материаловедения из-за значительного совпадения между этими областями.
Новые технологии [ править ]
Новые технологии | Статус | Потенциально маргинализированные технологии | Возможные применения | Похожие статьи |
---|---|---|---|---|
Аэрогель | Гипотетические, эксперименты, диффузия, раннее использование [36] | Традиционная изоляция, стекло | Улучшенная изоляция, изоляционное стекло, если его можно сделать прозрачным, рукава для нефтепроводов, аэрокосмической промышленности, применения при высоких температурах и экстремальных холодах. | |
Аморфный металл | Эксперименты | Кевлар | Броня | |
Проводящие полимеры | Исследования, эксперименты, прототипы | Дирижеры | Более легкие и дешевые провода, антистатические материалы, органические солнечные элементы. | |
Фемтотехнология , пикотехнология | Гипотетический | Настоящее ядерное | Новые материалы; ядерное оружие, сила | |
Фуллеры | Эксперименты, распространение | Синтетический алмаз и углеродные нанотрубки (Buckypaper) | Программируемая материя | |
Графен | Гипотетические, эксперименты, диффузия, | на основе кремния Интегральная схема | Компоненты с более высоким соотношением прочности и веса, транзисторы, работающие на более высокой частоте, более низкая стоимость экранов дисплеев в мобильных устройствах, хранение водорода для автомобилей на топливных элементах, системы фильтрации, более долговечные и быстро заряжающиеся аккумуляторы, датчики для диагностики заболеваний. [39] | Потенциальные применения графена |
Высокотемпературная сверхпроводимость | Системы входных криогенных приемников (CRFE) ВЧ и СВЧ-фильтров для базовых станций мобильных телефонов; прототипы в сухом льду ; Гипотетические и эксперименты для более высоких температур [40] | Медная проволока, полупроводниковые интегральные схемы | Проводники без потерь, подшипники качения, магнитная левитация большой емкости без потерь , аккумуляторы , электромобили , безтепловые интегральные схемы и процессоры | |
ЛиТраКон | Эксперименты, уже использованные при создании Ворот Европы | Стекло | Строительство небоскребов, башен и скульптур, таких как Ворота Европы. | |
Метаматериалы | Гипотетические, эксперименты, распространение [41] | Классическая оптика | Микроскопы , камеры , маскировка метаматериалов , маскировочные устройства | |
Металлическая пена | Исследования, коммерциализация | Корпуса | Космические колонии , летающие города | |
Многофункциональные структуры [42] | Гипотетические, эксперименты, несколько прототипов, мало коммерческих | Композитные материалы | Широкий диапазон, например, мониторинг самовосстановления, самовосстанавливающийся материал , морфинг | |
Наноматериалы : углеродные нанотрубки. | Гипотетические, эксперименты, диффузия, | Конструкционная сталь и алюминий | Более прочные и легкие материалы, космический лифт | Потенциальные применения углеродных нанотрубок , углеродного волокна |
Программируемая материя | Гипотетические, эксперименты [45] [46] | Покрытия , катализаторы | Широкий диапазон, например, глинятроника , синтетическая биология. | |
Квантовые точки | Исследования, эксперименты, прототипы [47] | ЖК-дисплей , светодиодный | Лазер на квантовых точках , будущее использование в качестве программируемой материи в технологиях отображения (телевидение, проекция), оптической передаче данных (высокоскоростная передача данных), медицине (лазерный скальпель) | |
Силицен | Гипотетические, исследовательские | Полевые транзисторы |
Субдисциплины [ править ]
Основные отрасли материаловедения связаны с четырьмя основными классами материалов: керамикой, металлами, полимерами и композитами.
Существуют также широко применимые, независимые от материалов начинания.
- Характеристика материалов ( спектроскопия , микроскопия , дифракция )
- Вычислительное материаловедение
- Информатика и подбор материалов
Существуют также относительно широкие материалы по конкретным явлениям и методам.
Связанные или междисциплинарные области [ править ]
- Физика конденсированного состояния , физика твердого тела и химия твердого тела.
- Нанотехнологии
- Минералогия
- Супрамолекулярная химия
- Биоматериаловедение
Профессиональные общества [ править ]
- Американское керамическое общество
- АСМ Интернешнл
- Ассоциация технологий черной металлургии
- Общество исследования материалов
- Общество минералов, металлов и материалов
См. также [ править ]
Ссылки [ править ]
Цитаты [ править ]
- ^ Эдди, Мэтью Дэниел (2008). Язык минералогии: Джон Уокер, химия и Эдинбургская медицинская школа, 1750–1800 гг . Издательство Эшгейт . Архивировано из оригинала 3 сентября 2015 г. - через Academia.edu.
- ^ Смит, Сирил Стэнли (1981). Поиск структуры . МТИ Пресс . ISBN 978-0262191913 .
- ^ Jump up to: Перейти обратно: а б Дефонсека, Крис (2020). Полимерные наполнители и упрочнители: применение и нетрадиционные альтернативы . Берлин: Walter de Gruyter GmbH & Co KG. п. 31. ISBN 978-3-11-066999-2 .
- ^ Псиллос, Димитрис; Кариотоглу, Петрос (2015). Итеративный дизайн последовательностей преподавания и обучения: внедрение материаловедения в европейских школах . Дордрехт: Спрингер. п. 79. ИСБН 978-94-007-7807-8 .
- ^ Мартин, Джозеф Д. (2015). «Что значит смена названия? Физика твердого тела, физика конденсированного состояния и материаловедение» (PDF) . Физика в перспективе . 17 (1): 3–32. Бибкод : 2015ФП....17....3М . дои : 10.1007/s00016-014-0151-7 . S2CID 117809375 .
- ^ Jump up to: Перейти обратно: а б Чаннел, Дэвид Ф. (2017). История технонауки: стирание границ между наукой и технологией . Оксон: Рутледж. п. 225. ИСБН 978-1-351-97740-1 .
- ^ «Для авторов: природные материалы». Архивировано 1 августа 2010 г. в Wayback Machine.
- ^ Каллистер-младший, Ретвиш. «Материаловедение и инженерия – Введение» (8-е изд.). Джон Уайли и сыновья, 2009 г., стр. 5–6.
- ^ Каллистер-младший, Ретвиш. Материаловедение и инженерия – Введение (8-е изд.), здания и автомобили в космические корабли. Основные классы материалов — металлы , полупроводники , керамика и полимеры .. John Wiley and Sons, 2009, стр. 10–12.
- ^ Гуденаф, Джон Б.; Ким, Янгсик (28 августа 2009 г.). «Проблемы литиевых аккумуляторов» . Химия материалов . 22 (3): 587–603. дои : 10.1021/cm901452z . ISSN 0897-4756 .
- ^ Загородний, Андрей А. (2006). Ионообменные материалы: свойства и применение . Амстердам: Эльзевир. стр. xi. ISBN 978-0-08-044552-6 .
- ^ А. Навроцкий (1998). «Энергетика и кристаллохимическая систематика структур ильменита, ниобата лития и перовскита». хим. Мэтр . 10 (10): 2787–2793. дои : 10.1021/cm9801901 .
- ^ Каллистер-младший, Ретвиш. «Материаловедение и инженерия – Введение» (8-е изд.) Джон Уайли и сыновья, 2009 г.
- ^ Каллистер-младший, Ретвиш. «Материаловедение и инженерия – Введение» (8-е изд.). Джон Уайли и сыновья, 2009 г.
- ^ Каллистер-младший, Ретвиш. Материаловедение и инженерия - Введение (8-е изд.)
- ^ Гавецотти, Анджело (1 октября 1994 г.). «Предсказуемы ли кристаллические структуры?» . Отчеты о химических исследованиях . 27 (10): 309–314. дои : 10.1021/ar00046a004 . ISSN 0001-4842 .
- ^ Кристина Бузеа; Иван Пачеко и Кевин Робби (2007). «Наноматериалы и наночастицы: источники и токсичность» . Биоинтерфазы . 2 (4): MR17–MR71. arXiv : 0801.3280 . дои : 10.1116/1.2815690 . ПМИД 20419892 . S2CID 35457219 . Архивировано из оригинала 3 июля 2012 г.
- ^ Филип, Р; Кубяк, К; Зияджа, Вт; Сенявский, Дж (2003). «Влияние микроструктуры на механические свойства двухфазных титановых сплавов» . Журнал технологии обработки материалов . 133 (1–2): 84–89. дои : 10.1016/s0924-0136(02)00248-0 . ISSN 0924-0136 .
- ^ «Дефекты и несовершенства кристаллической структуры» , Кристаллические несовершенства: ключевые темы в материаловедении и инженерии , ASM International, стр. 1–12, 01 октября 2021 г., doi : 10.31399/asm.tb.ciktmse.t56020001 , ISBN 978-1-62708-389-8 , S2CID 244023491 , получено 29 октября 2023 г.
- ^ Лю, Цзы-Куй (2020). «Вычислительная термодинамика и ее приложения» . Акта Материалия . 200 : 745–792. Бибкод : 2020AcMat.200..745L . doi : 10.1016/j.actamat.2020.08.008 . ISSN 1359-6454 . S2CID 225430517 .
- ^ Кергер, Йорг; Рутвен, Дуглас М.; Теодору, Дорос Н. (25 апреля 2012 г.). Диффузия в нанопористых материалах . Уайли. дои : 10.1002/9783527651276 . ISBN 978-3-527-31024-1 .
- ^ Морхардт, Дункан Р.; Мони, Джошуа Р.; Эстрада, Карлос Р. (01 января 2019 г.), «Роль биоматериалов в хирургии» , Рейс, Руи Л. (ред.), Энциклопедия тканевой инженерии и регенеративной медицины , Оксфорд: Academic Press, стр. 315–330. , doi : 10.1016/b978-0-12-801238-3.65845-2 , ISBN 978-0-12-813700-0 , получено 28 апреля 2024 г.
- ^ Шелби, РА; Смит Д.Р.; Шульц С.; Немат-Насер СК (2001). «Передача микроволновых волн через двумерный изотропный левосторонний метаматериал» (PDF) . Письма по прикладной физике . 78 (4): 489. Бибкод : 2001ApPhL..78..489S . дои : 10.1063/1.1343489 . Архивировано из оригинала (PDF) 18 июня 2010 года.
- ^ Смит, доктор медицинских наук; Падилья, штат Вашингтон; Вир, округ Колумбия; Немат-Насер, Южная Каролина; Шульц, С (2000). «Композитная среда с одновременно отрицательными проницаемостью и диэлектрической проницаемостью» . Письма о физических отзывах . 84 (18): 4184–7. Бибкод : 2000PhRvL..84.4184S . doi : 10.1103/PhysRevLett.84.4184 . ПМИД 10990641 .
- ^ Шмидт, Джонатан; Маркес, Марио Р.Г.; Ботти, Сильвана; Маркес, Мигель А.Л. (8 августа 2019 г.). «Последние достижения и применения машинного обучения в твердотельном материаловедении» . npj Расчетные материалы . 5 (1): 83. Бибкод : 2019npjCM...5...83S . дои : 10.1038/s41524-019-0221-0 . ISSN 2057-3960 . S2CID 199492241 .
- ^ Каллистер, Уильям Д.; Ретвиш, Дэвид Г. (2018). Материаловедение и инженерия. Введение (10-е изд.). Хобокен, Нью-Джерси: Джон Уайли и сыновья. п. 12. ISBN 9780470419977 .
- ^ Фабер, КТ; Эванс, А.Г. (1 апреля 1983 г.). «Процессы прогиба трещин — I. Теория» . Акта Металлургика . 31 (4): 565–576. дои : 10.1016/0001-6160(83)90046-9 . ISSN 0001-6160 .
- ^ Фабер, КТ; Эванс, А.Г. (1 апреля 1983 г.). «Процессы отклонения трещины — II. Эксперимент» . Акта Металлургика . 31 (4): 577–584. дои : 10.1016/0001-6160(83)90047-0 . ISSN 0001-6160 .
- ^ Грин, Д. (2005). «Польза IPV6 для бойца» . Конференция MILCOM 2005–2005 IEEE по военной связи . IEEE. стр. 1–6. дои : 10.1109/milcom.2005.1606007 . ISBN 0-7803-9393-7 . S2CID 31152759 .
- ^ «Объяснитель: Что такое полимеры?» . 13 октября 2017 г. Проверено 2 мая 2024 г.
- ^ Бернард, Л.; Куэфф, Р.; Брейсс, К.; Декоден, Б.; Сауту, В. (15 мая 2015 г.). «Миграция пластификаторов ПВХ из медицинских изделий в имитатор инфузионных растворов» . Международный фармацевтический журнал . 485 (1): 341–347. doi : 10.1016/j.ijpharm.2015.03.030 . ISSN 0378-5173 . ПМИД 25796128 .
- ^ Лохаус, СХ; Гейне, М.; Гузман, П.; Берналь-Чобан, КМ; Сондерс, Китай; Шен, Г.; Хеллман, О.; Бройдо, Д.; Фульц, Б. (27 июля 2023 г.). «Термодинамическое объяснение эффекта Инвара» . Физика природы . 19 (11): 1642–1648. Бибкод : 2023NatPh..19.1642L . дои : 10.1038/s41567-023-02142-z . ISSN 1745-2481 . S2CID 260266502 .
- ^ Чен, Сяньхуа; Лю, Лизи; Лю, Хуан; Пан, Фушен (2015). «Микроструктура, эффективность электромагнитного экранирования и механические свойства сплавов Mg–Zn–Y–Zr» . Материалы и дизайн (1980-2015) . 65 : 360–369. дои : 10.1016/j.matdes.2014.09.034 . ISSN 0261-3069 .
- ^ «Размер рынка полупроводников, его доля и анализ воздействия COVID-19 по компонентам (устройства памяти, логические устройства, аналоговые микросхемы, микропроцессоры, устройства дискретного питания, микроконтроллеры, датчики и другие), по приложениям (сети и коммуникации, обработка данных, промышленность) , бытовая электроника, автомобилестроение и государственное управление) и региональный прогноз на 2022–2029 годы» . Бизнес-аналитика Fortune . 16 июля 2023 года. Архивировано из оригинала 11 июня 2023 года . Проверено 16 июля 2023 г.
- ^ «Карьера в полупроводниковой промышленности» . 06 сентября 2013 г. Архивировано из оригинала 4 июня 2016 г. Проверено 15 мая 2016 г.
- ^ «Sto AG, Cabot создает изоляцию из аэрогеля» . Строительство Цифра. 15 ноября 2011 года. Архивировано из оригинала 31 декабря 2011 года . Проверено 18 ноября 2011 г.
- ^ «Является ли графен чудодейственным материалом?» . Би-би-си Клик. 21 мая 2011 года . Проверено 18 ноября 2011 г.
- ^ «Может ли графен стать новым кремнием?» . Хранитель . 13 ноября 2011 года. Архивировано из оригинала 2 сентября 2013 года . Проверено 18 ноября 2011 г.
- ^ «Разрабатываемое применение графена» . пониманиеnano.com. Архивировано из оригинала 21 сентября 2014 г.
- ^ «Новая эра суперматериалов» . Новости Би-би-си . 5 марта 2007 г. Проверено 27 апреля 2011 г.
- ^ «Прогресс в материалах, но без плаща-невидимки» . Нью-Йорк Таймс . 8 ноября 2010 г. Архивировано из оригинала 1 июля 2017 г. Проверено 21 апреля 2011 г.
- ^ Веб-сайт NAE: Frontiers of Engineering. Архивировано 28 июля 2014 г. в Wayback Machine . Нае.еду. Проверено 22 февраля 2011 г.
- ^ «Углеродные нанотрубки, используемые для изготовления батарей из тканей» . Новости Би-би-си . 21 января 2010 года . Проверено 27 апреля 2011 г.
- ^ «Исследователи на шаг ближе к созданию синтетического мозга» . Ежедневная технология. 25 апреля 2011 года. Архивировано из оригинала 29 апреля 2011 года . Проверено 27 апреля 2011 г.
- ^ «Пентагон разрабатывает меняющих форму «трансформеров» для поля боя» . Фокс Ньюс. 10 июня 2009 года. Архивировано из оригинала 5 февраля 2011 года . Проверено 26 апреля 2011 г.
- ^ «Интел: Программируемая материя обретает форму» . ЗД Нет. 22 августа 2008 года . Проверено 2 января 2012 г.
- ^ « Квантовые точки» повысят производительность мобильных камер» . Новости Би-би-си . 22 марта 2010 г. Проверено 16 апреля 2011 г.
Библиография [ править ]
- Эшби, Майкл; Хью Шерклифф; Дэвид Себон (2007). Материалы: инженерия, наука, обработка и проектирование (1-е изд.). Баттерворт-Хайнеманн. ISBN 978-0-7506-8391-3 .
- Аскеланд, Дональд Р.; Прадип П. Фуле (2005). Наука и инженерия материалов (5-е изд.). Томсон-Инжиниринг. ISBN 978-0-534-55396-8 .
- Каллистер-младший, Уильям Д. (2000). Материаловедение и инженерия – Введение (5-е изд.). Джон Уайли и сыновья. ISBN 978-0-471-32013-5 .
- Эберхарт, Марк (2003). Почему все ломается: понимание мира по тому, как он разваливается . Гармония. ISBN 978-1-4000-4760-4 .
- Гаскелл, Дэвид Р. (1995). Введение в термодинамику материалов (4-е изд.). Издательство Тейлора и Фрэнсиса. ISBN 978-1-56032-992-3 .
- Гонсалес-Виньяс, В. и Манчини, HL (2004). Введение в материаловедение . Издательство Принстонского университета. ISBN 978-0-691-07097-1 .
- Гордон, Джеймс Эдвард (1984). Новая наука о прочных материалах или почему вы не проваливаетесь сквозь пол (выпуск под ред.). Издательство Принстонского университета. ISBN 978-0-691-02380-9 .
- Мэтьюз, Флорида и Роулингс, РД (1999). Композиционные материалы: техника и наука . Бока-Ратон: CRC Press. ISBN 978-0-8493-0621-1 .
- Льюис, PR; Рейнольдс К. и Гагг К. (2003). Судебная материаловедение: практические примеры . Бока-Ратон: CRC Press. ISBN 9780849311826 .
- Вахтман, Джон Б. (1996). Механические свойства керамики . Нью-Йорк: Wiley-Interscience, John Wiley & Son's. ISBN 978-0-471-13316-2 .
- Уокер, П., изд. (1993). Словарь Чемберса по материаловедению и технологиям . Издательство Чемберс. ISBN 978-0-550-13249-9 .
- Махаджан, С. (2015). «Роль материаловедения в развитии микроэлектроники» . Вестник МРС . 12 (40): 1079–1088. Бибкод : 2015MRSBu..40.1079M . дои : 10.1557/mrs.2015.276 .
Дальнейшее чтение [ править ]
- Хронология материаловедения в Обществе минералов, металлов и материалов (TMS) - по состоянию на март 2007 г.
- Бернс, Г.; Глейзер, AM (1990). Космические группы для ученых и инженеров (2-е изд.). Academic Press, Inc. Бостон: ISBN 978-0-12-145761-7 .
- Каллити, Б.Д. (1978). Элементы дифракции рентгеновских лучей (2-е изд.). Ридинг, Массачусетс: Издательство Addison-Wesley. ISBN 978-0-534-55396-8 .
- Джаковаццо, К; Мюнхен ХЛ; Витербо Д; Скордари Ф; Джилли Джи; Занотти Дж; Кэтти М (1992). Основы кристаллографии . Оксфорд: Издательство Оксфордского университета . ISBN 978-0-19-855578-0 .
- Грин, диджей; Ханнинк, Р.; Суэйн, М.В. (1989). Трансформационное упрочнение керамики . Бока-Ратон: CRC Press. ISBN 978-0-8493-6594-2 .
- Лавси, Юго-Запад (1984). Теория рассеяния нейтронов в конденсированном состоянии; Том 1: Рассеяние нейтронов . Оксфорд: Кларендон Пресс. ISBN 978-0-19-852015-3 .
- Лавси, Юго-Запад (1984). Теория рассеяния нейтронов в конденсированном состоянии; Том 2: Конденсированное вещество . Оксфорд: Кларендон Пресс. ISBN 978-0-19-852017-7 .
- О'Киф, М.; Хайд, Б.Г. (1996). «Кристаллические структуры; I. Узоры и симметрия». Zeitschrift für Kristallographie – Кристаллические материалы . 212 (12). Вашингтон, округ Колумбия: Минералогическое общество Америки, Серия монографий: 899. Бибкод : 1997ZK....212..899K . дои : 10.1524/zkri.1997.212.12.899 . ISBN 978-0-939950-40-9 .
- Сквайрс, Г.Л. (1996). Введение в теорию теплового рассеяния нейтронов (2-е изд.). Минеола, Нью-Йорк: ISBN Dover Publications Inc. 978-0-486-69447-4 .
- Янг, Р.А., изд. (1993). Метод Ритвельда . Оксфорд: Издательство Оксфордского университета и Международный союз кристаллографии. ISBN 978-0-19-855577-3 .