Jump to content

Карл Фридрих Гаусс

Страница защищена ожидающими изменениями
(Перенаправлено с Карла Гаусса )

Карл Фридрих Гаусс
Портрет эрла Фридриха Гаусса 1840 года работы Йенсена.
Портрет Кристиана Альбрехта Йенсена , 1840 г. (копия с Готлиба Бирмана, 1887 г.) [1]
Рожденный
Иоганн Карл Фридрих Гаусс

( 1777-04-30 ) 30 апреля 1777 г.
Died23 February 1855(1855-02-23) (aged 77)
Göttingen, Kingdom of Hanover, German Confederation
Alma mater
Known forFull list
Spouses
Johanna Osthoff
(m. 1805; died 1809)
Minna Waldeck
(m. 1810; died 1831)
Children6
Awards
Scientific career
FieldsMathematics, Astronomy, Geodesy, Magnetism
InstitutionsUniversity of Göttingen
ThesisDemonstratio nova... (1799)
Doctoral advisorJohann Friedrich Pfaff
Doctoral students
Other notable students
Signature

Иоганн Карл Фридрих Гаусс (нем. Gauß [kaʁl ˈfʁiːdʁɪç ˈɡaʊs] ; [2] [3] Латынь : Карол Фридерикус Гаусс ; 30 апреля 1777 — 23 февраля 1855) — немецкий математик , астроном , геодезист и физик, внесший вклад во многие области математики и естественных наук. Он входит в число самых влиятельных математиков в истории, и его называли «принцем математиков». Он был директором Геттингенской обсерватории и профессором астрономии почти полвека, с 1807 года до своей смерти в 1855 году.

Еще будучи студентом Геттингенского университета , он выдвинул несколько математических теорем . Гаусс завершил свои шедевры Disquisitiones Arithmeticae и Theoria motus corporum coelestium как частный ученый. Он дал второе и третье полные доказательства основной теоремы алгебры , внес вклад в теорию чисел и разработал теории бинарных и троичных квадратичных форм. Он считается одним из первооткрывателей неевклидовой геометрии наряду с Николаем Лобачевским и Яношем Бойяи и ввёл этот термин.

Gauss was instrumental in the identification of the newly discovered Ceres as a dwarf planet. His work on the motion of planetoids disturbed by large planets led to the introduction of the Gaussian gravitational constant and the method of least squares, which he had discovered before Adrien-Marie Legendre published it.

Gauss was in charge of the extensive geodetic survey of the Kingdom of Hanover together with an arc measurement project from 1820 to 1844, did much of the fieldwork, and provided the complete scientific evaluation. Furthermore, he was one of the founders of geophysics while formulating the fundamental principles of magnetism, and did basic practical research in this field. Fruits of his practical works were the inventions of the heliotrope in 1821, a magnetometer in 1833 and, alongside Wilhelm Eduard Weber, the first electromagnetic telegraph in 1833.

Gauss was a careful author who refused to publish incomplete work, and although he published extensively during his life, he left behind several works to be edited posthumously. He believed that the act of learning, not possession of knowledge, provided the greatest enjoyment. Gauss confessed to disliking teaching, but some of his students became influential mathematicians.

Biography[edit]

Youth and education[edit]

House of birth in Brunswick (destroyed in World War II)
Caricature of Abraham Gotthelf Kästner by Gauss (1795)

Johann Carl Friedrich Gauss was born on 30 April 1777 in Brunswick (Braunschweig) in the Duchy of Brunswick-Wolfenbüttel (now part of Germany's federal state Lower Saxony), to a family of lower social status.[4] His father Gebhard Dietrich Gauss (1744–1808) worked in several jobs, as butcher, bricklayer, gardener, and as treasurer of a death-benefit fund. Gauss characterized his father as an honourable and respected man but rough and dominating at home. He was experienced in writing and calculating, whereas his second wife Dorothea (1743–1839), Carl Friedrich's mother, was nearly illiterate.[5] He had one elder brother from his father's first marriage.[6]

Gauss was a child prodigy in the field of mathematics. When the elementary teachers noticed his intellectual abilities, they brought him to the attention of the Duke of Brunswick who sent him to the local Collegium Carolinum,[a] which he attended from 1792 to 1795 with Eberhard August Wilhelm von Zimmermann as one of his teachers[citation needed].[8][9][10] Thereafter the Duke granted him the resources for studies of mathematics, sciences, and classical languages at the Hanoverian University of Göttingen until 1798.[11] It is not known why Gauss went to Göttingen and not to the University of Helmstedt near his native town Brunswick; it is assumed that the large library of Göttingen, where students were allowed to borrow books and take them home, was the decisive reason.[12] His professor in mathematics was Abraham Gotthelf Kästner, whom Gauss called "the leading mathematician among poets, and the leading poet among mathematicians" because of his epigrams.[13] Gauss depicted him in a drawing showing a lecture scene where he produced errors in a simple calculation.[citation needed][10] Astronomy was taught by Karl Felix Seyffer, with whom Gauss stayed in correspondence after graduation;[14] Olbers and Gauss mocked him in their correspondence.[15] On the other hand, he thought highly of Georg Christoph Lichtenberg, his teacher of physics, and of Christian Gottlob Heyne, whose lectures in classics Gauss attended with pleasure.[14] Fellow students of this time were Johann Friedrich Benzenberg, Farkas Bolyai, and Heinrich Wilhelm Brandes.[14]

Though being a registered student at university, it is evident that he was a self-taught student in mathematics since he independently rediscovered several theorems.[10] He succeeded with a breakthrough in a geometrical problem that had occupied mathematicians since the days of the Ancient Greeks, when he determined in 1796 which regular polygons can be constructed by compass and straightedge. This discovery was the subject of his first publication and ultimately led Gauss to choose mathematics instead of philology as a career.[16] Gauss's mathematical diary, a collection of short remarks about his results from the years 1796 until 1814, shows that many ideas for his mathematical magnum opus Disquisitiones Arithmeticae (1801) date from this time.[17]

Private scholar[edit]

Gauss graduated as a Doctor of Philosophy in 1799. He did not graduate from Göttingen, as is sometimes stated,[b][18] but rather, at the Duke of Brunswick's special request, from the University of Helmstedt, the only state university of the duchy. There, Johann Friedrich Pfaff assessed his doctoral thesis, and Gauss got the degree in absentia without the further oral examination that was usually requested.[citation needed][10] The Duke then granted him the cost of living as a private scholar in Brunswick. Gauss showed his gratitude and loyalty for this benefit when he refused several calls from the Russian Academy of Sciences in St. Peterburg and Landshut University.[19][20] Later, the Duke promised him the foundation of an observatory in Brunswick in 1804. Architect Peter Joseph Krahe made preliminary designs, but one of Napoleon's wars cancelled those plans:[21] the Duke was mortally wounded in the battle of Jena in 1806. The duchy was abolished in the following year, and Gauss's financial support stopped.

When Gauss was busy with the calculation of asteroid orbits in the first years of the century, he established contact with the astronomical community of Bremen and Lilienthal, especially Wilhelm Olbers, Karl Ludwig Harding, and Friedrich Wilhelm Bessel, as part of the informal group of astronomers known as the Celestial police.[22] One of their aims was the discovery of further planets, and they assembled data on asteroids and comets as a basis for Gauss's research on their orbits, which he later published in his astronomical magnum opus Theoria motus corporum coelestium (1809).[23]

Professor in Göttingen[edit]

Old Göttingen observatory, c. 1800
Gauss on his deathbed (1855)

In November 1807, Gauss followed a call to the University of Göttingen, an institution of the newly founded Kingdom of Westphalia under Jérôme Bonaparte, as full professor and director of the astronomical observatory,[24] and kept the chair until his death in 1855. He was soon confronted with the demand for two thousand francs from the Westphalian government as a war contribution. Without having yet received his salary, he could not raise this enormous amount. Both Olbers and Laplace wanted to help him with the payment, but Gauss refused their assistance. Finally, an anonymous person from Frankfurt, later discovered to be Prince-primate Dalberg,[25] paid the sum.[24][failed verification]

Gauss took on the directorate of the 60-year-old observatory, founded in 1748 by Prince-elector George II and built on a converted fortification tower,[26] with usable, but partly out-of-date instruments.[27] The construction of a new observatory had been approved by Prince-elector George III in principle since 1802, and the Westphalian government continued the planning,[28] but Gauss could not move to his new place of work until September 1816.[20] He got new up-to-date instruments, for instance, two meridian circles from Repsold[29] and Reichenbach,[30] and a heliometer from Fraunhofer.[31]

The scientific activity of Gauss, besides pure mathematics, can be roughly divided into three periods: astronomy was the main focus in the first two decades of the 19th century, geodesy in the third decade, and in the fourth decade he occupied himself with physics, mainly magnetism.[32]

Gauss remained mentally active into his old age, even while suffering from gout and general unhappiness. On 23 February 1855, he died of a heart attack in Göttingen;[13] and was interred in the Albani Cemetery there. Heinrich Ewald, Gauss's son-in-law, and Wolfgang Sartorius von Waltershausen, Gauss's close friend and biographer, gave eulogies at his funeral.[33]

Gauss's brain[edit]

The day after Gauss's death his brain was removed, preserved, and studied by Rudolf Wagner, who found its mass to be slightly above average, at 1,492 grams (52.6 oz).[34][35] The cerebral area was determined by Wagner's son Hermann in his doctoral thesis to be 219,588 square millimetres (340.362 sq in).[36] Highly developed convolutions were also found, which in the early 20th century were suggested as the explanation for his genius.[37] After various previous investigations, a magnetic resonance study of 1998, done at the Max Planck Institute for Biophysical Chemistry in Göttingen, gave no results that could be used to explain his mathematical abilities.[38]

In 2013, a neurobiologist at the same institute discovered that Gauss's brain had been mixed up, due to mislabelling, with that of the physician Conrad Heinrich Fuchs, who died in Göttingen a few months after Gauss.[39] A further investigation showed no remarkable anomalies in the brains of both persons. Thus, all investigations on Gauss's brain until 1998, except the first ones of Rudolf and Hermann Wagner, actually refer to the brain of Fuchs.[40]

Family[edit]

Gauss's second wife Wilhelmine Waldeck

Gauss married Johanna Osthoff (1780–1809) on 9 October 1805 in St. Catherine's church in Brunswick.[41] They had two sons and one daughter: Joseph (1806–1873), Wilhelmina (1808–1840), and Louis (1809–1810). Johanna died on 11 October 1809, one month after the birth of Louis, who himself died a few months later.[42] Gauss chose the first names of his children in honour to Giuseppe Piazzi, Wilhelm Olbers, and Karl Ludwig Harding, the discoverers of the first asteroids.[43]

On 4 August 1810, the widower married Wilhelmine (Minna) Waldeck (1788–1831), a friend of his first wife, with whom he had three more children: Eugen (later: Eugene) (1811–1896), Wilhelm (later: William) (1813–1879), and Therese (1816–1864). Minna Gauss died on 12 September 1831 after being seriously ill for more than a decade.[44][failed verification] Therese then took over the household and cared for Gauss for the rest of his life; after her father's death, she married the actor Constantin Staufenau.[45] Her sister Wilhelmina married the orientalist Heinrich Ewald.[46] Gauss's mother Dorothea lived in his house from 1817 until her death in 1839.[11]

The eldest son Joseph, whilst still a schoolboy, helped his father as an assistant during the survey campaign in the summer of 1821. After a short time at university, in 1824 Joseph joined the Hanoverian army and assisted in surveying again in 1829. In the 1830s he was responsible for the enlargement of the survey network to the western parts of the kingdom. With his geodetical qualifications, he left the service and engaged in the construction of the railway network as director of the Royal Hanoverian State Railways. In 1836 he studied the railroad system in the US for some months.[47][c]

Eugen left Göttingen in September 1830 and emigrated to the United States, where he joined the army for five years. He then worked for the American Fur Company in the Midwest, where he learned the languages of the Sioux people. Later, he moved to Missouri and became a successful businessman.[47] Wilhelm married a niece of the astronomer Bessel;[50] then moved to Missouri, too, started as a farmer and became wealthy in the shoe business in St. Louis in later years.[51] Eugene and William have numerous descendants in America, but the Gauss descendants left in Germany all derive from Joseph, as the daughters had no children.[47]

Personality[edit]

The scholar[edit]

In the first two decades of the 19th century, Gauss was the only important mathematician in Germany, comparable to the leading French ones;[52] his Disquisitiones Arithmeticae was the first mathematical book from Germany to be translated into the French language.[53]

During the whole 18th century the German scene of science was organized in two divisions: scientific research, often related to practical purposes, was the duty of the academies, for instance the Royal Prussian Academy in Berlin, whereas teaching was the universities' business; professors could pursue own research additionally, but were not obliged to do it.[52] However, there was an informal hierarchy existing: the academies must be considered of prime importance.[54]

The universities' double function as institutions of research and teaching was a result of the neohumanistic reform that took place in the German states since 1810, with Wilhelm von Humboldt as leading figure of this movement in Northern Germany.[52] A previous model had been practised by the École polytechnique in France since 1794, but its principal idea, the combination of technical with higher mathematical training, has never taken roots in the German universities.[55]

Humboldt also promoted the foundation of schools of higher education (German: gymnasium) with stress on ancient languages, history, and mathematics. This gave professional prospects to the mathematicians for the first time in history, thus the number of students in mathematics and sciences increased strongly during the 19th century.[52] Another result was the rise of pure mathematics without practical purposes, besides the applied mathematics linked to other sciences or engeneering. In the course of time the level of teaching mathematics arose. In the 18th and early 19th century mathematical lectures on elementary subjects were dominating; in Göttingen Kästner and his successor Thibaut belonged to this type of scholar. But in the third decades of the 19th century the quality of instruction increased significantly in Germany.[52]

The scholar Gauss was "in front of the new development" with documented research since 1799, his wealth of new ideas, and his rigour of demonstration.[56] Whereas previous mathematicians like Leonhard Euler let the readers take part in their reasoning for new ideas, including certain erroneous deviations from the correct path,[57] Gauss however introduced a new style of direct and complete explanation that did not attempt to show the reader the author's train of thought.[58]

Gauss was the first to restore that rigor of demonstration which we admire in the ancients and which had been forced unduly into the background by the exclusive interest of the preceding period in new developments.

— Klein 1894, p. 101

But for himself, he propagated a quite different ideal, given in a letter to Farkas Bolyai as follows:[59]

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again.

— Dunnington 2004, p. 416

The posthumous papers, his scientific diary,[60] and short glosses in his own textbooks show that he worked to a great extent in an empirical way.[61][62] He was a lifelong busy and enthusiastic calculator, who made his calculations with extraordinary rapidity, mostly without precise controlling, but checked the results by masterly estimation. Nevertheless, his calculations, especially in geodesy and astronomy, were not always free from mistakes.[63] He coped with the enormous workload by using skillful tools.[64] Gauss used a lot of mathematical tables, examined their exactness, and constructed new tables on various matters for personal use.[65] He developed new tools for effective calculation, for example the Gaussian elimination.[66] It has been taken as a curious feature of his working style that he carried out calculations with a high degree of precision much more than required, and prepared tables with more decimal places than ever requested for practical purposes.[67] Very likely, this method gave him a lot of material which he used in finding theorems in number theory.[64][68]

Gauss's seal with his motto Pauca sed Matura

Gauss refused to publish work that he did not consider complete and above criticism. This perfectionism was in keeping with the motto of his personal seal Pauca sed Matura ("Few, but Ripe"). Many colleagues encouraged him to publicize new ideas, and sometimes rebuked him if he hesitated too long, in their opinion. Gauss defended himself, claiming that the initial discovery of ideas was easy, but preparing a presentable elaboration was a demanding matter for him, for either lack of time or "serenity of mind".[69] Nevertheless, he published many short communications of urgent content in various journals, but left a considerable literary estate, too.[70][71] Gauss referred to mathematics as "the queen of sciences" and arithmetics as "the queen of mathematics",[72] and supposedly once espoused a belief in the necessity of immediately understanding Euler's identity as a benchmark pursuant to becoming a first-class mathematician.[73]

On certain occasions, Gauss claimed that the ideas of another scholar had already been in his possession previously. Thus his concept of priority as "the first to discover, not the first to publish" differed from that of his scientific contemporaries.[74] In contrast to his perfectionism in presenting mathematical ideas, he was criticized for a negligent way of quoting. He justified himself with a very special view of correct quoting: if he gave references, then only in a quite complete way, with respect to the previous authors of importance, which no one should ignore; but quoting in this way needed knowledge of the history of science and more time than he wished to spend.[69]

A sketch of Gauss by his student Johann Benedict Listing, 1830

Gauss made no secrete of his aversion to give academic lectures being a bothering burden to him.[19][20] But from the start of his academic career at Göttingen in 1807, he continuously gave lectures until 1854.[75] He often complained about the burdens of teaching, feeling that it was a waste of his time. On the other hand, he occasionally described one or another student as talented.[19] In all these 47 years of teaching, most of his lectures dealt with astronomy, geodesy, and applied mathematics,[76] and only three lectures on subjects of pure mathematics.[19][d] Some of Gauss's students went on to become renowned mathematicians, physicists, and astronomers: Moritz Cantor, Dedekind, Dirksen, Encke, Gould,[e] Heine, Klinkerfues, Kupffer, Listing, Möbius, Nicolai, Riemann, Ritter, Schering, Scherk, Schumacher, von Staudt, Stern, Ursin; as geoscientists Sartorius von Waltershausen, and Wappäus.[19]

Gauss did not write any textbook, and—unlike his friends Bessel, Humboldt, and Olbers—he disliked the popularization of scientific matters. His only attempts at popularization were his works on the date of Easter[78] and the essay Erdmagnetismus und Magnetometer of 1836.[69] Gauss published his papers and books exclusively in Latin or German.[f][g] He wrote Latin in a merely classical style but used some customary modifications set by contemporary mathematicians.[81]

The new Göttingen Observatory of 1816; Gauss's living rooms were in the western wing (right)

In his inaugural lecture at Göttingen University from 1808, Gauss claimed reliable observations and results attained only by a strong calculus as the sole tasks of astronomy.[76] At university, he was accompanied by a staff of other lecturers in his disciplines, who completed the educational program: for instance the mathematician Thibaut with his brilliant lectures,[82] the physicist Mayer, well known for his successful textbooks,[83] his successor Weber since 1831, and in the observatory Harding, who took the main part of lectures in practical astronomy. When the observatory was completed, Gauss took his living accommodation in the western wing of the new observatory and Harding in the eastern one.[20] They had once been on friendly terms with one another, but over time they became alienated, possibly – as some biographers presume – because Gauss had wished the equal-ranked Harding to be no more than his assistant or observer.[20][h] Gauss used the new meridian circles nearly exclusively, and kept them away from Harding, except for some very seldom joint observations.[85] Brendel subdivides Gauss's astronomic activity chronologically into seven periods, of which the years since 1820 are taken as a "period of lower astronomical activity".[86] The new, well-equipped observatory did not work as effectively as others; Gauss's astronomical research had the character of a one-man enterprise without a long-time observation program, and the university established a place for an assistant only after Harding died in 1834.[84][85][i]

Nevertheless, Gauss twice refused the opportunity to solve the problem by accepting offers from Berlin in 1810 and 1825 to become a full member of the Prussian Academy without burdening lecturing duties, as well as from Leipzig University in 1810 and from Vienna University in 1842, perhaps because of the family's difficult situation.[84] Gauss's salary was raised from 1000 Reichsthaler in 1810 to 2400 Reichsthaler in 1824,[20] and in his later years, he was one of the best-paid professors of the university.[47]

When Gauss was asked for help by his colleague and friend Friedrich Wilhelm Bessel in 1810, who was in trouble at Königsberg University because of his lack of an academic title, Gauss provided a doctorate honoris causa for Bessel from the Philosophy Faculty of Göttingen in March 1811.[j] Gauss gave another recommendation for an honorary degree for Sophie Germain but only shortly before her death, so she never received it.[89] He also gave successful support to the talented mathematician Gotthold Eisenstein in Berlin.[90]

Gauss took part in academic administration: three times he was elected as dean of the Faculty of Philosophy.[91] Being entrusted with the widow's pension fund of the university, he dealt with actuarial science and wrote a report on the strategy for stabilizing the benefits. He was appointed director of the Royal Academy of Sciences in Göttingen for nine years, even in his last year of life.[91]

The private man[edit]

Soon after Gauss's death, his friend Sartorius published the first biography (1856), written in a rather enthusiastic style. Sartorius saw him as a serene and forward-striving man with childlike modesty,[92] but also of "iron character"[93] with an unshakeable strength of mind.[94] Apart from his closer circle, others regarded him as reserved and unapproachable "like an Olympian sitting enthroned on the summit of science".[95] His close contemporaries agreed that Gauss was a man of difficult character. He often refused to accept compliments. His visitors were occasionally irritated by his grumpy behaviour, but a short time later his mood could change, and he would become a charming, open-minded host.[69]

Gauss's life was overshadowed by severe problems in his family. When his first wife Johanna suddenly died shortly after the birth of their third child, he revealed the grief in a last letter to his dead wife in the style of an ancient threnody, the most personal surviving document of Gauss.[96][97] The situation worsened when tuberculosis afflicted and ultimately destroyed the health of his second wife Minna over 13 years; both his daughters later suffered from the same disease.[98] Both younger sons were educated for some years in Celle far from Göttingen. Gauss himself gave only slight hints of his distress: in a letter to Bessel dated December 1831 he described himself as "the victim of the worst domestic sufferings".[69]

Gauss grew to dominate his children and eventually had conflicts with his sons, because he did not want any of them to enter mathematics or science for "fear of lowering the family name", as he believed none of them would surpass his own achievements. The military career of his elder son Joseph ended after more than two decades with the rank of a poorly paid first lieutenant, although he had acquired a considerable knowledge of geodesy. He needed financial support from his father even after he was married.[47] The second son Eugen shared a good measure of his father's talent in computation and languages, but had a vivacious and sometimes rebellious character. He wanted to study philology, whereas Gauss wanted him to become a lawyer. Having run up debts and caused a scandal in public,[99] Eugen suddenly left Göttingen under dramatic circumstances in September 1830 and emigrated via Bremen to the United States. He wasted the little money he had taken to start, after which his father refused further financial support.[47] The youngest son Wilhelm wanted to qualify for agricultural administration, but had difficulties getting an appropriate education, and eventually emigrated as well. Only Gauss's youngest daughter Therese accompanied him in his last years of life.[45]

Collecting numerical data on very different things, useful or useless, became a habit in his later years, for example, the number of paths from his home to certain places in Göttingen, or the number of living days of persons; he congratulated Humboldt in December 1851 for having reached the same age as Isaac Newton at his death, calculated in days.[100]

Wilhelm Weber and Heinrich Ewald (first row) as members of the Göttingen Seven

Similar to his excellent knowledge of Latin he was also acquainted with modern languages. At the age of 62, he began to teach himself Russian, very likely to understand scientific writings from Russia, among them those of Lobachevsky on non-Euclidean geometry.[101] Gauss read both classical and modern literature, and English and French works in the original languages.[102][k] His favorite English author was Walter Scott, his favorite German Jean Paul.[104] Gauss liked singing and went to concerts.[105] He was a busy newspaper reader; in his last years, he used to visit an academic press salon of the university every noon.[106] Gauss did not care much for philosophy, and mocked the "splitting hairs of the so-called metaphysicians", by which he meant proponents of the contemporary school of Naturphilosophie.[107]

Gauss had an "aristocratic and through and through conservative nature", with little respect for people's intelligence and morals, following the motto "mundus vult decipi".[106] He disliked Napoleon and his system, and all kinds of violence and revolution caused horror to him. Thus he condemned the methods of the Revolutions of 1848, though he agreed with some of their aims, such as the idea of a unified Germany.[93][l] As far as the political system is concerned, he had a low estimation of the constitutional system; he criticized parliamentarians of his time for a lack of knowledge and logical errors.[106]

Gauss was loyal to the House of Hanover. After King William IV died in 1837, the personal union between the kingdoms of Great Britain and Ireland and Hanover ceased. In the same year, the new Hanoverian King Ernest Augustus annulled the constitution given to the state by his brother in 1833. Seven prominent professors, later known as the "Göttingen Seven", protested against this, among them his friend and collaborator Wilhelm Weber and Gauss's son-in-law Heinrich Ewald. All of them were dismissed, and three of them were expelled, but Ewald and Weber could stay in Göttingen. Ewald took a position at the University of Tübingen in 1838, where Gauss's daughter Wilhelmina died soon after in 1840, and Weber went to the University of Leipzig in 1843; both of them returned to their Göttingen positions in 1849 as the only ones of the Göttingen Seven. Gauss was deeply affected by this quarrel but saw no possibility to help them.[108]

Some Gauss biographers have speculated on his religious beliefs. He sometimes said "God arithmetizes"[109] and "I succeeded - not on account of my hard efforts, but by the grace of the Lord."[110] Gauss was a member of the Lutheran church, like most of the population in northern Germany. It seems that he did not believe all dogmas or understand the Holy Bible quite literally.[111] Sartorius mentioned Gauss's religious tolerance, and estimated his "insatiable thirst for truth" and his sense of justice as motivated by religious convictions.[112]

Gauss was a successful investor and accumulated considerable wealth with stocks and securities, but he disapproved of the idea of paper money.[113] After his death, a great sum of money was found hidden in his rooms.[114]

Scientific work[edit]

Algebra and number theory[edit]

Fundamental theorem of algebra[edit]

German stamp commemorating Gauss's 200th anniversary: the complex plane or Gauss plane

In his doctoral thesis from 1799, Gauss proved the fundamental theorem of algebra which states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Mathematicians including Jean le Rond d'Alembert had produced false proofs before him, and Gauss's dissertation contains a critique of d'Alembert's work. He subsequently produced three other proofs, the last one in 1849 being generally rigorous. His attempts clarified the concept of complex numbers considerably along the way.[115]

Disquisitiones Arithmeticae[edit]

In the preface to the Disqusitiones, Gauss dates the beginning of his work on number theory in the year 1795. By studying the works of previous mathematicians like Fermat, Euler, Lagrange, and Legendre, he realized that these scholars had already found much of what he had discovered by himself.[116] In the years 1798 and 1799 Gauss wrote a voluminous compilation of all these results in the Disquisitiones Arithmeticae, published in 1801, that consolidated number theory as a discipline and covered both elementary and algebraic number theory. Therein he introduces, among other things, the triple bar symbol () for congruence and uses it in a clean presentation of modular arithmetic.[117] It deals with the unique factorization theorem and primitive roots modulo n. In the main chapters, Gauss presents the first two proofs of the law of quadratic reciprocity[118] – which allows mathematicians to determine the solvability of any quadratic equation in modular arithmetic – and develops the theories of binary[119] and ternary quadratic forms.[120]

Highlights of these theories include the Gauss composition law for binary quadratic forms, as well as the enumeration of the number of representations of an integer as the sum of three squares. As an almost immediate corollary of his theorem on three squares, he proves the triangular case of the Fermat polygonal number theorem for n = 3.[121] From several analytic results on class numbers that Gauss gives without proof towards the end of the fifth chapter,[122] it appears that Gauss already knew the class number formula in 1801.[123]

In the last chapter, Gauss gives proof for the constructibility of a regular heptadecagon (17-sided polygon) with straightedge and compass by reducing this geometrical problem to an algebraic one.[124] He shows that a regular polygon is constructible if the number of its sides is either a power of 2 or the product of a power of 2 and any number of distinct Fermat primes. In the same chapter, he gives a result on the number of solutions of certain cubic polynomials with coefficients in finite fields, which amounts to counting integral points on an elliptic curve.[125] Some 150 years later, Andre Weil remarked that this particular result, together with some other unpublished results of Gauss, led him to formulate what is now called Weil conjectures.[126][m]

Gauss intended to include an eighth chapter that would treat the topic of higher congruences modulo a prime number in its full generality, but the unfinished chapter was found among left papers only after his death, consisting of work done during the years 1797–1799.[129][130]

Further investigations[edit]

One of Gauss's first results was the empirically found conjecture of 1792 – the later called prime number theorem – giving an estimation of the number of prime numbers by using the integral logarithm.[131][n]

When Olbers encouraged Gauss in 1816 to compete for a prize from the French Academy on a proof for Fermat's Last Theorem (FLT), he refused because of his low esteem on this matter. However, among his left works a short undated paper was found with proofs of FLT for the cases n = 3 and n = 5.[133] The particular case of n = 3 was proved much earlier by Leonhard Euler, but Gauss developed a more streamlined proof which made use of Eisenstein integers; though more general, the proof was simpler than in the real integers case.[134]

Gauss made a significant contribution to solving the Kepler conjecture in 1831, when he proved that —in the three-dimensional case— the greatest packing density of spheres is given when the centers of the spheres form a cubic face-centered arrangement.[135] He showed this in a review of a book written by Ludwig August Seeber on the theory of reduction of positive ternary quadratic forms,[136] in accordance with the program outlined in Gauss's Disquisitiones. Having noticed that Seeber had not proved a central theorem of his theory, he simplified many of his lengthy arguments, proved the central conjecture, and remarked that this theorem is equivalent to the Kepler conjecture for regular arrangements.[137]

In two papers on biquadratic residues (1828, 1832) Gauss introduces the ring of Gaussian integers , shows that it is a unique factorization domain.[138] and generalizes some key arithmetic concepts, such as Fermat's little theorem and Gauss's lemma. The main objective of introducing this ring was to formulate the law of biquadratic reciprocity[138] – as Gauss discovered, rings of complex integers are the natural setting for such higher reciprocity laws.[139]

In the second paper, he states the general law of biquadratic reciprocity and proves several special cases of it, but a proof of the general theorem is lacking, despite Gauss's statements that he found such a proof around 1814. He promised a third paper with a general proof, which has never appeared. In an earlier publication from 1818 containing his fifth and sixth proofs of quadratic reciprocity, he claims the techniques of these proofs (Gauss sums) can be applied to prove higher reciprocity laws.[140]

Gauss's publications on biquadratic residues opened the way for boundless enlargement of the theory of numbers, and are memorable for the wealth of investigations in "higher arithmetic" that they led to.[141]

Analysis[edit]

One of Gauss's first independent discoveries was the notion of the arithmetic-geometric mean (AGM) of two positive real numbers. Systematic investigations on the AGM led him to discover an unusually rich mathematical landscape, and to obtain plenty of new results associated with it.[142] He discovered its relation to elliptic integrals in the years 1798–1799 through the Landen's transformation, and a diary entry recorded the discovery of the connection of Gauss's constant to lemniscatic elliptic functions, a result that Gauss stated that "will surely open an entirely new field of analysis".[143] He also made early inroads into the more formal issues of the foundations of complex analysis, and from a letter to Bessel in 1811 it is clear that he knew the "fundamental theorem of complex analysis" — Cauchy's integral theorem — and understood the notion of complex residues when integrating around poles.[125][144]

Another source of inspiration for Gauss's early work in analysis was the acquaintance with Euler's pentagonal numbers theorem. This theorem together with other researches on the AGM and lemniscatic functions led him to plenty of results on Jacobi theta functions,[125] culminating in the discovery in 1808 of the later called Jacobi triple product identity, which includes Euler's theorem as a special case,[145] two decades before Jacobi's "Fundamenta nova" appeared in 1829. In addition, his works show that since 1808 he knew remarkable modular transformations of order 3,5,7 for elliptic functions.[146][o][p]

Several mathematical fragments in his Nachlass indicate that he knew quite well parts of the modern theory of modular forms.[125] In his work on the multivalued AGM of two complex numbers, he discovered a very deep connection between the infinitely many values of the AGM to its two "simplest values".[143] His unpublished writings include several drawings that show he was quite aware of the geometric side of the theory; in the context of his work on the complex AGM he recognized and made a sketch of the key concept of fundamental domain for the modular group.[148][149] One of Gauss's sketches of this kind was a drawing of a tessellation of the unit disk by "equilateral" hyperbolic triangles with all angles equal to .[150]

An example for Gauss insight in the fields of analysis is the cryptic remark that the principles of circle division by compass and straightedge can also be applied to the division of the lemniscate curve, which inspired Abel's theorem on lemniscate division.[q] Another example is his publication "Summatio quarundam serierum singularium" (1811) on the determination of the sign of quadratic Gauss sum, in which he solved the main problem by introducing q-analogs of binomial coefficients and manipulating them by several original identities that seem to stem out of his work on elliptic functions theory; however, Gauss cast his argument in a formal way that does not reveal its origin in elliptic functions theory, and only the later work of mathematicians such as Jacobi and Hermite has exposed the crux of his argument.[151]

In his lifetime, Gauss published almost nothing about those more modern theories of elliptic functions, however most of the results on the related theme of the hypergeometric function he did publish. In the "Disquisitiones generales circa series infinitam..." (1813), he provides the first systematic treatment of the general hypergeometric function , and shows that many of the functions known to science at the time, such as the elementary functions and some special functions, are a special case of the hypergeometric function.[152] This work is the first one with an exact inquiry of convergence of infinite series in the history of mathematics.[153] Furthermore, it deals with infinite continued fractions arising as ratios of hypergeometric functions which are now called Gauss continued fractions.[154]

In 1822, Gauss won the prize of the Danish Society with an essay on conformal mappings, which contains several developments that pertain to the field of complex analysis.[155][citation needed] In this essay, Gauss made explicit the insight that angle-preserving mappings in the complex plane must be complex analytic functions, and used the later called Beltrami equation to prove the existence of isothermal coordinates on analytic surfaces. The essay concludes with examples of conformal mappings into a sphere and an ellipsoid of revolution.[156] [citation needed] In addition, in unpublished fragments from the years 1834–1839 he investigated and solved the more difficult task of explicitly constructing a conformal mapping from the interior of an ellipse to the unit disk.[157][158] His solution, which combined an early work on elliptic functions and with later ideas on potential theory, reveals his mastery of the theory of logarithmic potential, and the final results corresponded to the formula found by Hermann Schwarz in 1870.[159]

Numeric analysis[edit]

Gauss often deduced theorems inductively from numerical data he had collected in an empirical way.[62] As such, the use of efficient algorithms to facilitate calculations was vital to his researches, and he made many contributions to numeric analysis. In 1816, he published an article on numeric integration, in which he described the method of Gaussian quadrature, that was a significant improvement over existing methods, such as Newton–Cotes formulas. Walter Gautschi regarded the appearance of this paper of Gauss as a major event of 19th century numeric analysis that inspired much work made by later mathematicians.[160]

In a private letter to Gerling from 1823,[161] he described a solution of a certain 4X4 system of linear equations by using Gauss-Seidel method – an "indirect" iterative method for the solution of linear systems, that in some cases converges very rapidly to the exact solution. Gauss recommended it over the usual method (what is called "direct elimination") for systems of more than 2 equations, stating that it can be done "while half asleep, or while thinking about other things".[162]

Gauss invented an algorithm for calculating what are now called discrete Fourier transforms, when calculating the orbits of Pallas and Juno in 1805, 160 years before Cooley and Tukey found their similar Cooley–Tukey FFT algorithm.[163] He developed it as a trigonometric interpolation method, but the paper Theoria Interpolationis Methodo Nova Tractata was published only posthumously in 1876,[164] preceded by the first presentation by Joseph Fourier on the subject in 1807.[165]

Chronology[edit]

The first publication following the doctoral thesis dealt with the determination of the date of Easter (1800), a very elementary matter of mathematics. Gauss aimed to present a most convenient algorithm for people without any knowledge in ecclesiastical or even astronomical chronology, and thus avoided the usually required terms of golden number, epact, solar cycle, domenical letter, and any religious connotations.[166] Biographers speculated on the reason why Gauss dealt with this matter, but it is likely comprehensible by the historical background. The replacement of the Julian calendar by the Gregorian calendar had caused confusion to the hundreds of states of the Holy Roman Empire since the 16th century, and was finished in Germany not until the year 1700, when the difference of eleven days was deleted, but the difference in calculating the date of Easter remained between Protestant and Catholic territories. A further agreement of 1776 equalized the confessional way of counting, thus in the Protestant states like the Duchy of Brunswick the Easter of 1777, five weeks before Gauss's birth, was the first one calculated in the new manner.[167] The public difficulties of replacement may be the historical background for the confusion on this matter in the Gauss family (see chapter: Anecdotes). For being connected with the Easter regulations, an essay on the date of Pesach followed soon in 1802.[168]

Astronomy[edit]

Carl Friedrich Gauss 1803 by Johann Christian August Schwartz

On 1 January 1801, Italian astronomer Giuseppe Piazzi discovered the dwarf planet Ceres.[169] Piazzi could track Ceres for only somewhat more than a month, following it for three degrees across the night sky, less than 1% of the total orbit, until it disappeared temporarily behind the glare of the Sun. Several months later, when Ceres should have reappeared, Piazzi could not locate it: the mathematical tools of the time were not able to extrapolate a position from such a scant amount of data. Gauss tackled the problem within three months of intense work, and predicted a position for Ceres in December 1801. This turned out to be accurate within a half-degree when it was rediscovered by Franz Xaver von Zach on 7 and 31 December at Gotha, and independently by Heinrich Olbers on 1 and 2 January in Bremen.[170][r] This confirmation eventually led to the classification of Ceres as minor-planet designation 1 Ceres; that was taken as the predicted planet between Mars and Jupiter by the most speculative Titius–Bode law.[18]

Gauss's method leads to an equation of the eighth degree, of which one solution, the Earth's orbit, is known. The solution sought is then separated from the remaining six based on physical conditions. In this work, Gauss used comprehensive approximation methods which he created for that purpose.[171]

The discovery of Ceres led Gauss to the theory of the motion of planetoids disturbed by large planets, eventually published in 1809 as Theoria motus corporum coelestium in sectionibus conicis solem ambientum. In the process, he so streamlined the cumbersome mathematics of 18th-century orbital prediction that his work remains a cornerstone of astronomical computation.[172] It introduced the Gaussian gravitational constant.[76]

Since the new asteroids had been discovered, Gauss occupied himself with the perturbations of their orbital elements. Firstly he examined Ceres with analytical methods similar to those of Laplace, but his favorite object was Pallas, because of its great eccentricity and orbital inclination, whereby Laplace's method did not work. Gauss used his own tools: the arithmetic–geometric mean, the hypergeometric function, and his method of interpolation.[173] He found an orbital resonance with Jupiter in proportion 18 : 7 in 1812; Gauss gave this result as cipher, and gave the explicit meaning only in letters to Olbers and Bessel.[174][175][s] After long years of work, he finished it in 1816 without a result that seemed sufficient to him. This marked the end of his activities in theoretical astronomy, too.[177]

One fruit of Gauss's research on Pallas perturbations was the Determinatio Attractionis... (1818) on a method of theoretical astronomy that later became known as the "elliptic ring method". It introduced a useful averaging conception in which a planet in orbit is replaced by a fictitious ring with mass density proportional to the time taking the planet to follow the corresponding orbital arcs.[178] Gauss presents the method of evaluating the gravitational attraction of such an elliptic ring, which includes several complicated steps; one of them involves a direct application of the arithmetic-geometric mean (AGM) algorithm to calculate an elliptic integral.[179] In the late 19th century Gauss's method was adapted by American astronomer George William Hill, who applied it directly to the problem of secular perturbation induced by Venus on Mercury orbit.[180]

While Gauss's contributions to theoretical astronomy came to a marked end, more practical activities in observational astronomy continued and occupied him during his entire career. Even early in 1799, Gauss dealt with determination of longitude by use of the lunar parallax, for which he developed more convenient formulas than those were in common use.[181] After appointment as director of observatory he attached importance to the fundamental astronomical constants in correspondence with Bessel. Gauss himself provided tables for nutation and aberration, the solar coordinates, and refraction.[182] He made many contributions to spherical geometry, and in this context solved some practical problems about navigation by stars.[183] He published a great amount of observations, mainly on minor planets and comets; his last observation was the solar eclipse of July 28, 1851.[184]

Theory of errors[edit]

It is likely that Gauss used the method of least squares for calculating the orbit of Ceres to minimize the impact of measurement error.[185] The method was published first by Adrien-Marie Legendre in 1805, but Gauss claimed in Theoria motus (1809) that he had been using it since 1794 or 1795.[186][187][188] In the history of statistics, this disagreement is called the "priority dispute over the discovery of the method of least squares".[74] Gauss proved that the method has the lowest sampling variance within the class of linear unbiased estimators under the assumption of normally distributed errors (Gauss–Markov theorem), in the two-part paper Theoria combinationis observationum erroribus minimis obnoxiae (1823).[189]

In the first paper he stated and proved Gauss's inequality (a Chebyshev-type inequality) for unimodal distributions, and stated without proof another inequality for moments of the fourth order (a special case of Gauss-Winckler inequality).[190][failed verification] He derived lower and upper bounds for the variance of sample variance. In the second paper Gauss described recursive least squares methods. Gauss's work on the theory of errors was extended in several directions by the geodesist Friedrich Robert Helmert to the Gauss-Helmert model.[191]

Gauss also contributed to problems in probability theory that are not directly concerned with the theory of errors. One example appears as a diary note and is concerned with the problem to describe the asymptotic distribution of entries in the continued fraction expansion of a random number uniformly distributed in (0,1). He derived this distribution, now known as the Gauss-Kuzmin distribution, as a by-product of the discovery of the ergodicity of the Gauss map for continued fractions. Gauss's solution is the first ever result in the metrical theory of continued fractions.[192]

Arc measurement and geodetic survey[edit]

Order of King George IV from 9 May 1820 to the triangulation project (with additional signature of Count Ernst zu Münster below)
The heliotrope
Gauss's vice heliotrope, a Troughton sextant with additional mirror

Gauss was busy with geodetic problems since 1799, when he helped Karl Ludwig von Lecoq with calculations during his survey in Westphalia.[193] Later since 1804, he taught himself some geodetic practise with a sextant in Brunswick,[194] and Göttingen.[195]

Since 1816, Gauss's former student Heinrich Christian Schumacher, then professor in Copenhagen, but living in Altona (Holstein) near Hamburg as head of an observatory, carried out a triangulation of the Jutland peninsula from Skagen in the north to Lauenburg in the south.[t] This project was the basis for map production and other practical purposes on the one hand, but on the other hand the determination of the geodetic arc between the terminal sites was another aim. Data of geodetic arcs were the necessary basis to determine the dimensions of the earth geoid, and long arc distances brought more precise results. Schumacher saw the chance and asked Gauss to continue this work further to the south in the Kingdom of Hanover; Gauss agreed after a short time of hesitation. Finally in May 1820, King George IV gave the order to Gauss.[196]

An arc measurement needs a precise astronomical determination of at least two points in the network. Gauss and Schumacher used the favourite occasion that both observatories in Göttingen and Altona, in the garden of Schumacher's house, laid nearly in the same longitude. The latitude was measured with both their own instruments and a zenith sector of Ramsden that was transported to both observatories.[197][u]

Gauss and Schumacher had yet determined some angles between Lüneburg, Hamburg, and Lauenburg for the geodetic connection in October 1818.[198] During the summers of 1821 until 1825 Gauss directed the triangulation personally, that reached from Thuringia in the south to the river Elbe in the north. The triangle between Hoher Hagen, Großer Inselsberg in the Thuringian Forest, and Brocken in the Harz mountains was the largest one Gauss had ever measured with a maximum side of 107 km (66.5 miles). In the thin populated Lüneburg Heath without significant natural summits or artificial buildings, he had difficulties to find suitable triangulation points, sometimes cutting lanes through the vegetation was necessary[167][199] or even the erection of signal towers.[200][failed verification]

For pointing signals, Gauss invented a new instrument with movable mirrors and a small telescope that reflects the sunbeams to the triangulation points, and named it heliotrope.[201] Another suitable construction for the same purpose was a sextant with an additional mirror which he named vice heliotrope.[202] Gauss got assistance by soldiers of the Hanoverian army, among them his eldest son Joseph. Gauss took part in the baseline measurement (Braak Base Line) of Schumacher in the village of Braak near Hamburg in 1820, and used the result for the evaluation of the Hanoverian triangulation.[203]

An additional result was a better value of flattening of the approximative Earth ellipsoid.[204][v] Gauss developed the universal transverse Mercator projection of the ellipsoidal shaped Earth (what he named conform projection)[206] for representing geodetical data in plane charts.

When the arc measurement was finished, Gauss intended the enlargement of the triangulation to the west to get a survey of the whole Kingdom of Hanover. The practical work was directed by three army officers, among them Lieutenant Joseph Gauss. The complete data evaluation laid in the hands of Carl Friedrich Gauss, who applied own mathematical inventions as the method of least squares and the elimination method to it. The project was finished in 1844, and Gauss sent a final report of the project to the government; his method of projection was not edited until 1866.[207][208]

In 1828, when studying differences in latitude, Gauss first defined a physical approximation for the figure of the Earth as the surface everywhere perpendicular to the direction of gravity;[209] later his doctoral student Johann Benedict Listing called this the geoid.[210]

Differential geometry[edit]

The geodetic survey of Hanover fueled Gauss's interest in differential geometry and topology, fields of mathematics dealing with curves and surfaces. This led him in 1828 to the publication of a memoir that marks the birth of modern differential geometry of surfaces, as it departed from the traditional ways of treating surfaces as cartesian graphs of functions of two variables, and that initiated the exploration of surfaces from the "inner" point of view of a two-dimensional being constrained to move on it. As a result, the Theorema Egregium (remarkable theorem), established a property of the notion of Gaussian curvature. Informally, the theorem says that the curvature of a surface can be determined entirely by measuring angles and distances on the surface. That is, curvature does not depend on how the surface might be embedded in 3-dimensional space or 2-dimensional space.[211]

The Theorema Egregium leads to the abstraction of surfaces as doubly-extended manifolds; it clarifies the distinction between the intrinsic properties of the manifold (the metric) and its physical realization (the embedding) in ambient space. A consequence is the impossibility of an isometric transformation between surfaces of different Gaussian curvature. This means practically that a sphere or an ellipsoid cannot be transformed to a plane without distortion, what causes a fundamental problem in designing projections for geographical maps.[211] A portion of this essay is dedicated to a profound study of geodesics. In particular, Gauss proves the local Gauss-Bonnet theorem on geodesic triangles, and generalizes Legendre's theorem on spherical triangles to geodesic triangles on arbitrary surfaces with continuous curvature; he found that the angles of a "sufficiently small" geodesic triangle deviate from that of a planar triangle of the same sides in a way that depends only on the values of the surface curvature at the vertices of the triangle, regardless of the behaviour of the surface in the triangle interior.[212]

Gauss's memoir from 1828 lacks the conception of geodesic curvature. However, in a previous unpublished manuscript, very likely written in the years 1822 until 1825, he introduced the term "side curvature" (in German: "Seitenkrümmung") and proved its invariance under isometric transformations, a result that was later obtained by Ferdinand Minding and published by him in 1830. This Gauss paper contains the core of his lemma on total curvature, but also its generalization, found and proved by Pierre Ossian Bonnet in 1848 and known as Gauss-Bonnet theorem.[213]

Non-Euclidean geometries[edit]

Lithography by Siegfried Bendixen (1828)

In the lifetime of Gauss a vivid discussion on Euclid's parallel axiom was going on. Numerous mathematicians made efforts to prove it, whereas some of them discussed the possibility of geometrical systems without it.[214] Gauss himself was only interested in the geometrical aspects of the physical space, but did not care about the philosophical aspects of an enlarged geometry. In 1816, he gave a first short public comment on this matter in a book review, and in the following time he occasionally made some remarks in letters to his correspondents.[215][216] He is the one who coined the term "non-Euclidean geometry".[217]

Not until Lobachevsky (1829) and Janos Bolyai (1832) had published their ideas of a non-Euclidean geometry – for the first time in history of mathematics – ,[214] Gauss himself put down his ideas, but avoided any influence to the contemporary scientific discussion, because he did not publish about it.[215][218] Gauss commended the ideas of Janos Bolyai in a letter to his father,[219] claiming that these were congruent to his own thoughts since some decades.[220][221] But it is not clear to what extent he preceded Lobachevsky and Bolyai, for he gave only vague and obscure remarks on it in his letters.[214]

Sartorius mentioned it first in 1856, but only the edition of left papers in Volume VIII of the Collected Works (1900) showed Gauss's own progress on that matter, at a time when Non-Euclidean geometry had yet grown out of controversial discussion.[215]

In 1854, Gauss selected the topic for Bernhard Riemann's inaugural lecture Über die Hypothesen, welche der Geometrie zu Grunde liegen from three of Riemann's proposals.[222][223] On the way home from Riemann's lecture, Weber reported that Gauss was full of praise and excitement.[224][225]

Early topology[edit]

Gauss was also an early pioneer of topology or Geometria Situs, as it was called in his lifetime. The first proof of the fundamental theorem of the algebra in 1799 contained an essentially topological argument; fifty years later, he further developed the topological argument in his fourth proof of this theorem.[226]

Another encounter with topological notions occurred to him in the course of his astronomical work in 1804, when he determined the limits of the region on the celestial sphere in which comets and asteroids might appear, and which he termed "Zodiacus". He discovered that if the Earth's and comet's orbits are linked, then by topological reasons the Zodiacus is the entire sphere. In 1848, in the context of the discovery of the asteroid 7 Iris, he published a further qualitative discussion of the Zodiacus.[227]

From Gauss's letters during the period of 1820–1830, one can learn that he thought intensively on topics with close affinity to Geometria Situs, and became gradually conscious of semantic difficulty in this field. Fragments from this period reveal that he tried to classify "tract figures", which are closed plane curves with a finite number of transverse self-intersections, that may also be planar projections of knots.[228] To do so he devised a symbolical scheme, the Gauss code, that in a sense captured the characteristic features of tract figures.[229][230]

In a fragment from 1833, Gauss defined the linking number of two space curves by a certain double integral, and in doing so provided for the first time an analytical formulation of a topological phenomenon. In the same note, he lamented on the little progress made in Geometria Situs, and remarked that one of its central problems will be "to count the intertwinings of two closed or infinite curves". His notebooks from that period reveal that he was also thinking about other topological objects such as braids and tangles.[227]

In later years, Gauss held the emerging field of topology in a very high esteem and expected great future developments for it, but since there is so few written, but unpublished material by Gauss on these matters, his influence was made mainly through occasional remarks and oral communications to his colleagues and students Mobius, Listing, and Riemann.[231]

Minor mathematical accomplishments[edit]

Gauss's work did not only initiate significant mathematical theories, as he was also the author of many little "gems" in mathematics, especially in elementary geometry and algebra. In his way, he helped spread the new mathematical ideas by demonstrating how they illuminate and shorten the solution of small mathematical problems.[232]

Gauss bust by Heinrich Hesemann (1855)[233]

For example, he was a vivid spirit in applying complex numbers to various problems, and used them in his work on perspective and projective geometry: in a short 1836 note on geometric aspects of the ternary forms, he stated the fundamental theorem of axonometry, which tells how to represent a 3D cube on a 2D plane with complete accuracy, via complex numbers.[234] In an unpublished 1819 note entitled "the Sphere", he conceived of the complex plane extended by a point at infinity as the stereographic projection of a sphere (the Riemann sphere),[citation needed] and described rotations of this sphere as the action of certain linear fractional transformations on the extended complex plane.[235]

Gauss seems to have in his foresight the algebraic system of quaternions, the later discovery of William Rowan Hamilton. In 1819, Gauss drafted an unpublished short treatise on "Rotations of Space", in which he elaborated on the use of quadruples of real numbers (of which he called "scales") to describe 3D rotations.[236][237]

Occasionally Gauss worked even on problems of elementary geometry. For instance, he gave a proof that the altitudes of a triangle always meet in a single orthocenter,[238] and an analytic solution for the Problem of Apollonius.[239][240] Furthermore, he contributed a solution to the problem of constructing the largest-area ellipse inside a given quadrilateral,[241][242] and discovered a surprising result about the computation of area of pentagons.[243][244]

One of his investigations was concerned with John Napier's "Pentagramma mirificum" — a certain spherical pentagram whose properties intrigued and occupied Gauss's mind for several decades.[245] In studies of the Pentagramma he approached it from various points of view, and gradually gained a full understanding of its geometric, algebraic, and analytic aspects.[246] In particular, in 1843 he stated and proved several theorems connecting elliptic functions, Napier spherical pentagons, and Poncelet pentagons in the plane.[247]

Magnetism and telegraphy[edit]

Geomagnetism[edit]

Gauss-Weber monument in Göttingen
The Gauss-Weber magnetometer

Gauss was interested in magnetism since 1803.[248] After Alexander von Humboldt's visit in Göttingen in 1826, both scientists began intensive research on geomagnetism, partly independent, partly in productive cooperation.[249] In 1828, Gauss was Humboldt's personal guest during the conference of the Society of German Natural Scientists and Physicians in Berlin, where he got acquainted with the physicist Wilhelm Weber.[250]

When Weber got the chair for physics in Göttingen as successor of Johann Tobias Mayer by Gauss's recommendation in 1831, both of them started a fruitful collaboration, leading to a new knowledge of magnetism with a representation for the unit of magnetism in terms of mass, charge, and time.[251] They founded the Magnetic Association (German: Magnetischer Verein), an international working group of several observatories, which supported measurements of Earth's magnetic field in many regions of the world with equal methods at arranged dates in the years 1836 to 1841.[252][citation needed]

In 1836, Humboldt suggested the establishment of a worldwide net of geomagnetic stations in the British dominions with a letter to the Duke of Sussex, then president of the Royal Society; the magnetic measures should be taken under standardized conditions using Gauss's methods.[clarification needed][253][254] Together with other instigators, this led to a global program known as "Magnetical crusade" under directory of Edward Sabine. The dates, times, and intervals of observations were determined in advance, the Göttingen mean time was used as standard.[255] 61 stations on all five continents participated in this global program. Gauss and Weber founded a series for publication of the results, six volumes were edited between 1837 and 1843. Weber's departure to Leipzig in 1843 as late effect of the Göttingen Seven affair marked the end of Magnetic Association activity.[252]

Following Humboldt's example, Gauss ordered a magnetic observatory to be built in the garden of the observatory, but both scientists differed over instrumental equipment; Gauss preferred stationary instruments, which he thought to give more precise results, whereas Humboldt was accustomed to movable instruments. Gauss was interested in the temporal and spatial variation of magnetic declination, inclination, and intensity, but discriminated Humboldt's concept of magnetic intensity to the terms of "horizontal" and "vertical" intensity. Together with Weber, he developed methods of measuring the components of intensity of the magnetic field, and constructed a suitable magnetometer to measure absolute values of the strength of the Earth's magnetic field, not more relative ones that depended on the apparatus.[252][256] The precision of the magnetometer was about ten times higher than of previous instruments. With this work, Gauss was the first one who derived a non-mechanical quantity by basic mechanical quantities.[255]

Gauss carried out a General Theory of Terrestrial Magnetism (1839), in what he believed to describe the nature of magnetic force; following Felix Klein, this work is actually a presentation of observations by use of spherical harmonics rather than a physical theory.[257] The theory predicted the existence of exactly two magnetic poles on the Earth, thus Hansteen's idea of four magnetic poles became obsolete,[258] and the data allowed to determine their location with rather good precision.[259]

Gauss influenced the beginning of geophysics in Russia, when Adolph Theodor Kupffer, one of his former students, founded a magnetic observatory in St. Petersburg, following the example of the observatory in Göttingen, and similarly, Ivan Simonov in Kazan.[258]

Electromagnetism[edit]

Town plan of Göttingen with course of the telegraphic connection

The discoveries of Hans Christian Ørsted on electromagnetism and Michael Faraday on electromagnetic induction drew Gauss's attention to these matters.[260] Gauss and Weber found rules for branched electric circuits, which were later found independently and firstly published by Gustav Kirchhoff and benamed after him as Kirchhoff's circuit laws,[261] and made inquiries on electromagnetism. They constructed the first electromechanical telegraph in 1833, and Weber himself connected the observatory with the institute for physics in the town centre of Göttingen,[w] but they did not care for any further development of this invention with regard to commercial purposes.[262][263][264]

Gauss's main theoretical interests in electromagnetism were reflected in his attempts to formulate quantitive laws governing electromagnetic induction. In notebooks from these years, he recorded several innovative formulations; he discovered the idea of vector potential function (independently rediscovered by Franz Ernst Neumann in 1845), and in January 1835 he wrote down an "induction law" equivalent to Faraday's law, which stated that the electromotive force at a given point in space is equal to the instantaneous rate of change (with respect to time) of this function.[265][266]

Gauss tried to find a unifying law for long-distance effects of electrostatics, electrodynamics, electromagnetism, and induction, comparable to Newton's law of gravitation,[267] but his attempt ended in a "tragic failure".[255]

Potential theory[edit]

Since Isaac Newton had shown theoretically that the Earth and rotating stars assume non-spherical shapes, the problem of attraction of ellipsoids gained importance in mathematical astronomy. In his first publication on potential theory, the "Theoria attractionis..." (1813), Gauss provided a closed-form expression to the gravitational attraction of an homogeneous triaxial ellipsoid at every point in space.[268] This problem was previously tackled and solved by Maclaurin, Laplace and Lagrange, but their procedures either relied on development into slowly converging infinite series or did not solve it in full generality.[269] Gauss's new solution treated the attraction more directly in the form of an elliptic integral. In the process, he also proved and applied some special cases of the so-called Gauss's theorem in vector analysis.[270]

In the General theorems concerning the attractive and repulsive forces acting in reciprocal proportions of quadratic distances (1840) Gauss gave the baseline of a theory of the magnetic potential, based on Lagrange, Laplace, and Poisson;[257] it seems rather unlikely that he had knowledge of the previous works of George Green on this subject.[260] However, Gauss could never give any reasons for magnetism, nor a theory of magnetism similar to Newton's work on gravitation, that enabled scientists to predict geomagnetic effects in the future.[255]

Optics[edit]

Instrument maker Johann Georg Repsold in Hamburg asked Gauss in 1807 for help to construct an achromatic lens system. Based on Gauss's calculations, Repsold succeeded with a new objective in 1810. A main problem, among other difficulties, was the non precise knowledge of the refractive index and dispersion of the used glass types.[271][citation needed] In a short article from 1817 Gauss dealt with the problem of removal of chromatic aberration in double lenses, and made calculations about adjustments of the shape and coefficients of refraction required to minimize it. His work was noted by the optician Carl August von Steinheil, who in 1860 introduced the achromatic Steinheil doublet, partly based on Gauss's calculations.[272] Many results in geometrical optics are scattered in Gauss's correspondences and handnotes.[273]

In the Dioptrical Investigations (1840), Gauss gave the first systematic analysis on the formation of images under a paraxial approximation (Gaussian optics).[274] Gauss demonstrated, that under a paraxial approximation an optical system can be characterized by its cardinal points,[275] and he derived the Gaussian lens formula, applicable without restrictions in respect to the thickness of the lenses.[276][277]

Mechanics[edit]

Gauss's first business in mechanics concerned the earth's rotation. When his university friend Benzenberg carried out experiments to determine the deviation of falling masses from the perpendicular in 1802, what today is known as an effect of the Coriolis force, he asked Gauss for a theory based calculation of the values for comparison with the experimental ones. Gauss elaborated a system of fundamental equations for the motion, and the results corresponded sufficiently with Benzenberg's data, who added Gauss's considerations as appendix to his book on falling experiments.[278]

After Foucault had demonstrated the earth's rotation by his pendulum experiment in public in 1851, Gerling questioned Gauss for further explanations. This instigated Gauss to design a new apparatus for demonstration with a much shorter length of pendulum than Foucault's one. The oscillations were observed with a reading telescope, with a vertical scale and a mirror fastened at the pendulum; the time of oscillation was 3.1 seconds. It is described in the Gauss–Gerling correspondence, and Weber made some experiments with this obviously working apparatus in 1853, but no data were published.[279][280]

Gauss's principle of least constraint of 1829 was established as a general concept to overcome the division of mechanics into statics and dynamics, combining D'Alembert's principle with Lagrange's principle of virtual work, and showing analogies to the method of least squares.[281]  

Metrology[edit]

In 1828, Gauss was appointed to head of a Board for weights and measures of the Kingdom of Hanover. He provided the creation of standards of length and measures. Gauss himself took care of the time-consuming measures and gave detailed orders for the mechanical preparation.[167] In the correspondence with Schumacher, who was also working on this matter, he described new ideas for scales of high precision.[282] He submitted the final reports on the Hanoverian foot and pound to the government in 1841. This work got more than regional importance by the order of a law of 1836, that connected the Hanoverian measures with the English ones.[167]

Anecdotes[edit]

Parochial registration of Gauss's christening on 4 May 1777 with later added birth date

Several stories of his early genius have been reported. Carl Friedrich Gauss's mother had never recorded the date of his birth, remembering only that he had been born on a Wednesday, eight days before the Feast of the Ascension, which occurs 39 days after Easter. Gauss later solved this puzzle about his birthdate in the context of finding the date of Easter, deriving methods to compute the date in both past and future years.[283] Gauss felt sorry for his new born daughter Wilhelmine, because she was born on the leap day in 1808 and thus would celebrate her birthday only every four years.[284]

In his memorial on Gauss, Wolfgang Sartorius von Waltershausen tells a story about the three-years-aged Gauss, who corrected a math error his father made. The most popular story, also told by Sartorius, tells of a school exercise: the teacher Büttner and his assistant Martin Bartels ordered students to add an arithmetic series. Out of about a hundred pupils, Gauss was the first to solve the problem correctly by a significant margin.[285][8] Although (or because) Sartorius gave no details, in the course of time many versions of this story have been created, with more and more details regarding the nature of the series – the most frequent being the classical problem of adding together all the integers from 1 to 100 – and the circumstances in the classroom.[286][x]

Gauss's favorite English author was Walter Scott; when he sometimes read the words "the moon rises broad in the nord west", he was very amused.[288]

Honours and awards[edit]

Copley Medal for Gauss (1838)

The first membership of a scientific society was given to Gauss in 1802 by the Russian Academy of Sciences.[citation needed] Further memberships (corresponding, foreign or full) were awarded from the Academy of Sciences in Göttingen (1802/ 1807),[289] the French Academy of Sciences (1804/ 1820),[290] the Royal Society of London (1804),[291] the Royal Prussian Academy in Berlin (1810),[292] the National Academy of Science in Verona (1810),[293] the Royal Society of Edinburgh (1820),[294] the Bavarian Academy of Sciences of Munich (1820),[295] the Royal Danish Academy in Copenhagen (1821),[citation needed] the Royal Astronomical Society in London (1821),[296] the Royal Swedish Academy of Sciences (1821),[citation needed] the American Academy of Arts and Sciences in Boston (1822),[297] the Royal Bohemian Society of Sciences in Prague (1833),[citation needed] the Royal Academy of Science, Letters and Fine Arts of Belgium (1841/ 1845),[298] the Royal Society of Sciences in Uppsala (1843),[citation needed] the Royal Irish Academy in Dublin (1843),[citation needed] the Royal Institute of the Netherlands (1845/ 1851),[299] the Spanish Royal Academy of Sciences in Madrid (1850),[300] the Russian Geographical Society (1851),[citation needed] the Imperial Academy of Sciences in Vienna (1848),[citation needed] the American Philosophical Society (1853),[301] the Cambridge Philosophical Society,[citation needed] and the Royal Hollandish Society of Sciences in Haarlem.[302][303]

Both the University of Kazan and the Philosophy Faculty of the University of Prague appointed him honorary member in 1848.[302]

Gauss received the Lalande Prize from the French Academy of Science in 1809 for the theory of planets and the means of determining their orbits from only three observations,[304] the Danish Academy of Science prize in 1823 for "his study of angle-preserving maps",[citation needed] and the Copley Medal from the Royal Society in 1838 for "his inventions and mathematical researches in magnetism".[303][305][76][failed verification]

Gauss was appointed Knight of the French Legion of Honour in 1837,[306] and was taken as one of the first members of the Prussian Order Pour le Merite (Civil class) when it was established in 1842.[307] He received the Order of the Crown of Westphalia (1810),[303] the Danish Order of the Dannebrog (1817),[303] the Hanoverian Royal Guelphic Order (1815),[303] the Swedish Order of the Polar Star (1844),[citation needed] the Order of Henry the Lion (1849),[citation needed] and the Bavarian Maximilian Order for Science and Art (1853).[citation needed]

The Kings of Hanover appointed him the honorary titles "Hofrath" (1816)[91] and "Geheimer Hofrath"[y] (1845). On the occasion of his golden doctor degree jubilee he got the honorary citizenship of both towns of Brunswick and Göttingen in 1849.[303][failed verification] Soon after his death a medal was issued by order of King George V of Hanover with the back side inscription dedicated "to the Prince of Mathematicians": Georgivs V Rex Hannoverae Mathematicorvm Principi and the circumscription: Academiae Svae Georgiae Avgvstae Decori Aeterno.[308][unreliable source?]

The ″Gauss-Gesellschaft Göttingen″ (Gauss Society) was founded in 1964 for research on life and work of Carl Friedrich Gauss and related persons and edits the ″Mitteilungen der Gauss-Gesellschaft″ (Communications of the Gauss Society).[309]

Names and commemorations[edit]

Selected writings[edit]

Mathematics and astronomy[edit]

Statue of Gauss in Brunswick (1880), made by Hermann Heinrich Howaldt, designed by Fritz Schaper

Physics[edit]

Together with Wilhelm Weber[edit]

Collected works[edit]

  • Королевская прусская академия наук, изд. Карл Фридрих Гаусс. Сочинения (на латыни и немецком языке). Том 1-12. Геттинген: (разные издательства). (включая неопубликованное литературное наследие)

Переписка [ править ]

Геттингенская академия наук и гуманитарных наук представляет полную коллекцию известных писем Карла Фридриха Гаусса и к нему, доступную в Интернете. [77] Литературное наследие хранится и предоставляется Геттингенской государственной и университетской библиотекой . [310] Письменное наследие Карла Фридриха Гаусса и членов его семьи также можно найти в муниципальном архиве Брауншвейга. [311]

Ссылки [ править ]

Примечания [ править ]

  1. Collegium Carolinum был предшествующим учреждением Брауншвейгского технического университета , но во времена Гаусса не равнялся университету. [7]
  2. ^ Эта ошибка встречается, например, у Марсдена (1977). [18]
  3. В этом путешествии он встретил геодезиста Фердинанда Рудольфа Хасслера , который был научным корреспондентом Карла Фридриха Гаусса. [48] [49]
  4. ^ Гаусс объявил о 195 лекциях, 70 процентов из них по астрономическим, 15 процентов по математическим, 9 процентов по геодезическим и 6 процентов по физическим предметам. [76]
  5. Указатель переписки показывает, что Бенджамин Гулд был предположительно последним корреспондентом, который 13 февраля 1855 года при жизни отправил письмо Гауссу. Это было настоящее прощальное письмо, но неизвестно, дошло ли оно до адресата вовремя. [77]
  6. После его смерти среди его бумаг была обнаружена беседа о возмущениях Палласа на французском языке, вероятно, как вклад в конкурс на премию Французской академии наук. [79]
  7. ^ Theoria motus... была завершена на немецком языке в 1806 году, но по просьбе редактора Фридриха Кристофа Пертеса Гаусса перевела ее на латынь. [80]
  8. И Гаусс, и Хардинг в своей переписке лишь завуалировали намеки на эту личную проблему. В письме Шумахеру указывается, что Гаусс пытался избавиться от своего коллеги и искал для него новую должность за пределами Геттингена, но безрезультатно. Кроме того, Шарлотта Вальдек, теща Гаусса, умоляла Ольберса попытаться предоставить Гауссу другую должность вдали от Геттингена. [84]
  9. Первым помощником Гаусса был Бенджамин Гольдшмидт , а вторым — Вильгельм Клинкерфюс , который впоследствии стал одним из его преемников. [76]
  10. Бессель так и не получил университетского образования. [87] [88]
  11. Первой книгой, которую он одолжил в университетской библиотеке в 1795 году, был роман «Кларисса» Сэмюэля Ричардсона . [103]
  12. ^ Политическим фоном была запутанная ситуация в Германской Конфедерации с 39 почти независимыми государствами, суверенами трех из которых были короли других стран (Нидерланды, Дания, Соединенное Королевство), тогда как Королевство Пруссия и Австрийская империя широко простирались на территорию границы Конфедерации.
  13. ^ см . запись в дневнике 146 , единственная, в которой используются комплексные числа, [127] [128]
  14. Гаусс подробно рассказал эту историю позже в письме Энке . [132]
  15. ^ Позже эти преобразования были даны Лежандром в 1824 г. (3-й порядок), Якоби в 1829 г. (5-й порядок), Зонке в 1837 г. (7-й и другие порядки).
  16. В письме Бесселю от 1828 года Гаусс прокомментировал: «Г-н Абель [...] предвосхитил меня и освободил меня от усилий [публикации] в отношении одной трети этих вопросов…» [147]
  17. ^ Это замечание появляется в статье 335 главы 7 Disquisitiones Arithmeticae (1801 г.).
  18. ^ Для однозначной идентификации космического объекта как планеты среди неподвижных звезд требуется как минимум два наблюдения с интервалом.
  19. ^ Брендель (1929) считал этот шифр неразрешимым, но на самом деле декодирование было очень простым. [174] [176]
  20. ^ Лауэнбург был самым южным городом герцогства Гольштейн , которое принадлежало лично королю Дании .
  21. ^ Этот сектор Рамсдена был предоставлен Советом по артиллерийскому вооружению и ранее использовался Уильямом Маджем в Главной триангуляции Великобритании . [197]
  22. ^ Значение Уолбека (1820 г.) 1/302,78 было улучшено до 1/298,39; расчет провел Эдуард Шмидт, частный преподаватель Геттингенского университета. [205]
  23. Гроза повредила кабель в 1845 году. [262]
  24. Некоторые авторы, такие как Джозеф Дж. Ротман , задаются вопросом, происходило ли это когда-либо. [287]
  25. ^ дословный перевод: Тайный советник суда.

Цитаты [ править ]

  1. ^ Аксель Д. Виттманн, Инна Викторовна Орешина (2009). «О картинах Йенсена К. Ф. Гаусса» . Сообщения Общества Гаусса (46): 57–61.
  2. ^ Дуден - ( Словарь произношения на немецком языке) (7-е изд.). Берлин: Дуденверлаг. 2015 [1962]. стр. 246, 381, 391. ISBN.  978-3-411-04067-4 .
  3. ^ Креч, Ева-Мария; Сток, Эберхард; Хиршфельд, Урсула; Андерс, Лутц-Кристиан (2009). Словарь немецкого произношения [ Словарь немецкого произношения ] (на немецком языке). Берлин: Вальтер де Грюйтер. стр. 402, 520, 529. ISBN.  978-3-11-018202-6 .
  4. ^ Борх, Рудольф (1929). Фридриха Гаусса Табличка предков математика Карла . Родословная знаменитых немцев (на немецком языке). Том 1. Центральное управление личной и семейной истории Германии. стр. 63–65.
  5. ^ Даннингтон 2004 , с. 8.
  6. ^ Даннингтон 2004 , с. 8–9.
  7. ^ Даннингтон 2004 , с. 17.
  8. Перейти обратно: Перейти обратно: а б Шлезингер 1933 , с. 10.
  9. ^ Даннингтон 2004 , с. 14.
  10. Перейти обратно: Перейти обратно: а б с д Ульрих, Питер (2005). «Происхождение, школа и время учебы Карла Фридриха Гаусса». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 17–29. ISBN  3-930457-72-5 .
  11. Перейти обратно: Перейти обратно: а б Даннингтон, Уолдо (1927). «Полтора столетия со дня рождения Гаусса» . Научный ежемесячник . 24 (5): 402–414. Бибкод : 1927SciMo..24..402D . JSTOR   7912 . Архивировано из оригинала 26 февраля 2008 года. Также доступно по адресу. «Полтора столетия со дня рождения Гаусса» . Проверено 23 февраля 2014 г. Подробная биографическая статья.
  12. ^ Даннингтон 2004 , стр. 398–404.
  13. Перейти обратно: Перейти обратно: а б Даннингтон 2004 , с. 24.
  14. Перейти обратно: Перейти обратно: а б с Даннингтон 2004 , с. 26.
  15. ^ Ваттенберг, Дидрих (1994). Вильгельм Ольберс в переписке с астрономами своего времени (на немецком языке). Штутгарт: GNT - Издательство истории естественных наук и техники. п. 41. ИСБН  3-928186-19-1 .
  16. ^ Даннингтон 2004 , с. 28.
  17. ^ Даннингтон 2004 , с. 37.
  18. Перейти обратно: Перейти обратно: а б с Марсден, Брайан Г. (1 августа 1977 г.). «Карл Фридрих Гаусс, астроном» . Журнал Королевского астрономического общества Канады . 71 : 309–323. Бибкод : 1977JRASC..71..309M . ISSN   0035-872X .
  19. Перейти обратно: Перейти обратно: а б с д и Райх, Карин (2000). «Ученики Гаусса». Сообщения Gauß-Gesellschaft Göttingen (на немецком языке) (37): 33–62.
  20. Перейти обратно: Перейти обратно: а б с д и ж Бойерманн, Клаус (2005). «Карл Фридрих Гаус и Геттингенская обсерватория» (PDF) . В Бойерманне, Клаус (ред.). Принципы строительства новых обсерваторий со ссылкой на обсерваторию в Геттингенском университете Георга Генриха Борека . Геттинген: Издательство Геттингенского университета. стр. 37–45. ISBN  3-938616-02-4 .
  21. ^ Михлинг, Хорст (1966). «О проекте Гауссовой обсерватории в Брауншвейге». Объявления Gauß-Gesellschaft Göttingen (на немецком языке) (3): 24.
  22. ^ Даннингтон 2004 , стр. 50, 54–55, 74–77.
  23. ^ Даннингтон 2004 , стр. 91–92.
  24. Перейти обратно: Перейти обратно: а б Даннингтон 2004 , с. 85–87.
  25. ^ Даннингтон 2004 , стр. 86–87.
  26. ^ Брендель 1929 , стр. 81–82.
  27. ^ Брендель 1929 , с. 49.
  28. ^ Брендель 1929 , с. 83.
  29. ^ Брендель 1929 , с. 84.
  30. ^ Брендель 1929 , с. 119.
  31. ^ Брендель 1929 , с. 56.
  32. ^ Кляйн 1979 , с. 7.
  33. ^ Сарториус фон Вальтерсхаузен 1856 , с. 104.
  34. ^ Вагнер, Рудольф (1860). О типичных различиях в извилинах полушарий и о теории веса мозга с особым учетом формирования мозга разумных людей. Предварительные исследования по научной морфологии и физиологии человеческого мозга как органа души, Том 1 . Геттинген: Дитрих.
  35. ^ Вагнер, Рудольф (1862). О строении мозга микроцефалов при сравнительном рассмотрении строения мозга нормального человека и четвероногого человека. Предварительные исследования по научной морфологии и физиологии человеческого мозга как органа души, Том 2 . Геттинген: Дитрих.
  36. ^ Вагнер, Герман (1864). поверхности большого мозга Измерения ( на немецком языке). Кассель и Геттинген: Георг Х. Виганд.
  37. ^ Барди, Джейсон (2008). Пятый постулат: как разгадка тайны двухтысячелетней давности раскрыла Вселенную . John Wiley & Sons, Inc. с. 189. ИСБН  978-0-470-46736-7 .
  38. ^ Хенике, Вольфганг; Фрам, Йенс ; Виттманн, Аксель Д. (1999). «Магнитно-резонансная томография головного мозга Карла Фридриха Гаусса» . Новости MPI (на немецком языке). 5 (12). Архивировано из оригинала 19 июля 2011 года . Проверено 3 сентября 2023 г.
  39. ^ Швейцер, Рената; Виттманн, Аксель; Фрам, Йенс (2014). «Редкая анатомическая вариация недавно идентифицирует мозг К. Ф. Гаусса и К. Х. Фукса в коллекции Геттингенского университета» . Мозг . 137 (4): e269. дои : 10.1093/brain/awt296 . hdl : 11858/00-001M-0000-0014-C6F0-6 . ПМИД   24163274 . (с дальнейшими ссылками)
  40. ^ «Разгадка истинной личности мозга Карла Фридриха Гаусса» . Общество Макса Планка .
  41. ^ Даннингтон 2004 , с. 66.
  42. ^ Вуссинг 1982 , с. 44.
  43. ^ Даннингтон 2004 , с. 77, 88, 93.
  44. ^ Каджори, Флориан (19 мая 1899 г.). «Карл Фридрих Гаусс и его дети» . Наука . Новая серия. 9 (229). Американская ассоциация содействия развитию науки: 697–704. Бибкод : 1899Sci.....9..697C . дои : 10.1126/science.9.229.697 . JSTOR   1626244 . ПМИД   17817224 .
  45. Перейти обратно: Перейти обратно: а б Даннингтон 2004 , с. 374.
  46. ^ Даннингтон 2004 , с. 206.
  47. Перейти обратно: Перейти обратно: а б с д и ж Джерарди, Тео (1966). «К. Ф. Гаусс и его сыновья». Объявления Gauß-Gesellschaft Göttingen (на немецком языке) (3): 25–35.
  48. ^ Джерарди, Тео (1977). «Геодезисты как корреспонденты Карла Фридриха Гауса». Новости общей геодезии (на немецком языке) (84): 150–160. п. 157
  49. ^ Даннингтон 2004 , с. 286.
  50. ^ Вольф, Армин (1964). «Педагог и философ Иоганн Конрад Фалленштейн (1731–1813) – Генеалогические связи между Максом Вебером , Гаусом и Бесселем». Генеалогия (на немецком языке). 7 :266-269.
  51. ^ Вайнбергер, Джозеф (1977). «Карл Фридрих Гаус 1777–1855 и его потомки». Архив исследований кланов и всех связанных с ними областей (на немецком языке). 43/44 (66): 73–98.
  52. Перейти обратно: Перейти обратно: а б с д и Шубринг, Герт (1993). «Немецкое математическое сообщество». В Фовеле, Джон ; Флуд, Рэймонд ; Уилсон, Робин (ред.). Мёбиус и его группа: Математика и астрономия в Германии девятнадцатого века . Издательство Оксфордского университета. стр. 21–33.
  53. ^ Шубринг, Герт (2021). История математики в ее контексте (на немецком языке). Биркгаузер. п. 133-134.
  54. ^ Кляйн 1894 , с. 99.
  55. ^ Кляйн 1894 , с. 100.
  56. ^ Кляйн 1894 , стр. 100–101.
  57. ^ Кляйн 1979 , стр. 5–6.
  58. ^ Даннингтон 2004 , с. 217.
  59. Письмо Гаусса Бояи от 2 сентября 1808 г.
  60. ^ Кляйн, Феликс, изд. «Научный дневник Гаусса 1796–1814» . Математические анналы (на латыни и немецком языке). 57 :1–34. дои : 10.1007/BF01449013 . S2CID   119641638 . п. 2
  61. ^ Бахманн 1922 , с. 4–6.
  62. Перейти обратно: Перейти обратно: а б Шлезингер 1933 , с. 18.
  63. ^ Меннхен 1930 , с. 64–65.
  64. Перейти обратно: Перейти обратно: а б Меннхен 1930 , с. 4–9.
  65. ^ Райх, Карин (2005). «Таблицы логарифмов – «повседневные рабочие инструменты» Гаусса ». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 73–86. ISBN  3-930457-72-5 .
  66. ^ Альтоэн, Стивен С.; Маклафлин, Рената (1987), «Редукция Гаусса – Джордана: краткая история», The American Mathematical Monthly , 94 (2), Mathematical Association of America: 130–142, doi : 10.2307/2322413 , ISSN   0002-9890 , JSTOR   2322413
  67. ^ Меннхен 1930 , с. 3.
  68. ^ Бахманн 1922 , с. 5.
  69. Перейти обратно: Перейти обратно: а б с д и Бирманн, Курт Р. (1966). «Об отношениях между К. Ф. Гаусом и Ф. В. Бесселем». Объявления Gauß-Gesellschaft Göttingen (на немецком языке) (3): 7–20.
  70. ^ Кляйн 1979 , с. 29.
  71. ^ Даннингтон 2004 , с. 420–430.
  72. ^ Сарториус фон Вальтерсхаузен 1856 , с. 79.
  73. ^ Дербишир, Джон (2003). Основная одержимость: Бернхард Риман и величайшая нерешенная проблема математики . Вашингтон, округ Колумбия: Джозеф Генри Пресс. п. 202 . ISBN  978-0-309-08549-6 .
  74. Перейти обратно: Перейти обратно: а б Стиглер , Стивен М. (1981). «Гаусс и изобретение метода наименьших квадратов» . Анналы статистики . 9 (3): 465–474. дои : 10.1214/aos/1176345451 .
  75. ^ Даннингтон 2004 , с. 405–410.
  76. Перейти обратно: Перейти обратно: а б с д и ж Виттманн, Аксель (2005). «Карл Фридрих Гаус и его работа астронома». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 131–149. ISBN  3-930457-72-5 .
  77. Перейти обратно: Перейти обратно: а б «Полная переписка Карла Фридриха Гаусса» . Академия наук в Геттингене . Проверено 10 марта 2023 г.
  78. ^ Гаусс, К.Ф. (1874 г.). Королевская прусская академия наук (ред.). Карл Фридрих Гаусс. Работы (на немецком языке). Том VI. стр. 73–86.
  79. ^ Брендель 1929 , с. 211.
  80. ^ Даннингтон 2004 , с. 90.
  81. ^ Даннингтон 2004 , с. 37–38.
  82. ^ Кантор, Мориц (1894). Тибо, Бернхард Фридрих . Общая немецкая биография (на немецком языке). Том 37. Лейпциг: Данкер и Хамблот. стр. 745–746.
  83. ^ Фолкертс, Менсо (1990). Майер, Иоганн Тобиас . Новая немецкая биография (на немецком языке). Том 16. Данкер и Хамблот. п. 530.
  84. Перейти обратно: Перейти обратно: а б с Кюсснер, Марта (1978). «Отношения Фридриха Вильгельма Бесселя с Геттингеном и воспоминания о нем». Объявления Gauß-Gesellschaft Göttingen (на немецком языке) (15): 3–19.
  85. Перейти обратно: Перейти обратно: а б Брендель 1929 , стр. 106–108.
  86. ^ Брендель 1929 , стр. 7, 128.
  87. ^ Хамель, Юрген (1984). Фридрих Вильгельм Бессель . Лейпциг: BSB BGTeubner Verlagsgesellschaft. п. 29.
  88. ^ Даннингтон 2004 , с. 76.
  89. ^ Маккиннон, Ник (1990). «Софи Жермен, или Был ли Гаусс феминисткой?». Математический вестник . 74 (470). Математическая ассоциация: 346–351. дои : 10.2307/3618130 . JSTOR   3618130 . S2CID   126102577 .
  90. ^ Бирманн, Курт Р. (1964). «Готхольд Эйзенштейн» . Журнал чистой и прикладной математики (на немецком языке). 214 : 19-30. дои : 10.1515/crll.1964.214-215.19 .
  91. Перейти обратно: Перейти обратно: а б с Даннингтон 2004 , с. 288.
  92. ^ Сарториус фон Вальтерсхаузен 1856 , с. 102.
  93. Перейти обратно: Перейти обратно: а б Сарториус фон Вальтерсхаузен 1856 , с. 95.
  94. ^ Сарториус фон Вальтерсхаузен 1856 , с. 8.
  95. ^ Вуссинг 1982 , с. 41.
  96. ^ «Письмо Карла Фридриха Гаусса Йоханне Гаусс, 23 октября 1809 года» . Полная переписка Карла Фридриха Гаусса . Геттингенская академия наук. 23 октября 1809 года . Проверено 26 марта 2023 г.
  97. ^ Даннингтон 2004 , стр. 94–95.
  98. ^ Даннингтон 2004 , с. 206, 374.
  99. ^ «Письмо: Чарльз Генри Гаусс Флориану Каджори - 21 декабря 1898 г.» . Проверено 25 марта 2023 г.
  100. ^ Сарториус фон Вальтерсхаузен 1856 , с. 71.
  101. ^ Лефельдт, Вернер (2005). «Исследование русского языка Карлом Фридрихом Гаусом». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 302–310. ISBN  3-930457-72-5 .
  102. ^ Даннингтон 2004 , с. 241.
  103. ^ Райх, Карин (2005). «Духовные отцы Гаусса: не только «summus Ньютон», но и «summus Эйлер» ». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 105–115. ISBN  3-930457-72-5 .
  104. ^ Вуссинг 1982 , с. 80.
  105. ^ Вуссинг 1982 , с. 81.
  106. Перейти обратно: Перейти обратно: а б с Сарториус фон Вальтерсхаузен 1856 , с. 94.
  107. ^ Вуссинг 1982 , с. 79.
  108. ^ Даннингтон 2004 , с. 195-200.
  109. ^ Сарториус фон Вальтерсхаузен 1856 , с. 97.
  110. ^ «Письмо Карла Фридриха Гаусса Вильгельму Ольберсу, 3 сентября 1805 года» . Полная переписка Карла Фридриха Гаусса . Геттингенская академия наук. 23 октября 1809 года . Проверено 26 марта 2023 г.
  111. ^ Даннингтон 2004 , с. 300.
  112. ^ Сарториус фон Вальтерсхаузен 1856 , с. 100.
  113. ^ Сарториус фон Вальтерсхаузен 1856 , с. 90.
  114. ^ Гронвальд, В. (1955). «Карл Фридрих Гаусс – Картина жизни». В Управлении геодезии и кадастра Нижней Саксонии (ред.). Карл Фридрих Гаусс и государственное обследование Нижней Саксонии (на немецком языке). Ганновер. стр. 1–16. {{cite book}}: CS1 maint: отсутствует местоположение издателя ( ссылка )
  115. ^ Басу, Сохам; Веллеман, Дэниел Дж. (21 апреля 2017 г.). «О первом доказательстве Гаусса основной теоремы алгебры». arXiv : 1704.06585 [ math.CV ].
  116. ^ Бахманн 1922 , с. 8.
  117. ^ Бахманн 1922 , с. 8–9.
  118. ^ Бахманн 1922 , с. 16–25.
  119. ^ Бахманн 1922 , с. 14–16, 25.
  120. ^ Бахманн 1922 , с. 25–28.
  121. ^ Бахманн 1922 , с. 29.
  122. ^ Бахманн 1922 , с. 22-23.
  123. ^ Бахманн 1922 , с. 66-69.
  124. ^ Денкер, Манфред; Паттерсон, Сэмюэл Джеймс (2005). «Гаусс – гениальный математик». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 53–62. ISBN  3-930457-72-5 .
  125. Перейти обратно: Перейти обратно: а б с д Штулер, Ульрих (2005). «Среднее арифметико-геометрическое и эллиптические интегралы: Гаусс и комплексный анализ». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 62–72. ISBN  3-930457-72-5 .
  126. ^ Вейль, Андре (1949). «Числа решений уравнений в конечных полях» (PDF) . Бюллетень Американского математического общества . 55 (5): 497–508. дои : 10.1090/S0002-9904-1949-09219-4 .
  127. ^ Бахманн 1922 , с. 56.
  128. ^ Напечатано в Собрании сочинений , том X.1, с. 571
  129. ^ Даннингтон 2004 , с. 44.
  130. ^ Фрей, Гюнтер (2007). «Неопубликованный восьмой раздел: На пути к функциональным полям над конечным полем». В Гольдштейне, Кэтрин ; Шаппахер, Норберт ; Швермер, Иоахим (ред.). Формирование арифметики по мотивам «Disquisitiones Arithmeticae» К. Ф. Гаусса . Берлин, Гейдельберг, Нью-Йорк: Springer. стр. 159–198. дои : 10.1007/978-3-540-34720-0 . ISBN  978-3-540-20441-1 .
  131. ^ Кох, Х .; Пипер, Х. (1976). Теория чисел . Берлин: Немецкое научное издательство VEB. стр. 6, 124.
  132. ^ Бахманн 1922 , с. 4.
  133. ^ Кляйнер, И. (2000). «От Ферма до Уайлса: Последняя теорема Ферма становится теоремой» (PDF) . Элементы математики . 55 : 19–37. дои : 10.1007/PL00000079 . S2CID   53319514 . Архивировано из оригинала (PDF) 8 июня 2011 года.
  134. ^ Бахманн 1922 , с. 60-61.
  135. ^ Хейлз, Томас К. (2006). «Исторический обзор гипотезы Кеплера» . Дискретная и вычислительная геометрия . 36 (1): 5–20. дои : 10.1007/s00454-005-1210-2 . ISSN   0179-5376 . МР   2229657 .
  136. ^ Зеебер, Людвиг Август (1831). Исследования свойств положительных тернарных квадратичных форм . Мангейм.
  137. ^ «Исследования свойств положительных тернарных квадратичных форм Людвига Августа Зеебера» . Научные объявления Геттингена (108): 1065–1077. Июль 1831 года.
  138. Перейти обратно: Перейти обратно: а б Кляйнер, Израиль (1998). «От чисел к кольцам: ранняя история теории колец» . Элементы математики . 53 (1): 18–35. дои : 10.1007/s000170050029 . Збл   0908.16001 .
  139. ^ Леммермейер, Франц (2000). Законы взаимности: от Эйлера до Эйзенштейна . Монографии Спрингера по математике. Берлин: Шпрингер. п. 15. дои : 10.1007/978-3-662-12893-0 . ISBN  3-540-66957-4 .
  140. ^ Бахманн 1922 , с. 52, 57-59..
  141. ^ Белл, ET (1944). «Гаусс и раннее развитие алгебраических чисел». Национальный математический журнал . 18 (5): 188–204. дои : 10.2307/3030061 . JSTOR   3030061 .
  142. ^ Шлезингер 1933 , с. 41–57.
  143. Перейти обратно: Перейти обратно: а б Кокс, Дэвид А. (январь 1984 г.). «Среднее арифметико-геометрическое Гаусса» . Математическое познание . 30 (2): 275–330.
  144. ^ Письмо Гаусса Бесселю от 18 декабря 1811 года, частично напечатано в Собрании сочинений , том 8, стр. 90-92 .
  145. ^ Рой, Ранджан (2021). Серии и продукты в области развития математики (PDF) . Том. 2 (2-е изд.). Кембридж: Издательство Кембриджского университета. стр. 20–22. ISBN  9781108709378 .
  146. ^ Шлезингер 1933 , стр. 185–186.
  147. ^ Шлезингер 1933 , с. 41.
  148. ^ Шлезингер 1933 , с. 101–106.
  149. ^ Хаузель, Кристиан (2007). «Эллиптические функции и арифметика». В Гольдштрейне, Кэтрин ; Шаппахер, Норберт ; Швермер, Иоахим (ред.). Формирование арифметики по мотивам «Disquisitiones Arithmeticae» К. Ф. Гаусса . Берлин, Гейдельберг, Нью-Йорк: Springer. п. 293. дои : 10.1007/978-3-540-34720-0 . ISBN  978-3-540-20441-1 .
  150. ^ Напечатано в Собрании сочинений , том 8, с. 104 .
  151. ^ Шлезингер 1933 , с. 122-123.
  152. ^ Шлезингер 1933 , с. 136–142.
  153. ^ Шлезингер 1933 , с. 142.
  154. ^ Шлезингер 1933 , с. 136–154.
  155. ^ Штекель 1917 , с. 90-91.
  156. ^ Бюлер 1981 , с. 103.
  157. ^ Монна, AF (1975). Принцип Дирихле: математическая комедия ошибок и ее влияние на развитие анализа (PDF) . Утрехт: Остхук, Шелтема и Холкема. стр. 11–12.
  158. ^ Напечатано в Собрании сочинений , том 10.1, стр. 311–324.
  159. ^ Шлезингер 1933 , с. 193.
  160. ^ Гаучи, Уолтер (1981). «Обзор квадратурных формул Гаусса-Кристофеля» . В Батцере, Пол Б .; Фехер, Франциска (ред.). Э.Б. Кристоффель. Влияние его работ на математику и физику (1-е изд.). Биркхойзер, Базель: Springer. стр. 72–147. дои : 10.1007/978-3-0348-5452-8_6 . ISBN  978-3-0348-5452-8 .
  161. Письмо Гаусса Герлингу от 26 декабря 1823 г.
  162. ^ Юсеф Саад (2 августа 2019 г.). «Итерационные методы для линейных систем уравнений: краткое историческое путешествие». arXiv : 1908.01083v1 [ math.HO ].
  163. ^ Кули, Джеймс В.; Тьюки, Джон В. (1965). «Алгоритм машинного вычисления комплексных рядов Фурье» . Математика вычислений . 19 (90): 297–301. дои : 10.2307/2003354 . JSTOR   2003354 .
  164. ^ Гаусс, CF (1876). Theoria Interpolationis Methodo Nova Tractata (на латыни). Геттинген: К. Общество наук в Геттингене. стр. 265–327.
  165. ^ Хайдеман, Майкл Т.; Джонсон, Дон Х.; Буррус, К. Сидни (1984). «Гаусс и история быстрого преобразования Фурье» (PDF) . Журнал IEEE ASSP . 1 (4): 14–21. дои : 10.1109/MASSP.1984.1162257 . S2CID   10032502 . Архивировано (PDF) из оригинала 19 марта 2013 г.
  166. ^ Меннхен 1930 , с. 49–63.
  167. Перейти обратно: Перейти обратно: а б с д Олеско, Кэтрин (2005). «Практический Гаусс – точные измерения для повседневной жизни». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 236–253. ISBN  3-930457-72-5 .
  168. ^ Даннингтон 2004 , с. 69.
  169. ^ Форбс, Эрик Г. (1971). «Гаусс и открытие Цереры» . Журнал истории астрономии . 2 (3): 195–199. Бибкод : 1971JHA.....2..195F . дои : 10.1177/002182867100200305 . S2CID   125888612 . Архивировано из оригинала 18 июля 2021 года.
  170. ^ Титс, Дональд; Уайтхед, Карен (1965). «Открытие Цереры. Как прославился Гаусс» . Журнал «Математика» . 19 (90): 83–91.
  171. ^ Кляйн 1979 , с. 8.
  172. ^ Феликс Кляйн, Лекции о развитии математики в XIX веке. Берлин: Юлиус Шпрингер Верлаг, 1926.
  173. ^ Брендель 1929 , с. 194-195.
  174. Перейти обратно: Перейти обратно: а б Брендель 1929 , с. 206.
  175. ^ Тейлор, Д.Б. (1982). «Вековое движение Паллады» . Ежемесячные уведомления Королевского астрономического общества . 199 (2): 255–265. Бибкод : 1982MNRAS.199..255T . дои : 10.1093/mnras/199.2.255 .
  176. ^ Шредер, Манфред Р. (2005). «Гаусс, акустика концертного зала и астероид Паллс». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 259–260. ISBN  3-930457-72-5 .
  177. ^ Брендель 1929 , с. 254.
  178. ^ Брендель 1929 , с. 253-254.
  179. ^ Шлезингер 1933 , с. 169-170.
  180. ^ Хилл, Джордж Уильям (1882). «О методе Гаусса вычисления вековых возмущений с применением к действию Венеры на Меркурий» . Астрономические статьи об американских эфемеридах . 1 : 315–361. Бибкод : 1882УСНАО...1..315H .
  181. ^ Брендель 1929 , стр. 8–9.
  182. ^ Брендель 1929 , с. 3.
  183. ^ Брендель 1929 , с. 54.
  184. ^ Брендель 1929 , с. 144.
  185. ^ Стиглер, Стивен М. (1981). «Гаусс и изобретение метода наименьших квадратов» . Анналы статистики . 9 (3): 465–474. дои : 10.1214/aos/1176345451 . ISSN   0090-5364 . JSTOR   2240811 .
  186. ^ Шааф 1964 , с. 84.
  187. ^ Плакетт, Р.Л. (1972). «Открытие метода наименьших квадратов» (PDF) . Биометрика . 59 (2): 2 39–251. дои : 10.2307/2334569 . JSTOR   2334569 .
  188. ^ Лим, Милтон (31 марта 2021 г.). «Гаусс, метод наименьших квадратов и недостающая планета» . Актуарии Цифровые . Проверено 14 октября 2023 г.
  189. ^ Плакетт, Р.Л. (1949). «Историческая справка о методе наименьших квадратов». Биометрика . 36 (3/4): 458–460. дои : 10.2307/2332682 . JSTOR   2332682 . ПМИД   15409359 .
  190. ^ Авхадиев, ФГ (2005). «Простое доказательство неравенства Гаусса-Винклера». Американский математический ежемесячник . 112 (5): 459–462. дои : 10.2307/30037497 . JSTOR   30037497 .
  191. ^ Шаффрин, Буркхард; Сноу, Кайл (2010). «Полная регуляризация тихоновского типа методом наименьших квадратов и древний ипподром в Коринфе» . Линейная алгебра и ее приложения . 432 (8). Эльзевир Б.В.: 2061–2076. дои : 10.1016/j.laa.2009.09.014 . ISSN   0024-3795 .
  192. ^ Шейнин, О. Б. (1979). «К. Ф. Гаусс и теория ошибок». Архив истории точных наук . 20 (1): 21–72. дои : 10.1007/BF00776066 . JSTOR   41133536 .
  193. ^ Галле 1924 , стр. 16–18.
  194. ^ Галле 1924 , с. 22.
  195. ^ Галле 1924 , с. 28.
  196. ^ Галле 1924 , с. 32.
  197. Перейти обратно: Перейти обратно: а б Галле 1924 , с. 61.
  198. ^ Галле 1924 , с. 60.
  199. ^ Галле 1924 , с. 75–80.
  200. ^ Галле 1924 , с. 67–68.
  201. ^ Шааф 1964 , с. 81.
  202. ^ Галле 1924 , с. 69.
  203. ^ Даннингтон 2004 , с. 121.
  204. ^ Галле 1924 , стр. 37–38, 49–50.
  205. ^ Галле 1924 , с. 49-50.
  206. ^ Даннингтон 2004 , с. 164.
  207. ^ Галле 1924 , с. 129.
  208. ^ Шрайбер, Оскар (1866). Теория проекционного метода государственного обследования Ганновера (на немецком языке). Ганновер: Книжный магазин Ханше.
  209. ^ Гаусс, CF (1828). Определение разницы широт между обсерваториями Геттингена и Альтоны по наблюдениям в зенитном секторе Рамсдена (на немецком языке). Ванденхук и Рупрехт. п. 73.
  210. ^ Листинг, Дж. Б. (1872 г.). О наших современных знаниях о форме и размерах Земли (на немецком языке). Геттинген: Дитрих. п. 9.
  211. Перейти обратно: Перейти обратно: а б Штекель 1917 , с. 110-119.
  212. ^ Штекель 1917 , с. 105-106.
  213. ^ Больца 1921 , с. 70-74.
  214. Перейти обратно: Перейти обратно: а б с Бюлер 1981 , с. 100–102.
  215. Перейти обратно: Перейти обратно: а б с Кляйн 1979 , стр. 57–60.
  216. ^ Шааф 1964 , с. 128–140.
  217. ^ Вингер, Р.М. (1925). «Гаусс и неевклидова геометрия» . Бюллетень Американского математического общества . 31 (7): 356–358. дои : 10.1090/S0002-9904-1925-04054-9 . ISSN   0002-9904 .
  218. ^ Енковский, Ласло; Лейк, Мэтью Дж.; Соловьев Владимир (12 марта 2023 г.). «Янош Бойяи, Карл Фридрих Гаусс, Николай Лобачевский и новая геометрия: Предисловие» . Симметрия . 15 (3): 707. arXiv : 2303.17011 . Бибкод : 2023Symm...15..707J . дои : 10.3390/sym15030707 . ISSN   2073-8994 .
  219. Письмо Гаусса Бояи от 6 марта 1832 г.
  220. ^ Кляйн 1979 , с. 59.
  221. ^ Кранц, Стивен Г. (2010). Эпизодическая история математики: математическая культура через решение проблем . Математическая ассоциация Америки . стр. 171f. ISBN  978-0-88385-766-3 . Проверено 9 февраля 2013 г.
  222. ^ Монастырский, Михаил (1987). Риман, Топология и физика . Биркхойзер. стр. 21–22. ISBN  978-0-8176-3262-5 .
  223. ^ Риман, Бернхард. О гипотезах, лежащих в основе геометрии (PDF) . Перевод Уильяма Кингдона Клиффорда.
  224. ^ Бюлер 1981 , с. 154.
  225. ^ Шлезингер 1933 , стр. 209–210.
  226. ^ Островский 1920 , стр. 1-18.
  227. Перейти обратно: Перейти обратно: а б Эппле, Мориц (1998). «Орбиты астероидов, коса и инвариант первого звена» . Математический интеллект . 20 (1): 45–52. дои : 10.1007/BF03024400 . S2CID   124104367 .
  228. ^ Эппле, Мориц (1999). «Геометрические аспекты развития теории узлов» (PDF) . В Джеймсе, И.М. (ред.). История топологии . Амстердам: Elseviwer. стр. 301–357.
  229. ^ Лисица, Алексей; Потапов Игорь; Салех, Рафик (2009). «Автоматы на словах Гаусса» (PDF) . В Дедиу, Адриан Хориа; Ионеску, Арманд Михай; Мартин-Виде, Карлос (ред.). Теория и приложения языка и автоматов . Конспекты лекций по информатике. Том. 5457. Берлин, Гейдельберг: Springer. стр. 505–517. дои : 10.1007/978-3-642-00982-2_43 . ISBN  978-3-642-00982-2 .
  230. ^ Штекель 1917 , с. 50-51.
  231. ^ Штекель 1917 , с. 51-55.
  232. ^ Штекель 1917 , стр. 70–74.
  233. Хеземанн также взял у Гаусса посмертную маску.
  234. ^ Иствуд, Майкл ; Пенроуз, Роджер (2000). «Рисование комплексными числами». Математический интеллект . 22 (4): 8–13. arXiv : math/0001097 . дои : 10.1007/BF03026760 . S2CID   119136586 .
  235. ^ Шлезингер 1933 , с. 198.
  236. ^ Пуйоль, Хосе (2012). «Гамильтон, Родригес, Гаусс, кватернионы и вращения: историческая переоценка» . Коммуникации в математическом анализе . 13 (2): 1–14.
  237. ^ Мутации пространства в собрании сочинений , том 8, стр. 357–362.
  238. ^ Карл Фридрих Гаусс: Дополнения.II. В: Карно, Лазар (1810). Geometrie der Stellung (на немецком языке). Перевод Х.К. Шумахера. Альтона: Хаммерих. стр. 363–364. (Текст Шумахера, алгоритм Гаусса), переиздано в Собрании сочинений, том 4, стр. 396-398
  239. ^ Карл Фридрих Гаусс: Дополнения.II. В: Карно, Лазар (1810). Geometrie der Stellung (на немецком языке). Перевод Х.К. Шумахера. Альтона: Хаммерих. стр. 371–372. (Текст Шумахера, алгоритм Гаусса), переиздано в Собрании сочинений, том 4, стр. 399–400.
  240. ^ Реттген-Буртшайдт, Йоханнес (2007). «Проблема аполлонического прикосновения» (PDF) . Университет Вупперталя (на немецком языке). стр. 119–121 . Проверено 22 апреля 2024 г.
  241. ^ Определение наибольшего эллипса, касающегося четырех плоскостей данного четырехугольника , напечатано в Собрании сочинений , том 4, стр. 385-392; оригинал в Monthly Correspondence for the Advance of Earth and Celestial Knowledge , том 22, 1810 г., стр. 112–121.
  242. ^ Штекель 1917 , с. 71-72.
  243. ^ Напечатано в собрания сочинений , стр. 406–407. томе 4
  244. ^ Штекель 1917 , с. 76.
  245. ^ Коксетер, HSM (1971). «Узоры фризов» (PDF) . Журнал арифметики . 18 : 297–310. дои : 10.4064/aa-18-1-297-310 .
  246. ^ Pentagramma mirificum , напечатано в Томе III собрания сочинений , стр. 481–490.
  247. ^ Шехтман, Вадим (2013). «Pentagramma mirificum и эллиптические функции (Напье, Гаусс, Понселе, Якоби, ...)» . Анналы факультета естественных наук Тулузы Математика . 22 (2): 353–375. дои : 10.5802/afst.1375 .
  248. ^ Даннингтон 2004 , с. 153.
  249. ^ Райх, Карин (2011). «Александр фон Гумбольдт и Карл Фридрих Гаусс как пионеры новой дисциплины земного магнетизма» . Гумбольдт в сети (на немецком языке). 12 (22): 33–55.
  250. ^ Даннингтон 2004 , с. 136.
  251. ^ Даннингтон 2004 , с. 161.
  252. Перейти обратно: Перейти обратно: а б с Райх, Карин (2023). «Магнитная ассоциация Гумбольдта в историческом контексте» . Гумбольдт в сети (на немецком языке). 24 (46): 53–74.
  253. ^ Бирманн, Курт Р. (2005). «Из истории просьбы Александра фон Гумбольдта в 1836 году к президенту Королевского общества об учреждении геомагнитных станций (документы о взаимоотношениях Ава Гумбольдта и К. Ф. Гаусса)» . Гумбольдт в сети (на немецком языке). 6 (11).
  254. ^ Гумбольдт, Александр фон (1836). «Письмо барона фон Гумбольдта Его Королевскому Высочеству герцогу Сассекскому... о развитии знаний о земном магнетизме путем создания магнитных станций и соответствующих наблюдений» . Философский журнал (9): 42–53.
  255. Перейти обратно: Перейти обратно: а б с д Рупке, Николаас (2005). «Карл Фридрих Гаусс и земной магнетизм». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 188–201. ISBN  3-930457-72-5 .
  256. ^ Шааф 1964 , с. 115–127.
  257. Перейти обратно: Перейти обратно: а б Кляйн 1979 , стр. 21–23.
  258. Перейти обратно: Перейти обратно: а б Русанова, Елена (2011). «Россия всегда была землей обетованной для магнетизма: Александр фон Гумбольдт, Карл Фридрих Гаусс и исследование земного магнетизма в России» . Гумбольдт в сети (на немецком языке). 12 (22): 56–83.
  259. ^ Шефер 1929 , с. 87.
  260. Перейти обратно: Перейти обратно: а б Шефер 1929 , с. 6.
  261. ^ Шефер 1929 , с. 108.
  262. Перейти обратно: Перейти обратно: а б Тимм, Арнульф (2005). «Электрический телеграф Гаусса и Вебера». В Миттлер, Эльмар (ред.). «Когда ударит молния, тайна раскрыта» – Карл Фридрих Гаус в Геттингене (PDF) . Сочинения Геттингенской библиотеки 30 (на немецком языке). Государственная и университетская библиотека Нижней Саксонии. стр. 169–183. ISBN  3-930457-72-5 .
  263. ^ Мартин-Родригес, Фернандо; Баррио Гарсиа, Гонсало; Альварес Лирес, Мария (2010). «Технологическая археология: Техническое описание телеграфа Гаусса-Вебера» . 2010 Вторая 8-я региональная конференция IEEE по истории коммуникаций . стр. 1–4. дои : 10.1109/HISTELCON.2010.5735309 . HDL : 11093/1859 . ISBN  978-1-4244-7450-9 . S2CID   2359293 .
  264. ^ Национальная лаборатория сильных магнитных полей . «Телеграф Гаусса-Вебера – 1833 – Магнитная Академия» . Nationalmaglab.org . Проверено 12 апреля 2024 г.
  265. ^ Напечатано в Собрании сочинений , том 5, стр. 609-610.
  266. ^ Рош, Джон Дж. (1990). «Критическое исследование векторного потенциала». В Роше, Джон (ред.). Физики оглядываются назад: исследования по истории физики . Бристоль, Нью-Йорк: Адам Хилгер. стр. 147–149. ISBN  0-85274-001-8 .
  267. ^ Шефер 1929 , стр. 148–152.
  268. ^ Гепперт 1933 , с. 32.
  269. ^ Гепперт 1933 , с. 32-36.
  270. ^ Гепперт 1933 , с. 36-40.
  271. ^ Шефер 1929 , с. 153–154.
  272. ^ Шефер 1929 , с. 159–165.
  273. ^ Даннингтон 2004 , с. 170.
  274. ^ Хехт, Юджин (1987). Оптика . Эддисон Уэсли. п. 134. ИСБН  978-0-201-11609-0 .
  275. ^ Басс, Майкл; ДеКусатис, Казимер; Енох, Джей; Лакшминараянан, Васудеван (2009). Справочник по оптике . МакГроу Хилл Профессионал. п. 17.7. ISBN  978-0-07-149889-0 .
  276. ^ Остдик, Верн Дж.; Борд, Дональд Дж. (2007). Запрос по физике . Cengage Обучение. п. 381. ИСБН  978-0-495-11943-2 .
  277. ^ Шефер 1929 , с. 189–208.
  278. ^ Гепперт 1933 , с. 3-11.
  279. ^ Гепперт 1933 , с. 12-16.
  280. ^ Зиберт, Манфред (1998). «Маятник Фуко К.Ф. Гаусса». Объявления Gauß-Gesellschaft Göttingen (на немецком языке). 35 (35): 49–52. Бибкод : 1998ГГМит..35...49С .
  281. ^ Гепперт 1933 , с. 16-26.
  282. ^ Гепперт 1933 , с. 59-60.
  283. ^ Даннингтон 2004 , с. 69–70.
  284. ^ Вуссинг 1982 , с. 43.
  285. ^ Сарториус фон Вальтерсхаузен 1856 , с. 11-13.
  286. ^ Хейс, Брайан (2006). «День расплаты Гаусса» . Американский учёный . 94 (3): 200. дои : 10.1511/2006.59.200 . Архивировано из оригинала 12 января 2012 года . Проверено 30 октября 2012 г.
  287. ^ Ротман, Джозеф Дж. (2006). Первый курс абстрактной алгебры: с приложениями (3-е изд.). Аппер-Сэддл-Ривер, Нью-Джерси: Пирсон Прентис Холл. стр. 7–8. ISBN  0-13-186267-7 . OCLC   61309485 .
  288. ^ Сарториус фон Вальтерсхаузен 1856 , с. 93-94.
  289. ^ «Карл Фридрих Гаусс» . Нижнесаксонская академия наук в Геттингене . Проверено 8 апреля 2023 г.
  290. ^ «Члены прошлого» . Академия наук – Институт Франции . Проверено 7 апреля 2023 г.
  291. ^ «Товарищи» . Королевское общество . Проверено 7 апреля 2023 г.
  292. ^ «Карл Фридрих Гаусс» . Берлин-Бранденбургская академия наук . Проверено 7 апреля 2023 г.
  293. ^ «Хронологический список иностранных членов» . Национальная академия наук . Проверено 7 апреля 2023 г.
  294. ^ «Бывшие товарищи» . Королевское общество Эдинбурга. п. 345 . Проверено 7 апреля 2023 г.
  295. ^ «Умершие члены: профессор доктор Карл Фридрих Гаусс» . Баварская академия наук . Проверено 7 апреля 2023 г.
  296. ^ «Карл Фредерик Гаусс» . Королевское астрономическое общество. 30 апреля 1777 года . Проверено 7 апреля 2023 г.
  297. ^ «Книга участников, 1780–2010: Глава G» . Американская академия искусств и наук. 9 февраля 2023 г. Проверено 7 апреля 2023 г.
  298. ^ Королевская академия Бельгии: члены Академии
  299. ^ «К. Ф. Гаусс (1797–1855)» . Королевская Нидерландская академия искусств и наук . Проверено 19 июля 2015 г.
  300. ^ «Иностранцы» . Королевская академия наук . Проверено 7 апреля 2023 г.
  301. ^ «История участников APS» . search.amphilsoc.org . Проверено 16 апреля 2021 г.
  302. Перейти обратно: Перейти обратно: а б Даннингтон 2004 , с. 351–355.
  303. Перейти обратно: Перейти обратно: а б с д и ж Даннингтон 2004 , с. 359.
  304. ^ Майдрон, Мэн (1887). «Астрономическая премия, основанная Лаландом» . Научное обозрение . XIV . Париж: 460.
  305. ^ «Медаль Копли: Прошлые победители» . Королевское общество . Проверено 3 июня 2024 г.
  306. ^ «Гаусс, Шарль Фредерик» . Национальный архив . Проверено 7 апреля 2023 г.
  307. ^ «Карл Фридрих Гаусс» . Орден «За заслуги перед наукой и искусством» . Проверено 7 апреля 2023 г.
  308. ^ Изображение Королевской медали .
  309. ^ «Gauss-Gesellschaft eV (Общество Гаусса) Геттинген» . Проверено 4 апреля 2024 г.
  310. ^ Ролфинг, Хельмут (2003). «Наследие гения. Поместье Карла Фридриха Гаусса в Государственной и университетской библиотеке Нижней Саксонии в Геттингене». Объявления Gauß-Gesellschaft Göttingen (на немецком языке). 35 (40): 7–23. Бибкод : 1998ГГМит..35...49С .
  311. ^ «Семейный архив Гаусс» . Подпись: G IX 021. Городской архив Брауншвейга . Проверено 25 марта 2023 г.

Источники [ править ]

Дальнейшее чтение [ править ]

вымышленный [ править ]

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 0769a8a96e8a0035688a01eb3581fbe7__1718735520
URL1:https://arc.ask3.ru/arc/aa/07/e7/0769a8a96e8a0035688a01eb3581fbe7.html
Заголовок, (Title) документа по адресу, URL1:
Carl Friedrich Gauss - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)