Jump to content

Майкл Атья

(Перенаправлено от Майкла Ф. Атьи )

Майкл Атья
Майкл Атья в 2007 году
Рожденный
Майкл Фрэнсис Атья

( 1929-04-22 ) 22 апреля 1929 г.
Хэмпстед , Лондон, Англия
Умер 11 января 2019 г. (11 января 2019 г.) (89 лет)
Эдинбург, Шотландия
Образование
Известный Алгеброид Атьи
Гипотеза Атьи
Гипотеза Атьи о конфигурациях
Атья провалился
Формула Атьи – Ботта
Теорема Атьи–Ботта о неподвижной точке
Гипотеза Атьи – Флоера
Спектральная последовательность Атьи – Хирцебруха
Гипотеза Атьи – Джонса
Теорема Атьи – Хитчина – Зингера
Теорема Атьи – Зингера об индексе
Теорема Атьи – Сигала о пополнении
Строительство АДХМ
Фредгольмский модуль
Эта-инвариант
К-теория
КР-теория
Группа контактов
Торическое многообразие
Награды
Научная карьера
Поля Математика
Учреждения
Диссертация Некоторые приложения топологических методов в алгебраической геометрии   (1955)
Докторантура ВВД Ходж [1] [2]
Докторанты
Другие известные студенты Эдвард Виттен

Сэр Майкл Фрэнсис Атья OM FRS FRSE FMedSci FAA HonFREng [4] ( / ə ˈ t ə / ; 22 апреля 1929 — 11 января 2019) — британско-ливанский математик, специализирующийся на геометрии . [5] Его вклад включает в себя теорему об индексе Атьи-Зингера и соавторство в создании топологической K-теории . Он был награжден медалью Филдса в 1966 году и премией Абеля в 2004 году.

Ранняя жизнь и образование

[ редактировать ]
Большой суд , Тринити-колледжа в Кембридже где Атья был студентом, а затем магистром.

Атья родился 22 апреля 1929 года в Хэмпстеде , Лондон , Англия, в семье Джин (урожденной Левенс) и Эдварда Атьи . [6] Его мать была шотландкой, а отец — ливанским православным христианином . У него было два брата, Патрик (умерший) и Джо, и сестра Сельма (умершая). [7] Атья ходил в начальную школу епархиальной школы в Хартуме , Судан (1934–1941), и в среднюю школу в колледже Виктории в Каире и Александрии (1941–1945); школу также посещала европейская знать, перемещенная во время Второй мировой войны , и некоторые будущие лидеры арабских стран. [8] Он вернулся в Англию и Манчестерскую гимназию для учебы в HSC (1945–1947) и прошел национальную службу в Королевских инженерах-электриках и механиках (1947–1949). Его обучение в бакалавриате и аспирантуре проходило в Тринити-колледже в Кембридже (1949–1955). [9] Он был докторантом Уильяма В.Д. Ходжа. [2] и получил докторскую степень в 1955 году за диссертацию под названием « Некоторые применения топологических методов в алгебраической геометрии» . [1] [2]

Атья был членом Британской гуманистической ассоциации . [10]

Во время своего пребывания в Кембридже он был президентом «Архимедов» . [11]

Карьера и исследования

[ редактировать ]
Институт перспективных исследований в Принстоне, где Атья был профессором с 1969 по 1972 год.

Атья провел 1955–1956 учебный год в Институте перспективных исследований в Принстоне , затем вернулся в Кембриджский университет , где был научным сотрудником и доцентом ( 1957–1958), затем университетским преподавателем и научным сотрудником в Пембрук-колледже, Кембридж. (1958–1961). В 1961 году он переехал в Оксфордский университет , где был читателем и научным сотрудником колледжа Святой Екатерины (1961–1963). [9] Он стал профессором геометрии Савилиана и научным сотрудником Нового колледжа в Оксфорде с 1963 по 1969 год. Он проработал три года профессором в Институте перспективных исследований в Принстоне, после чего вернулся в Оксфорд в качестве профессора-исследователя Королевского общества и профессор Колледжа Святой Екатерины. Он был президентом Лондонского математического общества с 1974 по 1976 год. [9]

Я начал с того, что менял местную валюту на иностранную везде, где путешествовал в детстве, и в итоге зарабатывал деньги. Именно тогда мой отец понял, что когда-нибудь я стану математиком.

Майкл Атья [12]

Атья был президентом Пагуошской конференции по науке и мировым делам с 1997 по 2002 год. [13] Он также внес вклад в создание Межакадемической группы по международным проблемам , Ассоциации европейских академий (ALLEA) и Европейского математического общества (EMS). [14]

В Соединенном Королевстве он участвовал в создании Института математических наук Исаака Ньютона в Кембридже и был его первым директором (1990–1996). Он был президентом Королевского общества (1990–1995), магистром Тринити-колледжа в Кембридже (1990–1997). [13] Канцлер ( Лестерского университета 1995–2005 гг.), [13] и президент Эдинбургского королевского общества (2005–2008 гг.). [15] С 1997 года и до своей смерти в 2019 году он был почётным профессором Эдинбургского университета . Он был попечителем Фонда Джеймса Клерка Максвелла . [16]

Среди математических сотрудников Атьи были Рауль Ботт , Фридрих Хирцебрух. [17] и Исадор Сингер , а среди его учеников были Грэм Сигал , Найджел Хитчин , Саймон Дональдсон и Эдвард Виттен . [18] Вместе с Хирцебрухом он заложил основы топологической К-теории — важного инструмента алгебраической топологии , который, неформально говоря, описывает способы скручивания пространств. Его самый известный результат, теорема об индексе Атьи-Зингера , была доказана Сингером в 1963 году и используется при подсчете количества независимых решений дифференциальных уравнений . Некоторые из его последних работ были вдохновлены теоретической физикой , в частности, инстантонами и монополями , которые ответственны за некоторые поправки в квантовой теории поля . Он был награжден медалью Филдса в 1966 году и премией Абеля в 2004 году.

Сотрудничество

[ редактировать ]
Старый Математический институт (ныне Статистический факультет) в Оксфорде , где Атья руководил многими своими студентами.

Атья сотрудничал со многими математиками. Его три основных сотрудничества были с Раулем Боттом по теореме Атьи-Ботта о неподвижной точке и многим другим темам, с Айседором М. Сингером по теореме об индексе Атьи-Зингера и с Фридрихом Хирцебрухом по топологической K-теории. [19] всех из них он встретил в Институте перспективных исследований в Принстоне в 1955 году. [20] Включены и другие его сотрудники; Дж. Франк Адамс ( инвариантная проблема Хопфа ), Юрген Берндт (проективные плоскости), Роджер Белявски (задача Берри – Роббинса), Ховард Доннелли ( L-функции ), Владимир Г. Дринфельд (инстантоны), Йохан Л. Дюпон (особенности вектора) поля ), Ларс Гординг ( гиперболические дифференциальные уравнения ), Найджел Дж. Хитчин (монополи), Уильям В.Д. Ходж (Интегралы второго рода), Майкл Хопкинс ( К-теория ), Лиза Джеффри (топологические лагранжианы), Джон Д.С. Джонс (Янг –теория Миллса), Хуан Малдасена (М-теория), Юрий И. Манин (инстантоны), Ник С. Мэнтон (Скирмионы), Виджей К. Патоди (спектральная асимметрия), А.Н. Прессли (выпуклость), Элмер Рис (векторные расслоения) , Вильфрид Шмид (представления дискретной серии), Грэм Сигал ( эквивариантная К-теория ), Александр Шапиро [21] (алгебры Клиффорда), Л. Смит (гомотопические группы сфер), Пол Сатклифф (многогранники), Дэвид О. Талл (лямбда-кольца), Джон А. Тодд ( многообразия Стифеля ), Камрун Вафа (М-теория), Ричард С. Уорд (инстантоны) и Эдвард Виттен (М-теория, топологические квантовые теории поля). [22]

Его более поздние исследования теорий калибровочного поля , особенно теории Янга-Миллса , стимулировали важные взаимодействия между геометрией и физикой , особенно в работах Эдварда Виттена. [23]

Если вы напрямую решаете математическую задачу, очень часто вы заходите в тупик, кажется, что ничего из того, что вы делаете, не работает, и вы чувствуете, что, если бы вы только могли заглянуть за угол, там могло бы быть простое решение. Нет ничего лучше, чем иметь рядом с собой кого-то еще, потому что он обычно может заглянуть из-за угла.

Майкл Атья [24]

Среди учеников Атьи были Питер Браам 1987, Саймон Дональдсон 1983, К. Дэвид Элворти 1967,Говард Феган 1977,Эрик Грюнвальд 1977, Найджел Хитчин 1972,Лиза Джеффри 1991, Фрэнсис Кирван 1984, Питер Кронхаймер 1986, Рут Лоуренс 1989, Джордж Люстиг 1971, Джек Морава 1968,Майкл Мюррей 1983,Питер Ньюстед 1966, Ян Р. Портеус 1961, Джон Роу 1985,Брайан Сандерсон 1963, Рольф Шварценбергер 1960,Грэм Сигал 1967,Дэвид Талл 1966 г.,и Грэм Уайт 1982. [2]

Среди других современных математиков, оказавших влияние на Атью, — Роджер Пенроуз , Ларс Хёрмандер , Ален Конн и Жан-Мишель Бисмут . [25] Атья сказал, что математиком, которым он больше всего восхищался, был Герман Вейль . [26] и что его любимыми математиками до 20-го века были Бернхард Риман и Уильям Роуэн Гамильтон . [27]

Семь томов собрания статей Атьи включают большую часть его работ, за исключением учебника по коммутативной алгебре; [28] первые пять томов разделены тематически, а шестой и седьмой — по датам.

Алгебраическая геометрия (1952–1958).

[ редактировать ]
Искривленная кубическая кривая — тема первой статьи Атьи.

Ранние статьи Атьи по алгебраической геометрии (и некоторые общие статьи) переизданы в первом томе его собрания сочинений. [29]

Будучи студентом, Атья интересовался классической проективной геометрией и написал свою первую статью: короткую заметку о скрученных кубиках . [30] Он начал исследования под руководством WVD Ходжа и получил премию Смита в 1954 году за на основе теории снопов подход к линейчатым поверхностям . [31] что побудило Атью продолжать заниматься математикой, а не переключаться на другие свои интересы - архитектуру и археологию. [32] Его докторская диссертация вместе с Ходжем была посвящена теоретико-пучковому подходу к Соломона Лефшеца , в результате чего он получил приглашение посетить Институт перспективных исследований в Принстоне на год. теории интегралов второго рода на алгебраических многообразиях [33] В то время как в Принстоне он классифицировал векторные расслоения на эллиптической кривой (расширяя классификацию векторных расслоений Александра Гротендика на кривой рода 0), показав, что любое векторное расслоение представляет собой сумму (по существу уникальных) неразложимых векторных расслоений, [34] а затем показать, что пространство неразложимых векторных расслоений заданной степени и положительной размерности можно отождествить с эллиптической кривой. [35] Он также изучал двойные точки на поверхностях. [36] давая первый пример флопа , специального бирационального преобразования 3-х кратностей , которое позже широко использовалось в Сигэфуми Мори работе над минимальными моделями для 3-х кратностей. [37] Флоп Атьи также можно использовать, чтобы показать, что универсальное отмеченное семейство поверхностей K3 не является Хаусдорфовым . [38]

К-теория (1959–1974)

[ редактировать ]
Лента Мёбиуса — простейший нетривиальный пример векторного расслоения .

Работы Атьи по К-теории , включая его книгу по К-теории. [39] переизданы во втором томе его собрания сочинений. [40]

Простейшим нетривиальным примером векторного расслоения является лента Мёбиуса (на фото справа): полоска бумаги с завитком, которая представляет собой векторное расслоение ранга 1 над кругом (круг, о котором идет речь, является центральной линией листа Мёбиуса). группа). K-теория — это инструмент для работы с многомерными аналогами этого примера или, другими словами, для описания многомерных скручиваний: элементы K-группы пространства представлены векторными расслоениями над ним, поэтому лента Мёбиуса представляет собой элемент K-группы окружности. [41]

Топологическая К-теория была открыта Атьей и Фридрихом Хирцебрухом. [42] которые были вдохновлены доказательством Гротендика теоремы Гротендика-Римана-Роха и работой Ботта над теоремой периодичности . В этой статье обсуждалась только нулевая K-группа; вскоре после этого они распространили его на K-группы всех степеней, [43] дающий первый (нетривиальный) пример обобщенной теории когомологий .

Некоторые результаты показали, что недавно представленная К-теория была в некотором смысле более мощной, чем обычная теория когомологий. Атья и Тодд [44] использовал K-теорию для улучшения нижних оценок, полученных с помощью обычных когомологий Бореля и Серра для числа Джеймса , описывающих, когда отображение комплексного многообразия Штифеля в сферу имеет поперечное сечение. ( Адамс и Грант-Уокер позже показали, что граница, найденная Атьей и Тоддом, была наилучшей из возможных.) Атья и Хирцебрух [45] использовал К-теорию, чтобы объяснить некоторые связи между операциями Стинрода и классами Тодда , которые Хирцебрух заметил несколько лет назад. Первоначальное решение одной задачи инварианта Хопфа Дж. Ф. Адамсом операций было очень длинным и сложным с использованием операций вторичных когомологий. Атья показал, как первичные операции в К-теории можно использовать для получения короткого решения, занимающего всего несколько строк, и в совместной работе с Адамсом [46] также доказал аналоги результата для нечетных простых чисел.

Майкл Атья и Фридрих Хирцебрух (справа), создатели К-теории.

Спектральная последовательность Атьи – Хирцебруха связывает обычные когомологии пространства с его обобщенной теорией когомологий. [43] (Атья и Хирцебрух использовали случай К-теории, но их метод работает для всех теорий когомологий).

Атия показала [47] что для конечной группы G теория K ее классифицирующего пространства BG изоморфна пополнению ее кольца характеров :

В том же году [48] они доказали результат для G любой компактной связной группы Ли . Хотя вскоре этот результат можно было распространить на все компактные группы Ли, включив в него результаты диссертации Грэма Сигала : [49] это расширение было сложным. Однако более простое и общее доказательство было получено путем введения эквивариантной K-теории , т.е. классов эквивалентности G векторных расслоений над компактным G -пространством X. - [50] что при подходящих условиях пополнение эквивариантной K-теории X изоморфно Было показано , обычной K-теории пространства: , расслоенный над BG со слоем X :

Затем первоначальный результат стал следствием того, что X был принят за точку: левая часть сводилась к пополнению R(G) , а правая - к K(BG) . см. в теореме Атьи – Сигала о пополнении Более подробную информацию .

Он определил новые теории обобщенной гомологии и когомологии, называемые бордизмом и кобордизмом , и указал, что многие глубокие результаты о кобордизме многообразий, полученные Рене Томом , Ч.Т.С. Уоллом и другими, могут быть естественно переинтерпретированы как утверждения об этих теориях когомологии. [51] Некоторые из этих теорий когомологии, в частности комплексный кобордизм, оказались одними из самых мощных известных теорий когомологии.

«Алгебра — это предложение, сделанное дьяволом математику. Дьявол говорит: «Я дам тебе эту мощную машину, она ответит на любой твой вопрос. Все, что тебе нужно сделать, это отдать мне свою душу: откажись от геометрии, и ты будет иметь эту чудесную машину».

Майкл Атья [52]

Он представил [53] J J-группа ( X ) конечного комплекса X , определенная как группа стабильных слоев гомотопической эквивалентности расслоений сфер ; Позже это было подробно изучено Дж. Ф. Адамсом в серии статей, что привело к гипотезе Адамса .

Вместе с Хирцебрухом он распространил теорему Гротендика–Римана–Роха на комплексные аналитические вложения: [53] и в соответствующей статье [54] они показали, что гипотеза Ходжа для целых когомологий неверна. Гипотеза Ходжа о рациональных когомологиях по состоянию на 2008 год является серьезной нерешенной проблемой. [55]

Теорема о периодичности Ботта была центральной темой в работе Атьи по K-теории, и он неоднократно возвращался к ней, несколько раз перерабатывая доказательство, чтобы лучше его понять. Вместе с Боттом он разработал элементарное доказательство: [56] и дал другую версию этого в своей книге. [57] Вместе с Боттом и Шапиро он проанализировал связь периодичности Ботта с периодичностью алгебр Клиффорда ; [58] хотя в этой статье не было доказательства теоремы о периодичности, аналогичное доказательство вскоре было найдено Р. Вудом. Он нашел доказательство нескольких обобщений с использованием эллиптических операторов ; [59] в этом новом доказательстве использовалась идея, которую он использовал, чтобы дать особенно короткое и простое доказательство оригинальной теоремы о периодичности Ботта. [60]

Теория индексов (1963–1984)

[ редактировать ]
Исадор Сингер (в 1977 г.), который работал с Атьей над теорией индексов.

Работа Атьи по теории индексов переиздана в третьем и четвертом томах его собрания сочинений. [61] [62]

Индекс дифференциального оператора тесно связан с числом независимых решений (точнее, это разности чисел независимых решений дифференциального оператора и его сопряженного). В математике существует множество сложных и фундаментальных проблем, которые легко свести к проблеме нахождения числа независимых решений некоторого дифференциального оператора, поэтому, если у кого-то есть средства нахождения индекса дифференциального оператора, эти проблемы часто можно решить. Именно это и делает теорема Атьи-Зингера об индексе: она дает формулу для индекса некоторых дифференциальных операторов в терминах топологических инвариантов, которые выглядят довольно сложными, но на практике их обычно легко вычислить. [ нужна ссылка ]

Несколько глубоких теорем, таких как теорема Хирцебруха-Римана-Роха , являются частными случаями теоремы об индексе Атьи-Зингера. На самом деле теорема об индексе дала более мощный результат, поскольку ее доказательство применимо ко всем компактным комплексным многообразиям, в то время как доказательство Хирцебруха работало только для проективных многообразий. Появилось также много новых приложений: типичным является вычисление размерностей пространств модулей инстантонов. Теорему об индексе можно также применить «обратно»: индекс, очевидно, является целым числом, поэтому формула для него также должна давать целое число, что иногда дает тонкие условия целости инвариантов многообразий. Типичным примером этого является теорема Рохлина , вытекающая из теоремы об индексе. [ нужна ссылка ]

Самый полезный совет, который я бы дал студенту-математику, — это всегда подозревать впечатляюще звучащую теорему, если у нее нет частного случая, одновременно простого и нетривиального .

Майкл Атья [63]

Проблема индекса для эллиптических дифференциальных операторов была поставлена ​​в 1959 Гельфандом . [64] Он заметил гомотопическую инвариантность индекса и попросил дать для него формулу с помощью топологических инвариантов . Некоторые из мотивирующих примеров включали теорему Римана-Роха и ее обобщение, теорему Хирцебруха-Римана-Роха и сигнатурную теорему Хирцебруха . Хирцебрух и Борель доказали целостность рода Â спинового многообразия, и Атья предположил, что эту целостность можно было бы объяснить, если бы это был индекс оператора Дирака (который был переоткрыт Атьей и Сингером в 1961 году).

Первым объявлением теоремы Атьи-Зингера стала их статья 1963 года. [65] Доказательство, изложенное в этом объявлении, было вдохновлено доказательством Хирцебруха теоремы Хирцебруха-Римана-Роха и никогда не было опубликовано ими, хотя оно описано в книге Пале. [66] Их первое опубликованное доказательство [67] было больше похоже на доказательство Гротендика теоремы Гротендика-Римана-Роха , заменяя теорию кобордизмов первого доказательства K-теорией , и они использовали этот подход для доказательства различных обобщений в серии статей с 1968 по 1971 год.

Вместо одного эллиптического оператора можно рассмотреть семейство эллиптических операторов, параметризованное некоторым пространством Y . В этом случае индекс является элементом K-теории Y , а не целым числом. [68] Если операторы в семействе действительны, то индекс принадлежит вещественной K-теории Y . Это дает немного дополнительной информации, поскольку отображение реальной K-теории Y в комплексную K-теорию не всегда инъективно. [69]

Бывший ученик Атьи Грэм Сигал (в 1982 г.), который работал с Атьей над эквивариантной K-теорией.

Вместе с Боттом Атья нашел аналог формулы Лефшеца о неподвижной точке для эллиптических операторов, определяя число Лефшеца эндоморфизма эллиптического комплекса в терминах суммы по неподвижным точкам эндоморфизма. [70] В качестве особых случаев их формула включала формулу характеров Вейля и несколько новых результатов об эллиптических кривых со сложным умножением, некоторым из которых эксперты поначалу не поверили. [71] Атья и Сигал объединили эту теорему о неподвижной точке с теоремой об индексе следующим образом.Если существует компактное групповое действие группы G на компактном многообразии X , коммутирующее с эллиптическим оператором, то можно заменить обычную К-теорию в теореме об индексе эквивариантной К-теорией .Для тривиальных групп G это дает теорему об индексе, а для конечной группы G, действующей с изолированными неподвижными точками, это дает теорему Атьи–Ботта о неподвижной точке. В общем случае он дает индекс как сумму по подмногообразиям с неподвижными точками группы G . [72]

Атья [73] решил проблему, заданную независимо Хёрмандером и Гельфандом, о том, определяют ли комплексные степени аналитических функций распределения . Атья использовал . разрешение сингулярностей Хиронаки, чтобы ответить на этот вопрос утвердительно Гениальное и элементарное решение было найдено примерно в то же время Дж. Бернштейном и обсуждалось Атьей. [74]

В качестве применения теоремы об эквивариантном индексе Атья и Хирцебрух показали, что многообразия с эффективными действиями окружности имеют исчезающий Â-род . [75] (Лихнерович показал, что если многообразие имеет метрику положительной скалярной кривизны, то Â-род исчезает.)

Вместе с Элмером Рисом Атья изучал проблему связи между топологическими и голоморфными векторными расслоениями в проективном пространстве. Они решили простейший неизвестный случай, показав, что все векторные расслоения ранга 2 над проективным 3-мерным пространством имеют голоморфную структуру. [76] Хоррокс ранее нашел несколько нетривиальных примеров таких векторных расслоений, которые позже были использованы Атьей в его исследовании инстантонов на 4-сфере.

Рауль Ботт , который работал с Атьей над формулами с фиксированной запятой и рядом других тем.

Атья, Ботт и Виджай К. Патоди [77] дал новое доказательство теоремы об индексе с использованием уравнения теплопроводности .

Если многообразию разрешено иметь границу, то необходимо наложить некоторые ограничения на область определения эллиптического оператора, чтобы обеспечить конечный индекс. Эти условия могут быть локальными (например, требование, чтобы сечения области исчезали на границе) или более сложными глобальными условиями (например, требование, чтобы сечения области решали какое-то дифференциальное уравнение). Локальный случай был разработан Атьей и Боттом, но они показали, что многие интересные операторы (например, сигнатурный оператор ) не допускают локальных граничных условий. Чтобы справиться с этими операторами, Атья, Патоди и Сингер ввели глобальные граничные условия, эквивалентные присоединению цилиндра к многообразию вдоль границы и затем ограничению области теми сечениями, которые интегрируются с квадратом вдоль цилиндра, а также ввели уравнение Атьи – Патоди – Сингера. эта-инвариант . Результатом этого стала серия статей по спектральной асимметрии. [78] которые впоследствии неожиданно были использованы в теоретической физике , в частности в работах Виттена об аномалиях.

Лакуны, обсуждаемые Петровским, Атьей, Боттом и Гордингом, подобны промежуткам между ударными волнами сверхзвукового объекта.

Фундаментальные решения линейных гиперболических уравнений в частных производных часто имеют лакуны Петровского : области, где они тождественно равны нулю. Их изучал в 1945 году И. Г. Петровский , который нашел топологические условия, описывающие, какие области являются лакунами.В сотрудничестве с Боттом и Ларсом Гордингом Атья написал три статьи, обновляющие и обобщающие работу Петровского. [79]

Атья [80] показал, как распространить теорему об индексе на некоторые некомпактные многообразия, на которых действует дискретная группа с компактным фактором. Ядро эллиптического оператора в этом случае, вообще говоря, бесконечномерно, но можно получить конечный индекс, используя размерность модуля над алгеброй фон Неймана ; этот индекс обычно имеет вещественное, а не целочисленное значение. Эта версия называется L. 2 теорема об индексе и использовалась Атьей и Шмидом. [81] дать геометрическую конструкцию, используя интегрируемые с квадратом гармонические спиноры, представлений дискретной серии Хариш-Чандры полупростых групп Ли . В ходе этой работы они нашли более элементарное доказательство фундаментальной теоремы Хариш-Чандры о локальной интегрируемости характеров групп Ли. [82]

Вместе с Х. Доннелли и И. Сингером он распространил формулу Хирцебруха (связывающую дефект сигнатуры в точках возврата гильбертовых модулярных поверхностей со значениями L-функций) с вещественных квадратичных полей на все вполне вещественные поля. [83]

Калибровочная теория (1977–1985)

[ редактировать ]
Слева два соседних монополя одной полярности отталкиваются, а справа два соседних монополя противоположной полярности образуют диполь . Это абелевы монополи; неабелевы, изученные Атьей, более сложны.

Многие из его статей по калибровочной теории и смежным темам переизданы в пятом томе его собрания сочинений. [84] Общей темой этих статей является исследование пространств модулей решений некоторых нелинейных уравнений в частных производных , в частности уравнений для инстантонов и монополей. Часто это предполагает поиск тонкого соответствия между решениями двух, казалось бы, совершенно разных уравнений. Ранним примером этого, который Атья неоднократно использовал, является преобразование Пенроуза , которое иногда может преобразовывать решения нелинейного уравнения над некоторым реальным многообразием в решения некоторых линейных голоморфных уравнений над другим комплексным многообразием.

В серии статей с несколькими авторами Атья классифицировал все инстантоны в 4-мерном евклидовом пространстве. Классифицировать инстантоны удобнее на сфере, поскольку она компактна, и это по существу эквивалентно классификации инстантонов в евклидовом пространстве, поскольку это конформно эквивалентно сфере, а уравнения для инстантонов конформно инвариантны. С Хитчином и Сингером [85] он вычислил размерность пространства модулей неприводимых самодуальных связностей (инстантонов) для любого главного расслоения над компактным 4-мерным римановым многообразием ( теорема Атьи–Хитчина–Зингера ). Например, размерность пространства инстантонов SU 2 ранга k >0 равна 8k 3. Для этого они использовали теорему об индексе Атьи – Зингера, чтобы вычислить размерность касательного пространства к пространству модулей в точке; касательное пространство - это, по сути, пространство решений эллиптического дифференциального оператора, заданное линеаризацией нелинейных уравнений Янга – Миллса. Эти пространства модулей позже были использованы Дональдсоном для построения его инвариантов 4-многообразий .Атья и Уорд использовали соответствие Пенроуза, чтобы свести классификацию всех инстантонов на 4-сфере к задаче алгебраической геометрии. [86] Вместе с Хитчиным он использовал идеи Хоррокса для решения этой проблемы, дав конструкцию ADHM для всех инстантонов на сфере; Манин и Дринфельд одновременно нашли одну и ту же конструкцию, что привело к совместной статье всех четырех авторов. [87] Атья переформулировал эту конструкцию, используя кватернионы , и написал неторопливое описание этой классификации инстантонов в евклидовом пространстве в виде книги. [88]

Математические проблемы, которые были решены, или методы, возникшие в физике в прошлом, были источником жизненной силы математики.

Майкл Атья [89]

Работа Атьи над пространствами инстантонных модулей была использована в работе Дональдсона по теории Дональдсона . Дональдсон показал, что пространство модулей инстантонов (степени 1) над компактным односвязным 4-многообразием с положительно определенной формой пересечения может быть компактифицировано, чтобы дать кобордизм между многообразием и суммой копий комплексного проективного пространства. Из этого он пришел к выводу, что форма пересечения должна быть суммой одномерных форм, что привело к нескольким впечатляющим применениям к гладким 4-многообразиям, таким как существование неэквивалентных гладких структур в 4-мерном евклидовом пространстве. Дональдсон продолжал использовать другие пространства модулей, изученные Атьей, для определения инвариантов Дональдсона , что произвело революцию в изучении гладких 4-многообразий и показало, что они были более тонкими, чем гладкие многообразия в любом другом измерении, а также сильно отличались от топологических 4-многообразий. коллекторы. Атья описал некоторые из этих результатов в обзорном докладе. [90]

Функции Грина для линейных уравнений в частных производных часто можно найти с помощью преобразования Фурье, чтобы преобразовать это в алгебраическую задачу. Атья использовал нелинейную версию этой идеи. [91] Он использовал преобразование Пенроуза, чтобы преобразовать функцию Грина для конформно-инвариантного лапласиана в комплексный аналитический объект, который оказался по сути диагональным вложением твисторного пространства Пенроуза в его квадрат. Это позволило ему найти явную формулу для конформно-инвариантной функции Грина на 4-многообразии.

В своей статье с Джонсом [92] он изучал топологию пространства модулей инстантонов SU(2) над 4-сферой. Они показали, что естественное отображение этого пространства модулей в пространство всех связностей индуцирует эпиморфизмы групп гомологий в определенном диапазоне измерений, и предположили, что оно может индуцировать изоморфизмы групп гомологий в том же диапазоне измерений. Это стало известно как гипотеза Атьи-Джонса и позже была доказана несколькими математиками. [93]

Хардер и М. С. Нарасимхан описали когомологии пространств модулей стабильных векторных расслоений над римановыми поверхностями , подсчитав количество точек пространств модулей над конечными полями, а затем используя гипотезы Вейля для восстановления когомологий над комплексными числами. [94] Атья и Р. Ботт использовали теорию Морса и уравнения Янга – Миллса над римановой поверхностью, чтобы воспроизвести и расширить результаты Хардера и Нарасимхана. [95]

Старый результат Шура и Хорна гласит, что множество возможных диагональных векторов эрмитовой матрицы с заданными собственными значениями представляет собой выпуклую оболочку всех перестановок собственных значений. Атья доказал обобщение этого утверждения, применимое ко всем компактным симплектическим многообразиям, на которые действует тор, показав, что образ многообразия при отображении моментов представляет собой выпуклый многогранник. [96] и вместе с Прессли дал соответствующее обобщение на бесконечномерные группы петель. [97]

Дуйстермаат и Хекман нашли поразительную формулу, утверждающую, что выдвижение меры Лиувилля для отображения моментов действия тора определяется в точности приближением стационарной фазы (которое в общем случае является просто асимптотическим разложением, а не точным). Атья и Ботт [98] показал, что это можно вывести из более общей формулы в эквивариантных когомологиях , что было следствием известных теорем локализации . Атья показал [99] что отображение моментов было тесно связано с геометрической теорией инвариантов , и эта идея впоследствии была значительно развита его учеником Ф. Кирваном . Вскоре после этого Виттен применил формулу Дуйстермаата-Хекмана к пространствам петель и показал, что это формально дает теорему Атьи-Зингера об индексе для оператора Дирака; эту идею прочитал Атья. [100]

Вместе с Хитчиным он работал над магнитными монополями и изучал их рассеяние, используя идеи Ника Мэнтона . [101] Его книга [102] вместе с Хитчиным дает подробное описание своих работ по магнитным монополям . Основная тема книги — исследование пространства модулей магнитных монополей ; это имеет естественную риманову метрику, и ключевым моментом является то, что эта метрика является полной и гиперкэлеровой . Затем метрика используется для изучения рассеяния двух монополей с использованием предположения Н. Мантона о том, что геодезический поток в пространстве модулей является низкоэнергетическим приближением рассеяния. Например, они показывают, что лобовое столкновение двух монополей приводит к рассеянию на 90 градусов, причем направление рассеяния зависит от относительных фаз двух монополей. Он также изучал монополи в гиперболическом пространстве. [103]

Атия показала [104] что инстантоны в 4-х измерениях можно идентифицировать с инстантонами в 2-х измерениях, с которыми гораздо проще обращаться. Здесь, конечно, есть одна загвоздка: при переходе от 4-го к 2-му измерениям структурная группа калибровочной теории меняется с конечномерной группы на бесконечномерную группу петель. Это дает еще один пример, когда пространства модулей решений двух, казалось бы, несвязанных нелинейных уравнений в частных производных оказываются по существу одинаковыми.

Атья и Сингер обнаружили, что аномалии в квантовой теории поля можно интерпретировать с точки зрения теории индекса оператора Дирака; [105] эта идея позже стала широко использоваться физиками.

Более поздняя работа (1986–2019)

[ редактировать ]
Эдвард Виттен , на чьи работы по инвариантам многообразий и топологическим квантовым теориям поля повлиял Атья.

Многие статьи шестого тома [106] из собраний его сочинений — обзоры, некрологи и общие беседы. Впоследствии Атья продолжал публиковать, в том числе несколько обзоров, популярную книгу [107] и еще одна статья с Сигалом по скрученной K-теории .

Одна бумага [108] представляет собой детальное исследование эта-функции Дедекинда с точки зрения топологии и теоремы об индексе.

Некоторые из его статей, написанных примерно в это время, исследуют связи между квантовой теорией поля , узлами и теорией Дональдсона . Он представил концепцию топологической квантовой теории поля , вдохновленную работой Виттена и определением Сигала конформной теории поля. [109] Его книга «Геометрия и физика узлов». [110] описывает новые инварианты узлов, обнаруженные Воаном Джонсом и Эдвардом Виттеном в терминах топологических квантовых теорий поля, а также его статью с Л. Джеффри. [111] объясняет лагранжиан Виттена, дающий инварианты Дональдсона .

Он изучал скирмионы с Ником Мэнтоном, [112] найти связь с магнитными монополями и инстантонами и дать гипотезу о структуре пространства модулей двух скирмионов как некоторого подфактора комплексного проективного 3-пространства .

Несколько статей [113] были вдохновлены вопросом Джонатана Роббинса (называемым проблемой Берри-Роббинса ), который спросил, существует ли отображение конфигурационного пространства n точек в 3-мерном пространстве в многообразие флагов унитарной группы. Атья дал утвердительный ответ на этот вопрос, но посчитал, что его решение слишком вычислительно, и изучил гипотезу, которая могла бы дать более естественное решение. Он также связал этот вопрос с уравнением Нама и представил гипотезу Атьи о конфигурациях .

Но для большинства практических целей вы просто используете классические группы. Исключительные группы Ли созданы только для того, чтобы показать вам, что теория немного шире; они появляются довольно редко.

Майкл Атья [114]

С Хуаном Малдасеной и Кумруном Вафой , [115] и Э. Виттен [116] он описал динамику М-теории на многообразиях с G2 голономией . Похоже, что в этих статьях Атья впервые работал над исключительными группами Ли.

В своих статьях с М. Хопкинсом [117] и Г. Сигал [118] он вернулся к своему прежнему интересу к К-теории, описав некоторые извращенные формы К-теории с приложениями в теоретической физике .

В октябре 2016 года он заявил [119] краткое доказательство отсутствия сложных структур на 6-сфере. Его доказательство, как и многие его предшественники, считается математическим сообществом ошибочным даже после того, как доказательство было переписано в исправленной форме. [120] [121]

На Гейдельбергском форуме лауреатов 2018 года он заявил, что решил гипотезу Римана , восьмую проблему Гильберта , методом от противного, используя константу тонкой структуры . И снова доказательство не подтвердилось, и эта гипотеза остается одной из шести нерешенных задач по математике, удостоенных премии тысячелетия . по состоянию на 2024 год [122] [123]

Библиография

[ редактировать ]

В этом подразделе перечислены все книги, написанные Атьей; в нем отсутствуют несколько книг, которые он редактировал.

  • Атья, Майкл Ф.; Макдональд, Ян Г. (1969), Введение в коммутативную алгебру , Addison-Wesley Publishing Co., Ридинг, Массачусетс-Лондон-Дон Миллс, Онтарио, MR   0242802 . Классический учебник по стандартной коммутативной алгебре.
  • Атья, Майкл Ф. (1970), Векторные поля на многообразиях , Рабочая группа по исследованию штата Северный Рейн-Вестфалия, выпуск 200, Кельн: Westdeutscher Verlag, MR   0263102 . Перепечатано как ( Атья 1988b , пункт 50).
  • Атья, Майкл Ф. (1974), Эллиптические операторы и компактные группы , Конспекты лекций по математике, Vol. 401, Берлин, Нью-Йорк: Springer-Verlag , MR   0482866 . Перепечатано как ( Atiyah 1988c , пункт 78).
  • Атья, Майкл Ф. (1979), Геометрия полей Янга – Миллса , Scuola Normale Superiore Pisa, Пиза, MR   0554924 . Перепечатано как ( Atiyah 1988e , пункт 99).
  • Атья, Майкл Ф.; Хитчин, Найджел (1988), Геометрия и динамика магнитных монополей , Лекции М.Б. Портера, Princeton University Press , doi : 10.1515/9781400859306 , ISBN  978-0-691-08480-0 , МР   0934202 . Перепечатано как ( Атия 2004 , пункт 126).
  • Атья, Майкл Ф. (1988a), Собрание сочинений. Том. 1 Ранние статьи: общие статьи , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853275-0 , МР   0951892 .
  • Атья, Майкл Ф. (1988b), Собрание сочинений. Том. 2 K-теория , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853276-7 , МР   0951892 .
  • Атья, Майкл Ф. (1988c), Собрание сочинений. Том. 3 Теория индекса: 1 , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853277-4 , МР   0951892 .
  • Атья, Майкл Ф. (1988d), Собрание сочинений. Том. 4 Теория индекса: 2 , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853278-1 , МР   0951892 .
  • Атья, Майкл Ф. (1988e), Собрание сочинений. Том. 5 калибровочных теорий , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853279-8 , МР   0951892 .
  • Атья, Майкл Ф. (1989), K-теория , Advanced Book Classics (2-е изд.), Аддисон-Уэсли , ISBN  978-0-201-09394-0 , МР   1043170 . Первое издание (1967 г.) переиздано как ( Atiyah 1988b , пункт 45).
  • Атья, Майкл Ф. (1990), Геометрия и физика узлов , Lezioni Lincee. [Лекции Линсеи], Cambridge University Press , doi : 10.1017/CBO9780511623868 , ISBN  978-0-521-39521-2 , МР   1078014 . Перепечатано как ( Атия 2004 , пункт 136).
  • Атья, Майкл Ф. (2004), Собрание сочинений. Том. 6 , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN  978-0-19-853099-2 , МР   2160826 .
  • Атья, Майкл Ф. (2007), Мы все математики (итал.: Мы все математики) , Рим: Di Renzo Editore, стр. 96, ISBN  978-88-8323-157-5 , архивировано из оригинала 14 января 2019 года , получено 23 июля 2008 года.
  • Атья, Майкл (2014), Собрание сочинений. Том. 7. 2002–2013 , Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN.  978-0-19-968926-2 , МР   3223085 .
  • Атья, Майкл Ф.; Ягольницер, Даниэль; Чонг, Читат (2015), Лекции медалистов Филдса (3-е издание) , World Scientific, doi : 10.1142/9652 , ISBN  978-981-4696-18-0 .

Избранные статьи

[ редактировать ]

Награды и почести

[ редактировать ]
Помещение Королевского общества , президентом которого Атья был с 1990 по 1995 год.

В 1966 году, когда ему было тридцать семь лет, он был награжден Медалью Филдса . [124] за работу по разработке K-теории, обобщенной теоремы Лефшеца о неподвижной точке и теоремы Атьи-Зингера, за которую он также получил Абелевскую премию совместно с Исадором Сингером в 2004 году. [125] Среди других наград, которые он получил, - Королевская медаль Королевского общества 1968 года. [126] медаль Де Моргана Лондонского математического общества в 1980 году, премия Антонио Фельтринелли Национальной академии Линчеи в 1981 году, Международная премия короля Фейсала в области науки в 1987 году, [127] Медаль Копли Королевского общества в 1988 году, [128] Медаль Бенджамина Франклина за выдающиеся достижения в науке Американского философского общества в 1993 году, [129] Медаль столетия со дня рождения Джавахарлала НеруИндийской национальной академии наук в 1993 году, [130] Института Медаль Президента физики в 2008 году, [131] Большая медаль Французской академии наук в 2010 г. [132] и кавалер ордена Почетного легиона Франции в 2011 году. [133]

Он был избран иностранным членом Национальной академии наук , Американской академии искусств и наук (1969). [134] Академия наук , Академия Леопольдина , Шведская королевская академия , Королевская ирландская академия , Эдинбургское королевское общество , Американское философское общество , Индийская национальная академия наук , Китайская академия наук , Австралийская академия наук , Российская академия наук. Академия наук , Украинская академия наук , Грузинская академия наук , Венесуэльская академия наук , Норвежская академия наук и литературы , Королевская испанская академия наук , Академия деи Линчеи и Московское математическое общество . [9] [13] В 2012 году он стал членом Американского математического общества . [135] Он также был назначен почетным членом [4] Королевской инженерной академии [4] в 1993 году.

Атья был удостоен почетных степеней университетов Бирмингема, Бонна, Чикаго, Кембриджа, Дублина, Дарема, Эдинбурга, Эссекса, Гента, Хельсинки, Ливана, Лестера, Лондона, Мексики, Монреаля, Оксфорда, Ридинга, Саламанки, Сент-Эндрюса, Сассекса. , Уэльс, Уорик, Американский университет в Бейруте, Университет Брауна, Карлов университет в Праге, Гарвардский университет, Университет Хериот-Ватт, Гонконг (Китайский университет), Университет Кил, Королевский университет (Канада), Открытый университет, Университет Ватерлоо , Университет Уилфрида Лорье, Технический университет Каталонии и UMIST. [9] [13] [136] [137]

Атья стал рыцарем-холостяком в 1983 году. [9] В 1992 году стал кавалером ордена « За заслуги» . [13]

Здание Майкла Атьи [138] в Университете Лестера и кафедра математических наук Майкла Атьи [139] в Американском университете Бейрута были названы в его честь.

Личная жизнь

[ редактировать ]

Атья женился на Лили Браун 30 июля 1955 года, от которой у него было трое сыновей: Джон, Дэвид и Робин. Старший сын Атьи Джон умер 24 июня 2002 года во время прогулки по Пиренеям со своей женой Мадж-Лис.

Лили Атья умерла 13 марта 2018 года в возрасте 90 лет. [5] [7] [9] а сэр Майкл Атья умер менее чем через год, 11 января 2019 года, в возрасте 89 лет. [140] [141]

См. также

[ редактировать ]
  1. ^ Jump up to: а б Атья, Майкл Фрэнсис (1955). Некоторые приложения топологических методов в алгебраической геометрии . репозиторий.cam.ac.uk (кандидатская диссертация). Кембриджский университет. Архивировано из оригинала 18 ноября 2017 года . Проверено 17 ноября 2017 г.
  2. ^ Jump up to: а б с д и Майкл Атья в проекте «Математическая генеалогия»
  3. ^ Хитчин, Найджел Дж. (1972). Дифференцируемые многообразия: пространство гармонических спиноров . bodleian.ox.ac.uk (докторская диссертация). Оксфордский университет. OCLC   500473357 . EThOS   uk.bl.ethos.459281 . [ постоянная мертвая ссылка ]
  4. ^ Jump up to: а б с «Список коллег» . Архивировано из оригинала 8 июня 2016 года . Проверено 28 октября 2014 г.
  5. ^ Jump up to: а б О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. , «Майкл Атья» , Архив истории математики MacTutor , Университет Сент-Эндрюс
  6. ^ «АТИЯ, сэр Майкл (Фрэнсис)» . Кто есть кто . Том. 2014 г. (интернет-издание под ред. Oxford University Press ). А&С Черный. (Требуется подписка или членство в публичной библиотеке Великобритании .)
  7. ^ Jump up to: а б Атья, Джо (2007), Семья Атья , получено 14 августа 2008 г.
  8. ^ Раафат, Самир, Колледж Виктории: обучение элиты, 1902–1956 гг ., архивировано из оригинала 16 апреля 2008 г. , получено 14 августа 2008 г.
  9. ^ Jump up to: а б с д и ж г Атья 1988a , с. xi
  10. ^ «Выдающийся математик и сторонник гуманизма».
  11. ^ «[Президенты Архимеды]» . Архимеды: предыдущие комитеты и должностные лица . Проверено 10 апреля 2019 г.
  12. ^ Батра, Амба (8 ноября 2003 г.), гуру математики с мечтой Эйнштейна, предпочитает мел мыши. (Интервью с Атьей). , Лента новостей Дели, заархивировано из оригинала 8 февраля 2009 г. , получено 14 августа 2008 г.
  13. ^ Jump up to: а б с д и ж Атья 2004 , с. ix
  14. ^ «Атья и Сингер получают премию Абеля 2004 г.» (PDF) , Уведомления Американского математического общества , 51 (6): 650–651, 2006 г., заархивировано (PDF) из оригинала 10 сентября 2008 г. , получено 14 августа 2008 г.
  15. ^ Объявление Королевского общества Эдинбурга , заархивировано из оригинала 20 ноября 2008 г. , получено 14 августа 2008 г.
  16. ^ «Годовой отчет и сводные отчеты Фонда Джеймса Клерка Максвелла» (PDF) . 2019.
  17. ^ Атья, Майкл (2014). «Фридрих Эрнст Петер Хирцебрух 17 октября 1927 г. - 27 мая 2012 г.» . Биографические мемуары членов Королевского общества . 60 : 229–247. дои : 10.1098/rsbm.2014.0010 .
  18. ^ «Эдвард Виттен - Приключения в физике и математике (лекция Киотской премии 2014 г.)» (PDF) . Архивировано из оригинала (PDF) 23 августа 2016 года . Проверено 30 октября 2016 г.
  19. ^ Атья 2004 , с. 9
  20. ^ Атья 1988a , с. 2
  21. ^ Александр Шапиро в проекте «Математическая генеалогия»
  22. ^ Атья 2004 , стр. xi – xxv
  23. ^ «Эдвард Виттен – Приключения по физике и математике» (PDF) . Архивировано (PDF) из оригинала 23 августа 2016 года . Проверено 30 октября 2016 г.
  24. ^ Атья 1988a , статья 12, стр. 233
  25. ^ Атья 2004 , с. 10
  26. ^ Атья 1988a , с. 307
  27. ^ Интервью с Майклом Атьей , superstringtheory.com, архивировано с оригинала 14 сентября 2008 г. , получено 14 августа 2008 г.
  28. ^ Атья и Макдональд 1969
  29. ^ Атья 1988a
  30. ^ Атья 1988a , статья 1
  31. ^ Атья 1988a , статья 2
  32. ^ Атья 1988a , с. 1
  33. ^ Атья 1988a , статьи 3, 4.
  34. ^ Атья 1988a , статья 5
  35. ^ Атья 1988a , статья 7
  36. ^ Атья 1988a , статья 8
  37. ^ Мацуки 2002 .
  38. ^ Барт и др. 2004 г.
  39. ^ Атья 1989
  40. ^ Атья 1988b
  41. ^ Атья, Майкл (2000). «К-теория прошлого и настоящего». arXiv : math/0012213 .
  42. ^ Атья 1988b , статья 24
  43. ^ Jump up to: а б Атия, 1988b , статья 28.
  44. ^ Атья 1988b , статья 26.
  45. ^ Атья 1988a , статьи 30,31.
  46. ^ Атья 1988b , статья 42.
  47. ^ Атия 1961
  48. ^ Атья и Хирцебрух, 1961 г.
  49. ^ Сигал 1968
  50. ^ Атья и Сигал, 1969 г.
  51. ^ Атья 1988b , статья 34.
  52. ^ Атия 2004 , статья 160, стр. 7
  53. ^ Jump up to: а б Атия, 1988b , статья 37.
  54. ^ Атья 1988b , статья 36.
  55. ^ Делинь, Пьер, Гипотеза Ходжа (PDF) , Институт математики Клэя, заархивировано из оригинала (PDF) 27 августа 2008 г. , получено 14 августа 2008 г.
  56. ^ Атья 1988b , статья 40
  57. ^ Атья 1988b , статья 45.
  58. ^ Атья 1988b , статья 39
  59. ^ Атья 1988b , статья 46.
  60. ^ Атья 1988b , статья 48
  61. ^ Атья 1988c
  62. ^ Атья 1988d
  63. ^ Атия 1988a , статья 17, стр. 76
  64. ^ Гельфанд 1960.
  65. ^ Атья и Сингер 1963
  66. ^ Дворец 1965 г.
  67. ^ Атья и Сингер 1968a
  68. ^ Атья 1988c , статья 67
  69. ^ Атья 1988c , статья 68
  70. ^ Атья 1988c , статьи 61, 62, 63.
  71. ^ Атья 1988c , с. 3
  72. ^ Атья 1988c , статья 65
  73. ^ Атья 1988c , статья 73
  74. ^ Атья 1988a , статья 15
  75. ^ Атья 1988c , статья 74
  76. ^ Атья 1988c , статья 76
  77. ^ Атья, Ботт и Патоди, 1973 г.
  78. ^ Атья 1988d , статьи 80–83.
  79. ^ Атья 1988d , статьи 84, 85, 86.
  80. ^ Атия 1976
  81. ^ Атья и Шмид 1977
  82. ^ Атья 1988d , статья 91
  83. ^ Атья 1988d , статьи 92, 93.
  84. ^ Атья 1988e .
  85. ^ Атья 1988e , статьи 94, 97.
  86. ^ Атья 1988e , статья 95
  87. ^ Атья 1988e , статья 96
  88. ^ Атья 1988e , статья 99
  89. ^ Атья 1988a , статья 19, стр. 13
  90. ^ Атья 1988e , статья 112
  91. ^ Атья 1988e , статья 101
  92. ^ Атья 1988e , статья 102
  93. ^ Бойер и др. 1993 год
  94. ^ Хардер и Нарасимхан, 1975 г.
  95. ^ Атья 1988e , статьи 104–105.
  96. ^ Атья 1988e , статья 106
  97. ^ Атья 1988e , статья 108
  98. ^ Атья 1988e , статья 109
  99. ^ Атья 1988e , статья 110
  100. ^ Атья 1988e , статья 124
  101. ^ Атья 1988e , статьи 115, 116.
  102. ^ Атья и Хитчин, 1988 г.
  103. ^ Атья 1988e , статья 118
  104. ^ Атья 1988e , статья 117
  105. ^ Атья 1988e , статьи 119, 120, 121.
  106. ^ Майкл Атья 2004
  107. ^ Атья 2007 г.
  108. ^ Атья 2004 , статья 127.
  109. ^ Атья 2004 , статья 132.
  110. ^ Атия 1990
  111. ^ Атья 2004 , статья 139.
  112. ^ Атья 2004 , статьи 141, 142.
  113. ^ Атья 2004 , статьи 163, 164, 165, 166, 167, 168.
  114. ^ Атья 1988a , статья 19, стр. 19
  115. ^ Атья 2004 , статья 169.
  116. ^ Атья 2004 , статья 170
  117. ^ Атья 2004 , статья 172.
  118. ^ Атья 2004 , статья 173
  119. ^ Атья, Майкл (2016). «Несуществующий комплекс 6-сферы». arXiv : 1610.09366 [ math.DG ].
  120. ^ Каково нынешнее понимание сложных структур в 6-сфере? (MathOverflow) , получено 24 сентября 2018 г.
  121. ^ Статья Атьи о 6-сфере (MathOverflow), май 2018 г. , получено 24 сентября 2018 г.
  122. ^ «Скептицизм окружает попытку известного математика доказать гипотезу 160-летней давности» . Наука | АААС . 24 сентября 2018 г. Архивировано из оригинала 26 сентября 2018 г. . Проверено 26 сентября 2018 г.
  123. ^ «Гипотеза Римана, вероятно, остается нерешенной, несмотря на заявленные доказательства» . Архивировано из оригинала 24 сентября 2018 года . Проверено 24 сентября 2018 г.
  124. ^ Цитата о медали Филдса: Картан, Анри (1968), «L'oeuvre de Michael F. Atiyah», Труды Международной конференции математиков (Москва, 1966) , Издательство «Мир» , Москва, стр. 9–14.
  125. ^ «2004: сэр Майкл Фрэнсис Атья и Айседор М. Сингер» . www.abelprize.no . Проверено 22 августа 2022 г.
  126. ^ Победители Королевского архива 1989–1950 годов , заархивировано из оригинала 9 июня 2008 года , получено 14 августа 2008 года.
  127. ^ Сэр Майкл Атья, FRS , Институт Ньютона, архивировано из оригинала 31 мая 2008 г. , получено 14 августа 2008 г.
  128. ^ Победители архива Копли 1989–1900 годов , заархивировано из оригинала 9 июня 2008 года , получено 14 августа 2008 года.
  129. ^ «Медаль Бенджамина Франклина за выдающиеся достижения в науках» . Американское философское общество . Архивировано из оригинала 24 сентября 2012 года . Проверено 27 ноября 2011 г.
  130. ^ Медаль столетия со дня рождения Джавахарлала Неру , заархивировано из оригинала 10 июля 2012 года , получено 14 августа 2008 года.
  131. ^ Медаль президента 2008 г. , получена 14 августа 2008 г.
  132. ^ La Grande Medaille , архивировано из оригинала 1 августа 2010 года , получено 25 января 2011 года.
  133. ^ Почетный легион , заархивировано из оригинала 24 сентября 2011 года , получено 11 сентября 2011 года.
  134. ^ «Книга участников, 1780–2010: Глава A» (PDF) . Американская академия искусств и наук. Архивировано (PDF) из оригинала 10 мая 2011 года . Проверено 27 апреля 2011 г.
  135. Список членов Американского математического общества. Архивировано 5 августа 2013 года в Wayback Machine , получено 3 ноября 2012 года.
  136. ^ «Эдинбургский университет Хериот-Ватт: почетные выпускники» . www1.hw.ac.uk. Архивировано из оригинала 18 апреля 2016 года . Проверено 4 апреля 2016 г.
  137. ^ Почетные доктора Карлова университета в Праге , данные получены 4 мая 2018 г.
  138. ^ Здание Майкла Атьи , заархивировано из оригинала 9 февраля 2009 года , получено 14 августа 2008 года.
  139. ^ Американский университет в Бейруте открывает кафедру математических наук Майкла Атьи , архивировано из оригинала 3 апреля 2008 г. , получено 14 августа 2008 г.
  140. ^ «Майкл Атья 1929-2019» . Математический институт Оксфордского университета. 11 января 2019 года. Архивировано из оригинала 11 января 2019 года . Проверено 11 января 2019 г.
  141. ^ «Дань уважения бывшему президенту Королевского общества сэру Майклу Атье OM FRS (1929–2019)» . Королевское общество. 11 января 2019 года. Архивировано из оригинала 11 января 2019 года . Проверено 11 января 2019 г.

Источники

[ редактировать ]
[ редактировать ]
Профессиональные и академические ассоциации
Предшественник 57-й президент Королевского общества
1990–1995
Преемник
Предшественник 42-й президент Эдинбургского королевского общества
2005–2008
Преемник
Академические офисы
Предшественник 35-й магистр Тринити-колледжа, Кембридж
1990–1997
Преемник
Предшественник 4-й ректор университета Лестерского
1995–2005
Преемник
Награды и достижения
Предшественник Медаль Копли
1988
Преемник
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 2a2f9825bfa871b360e5d9e1b0860433__1722372840
URL1:https://arc.ask3.ru/arc/aa/2a/33/2a2f9825bfa871b360e5d9e1b0860433.html
Заголовок, (Title) документа по адресу, URL1:
Michael Atiyah - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)