Космическое пространство
Космическое пространство (или просто космос ) — это пространство, существующее за пределами земной атмосферы и между небесными телами . [1] Он содержит сверхнизкие уровни плотности частиц , образуя почти идеальный вакуум. [2] преимущественно водородной и гелиевой плазмы , пронизанной электромагнитным излучением , космическими лучами , нейтрино , магнитными полями и пылью . Базовая температура космического пространства, установленная фоновым излучением Большого взрыва , составляет 2,7 Кельвина (-270 ° C; -455 ° F). [3]
барионной ( Считается, что плазма между галактиками составляет около половины обычной) материи во Вселенной, имея числовую плотность менее одного атома водорода на кубический метр и кинетическую температуру в миллионы кельвинов . [4] Локальные концентрации материи конденсировались в звезды и галактики . Межгалактическое пространство занимает большую часть объёма Вселенной , но даже галактики и звёздные системы почти полностью состоят из пустого пространства. Большая часть оставшейся массы-энергии в наблюдаемой Вселенной состоит из неизвестной формы, получившей название темной материи и темной энергии . [5][6][7][8]
Outer space does not begin at a definite altitude above Earth's surface. The Kármán line, an altitude of 100 km (62 mi) above sea level,[9][10] is conventionally used as the start of outer space in space treaties and for aerospace records keeping. Certain portions of the upper stratosphere and the mesosphere are sometimes referred to as "near space". The framework for international space law was established by the Outer Space Treaty, which entered into force on 10 October 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit.
The concept that the space between the Earth and the Moon must be a vacuum was first proposed in the 17th century after scientists discovered that air pressure decreased with altitude. The immense scale of outer space was grasped in the 20th century when the distance to the Andromeda galaxy was first measured. Humans began the physical exploration of space later in the same century with the advent of high-altitude balloon flights. This was followed by crewed rocket flights and, then, crewed Earth orbit, first achieved by Yuri Gagarin of the Soviet Union in 1961. The economic cost of putting objects, including humans, into space is very high, limiting human spaceflight to low Earth orbit and the Moon. On the other hand, uncrewed spacecraft have reached all of the known planets in the Solar System. Outer space represents a challenging environment for human exploration because of the hazards of vacuum and radiation. Microgravity has a negative effect on human physiology that causes both muscle atrophy and bone loss.
Terminology
The use of the short version space, as meaning 'the region beyond Earth's sky', predates the use of full term "outer space", with the earliest recorded use of this meaning in an epic poem by John Milton called Paradise Lost, published in 1667.[11][12]
The term outward space existed in a poem from 1842 by the English poet Lady Emmeline Stuart-Wortley called "The Maiden of Moscow",[13] but in astronomy the term outer space found its application for the first time in 1845 by Alexander von Humboldt.[14] The term was eventually popularized through the writings of H. G. Wells after 1901.[15] Theodore von Kármán used the term of free space to name the space of altitudes above Earth where spacecrafts reach conditions sufficiently free from atmospheric drag, differentiating it from airspace, identifying a legal space above territories free from the sovereign jurisdiction of countries.[16]
"Spaceborne" denotes existing in outer space, especially if carried by a spacecraft;[17][18] similarly, "space-based" means based in outer space or on a planet or moon.[19]
Formation and state
The size of the whole universe is unknown, and it might be infinite in extent.[20] According to the Big Bang theory, the very early universe was an extremely hot and dense state about 13.8 billion years ago[21] which rapidly expanded. About 380,000 years later the universe had cooled sufficiently to allow protons and electrons to combine and form hydrogen—the so-called recombination epoch. When this happened, matter and energy became decoupled, allowing photons to travel freely through the continually expanding space.[22] Matter that remained following the initial expansion has since undergone gravitational collapse to create stars, galaxies and other astronomical objects, leaving behind a deep vacuum that forms what is now called outer space.[23] As light has a finite velocity, this theory constrains the size of the directly observable universe.[22]
The present day shape of the universe has been determined from measurements of the cosmic microwave background using satellites like the Wilkinson Microwave Anisotropy Probe. These observations indicate that the spatial geometry of the observable universe is "flat", meaning that photons on parallel paths at one point remain parallel as they travel through space to the limit of the observable universe, except for local gravity.[24] The flat universe, combined with the measured mass density of the universe and the accelerating expansion of the universe, indicates that space has a non-zero vacuum energy, which is called dark energy.[25]
Estimates put the average energy density of the present day universe at the equivalent of 5.9 protons per cubic meter, including dark energy, dark matter, and baryonic matter (ordinary matter composed of atoms). The atoms account for only 4.6% of the total energy density, or a density of one proton per four cubic meters.[26] The density of the universe is clearly not uniform; it ranges from relatively high density in galaxies—including very high density in structures within galaxies, such as planets, stars, and black holes—to conditions in vast voids that have much lower density, at least in terms of visible matter.[27] Unlike matter and dark matter, dark energy seems not to be concentrated in galaxies: although dark energy may account for a majority of the mass-energy in the universe, dark energy's influence is 5 orders of magnitude smaller than the influence of gravity from matter and dark matter within the Milky Way.[28]
Environment
Outer space is the closest known approximation to a perfect vacuum. It has effectively no friction, allowing stars, planets, and moons to move freely along their ideal orbits, following the initial formation stage. The deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter.[30] By comparison, the air humans breathe contains about 1025 molecules per cubic meter.[31][32] The low density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years.[33] In spite of this, extinction, which is the absorption and scattering of photons by dust and gas, is an important factor in galactic and intergalactic astronomy.[34]
Stars, planets, and moons retain their atmospheres by gravitational attraction. Atmospheres have no clearly delineated upper boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from outer space.[35] The Earth's atmospheric pressure drops to about 0.032 Pa at 100 kilometres (62 miles) of altitude,[36] compared to 100,000 Pa for the International Union of Pure and Applied Chemistry (IUPAC) definition of standard pressure. Above this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather.[37]
The temperature of outer space is measured in terms of the kinetic activity of the gas,[38] as it is on Earth. The radiation of outer space has a different temperature than the kinetic temperature of the gas, meaning that the gas and radiation are not in thermodynamic equilibrium.[39][40] All of the observable universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB). (There is quite likely a correspondingly large number of neutrinos called the cosmic neutrino background.[41]) The current black body temperature of the background radiation is about 2.7 K (−455 °F).[42] The gas temperatures in outer space can vary widely. For example, the temperature in the Boomerang Nebula is 1 K (−458 °F),[43] while the solar corona reaches temperatures over 1,200,000–2,600,000 K (2,200,000–4,700,000 °F).[44]
Magnetic fields have been detected in the space around just about every class of celestial object. Star formation in spiral galaxies can generate small-scale dynamos, creating turbulent magnetic field strengths of around 5–10 μG. The Davis–Greenstein effect causes elongated dust grains to align themselves with a galaxy's magnetic field, resulting in weak optical polarization. This has been used to show ordered magnetic fields that exist in several nearby galaxies. Magneto-hydrodynamic processes in active elliptical galaxies produce their characteristic jets and radio lobes. Non-thermal radio sources have been detected even among the most distant high-z sources, indicating the presence of magnetic fields.[45]
Outside a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic subatomic particles known as cosmic rays. These particles have energies ranging from about 106 eV up to an extreme 1020 eV of ultra-high-energy cosmic rays.[46] The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons.[47] Cosmic rays can damage electronic components and pose a health threat to space travelers.[48] According to astronauts, like Don Pettit, space has a burned/metallic odor that clings to their suits and equipment, similar to the scent of an arc welding torch.[49][50]
Human access
Effect on biology and human bodies
Despite the harsh environment, several life forms have been found that can withstand extreme space conditions for extended periods. Species of lichen carried on the ESA BIOPAN facility survived exposure for ten days in 2007.[51] Seeds of Arabidopsis thaliana and Nicotiana tabacum germinated after being exposed to space for 1.5 years.[52] A strain of Bacillus subtilis has survived 559 days when exposed to low Earth orbit or a simulated Martian environment.[53] The lithopanspermia hypothesis suggests that rocks ejected into outer space from life-harboring planets may successfully transport life forms to another habitable world. A conjecture is that just such a scenario occurred early in the history of the Solar System, with potentially microorganism-bearing rocks being exchanged between Venus, Earth, and Mars.[54]
Vacuum
The lack of pressure in space is the most immediate dangerous characteristic of space to humans. Pressure decreases above Earth, reaching a level at an altitude of around 19.14 km (11.89 mi) that matches the vapor pressure of water at the temperature of the human body. This pressure level is called the Armstrong line, named after American physician Harry G. Armstrong.[55] At or above the Armstrong line, fluids in the throat and lungs boil away. More specifically, exposed bodily liquids such as saliva, tears, and liquids in the lungs boil away. Hence, at this altitude, human survival requires a pressure suit, or a pressurized capsule.[56]
Out in space, sudden exposure of an unprotected human to very low pressure, such as during a rapid decompression, can cause pulmonary barotrauma—a rupture of the lungs, due to the large pressure differential between inside and outside the chest.[57] Even if the subject's airway is fully open, the flow of air through the windpipe may be too slow to prevent the rupture.[58] Rapid decompression can rupture eardrums and sinuses, bruising and blood seep can occur in soft tissues, and shock can cause an increase in oxygen consumption that leads to hypoxia.[59]
As a consequence of rapid decompression, oxygen dissolved in the blood empties into the lungs to try to equalize the partial pressure gradient. Once the deoxygenated blood arrives at the brain, humans lose consciousness after a few seconds and die of hypoxia within minutes.[60] Blood and other body fluids boil when the pressure drops below 6.3 kilopascals (1 psi), and this condition is called ebullism.[61] The steam may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture. Ebullism is slowed by the pressure containment of blood vessels, so some blood remains liquid.[62][63]
Swelling and ebullism can be reduced by containment in a pressure suit. The Crew Altitude Protection Suit (CAPS), a fitted elastic garment designed in the 1960s for astronauts, prevents ebullism at pressures as low as 2 kilopascals (0.3 psi).[64] Supplemental oxygen is needed at 8 km (5 mi) to provide enough oxygen for breathing and to prevent water loss, while above 20 km (12 mi) pressure suits are essential to prevent ebullism.[65] Most space suits use around 30–39 kilopascals (4–6 psi) of pure oxygen, about the same as the partial pressure of oxygen at the Earth's surface. This pressure is high enough to prevent ebullism, but evaporation of nitrogen dissolved in the blood could still cause decompression sickness and gas embolisms if not managed.[66]
Weightlessness and radiation
Humans evolved for life in Earth gravity, and exposure to weightlessness has been shown to have deleterious effects on human health. Initially, more than 50% of astronauts experience space motion sickness. This can cause nausea and vomiting, vertigo, headaches, lethargy, and overall malaise. The duration of space sickness varies, but it typically lasts for 1–3 days, after which the body adjusts to the new environment. Longer-term exposure to weightlessness results in muscle atrophy and deterioration of the skeleton, or spaceflight osteopenia. These effects can be minimized through a regimen of exercise.[67] Other effects include fluid redistribution, slowing of the cardiovascular system, decreased production of red blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms include loss of body mass, nasal congestion, sleep disturbance, and puffiness of the face.[68]
During long-duration space travel, radiation can pose an acute health hazard. Exposure to high-energy, ionizing cosmic rays can result in fatigue, nausea, vomiting, as well as damage to the immune system and changes to the white blood cell count. Over longer durations, symptoms include an increased risk of cancer, plus damage to the eyes, nervous system, lungs and the gastrointestinal tract.[69] On a round-trip Mars mission lasting three years, a large fraction of the cells in an astronaut's body would be traversed and potentially damaged by high energy nuclei.[70] The energy of such particles is significantly diminished by the shielding provided by the walls of a spacecraft and can be further diminished by water containers and other barriers. The impact of the cosmic rays upon the shielding produces additional radiation that can affect the crew. Further research is needed to assess the radiation hazards and determine suitable countermeasures.[71]
Boundary
The transition between Earth's atmosphere and outer space lacks a well-defined physical boundary, with the air pressure steadily decreasing with altitude until it mixes with the solar wind. Various definitions for a practical boundary have been proposed, ranging from 30 km (19 mi) out to 1,600,000 km (990,000 mi).[16]
High-altitude aircraft, such as high-altitude balloons have reached altitudes above Earth of up to 50 km.[72] Up until 2021, the United States designated people who travel above an altitude of 50 mi (80 km) as astronauts.[73] Astronaut wings are now only awarded to spacecraft crew members that "demonstrated activities during flight that were essential to public safety, or contributed to human space flight safety."[74]
In 2009, scientists used a Supra-Thermal Ion Imager to measure the direction and speed of ions in the atmosphere. They discovered that 118 km (73.3 mi) above Earth was the midpoint for charged particles transitioning from the gentle winds of the Earth's atmosphere to the more extreme flows of outer space, which can reach velocities well over 268 m/s (880 ft/s).[75][76]
Spacecraft have entered into a highly elliptical orbit with a perigee as low as 80 to 90 km (50 to 56 mi), surviving for multiple orbits.[77] At an altitude of 120 km (75 mi),[77] descending spacecraft such as NASA's Space Shuttle begin atmospheric entry (termed the Entry Interface), when atmospheric drag becomes noticeable, thus beginning the process of switching from steering with thrusters to maneuvering with aerodynamic control surfaces.[78]
The Kármán line, established by the Fédération Aéronautique Internationale, and used internationally by the United Nations,[16] is set at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This line is named after Theodore von Kármán, who argued for an altitude where a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself,[9][10] which he calculated to be at an altitude of about 83.8 km (52.1 mi),[72] distinguishing space below as the space of aerodynamics and airspace, and above as the space of astronautics and free space.[16]
There is no internationally recognized legal altitude limit on national airspace, although the Kármán line is the most frequently used for this purpose. Objections have been made to setting this limit too high, as it could inhibit space activities due to concerns about airspace violations.[77] It has been argued for setting no specified singular altitude in international law, instead applying different limits depending on the case, in particular based on the craft and its purpose. Spacecraft have flown over foreign countries as low as 30 km (19 mi), as in the example of the Space Shuttle.[72]
Legal status
The Outer Space Treaty provides the basic framework for international space law. It covers the legal use of outer space by nation states, and includes in its definition of outer space, the Moon, and other celestial bodies. The treaty states that outer space is free for all nation states to explore and is not subject to claims of national sovereignty, calling outer space the "province of all mankind". This status as a common heritage of mankind has been used, though not without opposition, to enforce the right to access and shared use of outer space for all nations equally, particularly non-spacefaring nations.[79] It prohibits the deployment of nuclear weapons in outer space. The treaty was passed by the United Nations General Assembly in 1963 and signed in 1967 by the Union of Soviet Socialist Republics (USSR), the United States of America (USA), and the United Kingdom (UK). As of 2017, 105 state parties have either ratified or acceded to the treaty. An additional 25 states signed the treaty, without ratifying it.[80][81]
Since 1958, outer space has been the subject of multiple United Nations resolutions. Of these, more than 50 have been concerning the international co-operation in the peaceful uses of outer space and preventing an arms race in space.[82] Four additional space law treaties have been negotiated and drafted by the UN's Committee on the Peaceful Uses of Outer Space. Still, there remains no legal prohibition against deploying conventional weapons in space, and anti-satellite weapons have been successfully tested by the USA, USSR, China,[83] and in 2019, India.[84] The 1979 Moon Treaty turned the jurisdiction of all heavenly bodies (including the orbits around such bodies) over to the international community. The treaty has not been ratified by any nation that currently practices human spaceflight.[85]
In 1976, eight equatorial states (Ecuador, Colombia, Brazil, The Republic of the Congo, Zaire, Uganda, Kenya, and Indonesia) met in Bogotá, Colombia: with their "Declaration of the First Meeting of Equatorial Countries", or the Bogotá Declaration, they claimed control of the segment of the geosynchronous orbital path corresponding to each country.[86] These claims are not internationally accepted.[87]
An increasing issue of international space law and regulation has been the dangers of the growing number of space debris.[88]
Earth orbit
A spacecraft enters orbit when its centripetal acceleration due to gravity is less than or equal to the centrifugal acceleration due to the horizontal component of its velocity. For a low Earth orbit, this velocity is about 7,800 m/s (28,100 km/h; 17,400 mph);[89] by contrast, the fastest piloted airplane speed ever achieved (excluding speeds achieved by deorbiting spacecraft) was 2,200 m/s (7,900 km/h; 4,900 mph) in 1967 by the North American X-15.[90]
To achieve an orbit, a spacecraft must travel faster than a sub-orbital spaceflight along an arcing trajectory. The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude.[91] The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,200 m/s (40,300 km/h; 25,100 mph).[92]
Orbiting spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere,[93] which decreases the orbital altitude. The rate of orbital decay depends on the satellite's cross-sectional area and mass, as well as variations in the air density of the upper atmosphere. At altitudes above 800 km (500 mi), orbital lifetime is measured in centuries.[94] Below about 300 km (190 mi), decay becomes more rapid with lifetimes measured in days. Once a satellite descends to 180 km (110 mi), it has only hours before it vaporizes in the atmosphere.[95]
Regions
Regions near the Earth
Space in proximity to the Earth is physically similar to the remainder of interplanetary space, but is home to a multitude of Earth–orbiting satellites and has been subject to extensive studies. For identification purposes, this volume is divided into overlapping regions of space.[96][97][98][99]
Near-Earth space is the region of space extending from low Earth orbits out to geostationary orbits.[96] This region includes the major orbits for artificial satellites and is the site of most of humanity's space activity. The region has seen high levels of space debris, sometimes dubbed space pollution, threatening any space activity in this region.[96] Some of this debris re-enters Earth's atmosphere periodically.[100] Although it meets the definition of outer space, the atmospheric density inside low-Earth orbital space, the first few hundred kilometers above the Kármán line, is still sufficient to produce significant drag on satellites.[95]
Geospace is a region of space that includes Earth's upper atmosphere and magnetosphere.[97] The Van Allen radiation belts lie within the geospace. The outer boundary of geospace is the magnetopause, which forms an interface between the Earth's magnetosphere and the solar wind. The inner boundary is the ionosphere.[102][103]
The variable space-weather conditions of geospace are affected by the behavior of the Sun and the solar wind; the subject of geospace is interlinked with heliophysics—the study of the Sun and its impact on the planets of the Solar System.[104] The day-side magnetopause is compressed by solar-wind pressure—the subsolar distance from the center of the Earth is typically 10 Earth radii. On the night side, the solar wind stretches the magnetosphere to form a magnetotail that sometimes extends out to more than 100–200 Earth radii.[105][106] For roughly four days of each month, the lunar surface is shielded from the solar wind as the Moon passes through the magnetotail.[107]
Geospace is populated by electrically charged particles at very low densities, the motions of which are controlled by the Earth's magnetic field. These plasmas form a medium from which storm-like disturbances powered by the solar wind can drive electrical currents into the Earth's upper atmosphere. Geomagnetic storms can disturb two regions of geospace, the radiation belts and the ionosphere. These storms increase fluxes of energetic electrons that can permanently damage satellite electronics, interfering with shortwave radio communication and GPS location and timing.[108] Magnetic storms can be a hazard to astronauts, even in low Earth orbit. They create aurorae seen at high latitudes in an oval surrounding the geomagnetic poles.[109]
xGeo space is a concept used by the US to refer to space of high Earth orbits, ranging from beyond geosynchronous orbit (GEO) at approximately 35,786 km (22,236 mi),[98] out to the L2 Earth-Moon Lagrange point at 448,900 km (278,934 mi). This is located beyond the orbit of the Moon and therefore includes cislunar space.[110] Translunar space is the region of lunar transfer orbits, between the Moon and Earth.[111] Cislunar space is a region outside of Earth that includes lunar orbits, the Moon's orbital space around Earth and the Lagrange points.[99]
The region where a body's gravitational potential remains dominant against gravitational potentials from other bodies, is the body's sphere of influence or gravity well, mostly described with the Hill sphere model.[112] In the case of Earth this includes all space from the Earth to a distance of roughly 1% of the mean distance from Earth to the Sun,[113] or 1.5 million km (0.93 million mi). Beyond Earth's Hill sphere extends along Earth's orbital path its orbital and co-orbital space. This space is co-populated by groups of co-orbital Near-Earth Objects (NEOs), such as horseshoe librators and Earth trojans, with some NEOs at times becoming temporary satellites and quasi-moons to Earth.[114]
Deep space is defined by the United States government as all of outer space which lies further from Earth than a typical low-Earth-orbit, thus assigning the moon to deep-space.[115] Other definitions vary the starting point of deep-space from, "That which lies beyond the orbit of the moon," to "That which lies beyond the farthest reaches of the Solar System itself."[116][117][118] The International Telecommunication Union responsible for radio communication, including with satellites, defines deep-space as, "distances from the Earth equal to, or greater than, 2 million km (1.2 million mi),"[119] which is about five times the Moon's orbital distance, but which distance is also far less than the distance between Earth and any adjacent planet.[120]
Interplanetary space
Interplanetary space within the Solar System is the space between the eight planets, the space between the planets and the Sun, as well as that space beyond the orbit of the outermost planet Neptune where the solar wind remains active. The solar wind is a continuous stream of charged particles emanating from the Sun which creates a very tenuous atmosphere (the heliosphere) for billions of kilometers into space. This wind has a particle density of 5–10 protons/cm3 and is moving at a velocity of 350–400 km/s (780,000–890,000 mph).[121] Interplanetary space extends out to the heliopause where the influence of the galactic environment starts to dominate over the magnetic field and particle flux from the Sun.[122] The distance and strength of the heliopause varies depending on the activity level of the solar wind.[123] The heliopause in turn deflects away low-energy galactic cosmic rays, with this modulation effect peaking during solar maximum.[124]
The volume of interplanetary space is a nearly total vacuum, with a mean free path of about one astronomical unit at the orbital distance of the Earth. This space is not completely empty, and is sparsely filled with cosmic rays, which include ionized atomic nuclei and various subatomic particles. There is gas, plasma and dust,[125] small meteors, and several dozen types of organic molecules discovered to date by microwave spectroscopy.[126] A cloud of interplanetary dust is visible at night as a faint band called the zodiacal light.[127]
Interplanetary space contains the magnetic field generated by the Sun.[121] There are magnetospheres generated by planets such as Jupiter, Saturn, Mercury and the Earth that have their own magnetic fields. These are shaped by the influence of the solar wind into the approximation of a teardrop shape, with the long tail extending outward behind the planet. These magnetic fields can trap particles from the solar wind and other sources, creating belts of charged particles such as the Van Allen radiation belts. Planets without magnetic fields, such as Mars, have their atmospheres gradually eroded by the solar wind.[128]
Interstellar space
Interstellar space is the physical space outside of the bubbles of plasma known as astrospheres, formed by stellar winds originating from individual stars, or formed by solar wind emanating from the Sun.[129] It is the space between the stars or stellar systems within a nebula or galaxy.[130] Interstellar space contains an interstellar medium of sparse matter and radiation. The boundary between an astrosphere and interstellar space is known as an astropause. For the Sun, the astrosphere and astropause are called the heliosphere and heliopause.
Approximately 70% of the mass of the interstellar medium consists of lone hydrogen atoms; most of the remainder consists of helium atoms. This is enriched with trace amounts of heavier atoms formed through stellar nucleosynthesis. These atoms are ejected into the interstellar medium by stellar winds or when evolved stars begin to shed their outer envelopes such as during the formation of a planetary nebula.[131] The cataclysmic explosion of a supernova propagates shock waves of stellar ejecta outward, distributing it throughout the interstellar medium, including the heavy elements previously formed within the star's core.[132] The density of matter in the interstellar medium can vary considerably: the average is around 106 particles per m3,[133] but cold molecular clouds can hold 108–1012 per m3.[39][131]
A number of molecules exist in interstellar space, which can form dust particles as tiny as 0.1 μm.[134] The tally of molecules discovered through radio astronomy is steadily increasing at the rate of about four new species per year. Large regions of higher density matter known as molecular clouds allow chemical reactions to occur, including the formation of organic polyatomic species. Much of this chemistry is driven by collisions. Energetic cosmic rays penetrate the cold, dense clouds and ionize hydrogen and helium, resulting, for example, in the trihydrogen cation. An ionized helium atom can then split relatively abundant carbon monoxide to produce ionized carbon, which in turn can lead to organic chemical reactions.[135]
The local interstellar medium is a region of space within 100 pc of the Sun, which is of interest both for its proximity and for its interaction with the Solar System. This volume nearly coincides with a region of space known as the Local Bubble, which is characterized by a lack of dense, cold clouds. It forms a cavity in the Orion Arm of the Milky Way galaxy, with dense molecular clouds lying along the borders, such as those in the constellations of Ophiuchus and Taurus. The actual distance to the border of this cavity varies from 60 to 250 pc or more. This volume contains about 104–105 stars and the local interstellar gas counterbalances the astrospheres that surround these stars, with the volume of each sphere varying depending on the local density of the interstellar medium. The Local Bubble contains dozens of warm interstellar clouds with temperatures of up to 7,000 K and radii of 0.5–5 pc.[136]
When stars are moving at sufficiently high peculiar velocities, their astrospheres can generate bow shocks as they collide with the interstellar medium. For decades it was assumed that the Sun had a bow shock. In 2012, data from Interstellar Boundary Explorer (IBEX) and NASA's Voyager probes showed that the Sun's bow shock does not exist. Instead, these authors argue that a subsonic bow wave defines the transition from the solar wind flow to the interstellar medium.[137][138] A bow shock is a third boundary characteristic of an astrosphere, laying outside the termination shock and the astropause.[138]
Intergalactic space
Intergalactic space is the physical space between galaxies. Studies of the large-scale distribution of galaxies show that the universe has a foam-like structure, with groups and clusters of galaxies lying along filaments that occupy about a tenth of the total space. The remainder forms cosmic voids that are mostly empty of galaxies. Typically, a void spans a distance of 7–30 megaparsecs.[139]
Surrounding and stretching between galaxies, there is a rarefied plasma[140] that is organized in a galactic filamentary structure.[141] This material is called the intergalactic medium (IGM). The density of these filaments of intergalactic medium is about one atom per cubic meter,[142] which is 5–200 times the average density of the universe[143] after including the cosmic voids. The IGM is inferred to be mostly primordial in composition, with 76% hydrogen by mass, and enriched with higher mass elements from high-velocity galactic outflows.[144]
As gas falls into the intergalactic medium from the voids, it heats up to temperatures of 105 K to 107 K.[4] Hence, collisions between atoms have enough energy to cause the bound electron to escape from the hydrogen nuclei; this is why the IGM is ionized. At these temperatures, it is called the warm–hot intergalactic medium (WHIM). Although the plasma is very hot by terrestrial standards, 105 K is often called "warm" in astrophysics. Computer simulations and observations indicate that up to half of the atomic matter in the universe might exist in this warm–hot, rarefied state.[143][145][146] When gas falls from the filamentary structures of the WHIM into the galaxy clusters at the intersections of the cosmic filaments, it can heat up even more, reaching temperatures of 108 K and above in the so-called intracluster medium (ICM).[147]
History of discovery
В 350 году до нашей эры греческий философ Аристотель предположил, что природа не терпит пустоты , и этот принцип стал известен как ужас вакуума . V века до нашей эры Эта концепция основана на онтологическом аргументе греческого философа Парменида , который отрицал возможное существование пустоты в пространстве. [148] Основываясь на идее о том, что вакуум не может существовать, на Западе на протяжении многих столетий широко распространено мнение, что космос не может быть пустым. [149] Еще в 17 веке французский философ Рене Декарт утверждал, что необходимо заполнить все пространство. [150]
В древнем Китае астроном II века Чжан Хэн пришел к убеждению, что пространство должно быть бесконечным и простираться далеко за пределы механизма, поддерживающего Солнце и звезды. В сохранившихся книгах школы Сюань Йе говорилось, что небеса безграничны, «пусты и лишены субстанции». Точно так же «солнце, луна и компания звезд плавают в пустом пространстве, двигаясь или стоя на месте». [151]
Итальянский учёный Галилео Галилей знал, что воздух имеет массу и поэтому подвержен гравитации. В 1640 году он продемонстрировал, что установленная сила препятствует образованию вакуума. в 1643 году оставалось Его ученику Евангелисте Торричелли создать аппарат, создающий частичный вакуум. Этот эксперимент привел к созданию первого ртутного барометра и произвел научную сенсацию в Европе. Торричелли предположил, что, поскольку воздух имеет вес, то давление воздуха должно уменьшаться с высотой. [152] Французский математик Блез Паскаль предложил эксперимент для проверки этой гипотезы. [153] В 1648 году его зять Флорин Перье повторил эксперимент на горе Пюи-де-Дом в центральной Франции и обнаружил, что колонна стала короче на три дюйма. Это снижение давления было дополнительно продемонстрировано, когда наполовину наполненный воздушный шар поднялся на гору и наблюдал, как он постепенно расширяется, а затем сжимается при спуске. [154]
В 1650 году немецкий учёный Отто фон Герике сконструировал первый вакуумный насос : устройство, которое ещё больше опровергло принцип ужаса вакуума . Он правильно заметил, что атмосфера Земли окружает планету как оболочка, плотность которой постепенно уменьшается с высотой. Он пришел к выводу, что между Землей и Луной должен быть вакуум. [155]
В 15 веке немецкий богослов Николай Кузанский предположил, что у Вселенной нет центра и окружности. Он считал, что Вселенная, хотя и не бесконечна, не может считаться конечной, поскольку у нее нет границ, внутри которых она могла бы быть заключена. [156] о бесконечности пространства Эти идеи привели к спекуляциям итальянского философа Джордано Бруно в 16 веке космологию Коперника . Он расширил гелиоцентрическую до концепции бесконечной Вселенной, наполненной веществом, которое он назвал эфиром , которое не сопротивлялось движению небесных тел. [157] К аналогичному выводу пришел английский философ Уильям Гилберт , утверждавший, что звезды видны нам только потому, что они окружены тонким эфиром или пустотой. [158] Эта концепция эфира возникла у древнегреческих философов, в том числе у Аристотеля, которые считали его средой, через которую движутся небесные тела. [159]
Представление о Вселенной, наполненной светоносным эфиром, сохраняло поддержку среди некоторых учёных до начала 20 века. Эта форма эфира рассматривалась как среда, через которую мог распространяться свет. [160] В 1887 году эксперимент Майкельсона-Морли попытался обнаружить движение Земли в этой среде, ища изменения скорости света в зависимости от направления движения планеты. Нулевой результат указывал на то, что с концепцией что-то не так. Тогда от идеи светоносного эфира отказались. На смену ей пришла относительности Альберта Эйнштейна теория специальная , которая утверждает, что скорость света в вакууме является фиксированной константой, независимой от движения наблюдателя или системы отсчета . [161] [162]
Первым профессиональным астрономом, поддержавшим концепцию бесконечной Вселенной, был англичанин Томас Диггес в 1576 году. [163] Но масштаб Вселенной оставался неизвестным до первого успешного измерения расстояния до ближайшей звезды в 1838 году немецким астрономом Фридрихом Бесселем . Он показал, что звездная система 61 Лебедя имеет параллакс всего 0,31 угловой секунды (по сравнению с современным значением 0,287 дюйма). Это соответствует расстоянию более 10 световых лет . [164] В 1917 году Хебер Кертис заметил, что новые в спиральных туманностях в среднем на 10 звездных величин тусклее, чем галактические новые, что позволяет предположить, что первые находятся в 100 раз дальше. [165] Расстояние до галактики Андромеды было определено в 1923 году американским астрономом Эдвином Хабблом путем измерения яркости переменных цефеид в этой галактике — новый метод, открытый Генриеттой Ливитт . [166] Это установило, что галактика Андромеды и, как следствие, все галактики находятся далеко за пределами Млечного Пути. [167]
Современная концепция космического пространства основана на космологии «Большого взрыва» , впервые предложенной в 1931 году бельгийским физиком Жоржем Леметром . [168] Эта теория утверждает, что Вселенная возникла из состояния чрезвычайной плотности энергии, которое с тех пор подвергалось непрерывному расширению . [169]
Самая ранняя известная оценка температуры космического пространства была сделана швейцарским физиком Чарльзом Э. Гийом в 1896 году. Используя оценки излучения фоновых звезд, он пришел к выводу, что космос должен быть нагрет до температуры 5–6 К. Британский физик Артур Эддингтон сделал аналогичный расчет, чтобы получить температуру 3,18 К в 1926 году. Немецкий физик Эрих Регенер использовал полную измеренную энергию космических лучей для оценки межгалактической температуры в 2,8 К в 1933 году. [170] Американские физики Ральф Альфер и Роберт Херман предсказали температуру космоса в 5 К в 1948 году, основываясь на постепенном уменьшении фоновой энергии в соответствии с новой на тот момент теорией Большого взрыва . [170]
Разведка
На протяжении большей части истории человечества космос исследовался путем наблюдений с поверхности Земли — сначала невооруженным глазом, а затем с помощью телескопа. До появления надежных ракетных технологий люди ближе всего подходили к достижению космического пространства с помощью полетов на воздушных шарах. В 1935 году полет на воздушном шаре с экипажем American Explorer II достиг высоты 22 км (14 миль). [172] Этот показатель был значительно превышен в 1942 году, когда третий запуск немецкой ракеты А-4 поднялся на высоту около 80 км (50 миль). В 1957 году беспилотный спутник «Спутник-1» был запущен российской ракетой Р-7 и достиг околоземной орбиты на высоте 215–939 километров (134–583 миль). [173] За этим последовал первый полет человека в космос в 1961 году, когда был отправлен Юрий Гагарин на орбиту корабля «Восток-1» . Первыми людьми, покинувшими низкую околоземную орбиту, были Фрэнк Борман , Джим Ловелл и Уильям Андерс в 1968 году на борту американского корабля «Аполлон-8» , который достиг лунной орбиты. [174] и достиг максимального расстояния 377 349 км (234 474 миль) от Земли. [175]
Первым космическим кораблем, достигшим космической скорости, была советская «Луна-1» , совершившая облёт Луны в 1959 году. [176] В 1961 году «Венера-1» стала первым планетарным зондом. Он обнаружил присутствие солнечного ветра и совершил первый облет Венеры , хотя контакт был потерян еще до достижения Венеры. Первой успешной планетарной миссией стал пролет Венеры в 1962 году кораблем «Маринер-2» . [177] Первый пролет Марса совершил « Маринер-4» в 1964 году. С тех пор беспилотные космические корабли успешно исследовали каждую из планет Солнечной системы, а также их спутники и множество малых планет и комет. Они остаются фундаментальным инструментом для исследования космического пространства, а также для наблюдения за Землей. [178] В августе 2012 года «Вояджер-1» стал первым искусственным объектом, покинувшим Солнечную систему и вошедшим в межзвездное пространство . [179]
Приложение
Космическое пространство стало важным элементом глобального общества. Он предоставляет множество приложений, которые полезны для экономики и научных исследований.
Размещение искусственных спутников на околоземной орбите принесло многочисленные выгоды и стало доминирующим сектором космической экономики . Они позволяют ретранслировать средства связи на большие расстояния, такие как телевидение, обеспечивают средства точной навигации и позволяют осуществлять прямой мониторинг погодных условий и дистанционное зондирование Земли. Последняя роль служит различным целям, включая отслеживание влажности почвы для нужд сельского хозяйства, прогнозирование оттока воды из сезонных снежных покровов, обнаружение болезней растений и деревьев, а также наблюдение за военной деятельностью. [181] Они облегчают обнаружение и мониторинг влияния изменения климата . [182] Спутники используют значительно меньшее сопротивление в космосе, чтобы оставаться на стабильных орбитах, что позволяет им эффективно охватывать весь земной шар по сравнению, например, со стратосферными шарами или станциями на высотных платформах , которые имеют другие преимущества. [183]
Отсутствие воздуха делает космическое пространство идеальным местом для астрономии на всех длинах волн электромагнитного спектра . Об этом свидетельствуют впечатляющие снимки, отправленные космическим телескопом «Хаббл» , позволяющие наблюдать свет, произошедший более 13 миллиардов лет назад — почти во времена Большого взрыва. [184] Не каждое место в космосе идеально подходит для телескопа. Межпланетная зодиакальная пыль излучает рассеянное излучение ближнего инфракрасного диапазона, которое может маскировать излучение слабых источников, таких как внесолнечные планеты. Перемещение инфракрасного телескопа за пределы пыли повышает его эффективность. [185] Аналогичным образом, такое место, как кратер Дедал на обратной стороне Луны, может защитить радиотелескоп от радиочастотных помех , которые затрудняют наблюдения с Земли. [186]
Глубокий вакуум космоса может сделать его привлекательной средой для некоторых промышленных процессов, например тех, которые требуют сверхчистых поверхностей. [187] Как и добыча полезных ископаемых на астероидах , космическое производство потребует крупных финансовых инвестиций с небольшой перспективой немедленной отдачи. [188] Важным фактором общих расходов является высокая стоимость вывода массы на околоземную орбиту: 9 000–30 000 долларов за кг, согласно оценке 2006 года (с учетом инфляции с тех пор). [189] Стоимость доступа в космос снизилась с 2013 года. Частично многоразовые ракеты, такие как Falcon 9 , снизили стоимость доступа в космос ниже 3500 долларов за килограмм. Благодаря этим новым ракетам стоимость отправки материалов в космос остается непомерно высокой для многих отраслей. Предлагаемые концепции для решения этой проблемы включают полностью многоразовые системы запуска , неракетный космический запуск , тросы с обменом импульса и космические лифты . [190]
Межзвездные путешествия для человеческого экипажа в настоящее время остаются лишь теоретической возможностью. Расстояния до ближайших звезд означают, что потребуются новые технологические разработки и способность безопасно поддерживать экипажи в путешествиях продолжительностью в несколько десятилетий. Например, исследование проекта «Дедал» , в котором предлагался космический корабль, работающий на и гелия синтезе дейтерия - 3 , потребовало бы 36 лет, чтобы достичь «ближайшей» системы Альфа Центавра . Другие предлагаемые межзвездные двигательные системы включают легкие паруса , прямоточные воздушно -реактивные двигатели и лучевые двигатели . Более совершенные двигательные системы могли бы использовать антивещество в качестве топлива, потенциально достигая релятивистских скоростей . [191]
С поверхности Земли ультрахолодная температура космического пространства может быть использована в качестве возобновляемой технологии охлаждения для различных применений на Земле посредством пассивного дневного радиационного охлаждения . [192] [193] Это усиливает длинноволнового инфракрасного излучения (LWIR) передачу тепла амосферы через инфракрасное окно в космическое пространство, снижая температуру окружающей среды. [194] [195] Фотонные метаматериалы можно использовать для подавления солнечного нагрева. [196]
См. также
- Абсолютное пространство и время
- Список государственных космических агентств
- Список тем в космосе
- Парадокс Ольберса
- Очерк космической науки
- Панспермия
- Космическое искусство
- Космос и выживание
- Космическая гонка
- Космическая станция
- Космические технологии
- Хронология знаний о межзвездной и межгалактической среде
- Хронология исследования Солнечной системы
- Хронология космического полета
Ссылки
Цитаты
- ^ «Применимые определения космического пространства, пространства и простора» , словарь Мерриама-Вебстера , получено 17 июня 2024 г. ,
Космическое пространство (сущ.) Пространство непосредственно за пределами земной атмосферы.
Пространство (сущ.) Физическое пространство независимо от того, что его занимает. Область за пределами земной атмосферы или за пределами Солнечной системы.
Пространство (сущ.) большая степень распространения чего-либо. - ^ Рот, А. (2012), Вакуумные технологии , Elsevier, стр. 6, ISBN 978-0-444-59874-5 .
- ^ Часс, Дэвид Т. (26 июня 2008 г.), Исследователь космического фона , Центр космических полетов имени Годдарда НАСА, заархивировано из оригинала 9 мая 2013 г. , получено 27 апреля 2013 г.
- ^ Jump up to: а б Гупта, Анджали; и др. (Май 2010 г.), «Обнаружение и характеристика тепло-горячей межгалактической среды», Бюллетень Американского астрономического общества , 41 : 908, Бибкод : 2010AAS...21631808G .
- ^ Фридман и Кауфманн 2005 , стр. 573, 599–601.
- ^ Тримбл, В. (1987), «Существование и природа темной материи во Вселенной» , Ежегодный обзор астрономии и астрофизики , 25 : 425–472, Бибкод : 1987ARA&A..25..425T , doi : 10.1146/annurev.aa .25.090187.002233 , S2CID 123199266 .
- ^ «Темная энергия, темная материя» , NASA Science , заархивировано из оригинала 2 июня 2013 г. , получено 31 мая 2013 г. ,
Оказывается примерно 68% Вселенной представляет собой темную энергию. Темная материя составляет около 27%.
- ^ Фридман и Кауфманн 2005 , стр. 650–653.
- ^ Jump up to: а б О'Лири 2009 , с. 84.
- ^ Jump up to: а б «Где начинается космос?» , Aerospace Engineering , заархивировано из оригинала 17 ноября 2015 г. , получено 10 ноября 2015 г. .
- ^ Харпер, Дуглас (ноябрь 2001 г.), Space , Интернет-словарь этимологии, заархивировано из оригинала 24 февраля 2009 г. , получено 19 июня 2009 г.
- ^ Брэди, Маура (октябрь 2007 г.), «Пространство и постоянство места в «Потерянном раю» », Milton Quarterly , 41 (3): 167–182, doi : 10.1111/j.1094-348X.2007.00164.x , JSTOR 24461820 .
- ^ Стюарт Уортли 1841 , с. 410.
- ^ Фон Гумбольдт 1845 , с. 39.
- ^ Харпер, Дуглас, «Outer» , Интернет-словарь этимологии , заархивировано из оригинала 12 марта 2010 г. , получено 24 марта 2008 г.
- ^ Jump up to: а б с д Бетц, Эрик (27 ноября 2023 г.). «Линия Кармана: Там, где начинается космос» . Астрономический журнал . Проверено 30 апреля 2024 г.
- ^ «Определение космического корабля» , Мерриам-Вебстер , 17 мая 2022 г. , получено 18 мая 2022 г.
- ^ «Космическое определение и значение» , Словарь английского языка Коллинза , 17 мая 2022 г. , получено 18 мая 2022 г.
- ^ «-на основе» , Кембриджский словарь , 2024 г. , получено 28 апреля 2024 г.
- ^ Лиддл 2015 , стр. 33.
- ^ Planck Collaboration (2014), «Результаты Planck 2013. I. Обзор продуктов и научных результатов», Astronomy & Astrophysicals , 571 : 1, arXiv : 1303.5062 , Bibcode : 2014A&A...571A...1P , doi : 10.1051/0004 -6361/201321529 , S2CID 218716838 .
- ^ Jump up to: а б Тернер, Майкл С. (сентябрь 2009 г.), «Происхождение Вселенной», Scientific American , 301 (3): 36–43, Бибкод : 2009SciAm.301c..36T , doi : 10.1038/scientificamerican0909-36 , PMID 19708526 .
- ^ Шелк 2000 , стр. 105–308.
- ^ WMAP — Форма Вселенной , НАСА, 21 декабря 2012 г., заархивировано из оригинала 1 июня 2012 г. , получено 4 июня 2013 г.
- ^ Спарк и Галлахер 2007 , стр. 329–330.
- ^ Воллак, Эдвард Дж. (24 июня 2011 г.), Из чего состоит Вселенная? , НАСА, заархивировано из оригинала 26 июля 2016 г. , получено г. 14 октября 2011
- ^ Крумм, Н.; Брош, Н. (октябрь 1984 г.), «Нейтральный водород в космических пустотах», Astronomical Journal , 89 : 1461–1463, Bibcode : 1984AJ.....89.1461K , doi : 10.1086/113647 .
- ^ Пиблз, П.; Ратра, Б. (2003), «Космологическая постоянная и темная энергия», Reviews of Modern Physics , 75 (2): 559–606, arXiv : astro-ph/0207347 , Bibcode : 2003RvMP...75..559P , doi : 10.1103/RevModPhys.75.559 , S2CID 118961123
- ^ «Ложный рассвет» , www.eso.org , получено 14 февраля 2017 г.
- ^ Тадокоро, М. (1968), «Исследование локальной группы с использованием теоремы вириала», Публикации Астрономического общества Японии , 20 : 230, Бибкод : 1968PASJ...20..230T . Этот источник оценивает плотность 7 × 10 −29 г/см 3 для локальной группы . Атомная единица массы — 1,66 × 10. −24 г , примерно 40 атомов на кубический метр.
- ^ Боровиц и Бейзер 1971 .
- ^ Тайсон, Патрик (январь 2012 г.), Кинетическая атмосфера: молекулярные числа (PDF) , заархивировано из оригинала (PDF) 7 декабря 2013 г. , получено 13 сентября 2013 г.
- ^ Дэвис 1977 , с. 93.
- ^ Фитцпатрик, Э.Л. (май 2004 г.), «Межзвездное вымирание в галактике Млечный Путь», в Витте, Адольфе Н.; Клейтон, Джеффри К.; Дрейн, Брюс Т. (ред.), Астрофизика пыли , Серия конференций ASP, том. 309, с. 33, arXiv : astro-ph/0401344 , Bibcode : 2004ASPC..309...33F .
- ^ Чемберлен 1978 , с. 2.
- ^ Сквайр, Том (27 сентября 2000 г.), «Стандартная атмосфера США, 1976 г.» , Эксперт по системам тепловой защиты и база данных свойств материалов , НАСА, заархивировано из оригинала 15 октября 2011 г. , получено 23 октября 2011 г.
- ^ Форбс, Джеффри М. (2007), «Динамика термосферы», Журнал Метеорологического общества Японии , серия II, 85B : 193–213, Бибкод : 2007JMeSJ..85B.193F , doi : 10.2151/jmsj.85b. 193 .
- ^ Спитцер, Лайман-младший (январь 1948 г.), «Температура межзвездной материи. I», Astrophysical Journal , 107 :6, Бибкод : 1948ApJ...107....6S , doi : 10.1086/144984 .
- ^ Jump up to: а б Приальник 2000 , с. 195–196.
- ^ Спитцер 1978 , с. 28–30.
- ^ Чиаки, Янагисава (июнь 2014 г.), «В поисках фона космических нейтрино», Frontiers in Physics , 2:30 , Bibcode : 2014FrP.....2...30Y , doi : 10.3389/fphy.2014.00030 .
- ^ Фикссен, DJ (декабрь 2009 г.), «Температура космического микроволнового фона», The Astrophysical Journal , 707 (2): 916–920, arXiv : 0911.1955 , Bibcode : 2009ApJ...707..916F , doi : 10.1088/ 0004-637X/707/2/916 , S2CID 119217397 .
- ^ ALMA раскрывает призрачную форму «самого холодного места во Вселенной» , Национальная радиоастрономическая обсерватория, 24 октября 2013 г. , получено 7 октября 2020 г.
- ^ Уитбро, Джордж Л. (февраль 1988 г.), «Температурная структура, масса и поток энергии в короне и внутреннем солнечном ветре», Astrophysical Journal, Part 1 , 325 : 442–467, Бибкод : 1988ApJ...325.. 442 Вт , дои : 10.1086/166015 .
- ^ Велебински, Ричард; Бек, Райнер (2010), «Космические магнитные поля – обзор», в Блоке, Дэвид Л.; Фриман, Кеннет К.; Пуэрари, Иванио (ред.), Галактики и их маски: конференция в честь К. К. Фримена, FRS , Springer Science & Business Media, стр. 67–82, Bibcode : 2010gama.conf...67W , doi : 10.1007/978 -1-4419-7317-7_5 , ISBN 978-1-4419-7317-7 , заархивировано из оригинала 20 сентября 2017 г.
- ^ Летессье-Сельвон, Антуан; Станев, Тодор (июль 2011 г.), «Космические лучи сверхвысокой энергии», Reviews of Modern Physics , 83 (3): 907–942, arXiv : 1103.0031 , Bibcode : 2011RvMP...83..907L , doi : 10.1103/RevModPhys. 83.907 , S2CID 119237295 .
- ^ Ланг 1999 , с. 462.
- ^ Как и 1993 , стр. 11–217.
- ^ Чем пахнет космос? , Live Science, 20 июля 2012 г., заархивировано из оригинала 28 февраля 2014 г. , получено 19 февраля 2014 г. .
- ^ Лиззи Шиффман (17 июля 2013 г.), Чем пахнет космос , Popular Science, заархивировано из оригинала 24 февраля 2014 г. , получено 19 февраля 2014 г.
- ^ Раджио, Дж.; и др. (Май 2011 г.), «Цельные слоевища лишайников выживают в условиях космоса: результаты эксперимента по литопанспермии с Aspicilia fruticulosa», Astrobiology , 11 (4): 281–292, Bibcode : 2011AsBio..11..281R , doi : 10.1089/ast .2010.0588 , PMID 21545267 .
- ^ Тепфер, Дэвид; и др. (Май 2012 г.), «Выживание семян растений, их УФ-экранов и ДНК nptII в течение 18 месяцев за пределами Международной космической станции» (PDF) , Astrobiology , 12 (5): 517–528, Bibcode : 2012AsBio..12.. 517T , doi : 10.1089/ast.2011.0744 , PMID 22680697 , заархивировано (PDF) из оригинала 13 декабря 2014 г. , получено 19 мая 2013 г.
- ^ Вассманн, Марко; и др. (Май 2012 г.), «Выживание спор устойчивого к УФ-излучению штамма Bacillus subtilis MW01 после выхода на низкую околоземную орбиту и смоделированных марсианских условий: данные космического эксперимента ADAPT на EXPOSE-E», Astrobiology , 12 (5): 498– 507, Bibcode : 2012AsBio..12..498W , doi : 10.1089/ast.2011.0772 , PMID 22680695 .
- ^ Николсон, WL (апрель 2010 г.), «К общей теории литопанспермии», Научная конференция по астробиологии, 2010 г. , том. 1538, стр. 5272–528, Bibcode : 2010LPICo1538.5272N .
- ^ Тарвер, Уильям Дж.; и др. (24 октября 2022 г.), Эффекты аэрокосмического давления , Остров Сокровищ, Флорида: StatPearls Publishing, PMID 29262037 , получено 25 апреля 2024 г.
- ^ Пиантадоси 2003 , стр. 188–189.
- ^ Баттисти, Аманда С.; и др. (27 июня 2022 г.), Barotrauma , StatPearls Publishing LLC, PMID 29493973 , получено 18 декабря 2022 г.
- ^ Кребс, Мэтью Б.; Пилманис, Эндрю А. (ноябрь 1996 г.), Толерантность легких человека к динамическому избыточному давлению (PDF) , Лаборатория Армстронга ВВС США, заархивировано из оригинала 30 ноября 2012 г. , получено 23 декабря 2011 г.
- ^ Басби, Делавэр (июль 1967 г.), Перспективный взгляд на медицинские проблемы, связанные с опасностями космических операций (PDF) , Клиническая космическая медицина, НАСА, NASA-CR-856 , получено 20 декабря 2022 г.
- ^ Хардинг, Р.М.; Миллс, Ф.Дж. (30 апреля 1983 г.), «Авиационная медицина. Проблемы высоты I: гипоксия и гипервентиляция», British Medical Journal , 286 (6375): 1408–1410, doi : 10.1136/bmj.286.6375.1408 , PMC 1547870 , ПМИД 6404482 .
- ^ Ходкинсон, доктор медицинских наук (март 2011 г.), «Острое воздействие высоты» (PDF) , Журнал Медицинского корпуса Королевской армии , 157 (1): 85–91, doi : 10.1136/jramc-157-01-15 , PMID 21465917 , S2CID 43248662 , заархивировано из оригинала (PDF) 26 апреля 2012 г. , получено 16 декабря 2011 г.
- ^ Биллингс 1973 , стр. 1–34.
- ^ Лэндис, Джеффри А. (7 августа 2007 г.), Воздействие вакуума на человека , www.geoffreylandis.com, заархивировано из оригинала 21 июля 2009 г. , получено 19 июня 2009 г.
- ^ Уэбб, П. (1968), «Костюм для космической деятельности: эластичный купальник для внекорабельной деятельности», Aerospace Medicine , 39 (4): 376–383, PMID 4872696 .
- ^ Эллери 2000 , с. 68.
- ^ Дэвис, Джонсон и Степанек 2008 , стр. 270–271.
- ^ Канас и Манзи 2008 , стр. 101-1. 15–48.
- ^ Уильямс, Дэвид; и др. (23 июня 2009 г.), «Акклиматизация во время космического полета: влияние на физиологию человека», Журнал Канадской медицинской ассоциации , 180 (13): 1317–1323, doi : 10.1503/cmaj.090628 , PMC 2696527 , PMID 19509005 .
- ^ Кеннеди, Энн Р., Радиационные эффекты , Национальный институт космических биологических исследований, заархивировано из оригинала 3 января 2012 г. , получено 16 декабря 2011 г.
- ^ Кертис, С.Б.; Летау, Дж.В. (1989), «Галактические космические лучи и частоты попадания в клетки за пределами магнитосферы», «Достижения в космических исследованиях » , 9 (10): 293–298, бибкод : 1989AdSpR...9c.293C , doi : 10.1016/0273 -1177(89)90452-3 , PMID 11537306
- ^ Сетлоу, Ричард Б. (ноябрь 2003 г.), «Опасности космических путешествий», Science and Society , 4 (11): 1013–1016, doi : 10.1038/sj.embor.7400016 , PMC 1326386 , PMID 14593437 .
- ^ Jump up to: а б с Груш, Лорен (13 декабря 2018 г.). «Почему определение границ космоса может иметь решающее значение для будущего космических полетов» . Грань . Проверено 30 апреля 2024 г.
- ^ Вонг и Фергюссон 2010 , с. 16.
- ^ Программа FAA Commercial Space Astronaut Wings Program (PDF) , Федеральное управление гражданской авиации, 20 июля 2021 г. , получено 18 декабря 2022 г.
- ^ Томпсон, Андреа (9 апреля 2009 г.), Edge of Space Found , space.com, заархивировано из оригинала 14 июля 2009 г. , получено 19 июня 2009 г.
- ^ Сангалли, Л.; и др. (2009), «Ракетные измерения скорости ионов, нейтрального ветра и электрического поля в столкновительной переходной области авроральной ионосферы», Журнал геофизических исследований , 114 (A4): A04306, Bibcode : 2009JGRA..114.4306S , дои : 10.1029/2008JA013757 .
- ^ Jump up to: а б с Макдауэлл, Джонатан К. (октябрь 2018 г.), «Край космоса: вновь посещая линию Кармана», Acta Astronautica , 151 : 668–677, arXiv : 1807.07894 , Bibcode : 2018AcAau.151..668M , doi : 10.1016/j. actaastro.2018.07.003 .
- ^ Петти, Джон Айра (13 февраля 2003 г.), «Вход» , «Полет человека в космос », НАСА, заархивировано из оригинала 27 октября 2011 г. , получено 16 декабря 2011 г.
- ^ Дуррани, Харис (19 июля 2019 г.), «Являются ли космические полеты колониализмом?» , The Nation , получено 6 октября 2020 г.
- ^ Статус международных соглашений, касающихся деятельности в космическом пространстве, по состоянию на 1 января 2017 г. (PDF) , Управление Организации Объединенных Наций по вопросам космического пространства / Комитет по использованию космического пространства в мирных целях, 23 марта 2017 г., заархивировано из оригинала (PDF) в марте. 22 декабря 2018 г. , получено 22 марта 2018 г.
- ^ Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела , Управление ООН по вопросам космического пространства, 1 января 2008 г., заархивировано из оригинала 27 апреля 2011 г. , получено в 2009 г. -12-30 .
- ^ Указатель резолюций Генеральной Ассамблеи в Интернете, касающихся космического пространства , Управление Организации Объединенных Наций по вопросам космического пространства, 2011 г., заархивировано из оригинала 15 января 2010 г. , получено 30 декабря 2009 г.
- ^ Вонг и Фергюссон 2010 , с. 4.
- ^ Соланки, Лалит (27 марта 2019 г.), «Индия входит в элитный клуб: успешно сбит низкоорбитальный спутник» , The Mirk , получено 28 марта 2019 г.
- ^ Запуск Колумба подвергает испытанию космическое право , Европейский научный фонд, 5 ноября 2007 г., заархивировано из оригинала 15 декабря 2008 г. , получено 30 декабря 2009 г.
- ^ Представители государств, пересекающих экватор (3 декабря 1976 г.), «Декларация первой встречи экваториальных стран» , Космическое право , Богота, Республика Колумбия: JAXA, заархивировано из оригинала 24 ноября 2011 г. , получено в 2011 г. 10-14 .
- ^ Гангале, Томас (2006), «Кому принадлежит геостационарная орбита?» , Анналы воздушного и космического права , 31 , заархивировано из оригинала 27 сентября 2011 г. , получено 14 октября 2011 г. .
- ^ «Размышление ESIL - Расчистка космического мусора - О недостатках и потенциале международного космического права для решения проблемы космического мусора - Европейское общество международного права» , Европейское общество международного права , 09 марта 2023 г. , получено 04 апреля 2024 г. 24 .
- ^ Хилл, Джеймс В.Х. (апрель 1999 г.), «Добраться до низкой околоземной орбиты» , «Космическое будущее» , заархивировано из оригинала 19 марта 2012 г. , получено 18 марта 2012 г.
- ^ Шайнер, Линда (1 ноября 2007 г.), X-15 Walkaround , журнал Air & Space Magazine , получено 19 июня 2009 г.
- ^ Димотакис, П.; и др. (Октябрь 1999 г.), 100 фунтов на низкую околоземную орбиту (НОО): варианты запуска малой полезной нагрузки , The Mitre Corporation, стр. 1–39, заархивировано из оригинала 29 августа 2017 г. , получено 21 января 2012 г.
- ^ Уильямс, Дэвид Р. (17 ноября 2010 г.), «Информационный бюллетень о Земле» , Lunar & Planetary Science , НАСА, заархивировано из оригинала 30 октября 2010 г. , получено 10 мая 2012 г.
- ^ Гош 2000 , стр. 47–48.
- ^ Часто задаваемые вопросы , Исследования и исследования астроматериалов: Офис программы НАСА по орбитальному мусору , получено 29 апреля 2024 г.
- ^ Jump up to: а б Кенневелл, Джон; Макдональд, Эндрю (2011), Срок службы спутников и солнечная активность , Бюро погоды Австралийского Союза, Отделение космической погоды, заархивировано из оригинала 28 декабря 2011 г. , получено 31 декабря 2011 г.
- ^ Jump up to: а б с «42 USC 18302: Определения» , uscode.house.gov (на языке киньяруанда), 15 декабря 2022 г. , получено 17 декабря 2022 г.
- ^ Jump up to: а б Шрийвер и Сиско, 2010 , с. 363, 379.
- ^ Jump up to: а б Хауэлл, Элизабет (24 апреля 2015 г.), «Что такое геосинхронная орбита?» , Space.com , получено 8 декабря 2022 г.
- ^ Jump up to: а б Стрикленд, Джон К. (1 октября 2012 г.), Цислунарные врата без ворот , The Space Review , заархивировано из оригинала 7 февраля 2016 г. , получено 10 февраля 2016 г. .
- ^ Портри, Дэвид; Лофтус, Джозеф (1999), «Орбитальный мусор: хронология» (PDF) , Технический отчет NASA Sti/Recon N , 99 , NASA: 13, Бибкод : 1999STIN...9941786P , заархивировано из оригинала (PDF) в 2000 г. 01 сентября , получено 5 мая 2012 г.
- ^ Фотогалерея , АРЕС | Офис программы НАСА по орбитальному мусору , получено 27 апреля 2024 г.
- ^ Кинтнер, Пол; Комитет и персонал GMDT (сентябрь 2002 г.), Отчет группы по определению геокосмической миссии «Жизнь со звездой» (PDF) , НАСА, заархивировано (PDF) из оригинала 2 ноября 2012 г. , получено 15 апреля 2012 г.
- ^ Писатель и Сиско, 2010 , с. 379.
- ^ Фихтнер и Лю 2011 , стр. 341–345.
- ^ Коскинен 2010 , стр. 32, 42.
- ^ Хоунс, Эдвард В. младший (март 1986 г.), «Магнитный хвост Земли», Scientific American , 254 (3): 40–47, Бибкод : 1986SciAm.254c..40H , doi : 10.1038/scientificamerican0386-40 , JSTOR 24975910
- ^ Мендилло 2000 , с. 275.
- ^ Гудман 2006 , с. 244.
- ^ «Геомагнитные бури» (PDF) , Будущий проект ОЭСР/IFP «Будущие глобальные потрясения» , CENTRA Technology, Inc., стр. 1–69, 14 января 2011 г., заархивировано (PDF) из оригинала 14 марта 2012 г. , получено 7 апреля 2012 г.
- ^ Хитченс, Тереза (21 апреля 2022 г.), «До бесконечности и за ее пределами: новое подразделение космических сил для мониторинга xGEO за пределами орбиты Земли» , Breaking Defense , получено 17 декабря 2022 г.
- ^ «Почему мы исследуем» , НАСА , 13 июня 2013 г. , получено 17 декабря 2022 г.
- ^ Йодер, Чарльз Ф. (1995), «Астрометрические и геодезические свойства Земли и Солнечной системы», в Аренсе, Томасе Дж. (редактор), Глобальная физика Земли, справочник физических констант (PDF) , серия справочных полок AGU, том. 1, Вашингтон, округ Колумбия: Американский геофизический союз, с. 1, Бибкод : 1995geph.conf....1Y , ISBN 978-0-87590-851-9 , заархивировано из оригинала (PDF) 26 апреля 2012 г. , получено 31 декабря 2011 г. . В этой работе указан радиус сферы Хилла, в 234,9 раза превышающий средний радиус Земли, или 234,9 × 6371 км = 1,5 миллиона км.
- ^ Барбьери 2006 , с. 253.
- ^ Гранвик, Микаэль; и др. (март 2012 г.), «Население естественных спутников Земли», Icarus , 218 (1): 262–277, arXiv : 1112.3781 , Bibcode : 2012Icar..218..262G , doi : 10.1016/j.icarus.2011.12.003 .
- ^ «51 USC 10101 – Национальные и коммерческие космические программы, подзаголовок I – Общие положения, глава 101 – Определения» , Кодекс США , Совет по пересмотру Законодательного собрания Палаты представителей США , получено 5 января 2023 г.
- ^ Диксон 2010 , с. 57.
- ^ Уильямсон 2006 , с. 97.
- ^ «Определение понятия «дальний космос» » , Словарь английского языка Коллинза , получено 15 января 2018 г.
- ^ Регламент радиосвязи МСЭ-R, Статья 1, Термины и определения, Раздел VIII, Технические термины, относящиеся к космосу, параграф 1.177. (PDF) , Международный союз электросвязи , получено 5 февраля 2018 г. ,
1,177 глубокий космос : Космос на расстояниях от Земли, равных или превышающих 2 × 10. 6 км
- ^ Большая полуось орбиты Луны составляет 384 400 км , что составляет 19,2% от двух миллионов км, или около одной пятой.
Уильямс, Дэвид Р. (20 декабря 2021 г.), Информационный бюллетень о Луне , НАСА , получено 23 сентября 2023 г. - ^ Jump up to: а б Папаяннис 1972 , стр. 101-1. 12–149.
- ^ Эбби Цессна (5 июля 2009 г.), «Межпланетное пространство» , Universe Today , заархивировано из оригинала 19 марта 2015 г.
- ^ Филлипс, Тони (29 сентября 2009 г.), «Космические лучи попали в космическую эпоху» , НАСА, заархивировано из оригинала 14 октября 2009 г. , получено 20 октября 2009 г.
- ^ Колер, Сюзанна (1 декабря 2017 г.), «Подвижный щит обеспечивает защиту от космических лучей» , Nova , Американское астрономическое общество, стр. 2992, Бибкод : 2017nova.pres.2992K , получено 31 января 2019 г.
- ^ НАСА (12 марта 2019 г.), «Что ученые обнаружили после просеивания пыли в Солнечной системе» , EurekAlert! , получено 12 марта 2019 г.
- ^ Флинн, Дж.Дж.; и др. (2003), «Происхождение органического вещества в Солнечной системе: данные по частицам межпланетной пыли», Норрис, Р.; Стутман Ф. (ред.), Биоастрономия 2002: Жизнь среди звезд, Труды симпозиума МАС № 213 , том. 213, с. 275, Бибкод : 2004IAUS..213..275F .
- ^ Лейнерт, К.; Грюн, Э. (1990), «Межпланетная пыль», Физика внутренней гелиосферы I , с. 207, Бибкод : 1990pihl.book..207L , номер doi : 10.1007/978-3-642-75361-9_5 , ISBN 978-3-642-75363-3 .
- ^ Джонсон, Р.Э. (август 1994 г.), «Плазменно-индуцированное распыление атмосферы», Space Science Reviews , 69 (3–4): 215–253, Бибкод : 1994SSRv...69..215J , doi : 10.1007/BF02101697 , S2CID 121800711 .
- ^ Цзя-Руй Кук (12 сентября 2013 г.): «Как мы узнаем, когда «Вояджер» достигнет межзвездного пространства?» , JPL News , 2013-278, заархивировано из оригинала 15 сентября 2013 г.
- ^ Купер, Кейт (17 января 2023 г.). «Межзвездное пространство: что это такое и где оно начинается?» . Space.com . Проверено 30 января 2024 г.
- ^ Jump up to: а б Феррьер, Катя М. (2001), «Межзвездная среда нашей галактики», Reviews of Modern Physics , 73 (4): 1031–1066, arXiv : astro-ph/0106359 , Bibcode : 2001RvMP...73.1031F , doi : 10.1103/RevModPhys.73.1031 , S2CID 16232084 .
- ^ Витт, Адольф Н. (октябрь 2001 г.), «Химический состав межзвездной среды», Философские труды Королевского общества A: Математические, физические и технические науки - Происхождение и ранняя эволюция твердого вещества в Солнечной системе , том. 359, с. 1949, Bibcode : 2001RSPTA.359.1949W , doi : 10.1098/rsta.2001.0889 , S2CID 91378510 .
- ^ Буларес, Ахмед; Кокс, Дональд П. (декабрь 1990 г.), «Галактическое гидростатическое равновесие с магнитным натяжением и диффузией космических лучей», Astrophysical Journal, Часть 1 , 365 : 544–558, Бибкод : 1990ApJ...365..544B , doi : 10.1086 /169509 .
- ^ Раухфусс 2008 , стр. 72–81.
- ^ Клемперер, Уильям (15 августа 2006 г.), «Межзвездная химия», Труды Национальной академии наук Соединенных Штатов Америки , 103 (33): 12232–12234, Бибкод : 2006PNAS..10312232K , doi : 10.1073/pnas .0605352103 , PMC 1567863 , PMID 16894148 .
- ^ Редфилд, С. (сентябрь 2006 г.), «Местная межзвездная среда», « Новые горизонты астрономии»; Материалы конференции, состоявшейся 16–18 октября 2005 г. в Техасском университете, Остин, Техас, США , Симпозиум Фрэнка Н. Баша. Серия конференций ASP, том. 352, с. 79, arXiv : astro-ph/0601117 , Bibcode : 2006ASPC..352...79R .
- ^ МакКомас, диджей; и др. (2012), «Межзвездное взаимодействие гелиосферы: без ударной волны», Science , 336 (6086): 1291–3, Бибкод : 2012Sci...336.1291M , doi : 10.1126/science.1221054 , PMID 22582011 , S2CID 20654088 0 .
- ^ Jump up to: а б Фокс, Карен К. (10 мая 2012 г.), НАСА – IBEX обнаруживает недостающую границу на краю Солнечной системы , НАСА, заархивировано из оригинала 12 мая 2012 г. , получено 14 мая 2012 г.
- ^ Вшолек 2013 , стр. 67.
- ^ Хафеличе, Луис К.; Офер, Реувен (июль 1992 г.), «Происхождение межгалактических магнитных полей из-за внегалактических струй», Ежемесячные уведомления Королевского астрономического общества , 257 (1): 135–151, Бибкод : 1992MNRAS.257..135J , doi : 10.1093 /mnras/257.1.135 .
- ^ Уодсли, Джеймс В.; и др. (20 августа 2002 г.), «Вселенная в горячем газе» , «Астрономическая картина дня » , НАСА, заархивировано из оригинала 9 июня 2009 г. , получено 19 июня 2009 г.
- ^ «Межгалактическая среда» , Гарвард и Смитсоновский институт , 16 июня 2022 г. , получено 16 апреля 2024 г.
- ^ Jump up to: а б Фанг, Т.; и др. (2010), «Подтверждение поглощения рентгеновских лучей теплой и горячей межгалактической средой в стене Скульптора», The Astrophysical Journal , 714 (2): 1715, arXiv : 1001.3692 , Bibcode : 2010ApJ...714.1715F , doi : 10.1088 /0004-637X/714/2/1715 , S2CID 17524108 .
- ^ Оппенгеймер, Бенджамин Д.; Даве, Ромель (декабрь 2006 г.), «Космологическое моделирование обогащения межгалактической среды за счет галактических истечений», Ежемесячные уведомления Королевского астрономического общества , 373 (4): 1265–1292, arXiv : astro-ph/0605651 , Бибкод : 2006MNRAS.373.1265 О , дои : 10.1111/j.1365-2966.2006.10989.x .
- ^ Быков А.М.; и др. (Февраль 2008 г.), «Процессы равновесия в тепло-горячей межгалактической среде», Space Science Reviews , 134 (1–4): 141–153, arXiv : 0801.1008 , Bibcode : 2008SSRv..134..141B , doi : 10.1007/ s11214-008-9309-4 , S2CID 17801881 .
- ^ Ваккер, БП; Сэвидж, Б.Д. (2009), «Взаимосвязь между межгалактическими HI/O VI и близкими (z<0,017) галактиками», Серия приложений к астрофизическому журналу , 182 (1): 378, arXiv : 0903.2259 , Bibcode : 2009ApJS..182. .378W , doi : 10.1088/0067-0049/182/1/378 , S2CID 119247429 .
- ^ Матисен, Б.Ф.; Эврар, А.Е. (2001), «Четыре меры внутрикластерной средней температуры и их связь с динамическим состоянием скопления», Астрофизический журнал , 546 (1): 100, arXiv : astro-ph/0004309 , Bibcode : 2001ApJ... 546..100M , doi : 10.1086/318249 , S2CID 17196808 .
- ^ Грант 1981 , с. 10.
- ^ Портер, Парк и Дастон 2006 , с. 27.
- ^ Эккерт 2006 , с. 5.
- ^ Нидхэм и Ронан 1985 , стр. 82–87.
- ^ Уэст, Джон Б. (март 2013 г.), «Торричелли и воздушный океан: первое измерение барометрического давления», Physiology (Bethesda) , 28 (2): 66–73, doi : 10.1152/physical.00053.2012 , PMC 3768090 , ПМИД 23455767 .
- ^ Холтон и Браш 2001 , стр. 267–268.
- ^ Каджори 1917 , стр. 64–66.
- ^ Генц 2001 , стр. 127–128.
- ^ Тассул и Тассул 2004 , с. 22.
- ^ Гатти 2002 , стр. 99–104.
- ^ Келли 1965 , стр. 97–107.
- ^ Оленик, Апостол и Гудштейн 1986 , стр. 356.
- ^ Харихаран 2003 , с. 2.
- ^ Оленик, Апостол и Гудштейн 1986 , стр. 357–365.
- ^ Тагард 1992 , стр. 206–209.
- ^ Майор 1991 , с. 195.
- ^ Уэбб 1999 , стр. 71–73.
- ^ Кертис, Хибер Д. (январь 1988 г.), «Новые звезды в спиральных туманностях и теория островной Вселенной», Публикации Тихоокеанского астрономического общества , 100 : 6–7, Бибкод : 1988PASP..100....6C , doi : 10.1086/132128 .
- ^ Переменные звезды цефеид и определение расстояний , CSIRO Австралия, 25 октября 2004 г., заархивировано из оригинала 30 августа 2011 г. , получено 12 сентября 2011 г.
- ^ Тайсон и Голдсмит 2004 , стр. 114–115.
- ^ Леметр, Г. (май 1931 г.), «Начало мира с точки зрения квантовой теории», Nature , 127 (3210): 706, Bibcode : 1931Natur.127..706L , doi : 10.1038/127706b0 , S2CID 4089233 .
- ^ Космология Большого взрыва , НАСА , получено 24 апреля 2024 г.
- ^ Jump up to: а б Ассис, АКТ; и др. (Июль 1995 г.), «История температуры 2,7 К до Пензиаса и Вильсона», Apeiron , 2 (3): 79–87.
- ^ Вудс, В. Дэвид; О'Брайен, Фрэнк (2006), «День 1: Зеленая команда и разделение» , Журнал полетов Аполлона-8 , НАСА, заархивировано из оригинала 23 сентября 2008 г. , получено 29 октября 2008 г. ТАЙМЕТЭГ 003:42:55.
- ^ Пфотцер, Г. (июнь 1972 г.), «История использования воздушных шаров в научных экспериментах», Space Science Reviews , 13 (2): 199–242, Бибкод : 1972SSRv...13..199P , doi : 10.1007/BF00175313 , S2CID 120710485 .
- ^ О'Лири 2009 , стр. 209–224.
- ^ Харрисон 2002 , стр. 60–63.
- ^ Орлов 2001 .
- ^ Hardesty, Eisman & Krushchev 2008 , pp. 89–90.
- ^ Коллинз 2007 , с. 86.
- ^ Харрис 2008 , стр. 7, 68–69.
- ^ Уолл, Майк (12 сентября 2013 г.), «Вояджер-1 покинул Солнечную систему» , Интернет , Space.com, заархивировано из оригинала 14 сентября 2013 г. , получено 13 сентября 2013 г.
- ^ Хьюз, Аманда Джейн; Сольдини, Стефания (26 ноября 2020 г.), Солнечные диски, которые могут питать Землю , BBC , получено 29 мая 2024 г.
- ^ Разани 2012 , стр. 97–99.
- ^ «Космический фонд публикует космический отчет за второй квартал 2023 года, показывающий годовой рост глобальной космической экономики до 546 миллиардов долларов» , Space Foundation , 25 июля 2023 г. , получено 24 апреля 2024 г.
- ^ Биссет, Виктория (04 февраля 2023 г.), «В мире дронов и спутников зачем вообще использовать шпионский воздушный шар?» , Washington Post , получено 24 апреля 2024 г.
- ^ Харрингтон, доктор юридических наук; и др. (12 декабря 2012 г.), «Хаббл» НАСА проводит первую перепись галактик вблизи космического рассвета , НАСА, 12-428, заархивировано из оригинала 22 марта 2015 г.
- ^ Ландграф, М.; и др. (февраль 2001 г.), «IRSI/Дарвин: взгляд сквозь межпланетное пылевое облако», Бюллетень ЕКА , 105 (105): 60–63, arXiv : astro-ph/0103288 , Bibcode : 2001ESABu.105...60L .
- ^ Макконе, Клаудио (август 2001 г.), «Поиск биоастрономических сигналов с обратной стороны Луны», Эренфройнд, П.; Ангерер, О.; Баттрик, Б. (ред.), Экзо-/астробиология. Материалы Первого европейского семинара , вып. 496, Нордвейк: Отдел публикаций ЕКА, стр. 277–280, Бибкод : 2001ESASP.496..277M , ISBN 978-92-9092-806-5 .
- ^ Чепманн, Гленн (22–27 мая 1991 г.), «Космос: идеальное место для производства микрочипов», в Блэкледже, Р.; Рэдфилд, К.; Сейда, С. (ред.), Труды 10-й Международной конференции по космическому развитию (PDF) , Сан-Антонио, Техас, стр. 25–33, заархивировано из оригинала (PDF) 6 июля 2011 г. , получено 1 января 2010 г. -12 .
{{citation}}
: CS1 maint: отсутствует местоположение издателя ( ссылка ) - ^ Форган, Дункан Х.; Элвис, Мартин (октябрь 2011 г.), «Добыча внесолнечных астероидов как судебно-медицинское свидетельство существования внеземного разума», Международный журнал астробиологии , 10 (4): 307–313, arXiv : 1103.5369 , Bibcode : 2011IJAsB..10..307F , doi : 10.1017/S1473550411000127 , S2CID 119111392 .
- ^ Бертон, Родни; и др. (Май 2005 г.), «Бюджетный запуск полезной нагрузки на низкую околоземную орбиту», Journal of Spacecraft and Rockets , 43 (3): 696–698, Бибкод : 2006JSpRo..43..696B , doi : 10.2514/1.16244 .
- ^ Болонкин 2010 , с. хв.
- ^ Кроуфорд, Айова (сентябрь 1990 г.), «Межзвездные путешествия: обзор для астрономов», Ежеквартальный журнал Королевского астрономического общества , 31 : 377–400, Бибкод : 1990QJRAS..31..377C .
- ^ Ю, Синьсянь; и др. (июль 2022 г.), «Краска с улучшенным радиационным охлаждением с пузырьками разбитого стекла» , Renewable Energy , 194 : 129–136, Bibcode : 2022REne..194..129Y , doi : 10.1016/j.renene.2022.05.094 , S2CID 248972097 – через Elsevier Science Direct:
Радиационное охлаждение не потребляет внешнюю энергию, а скорее собирает холод из космоса в качестве нового возобновляемого источника энергии.
- ^ Ма, Хунчен (2021), «Гибкое дневное радиационное охлаждение, улучшенное за счет создания трехфазных композитов с рассеивающими границами раздела между кремнеземными микросферами и иерархическими пористыми покрытиями» , ACS Applied Materials & Interfaces , 13 (16): 19282–19290, arXiv : 2103.03902 , doi : 10.1021/acsami.1c02145 , PMID 33866783 , S2CID 232147880 – через публикации ACS.
Дневное радиационное охлаждение в последнее время привлекло значительное внимание из-за его огромного потенциала пассивного использования холода Вселенной в качестве чистой и возобновляемой энергии.
- ^ Зевенховена, Рон; Фельт, Мартин (июнь 2018 г.), «Радиационное охлаждение через атмосферное окно: третий, менее интрузивный геоинженерный подход» , Energy , 152 : 27, Bibcode : 2018Ene...152...27Z , doi : 10.1016/j.energy .2018.03.084 – через Elsevier Science Direct,
Альтернативным, третьим геоинженерным подходом может быть усиленное охлаждение за счет теплового излучения с поверхности Земли в космос.
- ^ Ван, Тонг; и др. (2021), «Структурный полимер для высокоэффективного пассивного радиационного охлаждения в течение всего дня», Nature Communications , 12 (365): 365, doi : 10.1038/s41467-020-20646-7 , PMC 7809060 , PMID 33446648 ,
Одна возможная альтернатива Подход заключается в пассивном радиационном охлаждении: поверхность Земли, обращенная к небу, самопроизвольно охлаждается, излучая тепло в ультрахолодное космическое пространство через окно прозрачности атмосферы в длинноволновом инфракрасном диапазоне (LWIR) (λ ~ 8–13 мкм).
- ^ Хо, Се Ён; и др. (июнь 2022 г.), «Тепловыделение фотонными структурами: радиационное охлаждение и его потенциал» , Journal of Materials Chemistry C , 10 (27): 9915–9937, doi : 10.1039/D2TC00318J , S2CID 249695930 – через Королевское химическое общество.
Источники
- Барбьери, К. (2006), Основы астрономии , CRC Press, стр. 253, ISBN 978-0-7503-0886-1
- Биллингс, Чарльз Э. (1973), «Барометрическое давление», Паркер, Джеймс Ф.; Уэст, Вита Р. (ред.), Сборник данных по биоастронавтике , том. 3006 (2-е изд.), Бибкод : 1973NASSP3006.....P , NASA SP-3006.
- Болонкин, Александр (2010), Неракетный космический запуск и полет , Elsevier, ISBN 978-0-08-045875-5
- Боровиц, Сидней; Бейзер, Артур (1971), Основы физики: текст для студентов, изучающих естествознание и технику , Серия Аддисона-Уэсли по физике (2-е изд.), Издательство Addison-Wesley Publishing Company. Примечание: в этом источнике указано значение 2,7 × 10. 25 молекул на кубический метр.
- Каджори, Флориан (1917), История физики в ее элементарных разделах: включая эволюцию физических лабораторий , Нью-Йорк: The Macmillan Company.
- Чемберлен, Джозеф Вайан (1978), Теория планетарных атмосфер: введение в их физику и химию , Международная серия по геофизике, том. 22, Академическое издательство, ISBN 978-0-12-167250-8
- Коллинз, Мартин Дж. (2007), «Макет Маринера-2» , После Спутника: 50 лет космической эры , HarperCollins, ISBN 978-0-06-089781-9
- Дэвис, PCW (1977), Физика асимметрии времени , Калифорнийский университет Press, ISBN 978-0-520-03247-7 Примечание: световой год составляет около 10. 13 км.
- Дэвис, Джеффри Р.; Джонсон, Роберт; Степанек, январь (2008 г.), Основы аэрокосмической медицины (4-е изд.), Липпинкотт Уильямс и Уилкинс, ISBN 978-0-7817-7466-6
- Диксон, Пол (2010), Словарь космической эры , Новая серия по истории НАСА, JHU Press, ISBN 978-0-8018-9504-3 .
- Эккерт, Майкл (2006), Рассвет гидродинамики: дисциплина между наукой и технологиями , Wiley-VCH, ISBN 978-3-527-40513-8
- Эллери, Алекс (2000), Введение в космическую робототехнику , книги Springer-Praxis по астрономии и космическим наукам, Springer, ISBN 978-1-85233-164-1
- Фихтнер, Хорст; Лю, В. Уильям (2011), «Достижения в скоординированной науке о системе Солнце-Земля посредством междисциплинарных инициатив и международных программ», написано в Шопроне, Венгрия, в Мираллесе, член парламента; Алмейда, Х. Санчес (ред.), Солнце, солнечный ветер и гелиосфера , специальная книжная серия IAGA Sopron, том. 4, Берлин: Springer, стр. 341–345, Bibcode : 2011sswh.book..341F , doi : 10.1007/978-90-481-9787-3_24 , ISBN 978-90-481-9786-6
- Фридман, Роджер А.; Кауфманн, Уильям Дж. (2005), Вселенная (7-е изд.), Нью-Йорк: WH Freeman and Company, ISBN 978-0-7167-8694-8
- Фриш, Присцилла К.; Мюллер, Ганс Р.; Занк, Гэри П.; Лопате, К. (6–9 мая 2002 г.), «Галактическая среда Солнца и звезд: межзвездный и межпланетный материал», в Ливио, Марио; Рид, И. Нил; Спаркс, Уильям Б. (ред.), Астрофизика жизни. Труды симпозиума Научного института космического телескопа , серия симпозиумов Научного института космического телескопа, том. 16, Балтимор, Мэриленд, США: Издательство Кембриджского университета, стр. 16. 21, Бибкод : 2005asli.symp...21F , ISBN 978-0-521-82490-3
- Гатти, Хилари (2002), Джордано Бруно и наука эпохи Возрождения , издательство Корнельского университета, ISBN 978-0-8014-8785-9
- Генц, Хеннинг (2001), Ничто: наука о пустом пространстве , Da Capo Press, ISBN 978-0-7382-0610-3
- Гош, С.Н. (2000), Атмосферная наука и окружающая среда , Allied Publishers, ISBN 978-81-7764-043-4
- Гудман, Джон М. (2006), Космическая погода и телекоммуникации , Springer Science & Business Media, ISBN 978-0-387-23671-1
- Грант, Эдвард (1981), Много шума из ничего: теории пространства и вакуума от средневековья до научной революции , Кембриджская серия по истории науки, Cambridge University Press, ISBN 978-0-521-22983-8
- Хардести, Фон; Эйсман, Джин; Хрущев, Сергей (2008), Эпическое соперничество: внутренняя история советской и американской космической гонки , National Geographic Books, стр. 89–90, ISBN 978-1-4262-0321-3
- Харихаран, П. (2003), Оптическая интерферометрия (2-е изд.), Academic Press, ISBN 978-0-12-311630-7
- Харрис, Филип Роберт (2008), Космическое предприятие: жизнь и работа за пределами мира в 21 веке , Springer Praxis Books / Space Exploration Series, Springer, ISBN 978-0-387-77639-2
- Харрисон, Альберт А. (2002), Космические путешествия: человеческое измерение , University of California Press, ISBN 978-0-520-23677-6
- Холтон, Джеральд Джеймс; Браш, Стивен Г. (2001), «Физика, человеческое приключение: от Коперника до Эйнштейна и далее» , Physics Today , 54 (10) (3-е изд.), Rutgers University Press: 69, Bibcode : 2001PhT.... 54j..69H , номер doi : 10.1063/1.1420555 , ISBN 978-0-8135-2908-0
- Канас, Ник; Манзи, Дитрих (2008), «Основные проблемы адаптации человека к космическим полетам», Космическая психология и психиатрия , Библиотека космических технологий, том. 22, стр. 15–48, Бибкод : 2008spp..book.....K , doi : 10.1007/978-1-4020-6770-9_2 , ISBN 978-1-4020-6769-3 .
- Келли, Сюзанна (1965), Муно Уильяма Гилберта , Амстердам: Menno Hertzberger & Co.
- Коскинен, Ханну (2010), Физика космических штормов: от поверхности Солнца до Земли , Серия наук об окружающей среде, Springer, ISBN 978-3-642-00310-3
- Ланг, Кеннет Р. (1999), Астрофизические формулы: радиация, газовые процессы и астрофизика высоких энергий , Библиотека астрономии и астрофизики (3-е изд.), Биркхойзер, ISBN 978-3-540-29692-8
- Лиддл, Эндрю (2015), Введение в современную космологию , Джон Уайли, ISBN 978-1-118-50214-3
- Лиде, Дэвид Р. (1993), справочник CRC по химии и физике (74-е изд.), CRC Press, ISBN 978-0-8493-0595-5
- Маор, Эли (1991), До бесконечности и за ее пределами: культурная история бесконечности , Принстонские книги в мягкой обложке, ISBN 978-0-691-02511-7
- Мендилло, Майкл (8–10 ноября 2000 г.), «Атмосфера Луны», в Барбьери, Чезаре; Рампацци, Франческа (ред.), «Отношения Земли и Луны» , Падуя, Италия, в Галилейской академии наук Di Scienze Lettere Ed Arti: Springer, стр. 275, ISBN 978-0-7923-7089-5
- Нидэм, Джозеф; Ронан, Колин (1985), Краткий обзор науки и цивилизации в Китае , том. 2, Издательство Кембриджского университета, ISBN 978-0-521-31536-4
- О'Лири, Бет Лаура (2009), Дэррин, Энн Гаррисон (редактор), Справочник по космической инженерии, археологии и наследию , Достижения в области инженерии, CRC Press, ISBN 978-1-4200-8431-3
- Оленик, Ричард П.; Апостол, Том М.; Гудстейн, Дэвид Л. (1986), За пределами механической вселенной: от электричества к современной физике , Cambridge University Press, ISBN 978-0-521-30430-6
- Орлофф, Ричард В. (2001), Аполлон в числах: статистический справочник , НАСА, ISBN 978-0-16-050631-4 , получено 28 января 2008 г.
- Папаяннис, Майкл Д. (1972), Космическая физика и космическая астрономия , Тейлор и Фрэнсис, ISBN 978-0-677-04000-4
- Пиантадоси, Клод А. (2003), Биология выживания человека: жизнь и смерть в экстремальных условиях , Oxford University Press, ISBN 978-0-19-974807-5
- Портер, Рой; Парк, Кэтрин; Дастон, Лоррейн (2006), «Кембриджская история науки: ранняя современная наука», Early Modern Science , vol. 3, Издательство Кембриджского университета, с. 27, ISBN 978-0-521-57244-6
- Приальник, Дина (2000), Введение в теорию звездной структуры и эволюции , Cambridge University Press, ISBN 978-0-521-65937-6 , получено 26 марта 2015 г.
- Раухфусс, Хорст (2008), Химическая эволюция и происхождение жизни , перевод Т. Н. Митчелла, Springer, ISBN 978-3-540-78822-5
- Разани, Мохаммад (2012), Информационные коммуникации и космические технологии , CRC Press, ISBN 978-1-4398-4163-1
- Шрийвер, Каролус Дж.; Сиско, Джордж Л. (2010), Гелиофизика: развитие солнечной активности и климата космоса и Земли , Cambridge University Press, ISBN 978-0-521-11294-9
- Силк, Джозеф (2000), Большой взрыв (3-е изд.), Macmillan, ISBN 978-0-8050-7256-3
- Спарк, Линда С .; Галлахер, Джон С. (2007), Галактики во Вселенной: Введение (2-е изд.), Cambridge University Press, Bibcode : 2007gitu.book.....S , ISBN 978-0-521-85593-8
- Спитцер, Лайман младший (1978), Физические процессы в межзвездной среде , Библиотека классики Wiley, ISBN 978-0-471-29335-4
- Стюарт Уортли, Эммелин Шарлотта Э. (1841), Московская дева, стихотворение , Как и Парсонс, Песнь X, раздел XIV, строки 14–15,
Вся Земля в безумии сдвинулась, - свергнута, / В космическое пространство - везут – ломают – отменяют!
- Тассул, Жан Луи; Тассул, Моник (2004), Краткая история солнечной и звездной физики , Princeton University Press, ISBN 978-0-691-11711-9
- Тагард, Пол (1992), Концептуальные революции , Princeton University Press, ISBN 978-0-691-02490-5
- Тайсон, Нил де Грасс ; Голдсмит, Дональд (2004), Происхождение: четырнадцать миллиардов лет космической эволюции , WW Norton & Company, стр. 114–115, ISBN 978-0-393-05992-2
- Соединенные Штаты (2016 г.), Приложение V к Кодексу США 2006 г. , Вашингтон, округ Колумбия: Типография правительства США, стр. 536
- Фон Гумбольдт, Александр (1845), Космос: обзор общей физической истории Вселенной , Нью-Йорк: Harper & Brothers Publishers, hdl : 2027/nyp.33433071596906
- Уэбб, Стивен (1999), Измерение Вселенной: лестница космологических расстояний , Springer, ISBN 978-1-85233-106-1
- Уильямсон, Марк (2006), Технологии космических кораблей: первые годы , серия «История и управление технологиями», том. 33, ИЭПП, ISBN 978-0-86341-553-1
- Вонг, Уилсон; Фергюссон, Джеймс Гордон (2010), Военно-космическая держава: путеводитель по проблемам , Современные военные, стратегические вопросы и проблемы безопасности, ABC-CLIO, ISBN 978-0-313-35680-3
- Вшолек, Богдан (2013), «Есть ли материя в пустотах?» , в Арпе, ХК; Ключи, CR; Рудницки, К. (ред.), Прогресс в новых космологиях: за пределами Большого взрыва , Springer Science & Business Media, ISBN 978-1-4899-1225-1