Jump to content

Квантовая механика

Это хорошая статья. Нажмите здесь для получения дополнительной информации.
Страница полузащищенная
(Перенаправлено с квантовых систем )

Волновые функции в электрона атоме водорода на разных энергетических уровнях. Квантовая механика не может предсказать точное местоположение частицы в пространстве, а только вероятность ее обнаружения в разных местах. [ 1 ] Более яркие области представляют более высокую вероятность обнаружения электрона.

Квантовая механика — фундаментальная теория , описывающая поведение природы на уровне атомов и ниже . [ 2 ] : 1.1  Это основа всей квантовой физики , которая включает в себя квантовую химию , квантовую теорию поля , квантовую технологию и квантовую информатику .

Квантовая механика может описать многие системы, которые не может описать классическая физика . Классическая физика может описать многие аспекты природы в обычном ( макроскопическом и (оптически) микроскопическом ) масштабе, но ее недостаточно для описания их в очень малых субмикроскопических (атомных и субатомных ) масштабах. Большинство теорий классической физики могут быть выведены из квантовой механики как приближения, действующего в больших (макроскопических/микроскопических) масштабах. [ 3 ]

Квантовые системы имеют связанные состояния, которые квантуются до дискретных значений энергии , , импульса и других величин, в отличие от классических систем , углового момента где эти величины можно измерять непрерывно. Измерения квантовых систем показывают характеристики как частиц , так и волн ( частично-волновой дуализм ), и существуют пределы того, насколько точно значение физической величины можно предсказать до ее измерения при полном наборе начальных условий ( принцип неопределенности). ).

Quantum mechanics arose gradually from theories to explain observations that could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper, which explained the photoelectric effect. These early attempts to understand microscopic phenomena, now known as the "old quantum theory", led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical entity called the wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield.

Overview and fundamental concepts

Quantum mechanics allows the calculation of properties and behaviour of physical systems. It is typically applied to microscopic systems: molecules, atoms and sub-atomic particles. It has been demonstrated to hold for complex molecules with thousands of atoms,[4] but its application to human beings raises philosophical problems, such as Wigner's friend, and its application to the universe as a whole remains speculative.[5] Predictions of quantum mechanics have been verified experimentally to an extremely high degree of accuracy. For example, the refinement of quantum mechanics for the interaction of light and matter, known as quantum electrodynamics (QED), has been shown to agree with experiment to within 1 part in 1012 when predicting the magnetic properties of an electron.[6]

A fundamental feature of the theory is that it usually cannot predict with certainty what will happen, but only give probabilities. Mathematically, a probability is found by taking the square of the absolute value of a complex number, known as a probability amplitude. This is known as the Born rule, named after physicist Max Born. For example, a quantum particle like an electron can be described by a wave function, which associates to each point in space a probability amplitude. Applying the Born rule to these amplitudes gives a probability density function for the position that the electron will be found to have when an experiment is performed to measure it. This is the best the theory can do; it cannot say for certain where the electron will be found. The Schrödinger equation relates the collection of probability amplitudes that pertain to one moment of time to the collection of probability amplitudes that pertain to another.[7]: 67–87 

One consequence of the mathematical rules of quantum mechanics is a tradeoff in predictability between different measurable quantities. The most famous form of this uncertainty principle says that no matter how a quantum particle is prepared or how carefully experiments upon it are arranged, it is impossible to have a precise prediction for a measurement of its position and also at the same time for a measurement of its momentum.[7]: 427–435 

Another consequence of the mathematical rules of quantum mechanics is the phenomenon of quantum interference, which is often illustrated with the double-slit experiment. In the basic version of this experiment, a coherent light source, such as a laser beam, illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate.[8]: 102–111 [2]: 1.1–1.8  The wave nature of light causes the light waves passing through the two slits to interfere, producing bright and dark bands on the screen – a result that would not be expected if light consisted of classical particles.[8] However, the light is always found to be absorbed at the screen at discrete points, as individual particles rather than waves; the interference pattern appears via the varying density of these particle hits on the screen. Furthermore, versions of the experiment that include detectors at the slits find that each detected photon passes through one slit (as would a classical particle), and not through both slits (as would a wave).[8]: 109 [9][10] However, such experiments demonstrate that particles do not form the interference pattern if one detects which slit they pass through. This behavior is known as wave–particle duality. In addition to light, electrons, atoms, and molecules are all found to exhibit the same dual behavior when fired towards a double slit.[2]

Another non-classical phenomenon predicted by quantum mechanics is quantum tunnelling: a particle that goes up against a potential barrier can cross it, even if its kinetic energy is smaller than the maximum of the potential.[11] In classical mechanics this particle would be trapped. Quantum tunnelling has several important consequences, enabling radioactive decay, nuclear fusion in stars, and applications such as scanning tunnelling microscopy, tunnel diode and tunnel field-effect transistor.[12][13]

When quantum systems interact, the result can be the creation of quantum entanglement: their properties become so intertwined that a description of the whole solely in terms of the individual parts is no longer possible. Erwin Schrödinger called entanglement "...the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought".[14] Quantum entanglement enables quantum computing and is part of quantum communication protocols, such as quantum key distribution and superdense coding.[15] Contrary to popular misconception, entanglement does not allow sending signals faster than light, as demonstrated by the no-communication theorem.[15]

Another possibility opened by entanglement is testing for "hidden variables", hypothetical properties more fundamental than the quantities addressed in quantum theory itself, knowledge of which would allow more exact predictions than quantum theory can provide. A collection of results, most significantly Bell's theorem, have demonstrated that broad classes of such hidden-variable theories are in fact incompatible with quantum physics. According to Bell's theorem, if nature actually operates in accord with any theory of local hidden variables, then the results of a Bell test will be constrained in a particular, quantifiable way. Many Bell tests have been performed and they have shown results incompatible with the constraints imposed by local hidden variables.[16][17]

It is not possible to present these concepts in more than a superficial way without introducing the actual mathematics involved; understanding quantum mechanics requires not only manipulating complex numbers, but also linear algebra, differential equations, group theory, and other more advanced subjects.[18][19] Accordingly, this article will present a mathematical formulation of quantum mechanics and survey its application to some useful and oft-studied examples.

Mathematical formulation

In the mathematically rigorous formulation of quantum mechanics, the state of a quantum mechanical system is a vector belonging to a (separable) complex Hilbert space . This vector is postulated to be normalized under the Hilbert space inner product, that is, it obeys , and it is well-defined up to a complex number of modulus 1 (the global phase), that is, and represent the same physical system. In other words, the possible states are points in the projective space of a Hilbert space, usually called the complex projective space. The exact nature of this Hilbert space is dependent on the system – for example, for describing position and momentum the Hilbert space is the space of complex square-integrable functions , while the Hilbert space for the spin of a single proton is simply the space of two-dimensional complex vectors with the usual inner product.

Physical quantities of interest – position, momentum, energy, spin – are represented by observables, which are Hermitian (more precisely, self-adjoint) linear operators acting on the Hilbert space. A quantum state can be an eigenvector of an observable, in which case it is called an eigenstate, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. More generally, a quantum state will be a linear combination of the eigenstates, known as a quantum superposition. When an observable is measured, the result will be one of its eigenvalues with probability given by the Born rule: in the simplest case the eigenvalue is non-degenerate and the probability is given by , where is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by , where is the projector onto its associated eigenspace. In the continuous case, these formulas give instead the probability density.

After the measurement, if result was obtained, the quantum state is postulated to collapse to , in the non-degenerate case, or to , in the general case. The probabilistic nature of quantum mechanics thus stems from the act of measurement. This is one of the most difficult aspects of quantum systems to understand. It was the central topic in the famous Bohr–Einstein debates, in which the two scientists attempted to clarify these fundamental principles by way of thought experiments. In the decades after the formulation of quantum mechanics, the question of what constitutes a "measurement" has been extensively studied. Newer interpretations of quantum mechanics have been formulated that do away with the concept of "wave function collapse" (see, for example, the many-worlds interpretation). The basic idea is that when a quantum system interacts with a measuring apparatus, their respective wave functions become entangled so that the original quantum system ceases to exist as an independent entity (see measurement in quantum mechanics[20]).

Time evolution of a quantum state

The time evolution of a quantum state is described by the Schrödinger equation:

Here denotes the Hamiltonian, the observable corresponding to the total energy of the system, and is the reduced Planck constant. The constant is introduced so that the Hamiltonian is reduced to the classical Hamiltonian in cases where the quantum system can be approximated by a classical system; the ability to make such an approximation in certain limits is called the correspondence principle.

The solution of this differential equation is given by

The operator is known as the time-evolution operator, and has the crucial property that it is unitary. This time evolution is deterministic in the sense that – given an initial quantum state – it makes a definite prediction of what the quantum state will be at any later time.[21]

Fig. 1: Probability densities corresponding to the wave functions of an electron in a hydrogen atom possessing definite energy levels (increasing from the top of the image to the bottom: n = 1, 2, 3, ...) and angular momenta (increasing across from left to right: s, p, d, ...). Denser areas correspond to higher probability density in a position measurement. Such wave functions are directly comparable to Chladni's figures of acoustic modes of vibration in classical physics and are modes of oscillation as well, possessing a sharp energy and thus, a definite frequency. The angular momentum and energy are quantized and take only discrete values like those shown. (As is the case for resonant frequencies in acoustics.)

Some wave functions produce probability distributions that are independent of time, such as eigenstates of the Hamiltonian.[7]: 133–137  Many systems that are treated dynamically in classical mechanics are described by such "static" wave functions. For example, a single electron in an unexcited atom is pictured classically as a particle moving in a circular trajectory around the atomic nucleus, whereas in quantum mechanics, it is described by a static wave function surrounding the nucleus. For example, the electron wave function for an unexcited hydrogen atom is a spherically symmetric function known as an s orbital (Fig. 1).

Analytic solutions of the Schrödinger equation are known for very few relatively simple model Hamiltonians including the quantum harmonic oscillator, the particle in a box, the dihydrogen cation, and the hydrogen atom. Even the helium atom – which contains just two electrons – has defied all attempts at a fully analytic treatment, admitting no solution in closed form.[22][23][24]

However, there are techniques for finding approximate solutions. One method, called perturbation theory, uses the analytic result for a simple quantum mechanical model to create a result for a related but more complicated model by (for example) the addition of a weak potential energy.[7]: 793  Another approximation method applies to systems for which quantum mechanics produces only small deviations from classical behavior. These deviations can then be computed based on the classical motion.[7]: 849 

Uncertainty principle

One consequence of the basic quantum formalism is the uncertainty principle. In its most familiar form, this states that no preparation of a quantum particle can imply simultaneously precise predictions both for a measurement of its position and for a measurement of its momentum.[25][26] Both position and momentum are observables, meaning that they are represented by Hermitian operators. The position operator and momentum operator do not commute, but rather satisfy the canonical commutation relation:

Given a quantum state, the Born rule lets us compute expectation values for both and , and moreover for powers of them. Defining the uncertainty for an observable by a standard deviation, we have

and likewise for the momentum:

The uncertainty principle states that

Either standard deviation can in principle be made arbitrarily small, but not both simultaneously.[27] This inequality generalizes to arbitrary pairs of self-adjoint operators and . The commutator of these two operators is

and this provides the lower bound on the product of standard deviations:

Another consequence of the canonical commutation relation is that the position and momentum operators are Fourier transforms of each other, so that a description of an object according to its momentum is the Fourier transform of its description according to its position. The fact that dependence in momentum is the Fourier transform of the dependence in position means that the momentum operator is equivalent (up to an factor) to taking the derivative according to the position, since in Fourier analysis differentiation corresponds to multiplication in the dual space. This is why in quantum equations in position space, the momentum is replaced by , and in particular in the non-relativistic Schrödinger equation in position space the momentum-squared term is replaced with a Laplacian times .[25]

Composite systems and entanglement

When two different quantum systems are considered together, the Hilbert space of the combined system is the tensor product of the Hilbert spaces of the two components. For example, let A and B be two quantum systems, with Hilbert spaces and , respectively. The Hilbert space of the composite system is then

If the state for the first system is the vector and the state for the second system is , then the state of the composite system is

Not all states in the joint Hilbert space can be written in this form, however, because the superposition principle implies that linear combinations of these "separable" or "product states" are also valid. For example, if and are both possible states for system , and likewise and are both possible states for system , then

is a valid joint state that is not separable. States that are not separable are called entangled.[28][29]

If the state for a composite system is entangled, it is impossible to describe either component system A or system B by a state vector. One can instead define reduced density matrices that describe the statistics that can be obtained by making measurements on either component system alone. This necessarily causes a loss of information, though: knowing the reduced density matrices of the individual systems is not enough to reconstruct the state of the composite system.[28][29] Just as density matrices specify the state of a subsystem of a larger system, analogously, positive operator-valued measures (POVMs) describe the effect on a subsystem of a measurement performed on a larger system. POVMs are extensively used in quantum information theory.[28][30]

As described above, entanglement is a key feature of models of measurement processes in which an apparatus becomes entangled with the system being measured. Systems interacting with the environment in which they reside generally become entangled with that environment, a phenomenon known as quantum decoherence. This can explain why, in practice, quantum effects are difficult to observe in systems larger than microscopic.[31]

Equivalence between formulations

There are many mathematically equivalent formulations of quantum mechanics. One of the oldest and most common is the "transformation theory" proposed by Paul Dirac, which unifies and generalizes the two earliest formulations of quantum mechanics – matrix mechanics (invented by Werner Heisenberg) and wave mechanics (invented by Erwin Schrödinger).[32] An alternative formulation of quantum mechanics is Feynman's path integral formulation, in which a quantum-mechanical amplitude is considered as a sum over all possible classical and non-classical paths between the initial and final states. This is the quantum-mechanical counterpart of the action principle in classical mechanics.[33]

Symmetries and conservation laws

The Hamiltonian is known as the generator of time evolution, since it defines a unitary time-evolution operator for each value of . From this relation between and , it follows that any observable that commutes with will be conserved: its expectation value will not change over time.[7]: 471  This statement generalizes, as mathematically, any Hermitian operator can generate a family of unitary operators parameterized by a variable . Under the evolution generated by , any observable that commutes with will be conserved. Moreover, if is conserved by evolution under , then is conserved under the evolution generated by . This implies a quantum version of the result proven by Emmy Noether in classical (Lagrangian) mechanics: for every differentiable symmetry of a Hamiltonian, there exists a corresponding conservation law.

Examples

Free particle

Position space probability density of a Gaussian wave packet moving in one dimension in free space

The simplest example of a quantum system with a position degree of freedom is a free particle in a single spatial dimension. A free particle is one which is not subject to external influences, so that its Hamiltonian consists only of its kinetic energy:

The general solution of the Schrödinger equation is given by

which is a superposition of all possible plane waves , which are eigenstates of the momentum operator with momentum . The coefficients of the superposition are , which is the Fourier transform of the initial quantum state .

It is not possible for the solution to be a single momentum eigenstate, or a single position eigenstate, as these are not normalizable quantum states.[note 1] Instead, we can consider a Gaussian wave packet:

which has Fourier transform, and therefore momentum distribution

We see that as we make smaller the spread in position gets smaller, but the spread in momentum gets larger. Conversely, by making larger we make the spread in momentum smaller, but the spread in position gets larger. This illustrates the uncertainty principle.

As we let the Gaussian wave packet evolve in time, we see that its center moves through space at a constant velocity (like a classical particle with no forces acting on it). However, the wave packet will also spread out as time progresses, which means that the position becomes more and more uncertain. The uncertainty in momentum, however, stays constant.[34]

Particle in a box

1-dimensional potential energy box (or infinite potential well)

The particle in a one-dimensional potential energy box is the most mathematically simple example where restraints lead to the quantization of energy levels. The box is defined as having zero potential energy everywhere inside a certain region, and therefore infinite potential energy everywhere outside that region.[25]: 77–78  For the one-dimensional case in the direction, the time-independent Schrödinger equation may be written

With the differential operator defined by

the previous equation is evocative of the classic kinetic energy analogue,

with state in this case having energy coincident with the kinetic energy of the particle.

The general solutions of the Schrödinger equation for the particle in a box are

or, from Euler's formula,

The infinite potential walls of the box determine the values of and at and where must be zero. Thus, at ,

and . At ,

in which cannot be zero as this would conflict with the postulate that has norm 1. Therefore, since , must be an integer multiple of ,

This constraint on implies a constraint on the energy levels, yielding

A finite potential well is the generalization of the infinite potential well problem to potential wells having finite depth. The finite potential well problem is mathematically more complicated than the infinite particle-in-a-box problem as the wave function is not pinned to zero at the walls of the well. Instead, the wave function must satisfy more complicated mathematical boundary conditions as it is nonzero in regions outside the well. Another related problem is that of the rectangular potential barrier, which furnishes a model for the quantum tunneling effect that plays an important role in the performance of modern technologies such as flash memory and scanning tunneling microscopy.

Harmonic oscillator

Некоторые траектории гармонического осциллятора (т.е. шарика, прикрепленного к пружине ) в классической механике (АВ) и квантовой механике (КГ). В квантовой механике положение шара изображается волной ( называемой волновой функцией), действительная часть которой показана синим цветом, а мнимая часть — красным. Некоторые траектории (например, C, D, E и F) представляют собой стоячие волны (или « стационарные состояния »). Каждая частота стоячей волны пропорциональна возможному уровню энергии осциллятора. Этого «квантования энергии» не происходит в классической физике, где осциллятор может иметь любую энергию.

As in the classical case, the potential for the quantum harmonic oscillator is given by[7]: 234 

This problem can either be treated by directly solving the Schrödinger equation, which is not trivial, or by using the more elegant "ladder method" first proposed by Paul Dirac. The eigenstates are given by

где H n полиномы Эрмита

и соответствующие энергетические уровни равны

Это еще один пример, иллюстрирующий дискретизацию энергии для связанных состояний .

Интерферометр Маха – Цендера

Схема интерферометра Маха – Цендера

Интерферометр Маха – Цендера (MZI) иллюстрирует концепции суперпозиции и интерференции с помощью линейной алгебры в размерности 2, а не дифференциальных уравнений. Его можно рассматривать как упрощенную версию эксперимента с двумя щелями, но он представляет интерес сам по себе, например, для квантового ластика с отложенным выбором , для испытания бомбы Элицура-Вайдмана и для исследований квантовой запутанности. [ 35 ] [ 36 ]

Мы можем смоделировать фотон, проходящий через интерферометр, учитывая, что в каждой точке он может находиться в суперпозиции только двух путей: «нижнего» пути, который начинается слева, проходит прямо через оба светоделителя и заканчивается вверху, а «верхний» путь, начинающийся снизу, проходит прямо через оба светоделителя и заканчивается справа. Таким образом, квантовое состояние фотона представляет собой вектор это суперпозиция «нижнего» пути и «верхний» путь , то есть, для сложных . Чтобы соблюдать постулат о том, что мы требуем этого .

Оба светоделителя моделируются как унитарная матрица. , что означает, что когда фотон встретит светоделитель, он либо останется на том же пути с амплитудой вероятности , или отразиться на другой путь с амплитудой вероятности . Фазовращатель на плече моделируется как унитарная матрица , что означает, что если фотон находится на «верхнем» пути, он приобретет относительную фазу , и он останется неизменным, если находится на нижнем пути.

Фотон, попавший в интерферометр слева, будет обработан светоделителем. , фазовращатель и еще один светоделитель , и так попадаем в состояние

а вероятности того, что он будет обнаружен справа или вверху, равны соответственно

Поэтому можно использовать интерферометр Маха – Цендера для оценки фазового сдвига путем оценки этих вероятностей.

Интересно подумать, что произошло бы, если бы фотон определенно находился либо на «нижнем», либо на «верхнем» пути между светоделителями. Этого можно добиться, заблокировав один из путей или, что то же самое, удалив первый светоделитель (и подавая фотон слева или снизу, по желанию). В обоих случаях помех между путями больше не будет, а вероятности определяются выражением , независимо от фазы . Из этого мы можем заключить, что фотон не выбирает тот или иной путь после первого светоделителя, а скорее находится в настоящей квантовой суперпозиции двух путей. [ 37 ]

Приложения

Квантовая механика добилась огромного успеха в объяснении многих особенностей нашей Вселенной, включая мелкомасштабные и дискретные величины и взаимодействия, которые не могут быть объяснены классическими методами . [ примечание 2 ] Квантовая механика часто является единственной теорией, которая может раскрыть индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны , нейтроны , фотоны и другие). Физика твердого тела и материаловедение зависят от квантовой механики. [ 38 ]

Во многих аспектах современные технологии работают в масштабах, где квантовые эффекты значительны. Важные приложения квантовой теории включают квантовую химию , квантовую оптику , квантовые вычисления , сверхпроводящие магниты , светодиоды , оптический усилитель и лазер, транзисторы и полупроводники , такие как микропроцессоры , медицинские и исследовательские изображения, такие как магнитно-резонансная томография и электронная томография. микроскопия . [ 39 ] Объяснения многих биологических и физических явлений основаны на природе химической связи, в первую очередь на макромолекулярной ДНК .

Связь с другими научными теориями

Классическая механика

Правила квантовой механики утверждают, что пространство состояний системы является гильбертовым пространством и что наблюдаемые системы являются эрмитовыми операторами, действующими на векторы в этом пространстве, хотя они не говорят нам, какое гильбертово пространство или какие операторы. Их можно выбрать соответствующим образом, чтобы получить количественное описание квантовой системы, что является необходимым шагом в физических предсказаниях. Важным руководством для принятия такого выбора является принцип соответствия , эвристика, которая утверждает, что предсказания квантовой механики сводятся к предсказаниям классической механики в режиме больших квантовых чисел . [ 40 ] Можно также начать с установленной классической модели конкретной системы, а затем попытаться угадать лежащую в ее основе квантовую модель, которая приведет к появлению классической модели в пределе соответствия. Этот подход известен как квантование . [ 41 ] : 299  [ 42 ]

Когда квантовая механика была первоначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, хорошо известная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора . [ 7 ] : 234 

Сложности возникают с хаотическими системами , которые не имеют хороших квантовых чисел, и квантовый хаос изучает взаимосвязь между классическими и квантовыми описаниями в этих системах. [ 41 ] : 353 

Квантовая декогеренция — это механизм, посредством которого квантовые системы теряют когерентность и, таким образом, становятся неспособными проявлять многие типично квантовые эффекты: квантовые суперпозиции становятся просто вероятностными смесями, а квантовая запутанность становится просто классическими корреляциями. [ 7 ] : 687–730  Квантовая когерентность обычно не очевидна в макроскопических масштабах, хотя при температурах, приближающихся к абсолютному нулю, квантовое поведение может проявляться макроскопически. [ примечание 3 ]

Многие макроскопические свойства классической системы являются прямым следствием квантового поведения ее частей. Например, стабильность объемного вещества (состоящего из атомов и молекул , которые быстро разрушались бы под действием одних лишь электрических сил), жесткость твердых тел, а также механические, термические, химические, оптические и магнитные свойства вещества — все это результаты взаимодействия электрические заряды по правилам квантовой механики. [ 43 ]

Специальная теория относительности и электродинамика

Ранние попытки объединить квантовую механику со специальной теорией относительности включали замену уравнения Шредингера ковариантным уравнением, таким как уравнение Клейна-Гордона или уравнение Дирака . Хотя эти теории успешно объяснили многие экспериментальные результаты, у них были определенные неудовлетворительные качества, проистекающие из пренебрежения релятивистским процессом рождения и уничтожения частиц. Полностью релятивистская квантовая теория потребовала развития квантовой теории поля, которая применяет квантование к полю (а не к фиксированному набору частиц). Первая полная квантовая теория поля, квантовая электродинамика , обеспечивает полностью квантовое описание электромагнитного взаимодействия . Квантовая электродинамика, наряду с общей теорией относительности , является одной из самых точных физических теорий, когда-либо созданных. [ 44 ] [ 45 ]

Полный аппарат квантовой теории поля часто не нужен для описания электродинамических систем. Более простой подход, который использовался с момента зарождения квантовой механики, состоит в том, чтобы рассматривать заряженные частицы как квантово-механические объекты, на которые действует классическое электромагнитное поле . Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода с помощью классической Кулоновский потенциал . [ 7 ] : 285  Аналогично, в эксперименте Штерна-Герлаха заряженная частица моделируется как квантовая система, а фоновое магнитное поле описывается классически. [ 41 ] : 26  Этот «полуклассический» подход терпит неудачу, если квантовые флуктуации в электромагнитном поле играют важную роль, например, при излучении фотонов заряженными частицами .

поля квантовые теории для сильного и слабого ядерного взаимодействия Также были разработаны . Квантовая теория поля сильного ядерного взаимодействия называется квантовой хромодинамикой и описывает взаимодействия субъядерных частиц, таких как кварки и глюоны . Слабое ядерное взаимодействие и электромагнитное взаимодействие были объединены в их квантованных формах в единую квантовую теорию поля (известную как электрослабая теория ) физиками Абдусом Саламом , Шелдоном Глэшоу и Стивеном Вайнбергом . [ 46 ]

Связь с общей теорией относительности

Несмотря на то, что предсказания как квантовой теории, так и общей теории относительности были подтверждены строгими и повторяющимися эмпирическими данными , их абстрактные формализмы противоречат друг другу, и их оказалось чрезвычайно трудно объединить в одну последовательную, связную модель. Во многих областях физики элементарных частиц гравитация незначительна, поэтому объединение общей теории относительности и квантовой механики не является актуальной проблемой в этих конкретных приложениях. Однако отсутствие правильной теории квантовой гравитации является важной проблемой физической космологии и поиска физиками элегантной « Теории Всего » (ТОВ). Следовательно, разрешение несоответствий между обеими теориями было главной целью физики 20-го и 21-го веков. Этот ОО объединит не только модели субатомной физики, но и выведет четыре фундаментальные силы природы из одной силы или явления. [ 47 ]

Одним из предложений по этому поводу является теория струн , которая утверждает, что точечные частицы заменяются физики элементарных частиц одномерными объектами, называемыми струнами . Теория струн описывает, как эти струны распространяются в пространстве и взаимодействуют друг с другом. На масштабах расстояний, превышающих масштаб струны, струна выглядит как обычная частица, чья масса , заряд и другие свойства определяются колебательным состоянием струны. В теории струн одно из многих колебательных состояний струны соответствует гравитону квантовомеханической частице, несущей гравитационную силу. [ 48 ] [ 49 ]

Другая популярная теория — петлевая квантовая гравитация (ПКГ), которая описывает квантовые свойства гравитации и, таким образом, является теорией квантового пространства-времени . LQG — это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Эта теория описывает пространство как чрезвычайно тонкую ткань, «сотканную» из конечных петель, называемых спиновыми сетями . Эволюция спиновой сети с течением времени называется спиновой пеной . Характерным масштабом длины спиновой пены является планковская длина , примерно 1,616×10. −35 м, поэтому длины короче планковской длины не имеют физического смысла в LQG. [ 50 ]

Философские последствия

Нерешенная задача по физике :
Существует ли предпочтительная интерпретация квантовой механики? Как квантовое описание реальности, включающее такие элементы, как « суперпозиция состояний» и « коллапс волновой функции », порождает реальность, которую мы воспринимаем?

С момента своего создания многие нелогичные аспекты и результаты квантовой механики вызвали сильные философские дебаты и множество интерпретаций . Аргументы сосредоточены на вероятностной природе квантовой механики, трудностях с коллапсом волновой функции и связанной с этим проблемой измерения , а также квантовой нелокальности . Возможно, единственный консенсус, который существует по этим вопросам, заключается в том, что консенсуса нет. Ричард Фейнман однажды сказал: «Думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику». [ 51 ] По словам Стивена Вайнберга , «по моему мнению, сейчас не существует полностью удовлетворительной интерпретации квантовой механики». [ 52 ]

Взгляды Нильса Бора , Вернера Гейзенберга и других физиков часто объединяют в « копенгагенскую интерпретацию ». [ 53 ] [ 54 ] Согласно этим взглядам, вероятностная природа квантовой механики не является временной особенностью, которая в конечном итоге будет заменена детерминистской теорией, а представляет собой окончательный отказ от классической идеи «причинности». Бор, в частности, подчеркивал, что любое четко определенное применение квантовомеханического формализма всегда должно ссылаться на экспериментальную схему из-за взаимодополняющего характера доказательств, полученных в различных экспериментальных ситуациях. Интерпретации копенгагенского типа были приняты нобелевскими лауреатами по квантовой физике, в том числе Бором, [ 55 ] Гейзенберг, [ 56 ] Шредингер, [ 57 ] Фейнман, [ 2 ] и Цайлингер [ 58 ] а также исследователи 21-го века в области квантовых основ. [ 59 ]

Альберт Эйнштейн , один из основателей квантовой теории , был обеспокоен очевидным несоблюдением в ней некоторых заветных метафизических принципов, таких как детерминизм и локальность . Длительные дискуссии Эйнштейна с Бором о значении и статусе квантовой механики теперь известны как дебаты Бора-Эйнштейна . Эйнштейн считал, что в основе квантовой механики должна лежать теория, которая явно запрещает действие на расстоянии . Он утверждал, что квантовая механика была неполной, что это теория, которая действительна, но не фундаментальна, аналогично тому, как термодинамика действительна , но фундаментальной теорией, лежащей в ее основе, является статистическая механика . В 1935 году Эйнштейн и его сотрудники Борис Подольский и Натан Розен опубликовали аргумент, согласно которому принцип локальности подразумевает неполноту квантовой механики, мысленный эксперимент, позже названный парадоксом Эйнштейна-Подольского-Розена . [ примечание 4 ] В 1964 году Джон Белл показал, что принцип локальности ЭПР вместе с детерминизмом фактически несовместим с квантовой механикой: они подразумевали ограничения на корреляции, создаваемые системами расстояний, известные теперь как неравенства Белла , которые могут нарушаться запутанными частицами. [ 64 ] С тех пор было проведено несколько экспериментов для получения этих корреляций, в результате чего они действительно нарушают неравенства Белла и, таким образом, фальсифицируют соединение локальности с детерминизмом. [ 16 ] [ 17 ]

Механика Бома показывает, что можно переформулировать квантовую механику, сделав ее детерминированной, ценой того, что она станет явно нелокальной. Он приписывает физической системе не только волновую функцию, но и реальное положение, которое детерминировано развивается под действием нелокального ведущего уравнения. Эволюция физической системы всегда задается уравнением Шредингера вместе с ведущим уравнением; коллапса волновой функции никогда не происходит. Это решает проблему измерения. [ 65 ]

Эверетта Многомировая интерпретация , сформулированная в 1956 году, утверждает, что все возможности, описанные квантовой теорией, одновременно возникают в мультивселенной, состоящей в основном из независимых параллельных вселенных. [ 66 ] Это следствие устранения аксиомы коллапса волнового пакета. Все возможные состояния измеряемой системы и измерительного прибора вместе с наблюдателем присутствуют в реальной физической квантовой суперпозиции. Хотя мультивселенная детерминирована, мы воспринимаем недетерминированное поведение, управляемое вероятностями, потому что мы наблюдаем не мультивселенную в целом, а только одну параллельную вселенную в каждый момент времени. То, как именно это должно работать, было предметом многочисленных споров. Было предпринято несколько попыток разобраться в этом и вывести правило Борна. [ 67 ] [ 68 ] без единого мнения о том, добились ли они успеха. [ 69 ] [ 70 ] [ 71 ]

Реляционная квантовая механика появилась в конце 1990-х годов как современная производная от идей копенгагенского типа. [ 72 ] и QBism был разработан несколько лет спустя. [ 73 ]

История

Макс Планк считается отцом квантовой теории.

Квантовая механика была разработана в первые десятилетия 20-го века, вызванная необходимостью объяснить явления, которые в некоторых случаях наблюдались и раньше. Научное исследование волновой природы света началось в 17 и 18 веках, когда такие ученые, как Роберт Гук , Христиан Гюйгенс и Леонард Эйлер, предложили волновую теорию света, основанную на экспериментальных наблюдениях. [ 74 ] В 1803 году английский эрудит Томас Янг описал знаменитый эксперимент с двумя щелями . [ 75 ] Этот эксперимент сыграл важную роль в общем принятии волновой теории света .

В начале 19-го века химические исследования Джона Дальтона и Амедео Авогадро придали вес атомной теории материи, идее, которую Джеймс Клерк Максвелл , Людвиг Больцман и другие развили, чтобы создать кинетическую теорию газов . Успехи кинетической теории еще больше подтвердили идею о том, что материя состоит из атомов, однако у этой теории были и недостатки, которые могли быть устранены только с развитием квантовой механики. [ 76 ] В то время как ранняя концепция атомов в греческой философии заключалась в том, что они являются неделимыми единицами (слово «атом» происходит от греческого слова «неразрезаемый»), в 19 веке были сформулированы гипотезы о субатомной структуре. Одним из важных открытий в этом отношении стало наблюдение Майклом Фарадеем в 1838 году свечения, вызванного электрическим разрядом внутри стеклянной трубки, содержащей газ под низким давлением. Юлиус Плюкер , Иоганн Вильгельм Хитторф и Ойген Гольдштейн продолжили и усовершенствовали работу Фарадея, что привело к идентификации катодных лучей , которые, как обнаружил Дж. Дж. Томсон, состоят из субатомных частиц, которые будут называться электронами. [ 77 ] [ 78 ]

Проблема излучения черного тела была открыта Густавом Кирхгофом в 1859 году. В 1900 году Макс Планк предложил гипотезу о том, что энергия излучается и поглощается дискретными «квантами» (или пакетами энергии), что привело к расчету, который точно соответствовал наблюдаемым закономерностям черного тела. -облучение тела. [ 79 ] Слово «квант» происходит от латинского слова «насколько велик» или «насколько». [ 80 ] Согласно Планку, количества энергии можно рассматривать как разделенные на «элементы», размер которых ( E ) будет пропорционален их частоте ( ν ):

,

где h постоянная Планка . Планк осторожно настаивал на том, что это лишь аспект процессов поглощения и испускания излучения, а не физическая реальность излучения. [ 81 ] Фактически, он считал свою квантовую гипотезу математическим трюком, позволяющим получить правильный ответ, а не значительным открытием. [ 82 ] интерпретировал квантовую гипотезу Планка Однако в 1905 году Альберт Эйнштейн реалистично и использовал ее для объяснения фотоэлектрического эффекта , при котором свет, попадающий на определенные материалы, может выбрасывать электроны из материала. Затем Нильс Бор развил идеи Планка об излучении в модель атома водорода , которая успешно предсказала спектральные линии водорода. [ 83 ] Эйнштейн развил эту идею, чтобы показать, что электромагнитную волну , такую ​​как свет, можно также описать как частицу (позже названную фотоном) с дискретным количеством энергии, зависящим от ее частоты. [ 84 ] В своей статье «О квантовой теории излучения» Эйнштейн подробно остановился на взаимодействии энергии и материи, чтобы объяснить поглощение и излучение энергии атомами. Хотя в то время эта статья была омрачена его общей теорией относительности, она сформулировала механизм, лежащий в основе вынужденного излучения. [ 85 ] который стал основой лазера. [ 86 ]

1927 года Сольвеевская конференция в Брюсселе стала пятой Всемирной физической конференцией.

Эта фаза известна как старая квантовая теория . Никогда не будучи полной и самосогласованной, старая квантовая теория представляла собой скорее набор эвристических поправок к классической механике. [ 87 ] [ 88 ] Теория теперь понимается как полуклассическое приближение современной квантовой механики. [ 89 ] [ 90 ] Среди примечательных результатов этого периода можно назвать, помимо упомянутых выше работ Планка, Эйнштейна и Бора, Эйнштейна и Питера Дебая работы по удельной теплоемкости твердых тел, Бора и Хендрики Йоханны ван Леувен о доказательство том, что классическая физика не может объяснить диамагнетизм и расширение Арнольдом Зоммерфельдом модели Бора, включившее специальные релятивистские эффекты. [ 87 ] [ 91 ]

В середине 1920-х годов была разработана квантовая механика, которая стала стандартной формулировкой атомной физики. В 1923 году французский физик Луи де Бройль выдвинул свою теорию волн материи, заявив, что частицы могут проявлять волновые характеристики и наоборот. Основываясь на подходе де Бройля, современная квантовая механика родилась в 1925 году, когда немецкие физики Вернер Гейзенберг, Макс Борн и Паскуаль Йордан [ 92 ] [ 93 ] разработал матричную механику , а австрийский физик Эрвин Шредингер изобрел волновую механику . Борн представил вероятностную интерпретацию волновой функции Шредингера в июле 1926 года. [ 94 ] Таким образом, возникла целая область квантовой физики, что привело к ее более широкому признанию на Пятой Сольвеевской конференции в 1927 году. [ 95 ]

К 1930 году квантовая механика была унифицирована и формализована Дэвидом Гильбертом , Полем Дираком и Джоном фон Нейманом. [ 96 ] с большим упором на измерение , статистическую природу нашего знания о реальности и философские рассуждения о «наблюдателе» . С тех пор оно проникло во многие дисциплины, включая квантовую химию, квантовую электронику , квантовую оптику и квантовую информатику . Он также обеспечивает полезную основу для многих особенностей современной периодической таблицы элементов и описывает поведение атомов во время химической связи и потока электронов в компьютерных полупроводниках и, следовательно, играет решающую роль во многих современных технологиях. Хотя квантовая механика была создана для описания мира очень малого, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводники. [ 97 ] и сверхтекучие . [ 98 ]

См. также

Пояснительные примечания

  1. ^ Собственное состояние импульса будет совершенно монохроматической волной бесконечной протяженности, которая не интегрируется с квадратом. Аналогично, собственное состояние положения будет дельта-распределением Дирака , не интегрируемым с квадратом и технически вообще не являющимся функцией. Следовательно, ни один из них не может принадлежать гильбертовому пространству частицы. Физики иногда вводят фиктивные «основания» гильбертова пространства, состоящие из элементов вне этого пространства. Они изобретены для удобства вычислений и не представляют физические состояния. [ 25 ] : 100–105 
  2. ^ См., например, «Фейнмановские лекции по физике» , где описаны некоторые технологические приложения, использующие квантовую механику, например, транзисторы (том III , стр. 14–11 и далее), интегральные схемы , которые являются последующими технологиями в области твердотельных устройств. физика (том II , стр. 8–6) и лазеры (том III , стр. 9–13).
  3. ^ см . макроскопические квантовые явления , конденсат Бозе – Эйнштейна и квантовую машину.
  4. Опубликованная форма аргумента ЭПР принадлежит Подольскому, и самого Эйнштейна она не удовлетворила. В своих публикациях и переписке Эйнштейн использовал другой аргумент, настаивая на том, что квантовая механика является неполной теорией. [ 60 ] [ 61 ] [ 62 ] [ 63 ]

Ссылки

  1. ^ Борн, М. (1926). «К квантовой механике столкновительных процессов». Журнал физики . 37 (12): 863–867. Бибкод : 1926ZPhy...37..863B . дои : 10.1007/BF01397477 . ISSN   1434-6001 . S2CID   119896026 .
  2. ^ Перейти обратно: а б с д Фейнман, Ричард; Лейтон, Роберт; Сэндс, Мэтью (1964). Фейнмановские лекции по физике . Том. 3. Калифорнийский технологический институт. ISBN  978-0-201-50064-6 . Проверено 19 декабря 2020 г.
  3. ^ Джагер, Грегг (сентябрь 2014 г.). «Что в (квантовом) мире является макроскопическим?». Американский журнал физики . 82 (9): 896–905. Бибкод : 2014AmJPh..82..896J . дои : 10.1119/1.4878358 .
  4. ^ Яаков Ю. Фейн; Филипп Гейер; Патрик Цвик; Филип Кялка; Себастьян Педалино; Марсель Майор; Стефан Герлих; Маркус Арндт (сентябрь 2019 г.). «Квантовая суперпозиция молекул за пределами 25 кДа». Физика природы . 15 (12): 1242–1245. Бибкод : 2019NatPh..15.1242F . дои : 10.1038/s41567-019-0663-9 . S2CID   203638258 .
  5. ^ Бойовальд, Мартин (2015). «Квантовая космология: обзор». Отчеты о прогрессе в физике . 78 (2): 023901. arXiv : 1501.04899 . Бибкод : 2015РПФ...78b3901B . дои : 10.1088/0034-4885/78/2/023901 . ПМИД   25582917 . S2CID   18463042 .
  6. ^ Фан, Х.; Майерс, Т.Г.; Шукра, ПЛОХО; Габриэль, Г. (13 февраля 2023 г.). «Измерение магнитного момента электрона». Письма о физических отзывах . 130 (7): 071801. arXiv : 2209.13084 . Бибкод : 2023PhRvL.130g1801F . doi : 10.1103/PhysRevLett.130.071801 . PMID   36867820 .
  7. ^ Перейти обратно: а б с д и ж г час я дж Цвибах, Бартон (2022). Освоение квантовой механики: основы, теория и приложения . С Прессой. ISBN  978-0-262-04613-8 .
  8. ^ Перейти обратно: а б с Ледерман, Леон М.; Хилл, Кристофер Т. (2011). Квантовая физика для поэтов . США: Книги Прометея. ISBN  978-1-61614-281-0 .
  9. ^ Мюллер-Кирстен, HJW (2006). Введение в квантовую механику: уравнение Шрёдингера и интеграл по траекториям . США: World Scientific. п. 14. ISBN  978-981-256-691-1 .
  10. ^ Плотницкий, Аркадий (2012). Нильс Бор и дополнительность: введение . США: Спрингер. стр. 75–76. ISBN  978-1-4614-4517-3 .
  11. ^ Гриффитс, Дэвид Дж . (1995). Введение в квантовую механику . Прентис Холл. ISBN  0-13-124405-1 .
  12. ^ Трикслер, Ф. (2013). «Квантовое туннелирование к происхождению и эволюции жизни» . Современная органическая химия . 17 (16): 1758–1770. дои : 10.2174/13852728113179990083 . ПМЦ   3768233 . ПМИД   24039543 .
  13. ^ Файфер, Арнольд (27 марта 2012 г.). «Разработка более энергоэффективных транзисторов посредством квантового туннелирования» . Новости Нотр-Дама . Проверено 7 июня 2024 г.
  14. ^ Баб, Джеффри (2019). «Квантовая запутанность» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии . Лаборатория метафизических исследований Стэнфордского университета.
  15. ^ Перейти обратно: а б Кейвс, Карлтон М. (2015). «Квантовая информатика: больше не появляется». В Келли, Пол; Агравал, Говинд; Басс, Майк; Хехт, Джефф; Страуд, Карлос (ред.). ОСА Век оптики . Оптическое общество . стр. 320–323. arXiv : 1302.1864 . Бибкод : 2013arXiv1302.1864C . ISBN  978-1-943580-04-0 .
  16. ^ Перейти обратно: а б Уайзман, Ховард (октябрь 2015 г.). «Смерть от эксперимента для локального реализма» . Природа . 526 (7575): 649–650. дои : 10.1038/nature15631 . ISSN   0028-0836 . ПМИД   26503054 .
  17. ^ Перейти обратно: а б Волчовер, Натали (7 февраля 2017 г.). «Эксперимент подтверждает квантовую странность» . Журнал Кванта . Проверено 8 февраля 2020 г.
  18. ^ Баэз, Джон К. (20 марта 2020 г.). «Как выучить математику и физику» . Калифорнийский университет, Риверсайд . Проверено 19 декабря 2020 г. невозможно понять интерпретацию квантовой механики, не умея при этом решать проблемы квантовой механики – чтобы понять теорию, вам нужно уметь ее использовать (и наоборот)
  19. ^ Саган, Карл (1996). Мир, населенный демонами: наука как свеча во тьме . Книги Баллантайна. п. 249. ИСБН  0-345-40946-9 . «Для большинства студентов-физиков («математическая основа» квантовой механики) может потребоваться, скажем, от третьего класса до начала аспирантуры – примерно 15 лет. [...] Работа популяризатора науки, пытающегося получить донести какую-то идею квантовой механики до широкой аудитории, которая не прошла через эти обряды инициации, пугает. На самом деле, по моему мнению, успешных популяризаций квантовой механики не существует – отчасти по этой причине.
  20. ^ Гринштейн, Джордж; Зайонц, Артур (2006). «8 Измерение» . Квантовый вызов: современные исследования основ квантовой механики (2-е изд.). Джонс и Бартлетт. п. 215. ИСБН  978-0-7637-2470-2 . Архивировано из оригинала 02 января 2023 г.
  21. ^ Вайнберг, Стивен (2010). Мечты об окончательной теории: поиск фундаментальных законов природы . Случайный дом. п. 82 . ISBN  978-1-4070-6396-6 .
  22. ^ Чжан, Жуйцинь; Дэн, Конгао (1 января 1993 г.). «Точные решения уравнения Шрёдингера для некоторых квантовомеханических систем многих тел» . Физический обзор А. 47 (1): 71–77. Бибкод : 1993PhRvA..47...71Z . дои : 10.1103/PhysRevA.47.71 . ISSN   1050-2947 . ПМИД   9908895 .
  23. ^ Ли, Цзин; Драммонд, Северная Дакота; Шук, Питер; Олевано, Валерио (01 апреля 2019 г.). «Сравнение подходов многих тел с точным решением для атома гелия» . SciPost Физика . 6 (4): 040. arXiv : 1801.09977 . Бибкод : 2019ScPP....6...40L . дои : 10.21468/SciPostPhys.6.4.040 . ISSN   2542-4653 .
  24. ^ Дрейк, Гордон В.Ф. (2023). «Высокоточные расчеты по гелию». В Дрейке, Гордон В.Ф. (ред.). Справочник Springer по атомной, молекулярной и оптической физике . Справочники Спрингера. Чам: Международное издательство Springer. стр. 199–216. дои : 10.1007/978-3-030-73893-8_12 . ISBN  978-3-030-73892-1 .
  25. ^ Перейти обратно: а б с д Коэн-Таннуджи, Клод ; Диу, Бернар; Лалоэ, Франк (2005). Квантовая механика . Перевод Хемли, Сьюзен Рид; Островский, Николь; Островский, Дэн Джон Уайли и сыновья. ISBN  0-471-16433-Х .
  26. ^ Ландау, LD ; Лифшиц, Э.М. (1977). Квантовая механика: нерелятивистская теория . Том. 3 (3-е изд.). Пергамон Пресс . ISBN  978-0-08-020940-1 . ОСЛК   2284121 .
  27. ^ Раздел 3.2 Баллентайн, Лесли Э. (1970), «Статистическая интерпретация квантовой механики», Reviews of Modern Physics , 42 (4): 358–381, Бибкод : 1970RvMP...42..358B , doi : 10.1103/RevModPhys.42.358 , S2CID   120024263 . Этот факт экспериментально хорошо известен, например, в квантовой оптике; см., например, гл. 2 и рис. 2.1 Леонхардт, Ульф (1997), Измерение квантового состояния света , Кембридж: Издательство Кембриджского университета, ISBN  0-521-49730-2
  28. ^ Перейти обратно: а б с Нильсен, Майкл А .; Чуанг, Исаак Л. (2010). Квантовые вычисления и квантовая информация (2-е изд.). Кембридж: Издательство Кембриджского университета. ISBN  978-1-107-00217-3 . OCLC   844974180 .
  29. ^ Перейти обратно: а б Риффель, Элеонора Г .; Полак, Вольфганг Х. (2011). Квантовые вычисления: краткое введение . МТИ Пресс. ISBN  978-0-262-01506-6 .
  30. ^ Уайльд, Марк М. (2017). Квантовая теория информации (2-е изд.). Издательство Кембриджского университета. arXiv : 1106.1445 . дои : 10.1017/9781316809976.001 . ISBN  978-1-107-17616-4 . OCLC   973404322 . S2CID   2515538 .
  31. ^ Шлоссауэр, Максимилиан (октябрь 2019 г.). «Квантовая декогеренция». Отчеты по физике . 831 : 1–57. arXiv : 1911.06282 . Бибкод : 2019ФР...831....1С . дои : 10.1016/j.physrep.2019.10.001 . S2CID   208006050 .
  32. ^ Рехенберг, Гельмут (1987). «Эрвин Шредингер и создание волновой механики» (PDF) . Акта Физика Полоника Б. 19 (8): 683–695 . Проверено 13 июня 2016 г.
  33. ^ Фейнман, Ричард П.; Хиббс, Альберт Р. (2005). Стейер, Дэниел Ф. (ред.). Квантовая механика и интегралы по траекториям (исправленное издание). МакГроу-Хилл. стр. v – vii. ISBN  978-0-486-47722-0 .
  34. ^ Мэтьюз, Пиравону Мэтьюз; Венкатесан, К. (1976). «Уравнение Шрёдингера и стационарные состояния» . Учебник квантовой механики . Тата МакГроу-Хилл. п. 36 . ISBN  978-0-07-096510-2 .
  35. ^ Париж, MGA (1999). «Запутывание и видимость на выходе интерферометра Маха – Цендера». Физический обзор А. 59 (2): 1615–1621. arXiv : Quant-ph/9811078 . Бибкод : 1999PhRvA..59.1615P . дои : 10.1103/PhysRevA.59.1615 . S2CID   13963928 .
  36. ^ Хаак, Г.Р.; Фёрстер, Х.; Бюттикер, М. (2010). «Обнаружение четности и запутанность с помощью интерферометра Маха-Цендера». Физический обзор B . 82 (15): 155303. arXiv : 1005.3976 . Бибкод : 2010PhRvB..82o5303H . дои : 10.1103/PhysRevB.82.155303 . S2CID   119261326 .
  37. ^ Ведрал, Влатко (2006). Введение в квантовую информатику . Издательство Оксфордского университета. ISBN  978-0-19-921570-6 . OCLC   442351498 .
  38. ^ Коэн, Марвин Л. (2008). «Очерк: пятьдесят лет физики конденсированного состояния» . Письма о физических отзывах . 101 (25): 250001. Бибкод : 2008PhRvL.101y0001C . doi : 10.1103/PhysRevLett.101.250001 . ПМИД   19113681 . Проверено 31 марта 2012 г.
  39. ^ Мэтсон, Джон. «Чем хороша квантовая механика?» . Научный американец . Проверено 18 мая 2016 г.
  40. ^ Типлер, Пол; Ллевеллин, Ральф (2008). Современная физика (5-е изд.). WH Фриман и компания. стр. 160–161. ISBN  978-0-7167-7550-8 .
  41. ^ Перейти обратно: а б с Перес, Ашер (1993). Квантовая теория: концепции и методы . Клювер. ISBN  0-7923-2549-4 .
  42. ^ Баэз, Джон К. (26 февраля 2019 г.). «Математика, которая переносит Ньютона в квантовый мир» . Наутилус Ежеквартально . Проверено 23 марта 2024 г.
  43. ^ «Атомные свойства» . Academic.brooklyn.cuny.edu . Проверено 18 августа 2012 г.
  44. ^ Хокинг, Стивен; Пенроуз, Роджер (2010). Природа пространства и времени . Издательство Принстонского университета. ISBN  978-1-4008-3474-7 .
  45. ^ Тацуми Аояма; Масаси Хаякава; Тоитиро Киносита; Макико Нио (2012). «Вклад КЭД десятого порядка в электрон g-2 и улучшенное значение постоянной тонкой структуры». Письма о физических отзывах . 109 (11): 111807. arXiv : 1205.5368 . Бибкод : 2012PhRvL.109k1807A . doi : 10.1103/PhysRevLett.109.111807 . ПМИД   23005618 . S2CID   14712017 .
  46. ^ «Нобелевская премия по физике 1979 года» . Нобелевский фонд . Проверено 16 декабря 2020 г.
  47. ^ До свидания, Деннис (10 октября 2022 г.). «Черные дыры могут скрывать невероятную тайну нашей Вселенной. Возьмите гравитацию, добавьте квантовую механику, перемешайте. Что вы получите? Может быть, голографический космос» . Нью-Йорк Таймс . Проверено 10 октября 2022 г.
  48. ^ Беккер, Катрин; Беккер, Мелани ; Шварц, Джон (2007). Теория струн и М-теория: современное введение . Издательство Кембриджского университета. ISBN  978-0-521-86069-7 .
  49. ^ Цвибах, Бартон (2009). Первый курс теории струн . Издательство Кембриджского университета. ISBN  978-0-521-88032-9 .
  50. ^ Ровелли, Карло; Видотто, Франческа (2014). Ковариантная петлевая квантовая гравитация: элементарное введение в квантовую гравитацию и теорию спинфоама . Издательство Кембриджского университета. ISBN  978-1-316-14811-2 .
  51. ^ Фейнман, Ричард (1967). Характер физического закона . МТИ Пресс. п. 129. ИСБН  0-262-56003-8 .
  52. ^ Вайнберг, Стивен (2012). «Коллапс вектора государства». Физический обзор А. 85 (6): 062116. arXiv : 1109.6462 . Бибкод : 2012PhRvA..85f2116W . дои : 10.1103/PhysRevA.85.062116 . S2CID   119273840 .
  53. ^ Ховард, Дон (декабрь 2004 г.). «Кто изобрел« Копенгагенскую интерпретацию »? Исследование мифологии» . Философия науки . 71 (5): 669–682. дои : 10.1086/425941 . ISSN   0031-8248 . S2CID   9454552 .
  54. ^ Камиллери, Кристиан (май 2009 г.). «Построение мифа о Копенгагенской интерпретации» . Перспективы науки . 17 (1): 26–57. дои : 10.1162/posc.2009.17.1.26 . ISSN   1063-6145 . S2CID   57559199 .
  55. ^ Бор, Н. (1928). «Квантовый постулат и новейшее развитие атомной теории» . Природа . 121 (3050): 580–590. Бибкод : 1928Natur.121..580B . дои : 10.1038/121580a0 .
  56. ^ Гейзенберг, Вернер (1971). Физика и философия: революция в современной науке . Мировые перспективы (3-е изд.). Лондон: Аллен и Анвин. ISBN  978-0-04-530016-7 . OCLC   743037461 .
  57. ^ Шредингер, Эрвин (1980) [1935]. Триммер, Джон (ред.). « Современное положение в квантовой механике». «[Современное положение в квантовой механике]. естественные науки . 23 (50): 844–849. дои : 10.1007/BF01491987 . JSTOR   986572 . S2CID   22433857 .
  58. ^ Ма, Сяо-сун; Кофлер, Йоханнес; Цайлингер, Антон (3 марта 2016 г.). «Мысленные эксперименты с отложенным выбором и их реализации» . Обзоры современной физики . 88 (1): 015005. arXiv : 1407.2930 . Бибкод : 2016РвМП...88а5005М . дои : 10.1103/RevModPhys.88.015005 . ISSN   0034-6861 . S2CID   34901303 .
  59. ^ Шлоссауэр, Максимилиан; Кофлер, Йоханнес; Цайлингер, Антон (1 августа 2013 г.). «Снимок основополагающих взглядов на квантовую механику». Исследования по истории и философии науки . Часть B. 44 (3): 222–230. arXiv : 1301.1069 . Бибкод : 2013ШПМП..44..222С . дои : 10.1016/j.shpsb.2013.04.004 . S2CID   55537196 .
  60. ^ Харриган, Николас; Спеккенс, Роберт В. (2010). «Эйнштейн, неполнота и эпистемический взгляд на квантовые состояния». Основы физики . 40 (2): 125. arXiv : 0706.2661 . Бибкод : 2010FoPh...40..125H . дои : 10.1007/s10701-009-9347-0 . S2CID   32755624 .
  61. ^ Ховард, Д. (1985). «Эйнштейн о локальности и сепарабельности». Исследования по истории и философии науки . Часть А. 16 (3): 171–201. Бибкод : 1985SHPSA..16..171H . дои : 10.1016/0039-3681(85)90001-9 .
  62. ^ Зауэр, Тилман (1 декабря 2007 г.). «Рукопись Эйнштейна о парадоксе ЭПР для наблюдаемых спина» . Исследования по истории и философии науки. Часть B: Исследования по истории и философии современной физики . 38 (4): 879–887. Бибкод : 2007ШПМП..38..879С . CiteSeerX   10.1.1.571.6089 . дои : 10.1016/j.shpsb.2007.03.002 . ISSN   1355-2198 .
  63. ^ Эйнштейн, Альберт (1949). «Автобиографические заметки». В Шилппе, Пол Артур (ред.). Альберт Эйнштейн: философ-ученый . Издательство «Открытый суд».
  64. ^ Белл, Дж. С. (1 ноября 1964 г.). «О парадоксе Эйнштейна-Подольского-Розена» . Физика Телосложение Физика . 1 (3): 195–200. doi : 10.1103/PhysicsPhysiqueFizika.1.195 .
  65. ^ Гольдштейн, Шелдон (2017). «Бомовская механика» . Стэнфордская энциклопедия философии . Лаборатория метафизических исследований Стэнфордского университета.
  66. ^ Барретт, Джеффри (2018). «Формулировка квантовой механики Эверетта в относительном состоянии» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии . Лаборатория метафизических исследований Стэнфордского университета.
  67. ^ Эверетт, Хью ; Уилер, Дж.А. ; ДеВитт, бакалавр наук ; Купер, Луизиана ; Ван Вехтен, Д.; Грэм, Н. (1973). ДеВитт, Брайс ; Грэм, Р. Нил (ред.). Многомировая интерпретация квантовой механики . Принстонская серия по физике. Принстон, Нью-Джерси: Издательство Принстонского университета . п. ISBN против  0-691-08131-Х .
  68. ^ Уоллес, Дэвид (2003). «Эвереттовская рациональность: защита подхода Дойча к вероятности в интерпретации Эверетта». Стад. Хист. Фил. Мод. Физ . 34 (3): 415–438. arXiv : Quant-ph/0303050 . Бибкод : 2003SHPMP..34..415W . дои : 10.1016/S1355-2198(03)00036-4 . S2CID   1921913 .
  69. ^ Баллентайн, Ле (1973). «Можно ли вывести статистический постулат квантовой теории? - Критика интерпретации многих вселенных». Основы физики . 3 (2): 229–240. Бибкод : 1973FoPh....3..229B . дои : 10.1007/BF00708440 . S2CID   121747282 .
  70. ^ Ландсман, Н.П. (2008). «Правило Борна и его интерпретация» (PDF) . В Вайнерт, Ф.; Хентшель, К.; Гринбергер, Д.; Фалькенбург, Б. (ред.). Сборник квантовой физики . Спрингер. ISBN  978-3-540-70622-9 . Вывод, по-видимому, состоит в том, что общепринятого вывода правила Борна до сих пор не дано, но это не означает, что такой вывод в принципе невозможен.
  71. ^ Кент, Адриан (2010). «Один мир против многих: неадекватность эвереттовских объяснений эволюции, вероятности и научного подтверждения». В С. Сондерсе; Дж. Барретт; А. Кент; Д. Уоллес (ред.). Много миров? Эверетт, Квантовая теория и реальность . Издательство Оксфордского университета. arXiv : 0905.0624 . Бибкод : 2009arXiv0905.0624K .
  72. ^ Ван Фраассен, Бас К. (апрель 2010 г.). «Мир Ровелли» . Основы физики . 40 (4): 390–417. Бибкод : 2010FoPh...40..390В . дои : 10.1007/s10701-009-9326-5 . ISSN   0015-9018 . S2CID   17217776 .
  73. ^ Хили, Ричард (2016). «Квантово-байесовский и прагматический взгляды на квантовую теорию» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии . Лаборатория метафизических исследований Стэнфордского университета.
  74. ^ Борн, Макс ; Вольф, Эмиль (1999). Принципы оптики . Издательство Кембриджского университета. ISBN  0-521-64222-1 . OCLC   1151058062 .
  75. ^ Шайдер, Уолтер (апрель 1986 г.). «Привнесение в класс одного из величайших моментов науки» . Учитель физики . 24 (4): 217–219. Бибкод : 1986PhTea..24..217S . дои : 10.1119/1.2341987 . ISSN   0031-921X .
  76. ^ Фейнман, Ричард; Лейтон, Роберт; Сэндс, Мэтью (1964). Фейнмановские лекции по физике . Том. 1. Калифорнийский технологический институт. ISBN  978-0-201-50064-6 . Проверено 30 сентября 2021 г.
  77. ^ Мартин, Андре (1986), «Электронно-лучевые трубки для промышленного и военного применения», в книге Хоукса, Питера (редактор), « Достижения в области электроники и электронной физики», том 67 , Academic Press, стр. 183, ISBN  978-0-08-057733-3 , Доказательства существования «катодных лучей» впервые были найдены Плюкером и Хитторфом...
  78. ^ Даль, Пер Ф. (1997). Вспышка катодных лучей: история электрона Дж. Дж. Томсона . ЦРК Пресс. стр. 47–57. ISBN  978-0-7503-0453-5 .
  79. ^ Мехра, Дж .; Рехенберг, Х. (1982). Историческое развитие квантовой теории, Vol. 1: Квантовая теория Планка, Эйнштейна, Бора и Зоммерфельда. Его основание и рост трудностей (1900–1925) . Нью-Йорк: Springer-Verlag. ISBN  978-0-387-90642-3 .
  80. ^ «Квант – определение и многое другое» . Словарь Мерриама-Вебстера. Архивировано из оригинала 26 октября 2012 года . Проверено 18 августа 2012 г.
  81. ^ Кун, Т.С. (1978). Теория черного тела и квантовый разрыв 1894–1912 гг . Оксфорд: Кларендон Пресс. ISBN  978-0-19-502383-1 .
  82. ^ Краг, Хельге (1 декабря 2000 г.). «Макс Планк: сопротивляющийся революционер» . Мир физики . Проверено 12 декабря 2020 г.
  83. ^ Стэйчел, Джон (2009). «Бор и фотон». Квантовая реальность, релятивистская причинность и замыкание эпистемического круга . Серия Западного Онтарио по философии науки. Том. 73. Дордрехт: Спрингер. стр. 69–83. дои : 10.1007/978-1-4020-9107-0_5 . ISBN  978-1-4020-9106-3 .
  84. ^ Эйнштейн, А. (1905). «Об эвристическом взгляде на образование и преобразование света» . Анналы физики . 17 (6): 132–148. Бибкод : 1905АнП...322..132Е . дои : 10.1002/andp.19053220607 . Перепечатано в Стэчел, Джон , изд. (1989). Сборник статей Альберта Эйнштейна (на немецком языке). Том. 2. Издательство Принстонского университета. стр. 149–166. См. также «Ранние работы Эйнштейна по квантовой гипотезе», там же. стр. 134–148.
  85. ^ Эйнштейн, Альберт (1917). «К квантовой теории излучения». Физический журнал (на немецком языке). 18 :121-128. Бибкод : 1917PhyZ...18..121E . Переведено на Эйнштейн, А. (1967). «К квантовой теории излучения». Старая квантовая теория . Эльзевир. стр. 167–183. дои : 10.1016/b978-0-08-012102-4.50018-8 . ISBN  978-0-08-012102-4 .
  86. ^ Болл, Филип (31 августа 2017 г.). «Сто лет назад Эйнштейн породил идею лазера» . Мир физики . Проверено 23 марта 2024 г.
  87. ^ Перейти обратно: а б тер Хаар, Д. (1967). Старая квантовая теория . Пергамон Пресс. стр. 3–75. ISBN  978-0-08-012101-7 . LCCN   66-29628 .
  88. ^ Бокулич, Алиса; Бокулич, Петр (13 августа 2020 г.). «Принцип соответствия Бора» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии .
  89. ^ «Полуклассическое приближение» . Энциклопедия математики . Проверено 1 февраля 2020 г.
  90. ^ Сакураи, Джей Джей ; Наполитано, Дж. (2014). «Квантовая динамика». Современная квантовая механика . Пирсон. ISBN  978-1-292-02410-3 . OCLC   929609283 .
  91. ^ Ахарони, Амикам (1996). Введение в теорию ферромагнетизма . Кларендон Пресс . стр. 100-1 6–7 ISBN  0-19-851791-2 .
  92. ^ Дэвид Эдвардс, «Математические основы квантовой механики», Synthese , том 42, номер 1/сентябрь 1979 г., стр. 1–70.
  93. ^ Д. Эдвардс, «Математические основы квантовой теории поля: фермионы, калибровочные поля и суперсимметрия, Часть I: теории решетчатого поля», International J. of Theor. Физ. , Том. 20, № 7 (1981).
  94. ^ Бернштейн, Джереми (ноябрь 2005 г.). «Макс Борн и квантовая теория» . Американский журнал физики . 73 (11): 999–1008. Бибкод : 2005AmJPh..73..999B . дои : 10.1119/1.2060717 . ISSN   0002-9505 .
  95. ^ Паис, Авраам (1997). Повесть о двух континентах: жизнь физика в неспокойном мире . Принстон, Нью-Джерси: Издательство Принстонского университета. ISBN  0-691-01243-1 .
  96. ^ Ван Хов, Леон (1958). «Вклад фон Неймана в квантовую механику» (PDF) . Бюллетень Американского математического общества . 64 (3): Часть 2: 95–99. дои : 10.1090/s0002-9904-1958-10206-2 . Архивировано (PDF) из оригинала 20 января 2024 г.
  97. ^ Фейнман, Ричард . «Лекции Фейнмана по физике, том III, глава 21: Уравнение Шредингера в классическом контексте: семинар по сверхпроводимости, 21-4» . Калифорнийский технологический институт . Архивировано из оригинала 15 декабря 2016 года . Проверено 24 ноября 2015 г. ... долгое время считалось, что волновая функция уравнения Шрёдингера никогда не будет иметь макроскопического представления, аналогичного макроскопическому представлению амплитуды фотонов. С другой стороны, сейчас стало понятно, что явления сверхпроводимости представляют нам именно такую ​​ситуацию.
  98. ^ Паккард, Ричард (2006). «Эксперименты Беркли по сверхтекучим макроскопическим квантовым эффектам» (PDF) . Физический факультет Калифорнийского университета в Беркли. Архивировано из оригинала (PDF) 25 ноября 2015 года . Проверено 24 ноября 2015 г.

Дальнейшее чтение

Следующие книги, написанные работающими физиками, представляют собой попытку донести квантовую теорию до непрофессионалов, используя минимум технического оборудования.

Более технический:

В Викибуках

Материал курса
Философия
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 9ebeb0a25b4c09a4c1ad118cd7e0a44b__1722499380
URL1:https://arc.ask3.ru/arc/aa/9e/4b/9ebeb0a25b4c09a4c1ad118cd7e0a44b.html
Заголовок, (Title) документа по адресу, URL1:
Quantum mechanics - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)