Jump to content

Резиновый метро

(Перенаправлено из резинового метро )

5000 серий, Центральный резиновый аккумулятор с резиновым управлением управляемый Бюро транспорта города Саппоро, Япония, и построена компанией Kawasaki Heavy Industries Rolling Stock Company

Резиновое метро или резиновое метро -это форма быстрого транзита , которая использует смесь дорожных и железнодорожных технологий. У транспортных средств есть колеса с резиновыми шинами , которые проходят на рулете внутри направляющих батончиков для тяги. Традиционные фланкированные стальные колеса, железнодорожных на путях работающие Большинство резиновых поездов специально построены и предназначены для системы, в которой они работают. Управляемые автобусы иногда называют « трамваями на шинах» и по сравнению с резиновыми метро. [ 1 ]

The first idea for rubber-tyred railway vehicles was the work of Scotsman Robert William Thomson, the original inventor of the pneumatic tyre. In his patent of 1846[2] he describes his 'Aerial Wheels' as being equally suitable for, "the ground or rail or track on which they run".[3] The patent also included a drawing of such a railway, with the weight carried by pneumatic main wheels running on a flat board track and guidance provided by small horizontal steel wheels running on the sides of a central vertical guide rail.[3] ; Изобретатель Талго 1936 , четвертый В 1973 году установление развития этого пациента. в Avenida Marítima находится Лас -Пальмас де Гран Канария

During the World War II German occupation of Paris, the Metro system was used to capacity, with relatively little maintenance performed. At the end of the war, the system was so worn that thought was given as to how to renovate it. Rubber-tyred metro technology was first applied to the Paris Métro, developed by Michelin, who provided the tyres and guidance system, in collaboration with Renault, who provided the vehicles. Starting in 1951, an experimental vehicle, the MP 51, operated on a test track between Porte des Lilas and Pré Saint Gervais, a section of line not open to the public.

Line 11 ChâteletMairie des Lilas was the first line to be converted, in 1956, chosen because of its steep grades. This was followed by Line 1 Château de VincennesPont de Neuilly in 1964, and Line 4 Porte d'OrléansPorte de Clignancourt in 1967, converted because they had the heaviest traffic load of all Paris Métro lines. Finally, Line 6 Charles de Gaulle – ÉtoileNation was converted in 1974 to reduce train noise on its many elevated sections. Because of the high cost of converting existing rail-based lines, this is no longer done in Paris, or elsewhere. Now, rubber-tyred metros are used in new systems or lines only, including the new Paris Métro Line 14.

The first completely rubber-tyred metro system was built in Montreal, Quebec, Canada, in 1966. The trains of the Santiago and Mexico City Metros are based on those of the Paris Métro. A few more recent rubber-tyred systems have used automated, driverless trains; one of the first such systems, developed by Matra, opened in 1983 in Lille, and others have since been built in Toulouse and Rennes. Paris Metro Line 14 was automated from its beginning (1998), and Line 1 was converted to automatic in 2007–2011. The first automated rubber-tyred system opened in Kobe, Japan, in February 1981. It is the Port Liner linking Sannomiya railway station with Port Island.

Technology

[edit]

Overview

[edit]
VAL tracks on the Lille Metro
Sapporo Subway guide rail and flat steel roll ways

Trains are usually in the form of electric multiple units. Just as on a conventional railway, the driver does not have to steer, with the system relying on some sort of guideway to direct the train. The type of guideway varies between networks. Most use two parallel roll ways, each the width of a tyre, which are made of various materials. The Montreal Metro, Lille Metro, Toulouse Metro, and most parts of Santiago Metro, use concrete. The Busan Subway Line 4 employs a concrete slab. The Paris Métro, Mexico City Metro, and the non-underground section of Santiago Metro, use H-Shaped hot rolled steel, and the Sapporo Municipal Subway uses flat steel. The Sapporo system and Lille Metro use a single central guide rail only.[4]

On some systems, such those in Paris, Montreal, and Mexico City, there is a conventional 1,435 mm (4 ft 8+12 in) standard gauge railway track between the roll ways. The bogies of the train include railway wheels with longer flanges than normal. These conventional wheels are normally just above the rails, but come into use in the case of a flat tyre, or at switches (points) and crossings. In Paris these rails were also used to enable mixed traffic, with rubber-tyred and steel-wheeled trains using the same track, particularly during conversion from normal railway track. The VAL system, used in Lille and Toulouse, has other sorts of flat-tyre compensation and switching methods.[clarification needed]

On most systems, the electric power is supplied from one of the guide bars, which serves as a third rail. The current is picked up by a separate lateral pickup shoe. The return current passes via a return shoe to one or both of the conventional railway tracks, which are part of most systems, or to the other guide bar.

Rubber tyres have higher rolling resistance than traditional steel railway wheels. There are some advantages and disadvantages to increased rolling resistance, causing them to not be used in certain countries.[1]

Advantages

[edit]

Compared to steel wheel on steel rail, the advantages of rubber-tyred metro systems are:

  • Faster acceleration, along with the ability to climb or descend steeper slopes (approximately a gradient of 13%) than would be feasible with conventional rail tracks, which would likely need a rack instead.[a]
    • For example, the rubber-tyred Line 2 of the Lausanne Metro has grades of up to 12%.[5]
  • Shorter braking distances, allowing trains to be signalled closer together.
  • Quieter rides in open air (both inside and outside the train).
  • Greatly reduced rail wear with resulting reduced maintenance costs of those parts.

Disadvantages

[edit]

The higher friction and increased rolling resistance cause disadvantages (compared to steel wheel on steel rail):

  • Higher energy consumption.
  • Worse ride, when compared with well-maintained steel-on-steel systems.[6]
  • Possibility of tyre blow-outs - not possible in railway wheels.
  • Higher cost of maintenance and manufacture.
  • Normal operation generates more heat (from friction).
  • Weather variance. (Applicable only to above-ground installations)
    • Loss of the traction-advantage in inclement weather (snow and ice).[b]
  • Same expense of steel rails for switching purposes, to provide electricity or grounding to the trains and as a safety backup.[c]
  • Tyres that frequently need to be replaced, contrary to rails using steel wheels, which need to be replaced less often.[d]
  • Tyres break down during use and turn into particulate matter (dust), which can be hazardous air pollution, also coating surrounding surfaces in dirty rubber dust.[7]

Although it is a more complex technology, most rubber-tyred metro systems use quite simple techniques, in contrast to guided buses. Heat dissipation is an issue as eventually all traction energy consumed by the train — except the electric energy regenerated back into the substation during electrodynamic braking — will end up in losses (mostly heat). In frequently operated tunnels (typical metro operation) the extra heat from rubber tyres is a widespread problem, necessitating ventilation of the tunnels. As a result, some rubber-tyred metro systems do not have air-conditioned trains, as air conditioning would heat the tunnels to temperatures where operation is not possible.

Similar technologies

[edit]

Automated driverless systems are not exclusively rubber-tyred; many have since been built using conventional rail technology, such as London's Docklands Light Railway, the Copenhagen metro and Vancouver's SkyTrain, the Hong Kong Disneyland Resort line, which uses converted rolling stocks from non-driverless trains, as well as AirTrain JFK, which links JFK Airport in New York City with local subway and commuter trains. Most monorail manufacturers prefer rubber tyres.

List of systems

[edit]
Country/Region City/Region System Technology Year opened
 Canada Montreal Montreal Metro Bombardier MR-73 (Green, Blue, Yellow)
Alstom/Bombardier MPM-10 (Orange, Green)
1966
 Chile Santiago Santiago Metro (Lines 1, 2, and 5) Alstom NS-74 (5)
Concarril NS-88 (2)
Alstom NS-93 (1, 5)
Alstom NS-04 (2)
CAF NS-07 (1)
CAF NS-12 (1)
Alstom NS-16 (2, 5)
1975
 China Chongqing Bishan SkyShuttle BYD Skyshuttle[broken anchor] 2021
Guangzhou Zhujiang New Town Automated People Mover System Bombardier Innovia APM 100 2010
Shanghai Shanghai Metro (Pujiang line) Bombardier Innovia APM 300 2018
 France Lille Lille Metro Matra VAL206
Siemens VAL208
1983
Lyon Lyon Metro (Lines A, B, and D) Alstom MPL 75 (A, B)
Alstom MPL 85 (D)
1978
Marseille Marseille Metro Alstom MPM 76 1977
Paris Paris Métro (Lines 1, 4, 6, 11, and 14) Michelin / Alstom, 1,435 mm between Rollways 1958[e]
Paris (Orly Airport) Orlyval Matra VAL206 1991
Paris (Charles de Gaulle Airport) CDGVAL Siemens VAL208 2007
Rennes Rennes Metro Siemens VAL208 (A)

Siemens Cityval (B)

2002
Toulouse Toulouse Metro Matra VAL206
Siemens VAL208
1993
 Germany Frankfurt Airport SkyLine Bombardier Innovia APM 100 (as Adtranz CX-100) 1994
Munich Airport Bombardier Innovia APM 300 2015
 Indonesia Soekarno–Hatta International Airport Soekarno–Hatta Airport Skytrain Woojin 2017
 Hong Kong Hong Kong (Chek Lap Kok Airport) Automated People Mover Mitsubishi Crystal Mover
Ishikawajima-Harima
1998
2007 (Phase II)
 Italy Turin Metrotorino Siemens VAL208 2006
 Japan Hiroshima Hiroshima Rapid Transit (Astram Line) Kawasaki
Mitsubishi
Niigata Transys
1994
Kobe Kobe New Transit (Port Island Line / Rokkō Island Line) Kawasaki 1981 (Port Island Line)
1990 (Rokkō Island Line)
Osaka Nankō Port Town Line Niigata Transys 1981
Saitama New Shuttle 1983
Sapporo Sapporo Municipal Subway Kawasaki 1971
Tokyo Yurikamome Mitsubishi
Niigata Transys
Nippon Sharyo
Tokyu
1995
Nippori-Toneri Liner Niigata Transys 2008
Tokorozawa / Higashimurayama Seibu Yamaguchi Line Niigata Transys 1985
Sakura Yamaman Yūkarigaoka Line Nippon Sharyo 1982
Yokohama Kanazawa Seaside Line Mitsubishi
Niigata Transys
Nippon Sharyo
Tokyu
1989
 South Korea Busan Busan Subway Line 4 K-AGT (Woojin) 2011
Uijeongbu, Gyeonggi-do U Line Siemens VAL208 2012
Seoul Sillim Line K-AGT (Woojin) 2022
 Macau Taipa, Cotai Macau Light Rapid Transit Mitsubishi Crystal Mover 2019
 Malaysia Kuala Lumpur International Airport Aerotrain Bombardier Innovia APM 100 (as Adtranz CX-100) 1998
 Mexico Mexico City Mexico City Metro (All lines except A & 12) Michelin, 1,435 mm (4 ft 8+12 in) between Rollways 1969
 Singapore Singapore Light Rail Transit Bombardier Innovia APM 100 (C801 [as Adtranz CX-100] and C801A) and future APM 300R (C801B)
Mitsubishi Crystal Mover (C810 and C810A)
1999
  Switzerland Lausanne Lausanne Metro Line M2 Alstom MP 89 2008
 Taiwan Taipei Taipei Metro Brown Line Matra/GEC Alsthom VAL 256
Bombardier Innovia APM 256
1996
Taoyuan Airport Taoyuan International Airport Skytrain Niigata Transys 2018
 Thailand Bangkok Gold Line Bombardier Innovia APM 300 2020
 UAE Dubai International Airport Dubai International Airport Automated People Mover Mitsubishi Crystal Mover (Terminal 3)
Bombardier Innovia APM 300 (Terminal 1)
2013
 United Kingdom Gatwick Airport Terminal-Rail Shuttle Bombardier Innovia APM 100 (Replaced C-100s) 1988
Stansted, Essex (Stansted Airport) Stansted Airport Transit System Westinghouse/Adtranz C-100
Adtranz/Bombardier CX-100
1991
Heathrow Airport Heathrow Terminal 5 Transit Bombardier Innovia APM 200 2008
 United States Chicago, Illinois (O'Hare) Airport Transit System Bombardier Innovia APM 256 (Replaced VAL256s in 2019) 1993–2018 (VAL), 2021 (Innovia)
Dallas/Fort Worth, Texas (DFW Airport) DFW Skylink Bombardier Innovia APM 200 2007
Denver, Colorado (DEN Airport) Automated Guideway Transit System Bombardier Innovia APM 100 1995
Houston, Texas (George Bush Intercontinental Airport) Skyway Bombardier Innovia APM 100 (as Adtranz CX-100) 1999
Miami, Florida Metromover Bombardier Innovia APM 100 (Replaced C-100s late 2014) 1986
Phoenix, Arizona (Sky Harbor International Airport) PHX Sky Train Bombardier Innovia APM 200 2013
San Francisco, California (SFO Airport) AirTrain (SFO) Bombardier Innovia APM 100 2003
Hartsfield–Jackson Atlanta International Airport (ATL) The Plane Train Westinghouse C-100/Bombardier Innovia APM 100 1980
Washington, D.C. (Dulles International Airport) AeroTrain Mitsubishi Heavy Industries Crystal Mover 2010

Under construction

[edit]
Country/Region City/Region System
 South Korea Busan Busan Metro Line 5
 United States Los Angeles, California (LAX Airport) LAX Automated People Mover

Defunct systems

[edit]
Country/Region City/Region System Technology Year opened Year closed
 France Laon Poma 2000 Cable-driven 1989 2016
 Japan Komaki Peachliner Nippon Sharyo 1991 2006

See also

[edit]

Notes

[edit]
  1. ^ Резиновые колеса имеют лучшую адгезию, чем традиционные железнодорожные колеса. Тем не менее, современный каллийный запас в стали и сталь с использованием распределенного труда с высокой доли мощных оси сузил зазор до производительности, обнаруженной в прокатном бульонном складе резины.
  2. ^ Чтобы уменьшить нарушение погоды, метро Монреаля работает полностью под землей. На линии Paris Métro 6 модернизации шин (как используются с автомобилями) и специальные ребристые дорожки были опробованы. Самая южная часть Саппоро муниципальной линии метро также повышен, но покрыт алюминиевым убежищем, чтобы уменьшить нарушение погоды.
  3. ^ По сути, есть две системы, работающие параллельно, поэтому строить, установить и поддерживать его. Это, в свою очередь, является преимуществом для преобразования в эту технологию, потому что это можно сделать с меньшими нарушениями обслуживания на существующей линии, и позволяет использовать более распространенные компоненты железной дороги по сравнению с Val.
  4. ^ Поскольку резиновые шины имеют более высокую скорость износа, им нужна более частая замена, что делает их более дорогими в долгосрочной перспективе, чем стальные колесные наборы с более высокой первой стоимостью (которые могут потребоваться в любом случае в качестве резервной копии). Резиновые шины для руководства необходимы.
  5. ^ Система открылась в 1901 году, но не была преобразована в резиновую систему до 1958 года.
  1. ^ Jump up to: а беременный «Резиновое метро» . Железнодорожная система . Получено 17 ноября 2021 года .
  2. ^ GB 10990 , выпущен 10 июня 1846 года   [ мертвая ссылка ]
  3. ^ Jump up to: а беременный Томпкинс, Эрик (1981). "1: изобретение" . История пневматической шины . Dunlop Archive Project. С. 2–4 . ISBN  0-903214-14-8 .
  4. ^ «Саппоро метро» . Urbanrail.net . Архивировано из оригинала 29 апреля 2008 года . Получено 15 апреля 2008 года .
  5. ^ «Придерживаться резины» . Монреальская Газета . 14 сентября 2005 года. Архивировано с оригинала 17 мая 2012 года . Получено 21 декабря 2011 года .
  6. ^ Харрисон, Мэтью С. (1 февраля 1974 г.). «Резиновая шина против стальных колес» . SAE Технические бумаги серии . Тол. 1. с. 740228. DOI : 10.4271/740228 .
  7. ^ Пирсон, WR; Brachaczek, Wanda W. (1 ноября 1974 г.). «Основной мусор в воздухе от резиновых шин». Химия резины и технологии . 47 (5): 1275–1299. doi : 10.5254/1.3540499 .
  • Bindi, A. & Lefeuvre, D. (1990). Парижское метро: История со вчерашнего дня до завтра, Ренн: Оуэст-Франс. ISBN   2-7373-0204-8 . (по -французски)
  • Гайярд М. (1991). От Мадлен-Бастилии до Метеора: История парижского транспорта, Амиенс: Мартелле. ISBN   2-87890-013-8 . (по -французски)
  • Марк Дюфур ( Английский )
[ редактировать ]


Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 04646c8c914d6583ad901ca5a3961694__1726632120
URL1:https://arc.ask3.ru/arc/aa/04/94/04646c8c914d6583ad901ca5a3961694.html
Заголовок, (Title) документа по адресу, URL1:
Rubber-tyred metro - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)