Собственные значения и собственные векторы
В линейной алгебре часто важно знать, направления каких векторов не изменяются при данном линейном преобразовании . собственный вектор ( / ˈ aɪ ɡ ən -/ EYE -gən- ) или характеристический вектор Таким вектором является . Таким образом, собственный вектор линейного преобразования масштабируется постоянным коэффициентом когда к нему применяется линейное преобразование: . Соответствующее собственное значение , характеристическое значение или характеристический корень является умножающим коэффициентом. .
Геометрически векторы представляют собой многомерные величины с величиной и направлением, часто изображаемые в виде стрелок. Линейное преобразование вращает , растягивает или сдвигает векторы, на которые оно воздействует. Его собственные векторы — это те векторы, которые только растянуты, без вращения или сдвига. Соответствующее собственное значение — это коэффициент, на который собственный вектор растягивается или сжимается. Если собственное значение отрицательное, направление собственного вектора меняется на противоположное. [1]
Собственные векторы и собственные значения преобразования служат для его характеристики и поэтому играют важную роль во всех областях применения линейной алгебры, от геологии до квантовой механики . В частности, часто бывает так, что система представлена линейным преобразованием, выходные данные которого подаются в качестве входных данных на одни и те же входные данные ( обратная связь ). В таком приложении наибольшее собственное значение имеет особое значение, поскольку оно определяет долгосрочное поведение системы после многих применений линейного преобразования, а соответствующий собственный вектор представляет собой устойчивое состояние системы.
Определение [ править ]
Рассмотрим матрицу A и ненулевой вектор . Если применить А к (обозначается ) просто масштабируется в множитель λ , где λ — скаляр , то — собственный вектор A , а λ — соответствующее собственное значение. Эту связь можно выразить как: . [2]
Существует прямая связь между размером n × n квадратными матрицами и линейными преобразованиями из n -мерного векторного пространства в себя при любом базисе векторного пространства. Следовательно, в конечномерном векторном пространстве эквивалентно определять собственные значения и собственные векторы, используя либо язык матриц , либо язык линейных преобразований. [3] [4]
Если V конечномерно, приведенное выше уравнение эквивалентно [5]
где A матричное представление T , а u — координатный вектор v — .
Обзор [ править ]
Собственные значения и собственные векторы играют важную роль при анализе линейных преобразований. Приставка eigen- заимствована из немецкого слова eigen ( родственного английскому ) , слову own означающего «собственный», «характерный», «собственный». [6] [7] Первоначально используемые для изучения главных осей вращательного движения твердых тел , собственные значения и собственные векторы имеют широкий спектр применений, например, в анализе устойчивости , анализе вибрации , атомных орбиталях , распознавании лиц и диагонализации матриц .
По сути, собственный вектор v линейного преобразования T — это ненулевой вектор, который при применении к нему T не меняет направления. Применение T к собственному вектору масштабирует собственный вектор только на скалярное значение λ , называемое собственным значением. Это условие можно записать в виде уравнения
Приведенный здесь пример, основанный на Моне Лизе , дает простую иллюстрацию. Каждую точку на картине можно представить в виде вектора, указывающего из центра картины на эту точку. Линейное преобразование в этом примере называется отображением сдвига . Точки в верхней половине перемещаются вправо, а точки в нижней половине — влево пропорционально тому, насколько далеко они находятся от горизонтальной оси, проходящей через середину картины. Поэтому векторы, указывающие на каждую точку исходного изображения, наклоняются вправо или влево и в результате преобразования становятся длиннее или короче. Точки вдоль горизонтальной оси вообще не перемещаются при применении этого преобразования. Следовательно, любой вектор, указывающий прямо вправо или влево без вертикальной составляющей, является собственным вектором этого преобразования, поскольку отображение не меняет своего направления. Более того, все эти собственные векторы имеют собственное значение, равное единице, поскольку отображение также не меняет их длину.
Линейные преобразования могут принимать множество различных форм, отображая векторы в различных векторных пространствах, поэтому собственные векторы также могут принимать множество форм. Например, линейное преобразование может быть дифференциальным оператором типа , и в этом случае собственные векторы представляют собой функции, называемые собственными функциями , которые масштабируются этим дифференциальным оператором, например:
Собственные значения и собственные векторы порождают множество тесно связанных математических понятий, и префикс «собственный-» при их названии широко применяется :
- Набор всех собственных векторов линейного преобразования, каждый из которых сопряжен с соответствующим собственным значением, называется собственной системой этого преобразования. [8] [9]
- Набор всех собственных векторов T , соответствующих одному и тому же собственному значению, вместе с нулевым вектором, называется собственным пространством или характеристическим пространством T , связанным с этим собственным значением. [10]
- Если набор собственных векторов T образует базис области определения T , то этот базис называется собственным базисом .
История [ править ]
Собственные значения часто вводятся в контексте линейной алгебры или теории матриц . Однако исторически они возникли при изучении квадратных форм и дифференциальных уравнений .
В 18 веке Леонард Эйлер изучал вращательное движение твердого тела и обнаружил важность главных осей . [а] Жозеф-Луи Лагранж понял, что главные оси являются собственными векторами матрицы инерции. [11]
В начале 19 века Огюстен-Луи Коши увидел, как их работу можно использовать для классификации квадратичных поверхностей , и обобщил ее на произвольные размеры. [12] Коши также ввел термин racine caractéristique (характеристический корень) для того, что сейчас называется собственным значением ; его член сохраняется в характеристическом уравнении . [б]
Позже Жозеф Фурье использовал работы Лагранжа и Пьера-Симона Лапласа для решения уравнения теплопроводности методом разделения переменных в своей знаменитой книге 1822 года «Аналитическая теория де ла шалёр» . [13] Шарль-Франсуа Штурм развил идеи Фурье и представил их вниманию Коши, который объединил их со своими собственными идеями и пришел к тому факту, что реальные симметричные матрицы имеют действительные собственные значения. [12] Это было расширено Чарльзом Эрмитом в 1855 году до того, что сейчас называется эрмитовыми матрицами . [14]
Примерно в то же время Франческо Бриоски доказал, что собственные значения ортогональных матриц лежат на единичной окружности , [12] и Альфред Клебш нашли соответствующий результат для кососимметричных матриц . [14] Наконец, Карл Вейерштрасс прояснил важный аспект теории устойчивости, начатой Лапласом, осознав, что дефектные матрицы могут вызывать нестабильность. [12]
Тем временем Джозеф Лиувилл изучал проблемы собственных значений, аналогичные проблемам Штурма; дисциплина, выросшая из их работ, теперь называется теорией Штурма-Лиувилля . [15] Шварц изучил первое собственное значение уравнения Лапласа в общих областях в конце XIX века, а Пуанкаре изучил уравнение Пуассона несколько лет спустя. [16]
В начале 20-го века Дэвид Гильберт изучал собственные значения интегральных операторов , рассматривая операторы как бесконечные матрицы. [17] Он был первым, кто использовал немецкое слово eigen , что означает «собственный». [7] для обозначения собственных значений и собственных векторов в 1904 году, [с] хотя он, возможно, следовал схожему использованию Германа фон Гельмгольца . Некоторое время стандартным термином в английском языке было «собственное значение», но сегодня стандартом является более отличительный термин «собственное значение». [18]
Первый численный алгоритм вычисления собственных значений и собственных векторов появился в 1929 году, когда Рихард фон Мизес опубликовал степенной метод . Один из самых популярных сегодня методов, QR-алгоритм , был независимо предложен Джоном Фрэнсисом. [19] and Vera Kublanovskaya [20] в 1961 году. [21] [22]
Собственные значения и собственные векторы матриц [ править ]
Собственные значения и собственные векторы часто знакомятся студентам в контексте курсов линейной алгебры, посвященных матрицам. [23] [24] Кроме того, линейные преобразования в конечномерном векторном пространстве могут быть представлены с помощью матриц: [3] [4] что особенно распространено в численных и вычислительных приложениях. [25]
Рассмотрим n -мерные векторы, которые формируются в виде списка из n скаляров, например трехмерные векторы
Говорят, что эти векторы скалярно кратны друг другу, параллельны или коллинеарны , если существует скаляр λ такой, что
В этом случае, .
Теперь рассмотрим линейное преобразование n -мерных векторов, определяемых размером n на n матрицей A ,
Если окажется, что v и w являются скалярными кратными, то есть если
( 1 ) |
тогда v — собственный вектор линейного преобразования A , а масштабный коэффициент λ — это собственное значение, соответствующее этому собственному вектору. Уравнение ( 1 является уравнением собственных значений матрицы A. )
Уравнение ( 1 ) можно эквивалентно сформулировать как
( 2 ) |
где I — n на n единичная матрица размера , а 0 — нулевой вектор.
Собственные значения и характеристический полином [ править ]
Уравнение ( 2 ) имеет ненулевое решение v тогда и только тогда, когда матрицы определитель ( A − λI ) равен нулю. Следовательно, собственные значения A являются значениями λ , которые удовлетворяют уравнению
( 3 ) |
Используя формулу Лейбница для определителей , левая часть уравнения ( 3 ) представляет собой полиномиальную функцию переменной λ а степень этого многочлена равна n , порядку матрицы A. , Его коэффициенты зависят от элементов A , за исключением того, что его член степени n всегда равен (−1) н л н . называется характеристическим многочленом A . Этот многочлен Уравнение ( ) характеристическим уравнением или вековым уравнением A. называется 3
Фундаментальная теорема алгебры подразумевает, что характеристический многочлен матрицы на n n , A размера будучи многочленом степени n , может быть разложен на произведение n линейных членов:
( 4 ) |
где каждое λ i может быть вещественным, но, как правило, является комплексным числом. Числа λ 1 , λ 2 , ..., λ n , которые не все могут иметь различные значения, являются корнями многочлена и являются собственными значениями A .
В качестве краткого примера, который более подробно описан ниже в разделе примеров, рассмотрим матрицу
Взяв определитель ( A − λI ) , характеристический многочлен A равен
Приравнивая характеристический многочлен к нулю, он имеет корни в точках λ=1 и λ=3 , которые являются двумя собственными значениями A . Собственные векторы, соответствующие каждому собственному значению, можно найти, решив компоненты v в уравнении . В этом примере собственными векторами являются любые ненулевые скалярные кратные
Если все элементы матрицы A являются действительными числами, то коэффициенты характеристического многочлена также будут действительными числами, но собственные значения могут по-прежнему иметь ненулевые мнимые части. Поэтому элементы соответствующих собственных векторов также могут иметь ненулевые мнимые части. Точно так же собственные значения могут быть иррациональными числами, даже если все элементы A являются рациональными числами или даже если они все целые числа. Однако, если все элементы A являются алгебраическими числами , включая рациональные числа, собственные значения также должны быть алгебраическими числами (то есть они не могут волшебным образом стать трансцендентными числами ).
Невещественные корни вещественного многочлена с действительными коэффициентами можно сгруппировать в пары комплексно-сопряженных чисел , а именно: два члена каждой пары имеют мнимые части, различающиеся только знаком, и одну и ту же действительную часть. Если степень нечетная, то по теореме о промежуточном значении хотя бы один из корней вещественный. Следовательно, любая действительная матрица нечетного порядка имеет хотя бы одно вещественное собственное значение, тогда как действительная матрица четного порядка может не иметь вещественных собственных значений. Собственные векторы, связанные с этими комплексными собственными значениями, также являются комплексными и также появляются в комплексно-сопряженных парах.
Алгебраическая кратность [ править ]
Пусть λ i — собственное значение n размером n× матрицы A . Алгебраическая кратность µ A ( λ i ) собственного значения — это его кратность как корня характеристического многочлена, то есть наибольшее целое число k такое, что ( λ − λ i ) к делит этот многочлен равномерно . [10] [26] [27]
Предположим, что матрица A имеет размерность n и d ≤ n различных собственных значений. В то время как уравнение ( 4 ) разлагает характеристический полином A на произведение n линейных членов с некоторыми потенциально повторяющимися членами, характеристический полином вместо этого может быть записан как произведение d членов, каждый из которых соответствует отдельному собственному значению и возведен в степень алгебраическая кратность,
Если d = n, то правая часть представляет собой произведение n линейных членов, и это то же самое, что уравнение ( 4 ). Размер алгебраической кратности каждого собственного значения связан с размерностью n как
Если µ A ( λ i ) = 1, то λ i называется простым собственным значением . [27] Если µ A ( λ i ) равно геометрической кратности λ i , γ A ( λ i ), определенной в следующем разделе, то λ i называется полупростым собственным значением .
Собственные пространства, геометрическая кратность и матриц базис собственный
Учитывая конкретное собственное значение λ матрицы n x n A E , определите набор которые как все векторы v, удовлетворяют уравнению ( 2 ),
С одной стороны, это множество является в точности ядром или нулевым пространством матрицы ( A − λI ). С другой стороны, по определению любой ненулевой вектор, удовлетворяющий этому условию, является собственным вектором A, связанным с λ . Итак, множество E представляет собой объединение нулевого вектора с набором всех собственных векторов A , связанных с λ , а E равно нулевому пространству ( A − λI ). E называется собственным пространством или характеристическим пространством A, связанным с λ . [28] [10] В общем случае λ — комплексное число, а собственные векторы представляют собой комплексные матрицы n на 1. Свойством нуль-пространства является то, что оно является линейным подпространством , поэтому E является линейным подпространством .
Поскольку собственное пространство E является линейным подпространством, оно замкнуто относительно сложения. То есть, если два вектора u и v принадлежат множеству E , записанные u , v ∈ E , то ( u + v ) ∈ E или, что эквивалентно, A ( u + v ) = λ ( u + v ) . Это можно проверить, используя распределительное свойство умножения матриц. Аналогично, поскольку E — линейное подпространство, оно замкнуто относительно скалярного умножения. То есть, если v ∈ E и α — комплексное число, ( α v ) ∈ E или, что то же самое, A ( α v ) = λ ( α v ) . В этом можно убедиться, заметив, что умножение комплексных матриц на комплексные числа коммутативно . Пока u + v и α v не равны нулю, они также являются собственными векторами A , связанными с λ .
Размерность собственного пространства E, связанного с λ , или, что эквивалентно, максимальное количество линейно независимых собственных векторов, связанных с λ , называется геометрической кратностью собственного значения. . Поскольку E также является нулевым пространством ( A − λI ), геометрическая кратность λ является размерностью нулевого пространства ( A − λI ), также называемого нулевым пространством ( A − λI ), которое относится к размерности и рангу ( A − λI ) как
Из-за определения собственных значений и собственных векторов геометрическая кратность собственного значения должна быть не менее одной, то есть каждое собственное значение имеет хотя бы один связанный с ним собственный вектор. Более того, геометрическая кратность собственного значения не может превышать его алгебраическую кратность. Кроме того, напомним, что алгебраическая кратность собственного значения не может превышать n .
Чтобы доказать неравенство , рассмотрим, как определение геометрической кратности подразумевает существование ортонормированные собственные векторы , такой, что . Таким образом, мы можем найти (унитарную) матрицу чей первый столбцы являются этими собственными векторами, а остальные столбцы могут быть любым ортонормированным набором векторы, ортогональные этим собственным векторам . Затем имеет полный ранг и поэтому обратим. Оценка , мы получаем матрицу, верхний левый блок которой является диагональной матрицей . В этом можно убедиться, оценив, что левая часть делает с базисными векторами первого столбца. Путем реорганизации и добавления с обеих сторон, мы получаем с ездит с . Другими словами, похоже на , и . Но из определения , мы это знаем содержит фактор , что означает, что алгебраическая кратность должен удовлетворить .
Предполагать имеет различные собственные значения , где геометрическая кратность является . Полная геометрическая кратность ,
- Прямая сумма собственных пространств всех собственные значения - это все векторное пространство .
- Основа может быть сформирован из линейно независимые собственные векторы ; такой базис называется собственным базисом
- Любой вектор в можно записать как линейную комбинацию собственных векторов .
Дополнительные свойства собственных значений [ править ]
Позволять быть произвольным матрица комплексных чисел с собственными значениями . Каждое собственное значение появляется раз в этом списке, где - алгебраическая кратность собственного значения. Ниже приведены свойства этой матрицы и ее собственных значений:
- След , определяемый как сумма его диагональных элементов, также является суммой всех собственных значений, [29] [30] [31]
- Определитель является произведением всех своих собственных значений, [29] [32] [33]
- Собственные значения сила ; т. е. собственные значения , для любого положительного целого числа , являются .
- Матрица обратима тогда и только тогда , когда каждое собственное значение не равно нулю.
- Если обратима, то собственные значения являются и геометрическая кратность каждого собственного значения совпадает. Более того, поскольку характеристический полином обратного полинома является обратным полиномом оригинала, собственные значения имеют одну и ту же алгебраическую кратность.
- Если равно сопряженному с ним транспонированию или, что то же самое, если является эрмитовым , то каждое собственное значение действительно. То же самое верно для любой симметричной вещественной матрицы.
- Если является не только эрмитовым, но и положительно-определенным , положительно-полуопределенным, отрицательно-определенным или отрицательно-полуопределенным, то каждое собственное значение является положительным, неотрицательным, отрицательным или неположительным соответственно.
- Если унитарно значение , каждое собственное значение имеет абсолютное .
- Если это матрица и — ее собственные значения, то собственные значения матрицы (где – единичная матрица) . Более того, если , собственные значения являются . В более общем смысле для полинома собственные значения матрицы являются .
Левый и правый собственные векторы [ править ]
Во многих дисциплинах векторы традиционно представляются в виде матриц с одним столбцом, а не в виде матриц с одной строкой. По этой причине слово «собственный вектор» в контексте матриц почти всегда относится к правому собственному вектору , а именно к вектору- столбцу , который вправо умножает матрица в определяющем уравнении, уравнении ( 1 ),
Задачу о собственных значениях и собственных векторах также можно определить для векторов- строок , которые оставили матрицу умножения . В этой формулировке определяющим уравнением является
где является скаляром и это матрица. Любой вектор-строка удовлетворяющий этому уравнению, называется левым собственным вектором и является связанным с ним собственным значением. Транспонируя это уравнение,
Сравнивая это уравнение с уравнением ( 1 ), сразу следует, что левый собственный вектор то же самое, что транспонирование правого собственного вектора , с тем же собственным значением. Кроме того, поскольку характеристический полином совпадает с характеристическим полиномом , левый и правый собственные векторы связаны с одними и теми же собственными значениями.
и собственное разложение Диагонализация
Предположим, что собственные векторы A образуют базис, или, что то же самое, A имеет n линейно независимых собственных векторов v 1 , v 2 , ..., v n с соответствующими собственными значениями λ 1 , λ 2 , ..., λ n . Собственные значения не обязательно должны быть различными. Определите квадратную матрицу Q , столбцы которой представляют собой n линейно независимых собственных векторов A ,
Поскольку каждый столбец Q является собственным вектором A , умножение A справа на Q масштабирует каждый столбец Q на соответствующее ему собственное значение,
Имея это в виду, определите диагональную матрицу Λ, где каждый диагональный элемент Λ ii является собственным значением, связанным с i -м столбцом Q . Затем
Поскольку столбцы Q линейно независимы, Q обратима. Справа умножив обе части уравнения на Q −1 ,
или вместо этого умножив обе части слева на Q −1 ,
Таким образом, A можно разложить на матрицу, состоящую из ее собственных векторов, диагональную матрицу с собственными значениями вдоль диагонали и обратную матрицу собственных векторов. Это называется собственным разложением и представляет собой преобразование подобия . Такая матрица A называется подобной диагональной матрице Λ или диагонализируемой . Матрица Q представляет собой замену базовой матрицы преобразования подобия. По сути, матрицы A и Λ представляют собой одно и то же линейное преобразование, выраженное в двух разных базисах. Собственные векторы используются в качестве основы при представлении линейного преобразования как Λ.
Обратно, предположим, что матрица A диагонализуема. Пусть P — неособая квадратная матрица такая, что P −1 AP некоторая диагональная матрица D. — Левое умножение обоих на P , AP = PD . Поэтому каждый столбец P должен быть собственным вектором A , собственное значение которого является соответствующим диагональным элементом D . был обратимым, столбцы P должны быть линейно независимыми Поскольку для того, чтобы P , существует n линейно независимых собственных векторов A . Отсюда следует, что собственные векторы A образуют базис тогда и только тогда, когда A диагонализуемо.
Матрица, не диагонализируемая, называется дефектной . Для дефектных матриц понятие собственных векторов обобщается до обобщенных собственных векторов , а диагональная матрица собственных значений обобщается до жордановой нормальной формы . Над алгебраически замкнутым полем любая матрица A имеет жорданову нормальную форму и, следовательно, допускает базис из обобщенных собственных векторов и разложение в обобщенные собственные пространства .
Вариационная характеристика [ править ]
В эрмитовом случае собственным значениям можно дать вариационную характеристику. Самое большое собственное значение - максимальное значение квадратичной формы . Значение который понимает, что максимум является собственным вектором.
Примеры матриц [ править ]
Пример двумерной матрицы [ править ]
Рассмотрим матрицу
На рисунке справа показано влияние этого преобразования на координаты точки на плоскости. Собственные векторы v этого преобразования удовлетворяют уравнению ( 1 ), а значения λ, для которых определитель матрицы ( A − λI ) равен нулю, являются собственными значениями.
Взяв определитель, чтобы найти характеристический полином A ,
Приравнивая характеристический многочлен к нулю, он имеет корни в точках λ =1 и λ =3 , которые являются двумя собственными значениями A .
Для λ =1 уравнение ( 2 ) принимает вид
Любой ненулевой вектор с v 1 = − v 2 решает это уравнение. Поэтому,
Для λ =3 уравнение ( 2 ) становится
Любой ненулевой вектор с v 1 = v 2 решает это уравнение. Поэтому,
является собственным вектором A, соответствующим λ = 3, как и любое скалярное кратное этого вектора.
Таким образом, векторы v λ =1 и v λ =3 являются собственными векторами оператора A , связанными с собственными значениями λ =1 и λ =3 соответственно.
Пример трехмерной матрицы [ править ]
Рассмотрим матрицу
Характеристический полином A равен
Корнями характеристического многочлена являются 2, 1 и 11, которые являются единственными тремя собственными значениями A . Эти собственные значения соответствуют собственным векторам , , и или любое его ненулевое кратное.
трехмерной матрицы с комплексными значениями Пример собственными
Рассмотрим матрицу циклических перестановок
Эта матрица сдвигает координаты вектора на одну позицию вверх и перемещает первую координату вниз. Его характеристический полином равен 1 − λ 3 , корни которого
Для вещественного собственного значения λ 1 = 1 любой вектор с тремя равными ненулевыми элементами является собственным вектором. Например,
Для комплексно-сопряженной пары мнимых собственных значений
Затем
Следовательно, два других собственных вектора A являются комплексными и равны и с собственными значениями λ 2 и λ 3 соответственно. Два комплексных собственных вектора также появляются в комплексно-сопряженной паре:
Пример диагональной матрицы [ править ]
Матрицы с элементами только по главной диагонали называются диагональными матрицами . Собственные значения диагональной матрицы сами являются диагональными элементами. Рассмотрим матрицу
Характеристический полином A равен
который имеет корни λ 1 = 1 , λ 2 = 2 и λ 3 = 3 . Эти корни являются диагональными элементами, а также собственными значениями A .
Каждый диагональный элемент соответствует собственному вектору, единственный ненулевой компонент которого находится в той же строке, что и этот диагональный элемент. В примере собственные значения соответствуют собственным векторам,
соответственно, а также скалярные кратные этих векторов.
Пример треугольной матрицы [ править ]
Матрица, все элементы которой выше главной диагонали равны нулю, называется нижней треугольной матрицей , а матрица, все элементы которой ниже главной диагонали равны нулю, называется верхней треугольной матрицей . Как и в случае с диагональными матрицами, собственные значения треугольных матриц являются элементами главной диагонали.
Рассмотрим нижнюю треугольную матрицу:
Характеристический полином A равен
который имеет корни λ 1 = 1 , λ 2 = 2 и λ 3 = 3 . Эти корни являются диагональными элементами, а также собственными значениями A .
Эти собственные значения соответствуют собственным векторам,
соответственно, а также скалярные кратные этих векторов.
матрицы с повторяющимися собственными Пример значениями
Как и в предыдущем примере, нижняя треугольная матрица
Корни этого многочлена и, следовательно, собственные значения равны 2 и 3. Алгебраическая кратность каждого собственного значения равна 2; другими словами, они оба являются двойными корнями. Сумма алгебраических кратностей всех различных собственных значений равна µ A = 4 = n размерности A. , порядка характеристического многочлена и
С другой стороны, геометрическая кратность собственного значения 2 равна всего 1, поскольку его собственное пространство натянуто всего на один вектор. и поэтому является одномерным. Аналогично, геометрическая кратность собственного значения 3 равна 1, поскольку его собственное пространство натянуто всего на один вектор. . Общая геометрическая кратность γ A равна 2, что является наименьшим значением для матрицы с двумя различными собственными значениями. Геометрические кратности определены в следующем разделе.
Идентичность собственного вектора и собственного значения [ править ]
Для эрмитовой матрицы квадрат нормы j -го компонента нормализованного собственного вектора можно вычислить, используя только собственные значения матрицы и собственные значения соответствующей второстепенной матрицы :
операторов дифференциальных Собственные значения и собственные функции
Определения собственного значения и собственных векторов линейного преобразования T остаются в силе, даже если базовое векторное пространство является бесконечномерным гильбертовым или банаховым пространством . Широко используемый класс линейных преобразований, действующих в бесконечномерных пространствах, — это дифференциальные операторы в функциональных пространствах . Пусть D — линейный дифференциальный оператор в пространстве C ∞ бесконечно дифференцируемых вещественных функций вещественного аргумента t . Уравнение собственных значений для D представляет собой дифференциальное уравнение
Функции, удовлетворяющие этому уравнению, являются собственными векторами D и обычно называются собственными функциями .
Пример производного оператора [ править ]
Рассмотрим оператор производной с уравнением собственных значений
Это дифференциальное уравнение можно решить, умножив обе части на dt / f ( t ) и проинтегрировав . Ее решение – показательная функция
В основной статье о собственных функциях приводятся и другие примеры.
Общее определение [ править ]
Понятие собственных значений и собственных векторов естественным образом распространяется на произвольные линейные преобразования в произвольных векторных пространствах. Пусть V — любое векторное пространство над некоторым полем K скаляров T , и пусть — линейное преобразование, отображающее V в V ,
Мы говорим, что ненулевой вектор v ∈ V является собственным вектором T тогда и только тогда, когда существует скаляр λ ∈ K такой, что
( 5 ) |
Это уравнение называется уравнением собственных значений для T , а скаляр λ является собственным значением T , соответствующим собственному вектору v . T ( v ) — результат применения преобразования T к вектору v , а λ v — произведение скаляра λ на v . [38] [39]
пространства, геометрическая кратность и базис собственный Собственные
Учитывая собственное значение λ , рассмотрим множество
который представляет собой объединение нулевого вектора с набором всех собственных векторов, связанных с λ . E называется собственным пространством или характеристическим пространством T, связанным с λ . [40]
По определению линейного преобразования,
для x , y ∈ V и α ∈ K. Следовательно, если u и v — собственные векторы T , связанные с собственным значением λ , а именно u , v ∈ E , то
Таким образом, и u + v, и α v являются либо нулевыми, либо собственными векторами T , связанными с λ , а именно u + v , α v ∈ E , и E замкнуто относительно сложения и скалярного умножения. Следовательно, собственное пространство E , связанное с λ, является линейным подпространством V . [41] Если это подпространство имеет размерность 1, его иногда называют собственной линией . [42]
Геометрическая кратность γ T ( λ ) собственного значения λ — это размерность собственного пространства, связанного с λ , т. е. максимальное количество линейно независимых собственных векторов, связанных с этим собственным значением. [10] [27] [43] По определению собственных значений и собственных векторов γ T ( λ ) ≥ 1, поскольку каждое собственное значение имеет хотя бы один собственный вектор.
Собственные пространства оператора T всегда образуют прямую сумму . Как следствие, собственные векторы разных собственных значений всегда линейно независимы. Следовательно, сумма размерностей собственных пространств не может превышать размерность n векторного пространства, в котором работает T , и не может быть более n различных собственных значений. [д]
натянутое собственными векторами T, является инвариантным подпространством T Любое подпространство , , и ограничение T на такое подпространство диагонализуемо. Более того, если все векторное пространство V может быть натянуто на собственные векторы T или, что то же самое, если прямая сумма собственных пространств, связанных со всеми собственными значениями T, является всем векторным пространством V , то базис V , называемый собственным базисом, может быть формируется из линейно независимых собственных векторов T . Когда T допускает собственный базис, T диагонализуемо.
Спектральная теория [ править ]
Если λ является собственным значением T , то оператор ( T − λI ) не является взаимно однозначным , и, следовательно, его обратный ( T − λI ) −1 не существует. Обратное верно для конечномерных векторных пространств, но не для бесконечномерных векторных пространств. В общем, оператор ( T − λI ) может не иметь обратного, даже если λ не является собственным значением.
По этой причине в функциональном анализе собственные значения можно обобщить на спектр линейного оператора T как набор всех скаляров λ, для которых оператор ( T − λI ) не имеет ограниченного обратного. Спектр оператора всегда содержит все его собственные значения, но не ограничивается ими.
Ассоциативные алгебры и теория представлений [ править ]
Можно обобщить алгебраический объект, действующий на векторное пространство, заменив один оператор, действующий на векторное пространство, представлением алгебры – ассоциативной алгеброй, действующей на модуль . Изучение таких действий является областью теории представлений .
Теоретико -представительная концепция веса является аналогом собственных значений, а весовые векторы и весовые пространства являются аналогами собственных векторов и собственных пространств соответственно.
Динамические уравнения [ править ]
Простейшие разностные уравнения имеют вид
Решение этого уравнения для x через t находится с помощью его характеристического уравнения
который можно найти путем суммирования в матричную форму набора уравнений, состоящего из приведенного выше разностного уравнения и уравнений k – 1 дающая k -мерную систему первого порядка по вектору стековой переменной в терминах его однократно запаздывающего значения и взяв характеристическое уравнение матрицы этой системы. Это уравнение дает k характеристических корней для использования в уравнении решения
Аналогичная процедура применяется для решения дифференциального уравнения вида
Расчет [ править ]
Вычисление собственных значений и собственных векторов — это тема, где теория, изложенная в учебниках элементарной линейной алгебры, зачастую очень далека от практики.
Классический метод [ править ]
Классический метод состоит в том, чтобы сначала найти собственные значения, а затем вычислить собственные векторы для каждого собственного значения. Во многих отношениях он плохо подходит для неточных арифметических операций, таких как операции с плавающей запятой .
Собственные значения [ править ]
Собственные значения матрицы можно определить, найдя корни характеристического многочлена. Это легко для матриц, но сложность быстро возрастает с увеличением размера матрицы.
Теоретически коэффициенты характеристического многочлена можно вычислить точно, поскольку они представляют собой суммы произведений матричных элементов; и существуют алгоритмы, которые могут найти все корни многочлена произвольной степени с любой необходимой точностью . [44] Однако на практике этот подход нежизнеспособен, поскольку коэффициенты будут испорчены неизбежными ошибками округления , а корни полинома могут быть чрезвычайно чувствительной функцией коэффициентов (как показано на примере полинома Уилкинсона ). [44] Даже для матриц, элементы которых являются целыми числами, вычисление становится нетривиальным, поскольку суммы очень длинные; постоянный член является определителем , который для матрица представляет собой сумму разные продукты. [и]
Явные алгебраические формулы для корней многочлена существуют только в том случае, если степень составляет 4 или меньше. Согласно теореме Абеля–Руффини не существует общей, явной и точной алгебраической формулы для корней многочлена степени 5 и более. (Общность имеет значение, поскольку любой полином степени является характеристическим полиномом некоторой сопутствующей матрицы порядка .) Следовательно, для матриц порядка 5 и более собственные значения и собственные векторы не могут быть получены явной алгебраической формулой и поэтому должны вычисляться приближенными численными методами . Даже точная формула для корней многочлена степени 3 численно непрактична.
Собственные векторы [ править ]
Как только (точное) значение собственного значения известно, соответствующие собственные векторы можно найти, найдя ненулевые решения уравнения собственных значений, которое становится системой линейных уравнений с известными коэффициентами. Например, если известно, что 6 — собственное значение матрицы
мы можем найти его собственные векторы, решив уравнение , то есть
Это матричное уравнение эквивалентно двум линейным уравнениям
Оба уравнения сводятся к одному линейному уравнению . Следовательно, любой вектор вида , для любого ненулевого действительного числа , является собственным вектором с собственным значением .
Матрица выше имеет другое собственное значение . Аналогичный расчет показывает, что соответствующие собственные векторы являются ненулевыми решениями уравнения , то есть любой вектор вида , для любого ненулевого действительного числа .
Простые итерационные методы [ править ]
Обратный подход, когда сначала ищут собственные векторы, а затем определяют каждое собственное значение по его собственному вектору, оказывается гораздо более удобным для компьютеров. Самый простой алгоритм здесь состоит из выбора произвольного начального вектора и последующего многократного умножения его на матрицу (необязательно нормализуя вектор, чтобы сохранить его элементы разумного размера); это заставляет вектор сходиться к собственному вектору. Вариант состоит в том, чтобы вместо этого умножить вектор на ; это заставляет его сходиться к собственному вектору собственного значения, ближайшего к .
Если является (хорошим приближением) собственным вектором , то соответствующее собственное значение можно вычислить как
где обозначает транспонирование сопряженное .
Современные методы [ править ]
Эффективные и точные методы вычисления собственных значений и собственных векторов произвольных матриц не были известны до тех пор, пока в 1961 году не был разработан алгоритм QR . [44] Сочетание преобразования Хаусхолдера с LU-разложением приводит к получению алгоритма с лучшей сходимостью, чем алгоритм QR. [ нужна ссылка ] Для больших эрмитовых разреженных матриц алгоритм Ланцоша является одним из примеров эффективного итеративного метода вычисления собственных значений и собственных векторов, а также нескольких других возможностей. [44]
Большинство числовых методов, вычисляющих собственные значения матрицы, также определяют набор соответствующих собственных векторов как побочный продукт вычислений, хотя иногда разработчики предпочитают отбрасывать информацию о собственных векторах, как только она больше не нужна.
Приложения [ править ]
Геометрические преобразования [ править ]
Собственные векторы и собственные значения могут быть полезны для понимания линейных преобразований геометрических фигур.В следующей таблице представлены некоторые примеры преобразований на плоскости вместе с их матрицами 2 × 2, собственными значениями и собственными векторами.
Масштабирование | Неравномерное масштабирование | Вращение | Горизонтальный сдвиг | Гиперболическое вращение | |
---|---|---|---|---|---|
Иллюстрация | |||||
Матрица | |||||
Характеристика полиномиальный | |||||
собственные значения, | |||||
Алгебраического много. , | |||||
Очень геометрично . , | |||||
Собственные векторы | Все ненулевые векторы |
Характеристическое уравнение вращения представляет собой квадратное уравнение с дискриминантом , которое является отрицательным числом, если θ не является целым числом, кратным 180°. Следовательно, за исключением этих особых случаев, два собственных значения являются комплексными числами. ; и все собственные векторы имеют недействительные элементы. Действительно, за исключением этих особых случаев, вращение меняет направление каждого ненулевого вектора в плоскости.
Линейное преобразование, которое переводит квадрат в прямоугольник той же площади ( отображение сжатия ), имеет обратные собственные значения.
Анализ компонентов главных
Собственное разложение симметричной положительно - полуопределенной (PSD) матрицы дает ортогональный базис собственных векторов, каждый из которых имеет неотрицательное собственное значение. Ортогональное разложение матрицы PSD используется в многомерном анализе , где выборочные ковариационные матрицы представляют собой PSD. Это ортогональное разложение в статистике называется анализом главных компонент (PCA). PCA изучает линейные отношения между переменными. PCA выполняется на ковариационной матрице или корреляционной матрице (в которой каждая переменная масштабируется так, чтобы ее выборочная дисперсия была равна единице). Для ковариационной или корреляционной матрицы собственные векторы соответствуют главным компонентам , а собственные значения — дисперсии, объясняемой главными компонентами. Анализ главных компонентов корреляционной матрицы обеспечивает ортогональную основу для пространства наблюдаемых данных: в этом базисе наибольшие собственные значения соответствуют главным компонентам, которые связаны с большей частью ковариативности среди ряда наблюдаемых данных.
Анализ главных компонент используется как средство уменьшения размерности при изучении больших наборов данных , таких как те, которые встречаются в биоинформатике . В Q-методологии собственные значения корреляционной матрицы определяют практическую значимость суждения Q-методолога (которое отличается от статистической значимости проверки гипотез ; ср. критерии определения числа факторов ). В более общем смысле анализ главных компонентов можно использовать как метод факторного анализа при моделировании структурными уравнениями .
Графики [ править ]
В теории спектральных графов собственное значение графа определяется графа. как собственное значение матрицы смежности графа или (все чаще) матрицы Лапласа из-за ее дискретного оператора Лапласа , который либо (иногда называемый комбинаторным лапласианом ) или (иногда называемый нормализованным лапласианом ), где представляет собой диагональную матрицу с равен степени вершины и в , диагональный вход . Главный собственный вектор графа определяется как собственный вектор, соответствующий по величине или наименьшее собственное значение лапласиана. Первый главный собственный вектор графа также называется просто главным собственным вектором.
Главный собственный вектор используется для измерения централизации его вершин. Примером может служить Google от алгоритм PageRank . Главный собственный вектор модифицированной матрицы смежности графа Всемирной паутины определяет рейтинг страниц как ее компонентов. Этот вектор соответствует стационарному распределению цепи Маркова , представленному нормализованной по строкам матрицей смежности; однако сначала необходимо изменить матрицу смежности, чтобы обеспечить существование стационарного распределения. Второй наименьший собственный вектор можно использовать для разделения графа на кластеры посредством спектральной кластеризации . Для кластеризации также доступны другие методы.
Цепи Маркова [ править ]
Цепь Маркова представляется матрицей, элементами которой являются вероятности перехода между состояниями системы. В частности, записи неотрицательны, и сумма каждой строки матрицы равна единице, что является суммой вероятностей переходов из одного состояния в какое-то другое состояние системы. Теорема Перрона -Фробениуса дает достаточные условия для того, чтобы цепь Маркова имела единственное доминирующее собственное значение, которое определяет сходимость системы к устойчивому состоянию.
Анализ вибрации [ править ]
Проблемы собственных значений естественным образом возникают при анализе вибрации механических конструкций со многими степенями свободы . Собственные значения — это собственные частоты (или собственные частоты ) вибрации, а собственные векторы — это формы этих колебательных мод. В частности, незатухающая вибрация определяется
То есть ускорение пропорционально положению (т. е. мы ожидаем, что быть синусоидальным во времени).
В размеры, становится массовой матрицей и матрица жесткости . Допустимые решения тогда представляют собой линейную комбинацию решений обобщенной проблемы собственных значений.
Это можно свести к обобщенной проблеме собственных значений путем алгебраических манипуляций за счет решения более крупной системы.
Свойства ортогональности собственных векторов позволяют разделить дифференциальные уравнения , так что систему можно представить как линейное суммирование собственных векторов. Проблема собственных значений сложных структур часто решается с использованием анализа методом конечных элементов , но аккуратно обобщает решение скалярных задач вибрации.
Тензор момента инерции [ править ]
В механике собственные векторы тензора момента инерции определяют главные оси тела твердого . Тензор — ключевая величина , момента инерции необходимая для определения вращения твердого тела вокруг центра масс .
Тензор напряжений [ править ]
В механике твердого тела тензор напряжений симметричен и поэтому может быть разложен на диагональный тензор с собственными значениями на диагонали и собственными векторами в качестве основы. Поскольку в этой ориентации он диагональный, тензор напряжений не имеет сдвига компонентов ; компоненты, которые у него есть, являются основными компонентами.
Уравнение Шрёдингера [ править ]
Пример уравнения собственных значений, в котором преобразование представлено через дифференциальный оператор — это независимое от времени уравнение Шредингера в квантовой механике :
где , гамильтониан второго порядка , является дифференциальным оператором и , волновая функция , является одной из ее собственных функций, соответствующей собственному значению , интерпретируется как его энергия .
Однако в случае, когда нас интересуют только решения в связанном состоянии уравнения Шредингера, ищут в пространстве квадратично интегрируемых функций. Поскольку это пространство является гильбертовым пространством с четко определенным скалярным произведением , можно ввести базисный набор , в котором и может быть представлен как одномерный массив (т.е. вектор) и матрица соответственно. Это позволяет представить уравнение Шредингера в матричной форме.
обозначение брекет В этом контексте часто используется . Вектор, представляющий состояние системы, в гильбертовом пространстве квадратично интегрируемых функций представляется выражением . В этих обозначениях уравнение Шредингера имеет вид:
где является собственным состоянием и представляет собой собственное значение. — наблюдаемый самосопряженный оператор , бесконечномерный аналог эрмитовых матриц. Как и в матричном случае, в приведенном выше уравнении Под вектором понимается вектор, полученный применением преобразования к .
Волновой транспорт [ править ]
Свет , акустические волны и микроволны беспорядочно рассеиваются множество раз при прохождении статической неупорядоченной системы . Несмотря на то, что многократное рассеяние многократно хаотизирует волны, в конечном итоге когерентный перенос волн через систему представляет собой детерминированный процесс, который можно описать матрицей передачи поля. . [45] [46] Собственные векторы оператора передачи формируют набор входных волновых фронтов, специфичных для беспорядка, которые позволяют волнам соединяться с собственными каналами неупорядоченной системы: волны по независимым путям могут проходить через систему. Собственные значения, , из соответствуют коэффициенту пропускания интенсивности, связанному с каждым собственным каналом. Одним из замечательных свойств оператора передачи диффузионных систем является их бимодальное распределение собственных значений с и . [46] Более того, одним из поразительных свойств открытых собственных каналов, помимо идеального коэффициента пропускания, является статистически надежный пространственный профиль собственных каналов. [47]
Молекулярные орбитали [ править ]
В квантовой механике , и в частности в атомной и молекулярной физике , в рамках Хартри-Фока теории атомные и молекулярные орбитали могут определяться собственными векторами оператора Фока . Соответствующие собственные значения интерпретируются как потенциалы ионизации посредством теоремы Купмана . В этом случае термин «собственный вектор» используется в несколько более общем смысле, поскольку оператор Фока явно зависит от орбиталей и их собственных значений. Таким образом, если кто-то хочет подчеркнуть этот аспект, говорят о нелинейных задачах собственных значений. Такие уравнения обычно решаются с помощью итерационной процедуры, называемой в данном случае методом самосогласованного поля . В квантовой химии уравнение Хартри-Фока часто представляют в неортогональном базисном наборе . Это конкретное представление представляет собой обобщенную проблему собственных значений, называемую уравнениями Рутана .
Геология и гляциология [ править ]
Этот раздел может быть слишком техническим для понимания большинства читателей . ( декабрь 2023 г. ) |
В геологии , особенно при изучении ледникового тилла , собственные векторы и собственные значения используются как метод, с помощью которого массу информации об ориентации и наклоне компонентов обломочной ткани можно суммировать в трехмерном пространстве с помощью шести чисел. В полевых условиях геолог может собрать такие данные для сотен или тысяч обломков в образце почвы, которые можно сравнить только графически, например, с помощью диаграммы Tri-Plot (Снид и Фолк). [48] [49] или как стереосеть в сети Вульфа. [50]
Выходные данные для тензора ориентации находятся в трех ортогональных (перпендикулярных) осях пространства. Три собственных вектора упорядочены по их собственным значениям ; [51] тогда – основная ориентация/наклон обломка, является второстепенным и является третичным с точки зрения силы. Ориентация обломков определяется как направление собственного вектора на компасной розе 360 ° . Наклон измеряется как собственное значение, модуль тензора: он измеряется от 0 ° (нет наклона) до 90 ° (вертикально). Относительные значения , , и продиктованы природой ткани осадка. Если ткань называется изотропной. Если ткань называется плоской. Если ткань называется линейной. [52]
Базовый номер репродукции [ править ]
Базовый номер репродукции ( ) является фундаментальным числом в изучении распространения инфекционных заболеваний. Если одного заразного человека поместить в популяцию полностью восприимчивых людей, то — среднее число людей, которых заразит один типичный заразный человек. Время зарождения инфекции – это время, , от одного человека, заразившегося до заражения следующего человека. В гетерогенной популяции матрица следующего поколения определяет, сколько людей в популяции заразятся через некоторое время. прошло. Значение тогда это наибольшее собственное значение матрицы следующего поколения. [53] [54]
Собственные лица [ править ]
При обработке изображений обработанные изображения лиц можно рассматривать как векторы, компонентами которых являются яркости каждого пикселя . [55] Размерность этого векторного пространства равна количеству пикселей. Собственные векторы ковариационной матрицы, связанные с большим набором нормализованных изображений лиц, называются собственными лицами ; это пример анализа главных компонент . Они очень полезны для выражения любого изображения лица как линейной комбинации некоторых из них. В распознавания лиц области биометрии собственные лица предоставляют средства применения сжатия данных к лицам в целях идентификации . Также были проведены исследования, связанные с системами собственного зрения, определяющими жесты рук.
Подобно этой концепции, собственные голоса представляют собой общее направление изменчивости человеческого произношения конкретного высказывания, например слова в языке. На основе линейной комбинации таких собственных голосов можно построить новое голосовое произношение слова. Эти концепции оказались полезными в системах автоматического распознавания речи для адаптации говорящего.
См. также [ править ]
- Теория антисобственных значений
- Собственный оператор
- Собственный брезент
- внутренний момент
- Алгоритм собственных значений
- Квантовые состояния
- Джордан в нормальной форме
- Список программного обеспечения для численного анализа
- Нелинейная внутренняя проблема
- Нормальное собственное значение
- Квадратичная проблема собственных значений
- Единственное значение
- Спектр матрицы
Примечания [ править ]
- ^ Примечание:
- вращения: Леонард Эйлер (представлено: октябрь 1751 года; опубликовано: 1760 год) 1751 году Леонард Эйлер доказал, что любое тело имеет главную ось В движение любого твердого тела при его вращении вокруг движущейся оси), История Королевской академии наук и «Красивая литература Берлина» , стр. 176–227. Мы п. 212 Эйлер доказывает, что любое тело содержит главную ось вращения: «Теорема. 44. Какой бы формы ни было тело, мы всегда можем назначить такую ось, проходящую через его центр тяжести, вокруг которой тело может свободно вращаться & равномерным движением». (Теорема 44. Какова бы ни была форма тела, ему всегда можно приписать такую ось, проходящую через его центр тяжести, вокруг которой оно может свободно и равномерно вращаться.)
- В 1755 году Иоганн Андреас Зегнер доказал, что любое тело имеет три главные оси вращения: Иоганн Андреас Зегнер, Specimen theoriae turbinum [Очерк теории волчков (т. е. вращающихся тел)] (Halle («Halae»), (Германия): Гебауэр, 1755). ( https://books.google.com/books?id=29 стр. xxviiii [29]) Сегнер выводит уравнение третьей степени по t , которое доказывает, что тело имеет три главные оси вращения. Затем он заявляет (на той же странице): «Non autem repugnat tres esse eiusmodipositiones plani HM, quia in aequatione Cubaca radices tres esse possunt, et tres tangentis t valores». (Однако не является противоречивым [что] существует три таких положения плоскости HM, потому что в кубических уравнениях [там] может быть три корня и три значения тангенса t.)
- Соответствующий отрывок из работы Сегнера кратко обсуждался Артуром Кэли . См.: Кэли А. (1862) «Отчет о ходе решения некоторых специальных проблем динамики», Отчет Тридцать второго собрания Британской ассоциации содействия развитию науки; состоялось в Кембридже в октябре 1862 г. , 32 : 184–252; особенно см. стр. 225–226.
- ^ Клайн 1972 , стр. 807–808 Огюстен Коши (1839) «Мемуары об интегрировании линейных уравнений», Comptes Renés , 8 : 827–830, 845–865, 889–907, 931–937. Из стр. 827: «Мы также знаем, что, следуя методу Лагранжа, мы получаем в качестве общего значения главной переменной функцию, в которую вместе с основной переменной входят корни некоторого уравнения, которое я назову характеристическим уравнением , степень этого уравнения это именно порядок дифференциального уравнения, которое необходимо проинтегрировать». (Более того, известно, что, следуя методу Лагранжа, для общего значения главной переменной получают функцию, в которой вместе с главной переменной появляются корни некоторого уравнения, которое я назову «характеристическим уравнением». , причем степень этого уравнения в точности соответствует порядку дифференциального уравнения, которое необходимо проинтегрировать.)
- ^ См.:
- Давид Гильберт (1904) «Основы общей теории линейных интегральных уравнений. (Первый отчет)», Новости Общества наук в Геттингене, Математик-физический класс (Новости Философского общества в Геттингене, математико-физический раздел), стр. 49–91. Из стр. 51: «В частности, в этом первом докладе я прихожу к формулам, обеспечивающим разложение произвольной функции по некоторым выделенным функциям, которые я называю «собственными функциями»: ...» (В частности, в этом первом докладе я прихожу к формулы, которые обеспечивают [последовательное] развитие произвольной функции через некоторые отличительные функции, которые я называю собственными функциями : ...) Далее на той же странице: «Этот успех, по существу, обусловлен тем, что я этого не делаю, как это произошло раньше, в первую очередь на основе доказательства существования собственных значений,...» (Этот успех объясняется главным образом тем, что я не ставлю, как это происходило до сих пор, прежде всего цели на доказательство существования собственных значений, ... )
- О происхождении и эволюции терминов «собственное значение», «характеристическое значение» и т. д. см.: « Самые ранние известные варианты использования некоторых слов математики» (E).
- ^ Доказательство этой леммы см. в Roman 2008 , теорема 8.2 на с. 186; Шилов 1977 , с. 109; Гефферон 2001 , с. 364; Бизер 2006 , Теорема EDELI на стр. 469; и лемма о линейной независимости собственных векторов
- ^ Путем исключения Гаусса над формальными степенными рядами, усеченными до условия, от которых можно уйти операций, но при этом не учитывается комбинаторный взрыв .
Цитаты [ править ]
- ^ Burden & Faires 1993 , с. 401.
- ^ Гилберт Стрэнг. «6: Собственные значения и собственные векторы». Введение в линейную алгебру (PDF) (5-е изд.). Уэлсли-Кембридж Пресс.
- ↑ Перейти обратно: Перейти обратно: а б Херштейн 1964 , стр. 228, 229.
- ↑ Перейти обратно: Перейти обратно: а б Неринг 1970 , с. 38.
- ^ Вайсштейн без даты.
- ^ Беттеридж 1965 .
- ↑ Перейти обратно: Перейти обратно: а б «Собственный вектор и собственное значение» . www.mathsisfun.com . Проверено 19 августа 2020 г.
- ^ Пресс и др. 2007 , с. 536.
- ^ Wolfram.com: Собственный вектор .
- ↑ Перейти обратно: Перейти обратно: а б с д Неринг 1970 , с. 107.
- ^ Хокинс 1975 , §2.
- ↑ Перейти обратно: Перейти обратно: а б с д Хокинс 1975 , §3.
- ^ Кляйн 1972 , с. 673.
- ↑ Перейти обратно: Перейти обратно: а б Клайн 1972 , стр. 807–808.
- ^ Клайн 1972 , стр. 715–716.
- ^ Клайн 1972 , стр. 706–707.
- ^ Кляйн 1972 , с. 1063, с..
- ^ Олдрич 2006 .
- ^ Фрэнсис 1961 , стр. 265–271.
- ^ Кублановская 1962 .
- ^ Голуб и Ван Лоан 1996 , §7.3.
- ^ Мейер 2000 , §7.3.
- ^ Математический факультет Корнеллского университета (2016) Курсы нижнего уровня для первокурсников и второкурсников . Доступ осуществлен 27 марта 2016 г.
- ^ Мичиганского университета (2016). Каталог математических курсов Архивировано 1 ноября 2015 г. в Wayback Machine . Доступ осуществлен 27 марта 2016 г.
- ^ Пресс и др. 2007 , с. 38.
- ^ Фрэли 1976 , с. 358.
- ↑ Перейти обратно: Перейти обратно: а б с Голуб и Ван Лоан, 1996 , с. 316.
- ^ Антон 1987 , стр. 305, 307.
- ↑ Перейти обратно: Перейти обратно: а б Борегар и Фрели 1973 , с. 307.
- ^ Херштейн 1964 , с. 272.
- ^ Неринг 1970 , стр. 115–116.
- ^ Херштейн 1964 , с. 290.
- ^ Неринг 1970 , с. 116.
- ^ Вулчовер 2019 .
- ↑ Перейти обратно: Перейти обратно: а б Дентон и др. 2022 .
- ^ Ван Мигем 2014 .
- ^ Ван Мигем 2024 .
- ^ Korn & Korn 2000 , раздел 14.3.5a.
- ^ Фридберг, Инзель и Спенс 1989 , стр. 217.
- ^ Роман 2008 , с. 186 §8
- ^ Неринг 1970 , с. 107; Шилов 1977 , с. 109 Лемма о собственном пространстве
- ^ Липшуц и Липсон 2002 , с. 111.
- ^ Роман 2008 , с. 189 §8.
- ↑ Перейти обратно: Перейти обратно: а б с д Трефетен и Бау, 1997 .
- ^ Vellekoop & Mosk 2007 , pp. 2309–2311.
- ↑ Перейти обратно: Перейти обратно: а б Роттер и Гиган, 2017 , с. 15005.
- ^ Бендер и др. 2020 , с. 165901.
- ^ Грэм и Мидгли 2000 , стр. 1473–1477.
- ^ Снид и Фолк 1958 , стр. 114–150.
- ^ Нокс-Робинсон и Гардолл 1998 , с. 243.
- ^ Буше, Кристиан; Шиллер, Беате. «Эндогенная геология – Рурский университет в Бохуме» . www.ruhr-uni-bochum.de .
- ^ Бенн и Эванс 2004 , стр. 103–107.
- ^ Дикманн, Хестербек и Мец 1990 , стр. 365–382.
- ^ Хестербек и Дикманн 2000 .
- ^ Ксирухакис, Вотсис и Делопулус 2004 .
Источники [ править ]
- Олдрич, Джон (2006), «Собственное значение, собственная функция, собственный вектор и связанные с ними термины» , в книге Миллера, Джеффа (ред.), « Самые ранние известные варианты использования некоторых слов математики».
- Антон, Ховард (1987), Элементарная линейная алгебра (5-е изд.), Нью-Йорк: Wiley , ISBN 0-471-84819-0
- Борегар, Раймонд А.; Фрэли, Джон Б. (1973), Первый курс линейной алгебры: с дополнительным введением в группы, кольца и поля , Бостон: Houghton Mifflin Co. , ISBN 0-395-14017-Х
- Бизер, Роберт А. (2006), Первый курс линейной алгебры , Бесплатная онлайн-книга по лицензии GNU, Университет Пьюджет-Саунда
- Бендер, Николай; Ямилов, Алексей; Йылмаз, Хасан; Цао, Хуэй (14 октября 2020 г.). «Флуктуации и корреляции собственных каналов передачи в диффузных средах» . Письма о физических отзывах . 125 (16): 165901. arXiv : 2004.12167 . Бибкод : 2020PhRvL.125p5901B . дои : 10.1103/physrevlett.125.165901 . ISSN 0031-9007 . ПМИД 33124845 . S2CID 216553547 .
- Бенн, Д.; Эванс, Д. (2004), Практическое руководство по изучению ледниковых отложений , Лондон: Арнольд, стр. 103–107.
- Беттеридж, Гарольд Т. (1965), Немецкий словарь Нового Касселла , Нью-Йорк: Funk & Wagnall , LCCN 58-7924
- Берден, Ричард Л.; Фейрес, Дж. Дуглас (1993), Численный анализ (5-е изд.), Бостон: Приндл, Вебер и Шмидт, ISBN 0-534-93219-3
- Дентон, Питер Б.; Парк, Стивен Дж.; Тао, Теренс; Чжан, Синин (январь 2022 г.). «Собственные векторы из собственных значений: обзор базовой идентичности в линейной алгебре» (PDF) . Бюллетень Американского математического общества . 59 (1): 31–58. arXiv : 1908.03795 . дои : 10.1090/bull/1722 . S2CID 213918682 . Архивировано (PDF) из оригинала 19 января 2022 года.
- Дикманн, О; Хестербек, Дж.А.; Мец, Дж. А. (1990), «Об определении и расчете основного коэффициента воспроизводства R0 в моделях инфекционных заболеваний в гетерогенных популяциях» , Журнал математической биологии , 28 (4): 365–382, doi : 10.1007/BF00178324 , hdl : 1874/8051 , PMID 2117040 , S2CID 22275430
- Фрэли, Джон Б. (1976), Первый курс абстрактной алгебры (2-е изд.), Чтение: Аддисон-Уэсли , ISBN 0-201-01984-1
- Фрэнсис, JGF (1961), «QR-преобразование, I (часть 1)», The Computer Journal , 4 (3): 265–271, doi : 10.1093/comjnl/4.3.265
- Фрэнсис, JGF (1962), «QR-преобразование, II (часть 2)», The Computer Journal , 4 (4): 332–345, doi : 10.1093/comjnl/4.4.332
- Фридберг, Стивен Х.; Инсел, Арнольд Дж.; Спенс, Лоуренс Э. (1989), Линейная алгебра (2-е изд.), Энглвуд Клиффс, Нью-Джерси: Прентис Холл, ISBN 0-13-537102-3
- Голуб, Джин Х .; Ван Лоан, Чарльз Ф. (1996), Матричные вычисления (3-е изд.), Балтимор, Мэриленд: Издательство Университета Джонса Хопкинса, ISBN 978-0-8018-5414-9
- Грэм, Д.; Мидгли, Н. (2000), «Графическое представление формы частиц с использованием треугольных диаграмм: метод электронных таблиц Excel», Earth Surface Processes and Landforms , 25 (13): 1473–1477, Bibcode : 2000ESPL...25.1473G , doi : 10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C , S2CID 128825838
- Хокинс, Т. (1975), «Коши и спектральная теория матриц», Historia Mathematica , 2 : 1–29, doi : 10.1016/0315-0860(75)90032-4
- Хестербек, Япония; Дикманн, Одо (2000), Математическая эпидемиология инфекционных заболеваний , Серия Уайли по математической и вычислительной биологии, Западный Суссекс, Англия: John Wiley & Sons [ постоянная мертвая ссылка ]
- Хефферон, Джим (2001), Линейная алгебра , Колчестер, Вирджиния: Интернет-книга, Колледж Святого Михаила.
- Херштейн, Индиана (1964), Темы алгебры , Уолтем: издательство Blaisdell, ISBN 978-1114541016
- Клайн, Моррис (1972), Математическая мысль от древности до современности , Oxford University Press, ISBN 0-19-501496-0
- Нокс-Робинсон, К.; Гардолл, Стивен Дж. (1998), «ГИС-стереоплот: интерактивный модуль построения стереосети для географической информационной системы ArcView 3.0», Computers & Geosciences , 24 (3): 243, Bibcode : 1998CG.....24..243K , дои : 10.1016/S0098-3004(97)00122-2
- Корн, Гранино А.; Корн, Тереза М. (2000), «Математический справочник для ученых и инженеров: определения, теоремы и формулы для справки и обзора», Нью-Йорк: McGraw-Hill (2-е исправленное издание), Bibcode : 1968mhse.book... ..К , ISBN 0-486-41147-8
- Кублановская, Вера Н. (1962), «О некоторых алгоритмах решения полной проблемы собственных значений», Вычислительная математика и математическая физика СССР , 1 (3): 637–657, doi : 10.1016/0041-5553(63)90168 -Х
- Липшуц, Сеймур; Липсон, Марк (12 августа 2002 г.). Простое описание линейной алгебры Шаума . МакГроу Хилл Профессионал. п. 111. ИСБН 978-007139880-0 .
- Мейер, Карл Д. (2000), Матричный анализ и прикладная линейная алгебра , Филадельфия: Общество промышленной и прикладной математики (SIAM), ISBN 978-0-89871-454-8
- Неринг, Эвар Д. (1970), Линейная алгебра и теория матриц (2-е изд.), Нью-Йорк: Wiley , LCCN 76091646
- Пресс, Уильям Х.; Теукольский, Саул А. ; Веттерлинг, Уильям Т.; Фланнери, Брайан П. (2007), Численные рецепты: искусство научных вычислений (3-е изд.), Cambridge University Press, ISBN 978-0521880688
- Роман, Стивен (2008), Продвинутая линейная алгебра (3-е изд.), Нью-Йорк: Springer Science + Business Media, ISBN 978-0-387-72828-5
- Роттер, Стефан; Гиган, Сильвен (2 марта 2017 г.). «Световые поля в сложных средах: мезоскопическое рассеяние и волновой контроль» . Обзоры современной физики . 89 (1): 015005. arXiv : 1702.05395 . Бибкод : 2017RvMP...89a5005R . дои : 10.1103/RevModPhys.89.015005 . S2CID 119330480 .
- Шилов, Георгий Э. (1977), Линейная алгебра , переведенный и отредактированный Ричардом А. Сильверманом, Нью-Йорк: Dover Publications, ISBN 0-486-63518-Х
- Снид, Эд; Фолк, Р.Л. (1958), «Галька в нижнем течении реки Колорадо, штат Техас, исследование морфогенеза частиц», Journal of Geology , 66 (2): 114–150, Bibcode : 1958JG.....66..114S , doi : 10.1086/626490 , S2CID 129658242
- Трефетен, Ллойд Н.; Бау, Дэвид (1997), Численная линейная алгебра , SIAM
- Ван Мигем, Пит (18 января 2014 г.). «Собственные векторы графа, фундаментальные веса и метрики центральности для узлов в сетях». arXiv : 1401.4580 [ math.SP ].
- Веллекоп, ИМ; Моск, АП (15 августа 2007 г.). «Фокусировка когерентного света через непрозрачные сильно рассеивающие среды» . Оптические письма . 32 (16): 2309–2311. Бибкод : 2007OptL...32.2309V . дои : 10.1364/OL.32.002309 . ISSN 1539-4794 . ПМИД 17700768 . S2CID 45359403 .
- Вайсштейн, Эрик В. «Собственный вектор» . mathworld.wolfram.com . Проверено 4 августа 2019 г.
- Вайсштейн, Эрик В. (nd). «Собственное значение» . mathworld.wolfram.com . Проверено 19 августа 2020 г.
- Волховер, Натали (13 ноября 2019 г.). «Нейтрино приводят к неожиданным открытиям в базовой математике» . Журнал Кванта . Проверено 27 ноября 2019 г. .
- Ксирухакис, А.; Вотсис, Г.; Делопулус, А. (2004), Оценка трехмерного движения и структуры человеческих лиц (PDF) , Национальный технический университет Афин.
- Ван Мигем, П. (2024). «Компоненты собственных векторов симметричных матриц, связанных с графами» . Линейная алгебра и ее приложения . дои : 10.1016/j.laa.2024.03.035 .
Дальнейшее чтение [ править ]
- Голуб, Джин Ф.; ван дер Ворст, Хенк А. (2000), «Вычисление собственных значений в 20 веке» (PDF) , Журнал вычислительной и прикладной математики , 123 (1–2): 35–65, Бибкод : 2000JCoAM.123...35G , doi : 10.1016/S0377-0427(00)00413-1 , hdl : 1874/2663
- Хилл, Роджер (2009). «λ – Собственные значения» . Шестьдесят символов . Брэди Харан из Ноттингемского университета .
- Каттлер, Кеннет (2017), Введение в линейную алгебру (PDF) , Университет Бригама Янга
- Стрэнг, Гилберт (1993), Введение в линейную алгебру , Уэлсли, Массачусетс: Wellesley-Cambridge Press, ISBN 0-9614088-5-5
- Стрэнг, Гилберт (2006), Линейная алгебра и ее приложения , Бельмонт, Калифорния: Томсон, Брукс/Коул, ISBN 0-03-010567-6
Внешние ссылки [ править ]
в этой статье Использование внешних ссылок может не соответствовать политике и рекомендациям Википедии . ( декабрь 2019 г. ) |
- Что такое собственные значения? - нетехническое введение из статьи «Спросите экспертов» на PhysLink.com.
- Числовые примеры собственных значений и собственных векторов — учебное пособие и интерактивная программа от Revoledu.
- Введение в собственные векторы и собственные значения - лекция Академии Хана
- Собственные векторы и собственные значения | Сущность линейной алгебры, глава 10 – Наглядное объяснение с помощью 3Blue1Brown
- Калькулятор собственных векторов матрицы от Symbolab (нажмите правую нижнюю кнопку сетки 2×12, чтобы выбрать размер матрицы. Выберите размер (для квадратной матрицы), затем введите числовые значения и нажмите кнопку «Перейти». Он также может принимать комплексные числа.)
Викиверситет использует вводную физику для введения собственных значений и собственных векторов.
Теория [ править ]
- Вычисление собственных значений
- Численное решение задач на собственные значения. Под редакцией Чжаоцзюня Бай, Джеймса Деммеля , Джека Донгарры, Акселя Руэ и Хенка ван дер Ворста.