Jump to content

Электроэнцефалография

(Перенаправлено с Электроэнцефалографа )

Электроэнцефалография
Эпилептические спайки и волновые разряды под контролем ЭЭГ

Электроэнцефалография ( ЭЭГ ) [1] метод записи электрограммы спонтанной электрической активности мозга . постсинаптические потенциалы Было показано, что биосигналы, обнаруженные с помощью ЭЭГ, представляют пирамидных нейронов в неокортексе и аллокортексе . [2] Обычно это неинвазивный метод: электроды ЭЭГ размещаются вдоль кожи головы (обычно называемая «ЭЭГ кожи головы») с использованием системы International 10–20 или ее вариантов. Электрокортикографию , включающую хирургическое размещение электродов, иногда называют «внутричерепной ЭЭГ» . Клиническая интерпретация записей ЭЭГ чаще всего выполняется путем визуального осмотра записи или количественного анализа ЭЭГ .

ЭЭГ Колебания напряжения, измеряемые биоусилителем и электродами, позволяют оценить нормальную деятельность мозга . Поскольку электрическая активность, контролируемая с помощью ЭЭГ, возникает в нейронах подлежащей ткани головного мозга , записи, сделанные электродами на поверхности кожи головы, различаются в зависимости от их ориентации и расстояния до источника активности. Кроме того, записанное значение искажается промежуточными тканями и костями, которые действуют подобно резисторам и конденсаторам в электрической цепи . Это означает, что не все нейроны вносят одинаковый вклад в сигнал ЭЭГ, причем ЭЭГ преимущественно отражает активность корковых нейронов вблизи электродов на коже головы. Глубокие структуры мозга , расположенные дальше от электродов, не вносят прямого вклада в ЭЭГ; к ним относятся основание кортикальной извилины , мезиальные стенки главных долей , гиппокамп , таламус и ствол мозга . [3]

ЭЭГ здорового человека покажет определенные закономерности активности, которые коррелируют с тем, насколько человек бодрствует. Диапазон наблюдаемых частот составляет от 1 до 30 Гц, а амплитуды варьируются от 20 до 100 мкВ. Наблюдаемые частоты подразделяются на различные группы: альфа (8–13 Гц), бета (13–30 Гц), дельта (0,5–4 Гц) и тета (4–7 Гц). Альфа-волны наблюдаются, когда человек находится в состоянии расслабленного бодрствования, и преимущественно выражены в теменных и затылочных участках. Во время интенсивной умственной деятельности бета-волны более заметны в лобных и других областях. Если расслабленному человеку попросить открыть глаза, он заметит снижение альфа-активности и увеличение бета-активности. Тета- и дельта-волны обычно не наблюдаются во время бодрствования , а если они и наблюдаются, то это признак дисфункции мозга. [3]

ЭЭГ может обнаружить аномальные электрические разряды , такие как острые волны , спайки или спайк-волновые комплексы, наблюдаемые у людей с эпилепсией ; таким образом, его часто используют для информирования о медицинском диагнозе . ЭЭГ позволяет обнаружить начало и пространственно-временную (локацию и время) эволюцию припадков и наличие эпилептического статуса . Его также используют для диагностики нарушений сна , глубины наркоза , комы , энцефалопатий , гипоксии головного мозга после остановки сердца и смерти мозга . ЭЭГ раньше была методом первой линии диагностики опухолей , инсульта и других очаговых заболеваний головного мозга. [4] [5] но это использование уменьшилось с появлением методов анатомической визуализации с высоким разрешением, таких как магнитно-резонансная томография (МРТ) и компьютерная томография (КТ). Несмотря на ограниченное пространственное разрешение, ЭЭГ продолжает оставаться ценным инструментом для исследований и диагностики. Это один из немногих доступных мобильных методов, обеспечивающий временное разрешение в миллисекундном диапазоне, что невозможно при использовании КТ, ПЭТ или МРТ. [6] [7]

Производные метода ЭЭГ включают вызванные потенциалы (ВП), которые включают усреднение активности ЭЭГ, привязанной по времени к предъявлению какого-либо стимула (визуального, соматосенсорного или слухового). Потенциалы, связанные с событием ( ERP ), относятся к усредненным ответам ЭЭГ, которые привязаны по времени к более сложной обработке стимулов; этот метод используется в когнитивной науке , когнитивной психологии и психофизиологических исследованиях.

Использование

[ редактировать ]

Эпилепсия

[ редактировать ]
Схема записи ЭЭГ с использованием системы расположения электродов 10-10.

ЭЭГ является золотым стандартом диагностики эпилепсии . рутинной Сообщается, что чувствительность ЭЭГ для выявления интериктальных эпилептиформных разрядов в эпилептических центрах находится в диапазоне 29–55%. [8] Учитывая низкую или умеренную чувствительность, рутинная ЭЭГ (обычно продолжительностью 20–30 минут) может быть нормальной у людей, страдающих эпилепсией. Когда на ЭЭГ выявляются интериктальные эпилептиформные разряды (например, острые волны, спайки, спайк-волны и т. д.), это почти во всех случаях подтверждает эпилепсию (высокая специфичность ), однако до 3,5% населения в целом могут иметь эпилептиформные нарушения. на ЭЭГ без приступов (низкий уровень ложноположительных результатов ) [8] или с очень низким риском развития эпилепсии в будущем. [9]

Если рутинная ЭЭГ в норме и существует высокая вероятность или необходимость подтверждения эпилепсии, ее можно повторить или провести с большей продолжительностью в отделении мониторинга эпилепсии (EMU) или дома с помощью амбулаторной ЭЭГ. Кроме того, существуют активирующие приемы, такие как фотостимуляция, гипервентиляция и депривация сна, которые могут повысить диагностическую эффективность ЭЭГ. [8]

Epilepsy Monitoring Unit (EMU)

[ редактировать ]

Иногда рутинной ЭЭГ недостаточно для установления диагноза или определения наилучшего курса лечения. В этом случае можно попытаться записать ЭЭГ во время приступа . Это известно как иктальная запись, в отличие от межприступной записи, которая относится к записи ЭЭГ между приступами. Чтобы получить иктальную запись, обычно проводят длительную ЭЭГ, сопровождаемую синхронизированной по времени видео- и аудиозаписью. Это можно сделать либо амбулаторно (на дому), либо во время госпитализации, желательно в отделении мониторинга эпилепсии (EMU) с медсестрами и другим персоналом, обученным уходу за пациентами с припадками. Амбулаторная видео-ЭЭГ обычно длится от одного до трех дней. Госпитализация в отделение мониторинга эпилепсии обычно длится несколько дней, но может длиться неделю или дольше. Находясь в больнице, противосудорожные препараты обычно отменяют, чтобы увеличить вероятность возникновения припадка во время госпитализации. Из соображений безопасности лекарства не отменяются во время ЭЭГ за пределами больницы. Таким образом, амбулаторная видео-ЭЭГ имеет преимущество в удобстве и обходится дешевле, чем госпитализация, но у них также есть недостаток: снижается вероятность регистрации клинического события. [10]

Мониторинг эпилепсии часто рассматривается, когда у пациентов продолжаются явления, несмотря на прием противосудорожных препаратов, или если есть опасения, что явления у пациента имеют альтернативный диагноз, например, психогенные неэпилептические припадки , обмороки (обмороки) , подкорковые двигательные расстройства , варианты мигрени , инсульт и т. д. При эпилептических припадках постоянный ЭЭГ-мониторинг помогает характеризовать приступы и локализовать/латерализовать область мозга, из которой возникает приступ. Это может помочь определить подходящие варианты немедикаментозного лечения. [11] При клиническом использовании записи ЭЭГ визуально анализируются неврологами для выявления различных особенностей. Все чаще количественный анализ ЭЭГ используется в сочетании с визуальным анализом. Отображения количественного анализа, такие как анализ спектра мощности, соотношение альфа-дельта, интегрированная амплитуда ЭЭГ и обнаружение спайков, могут помочь быстро идентифицировать сегменты ЭЭГ, которые требуют тщательного визуального анализа или, в некоторых случаях, использоваться в качестве заменителей для быстрой идентификации приступов в долгосрочной перспективе. записи по срокам.

Другие заболевания головного мозга

[ редактировать ]

ЭЭГ также может быть полезна для диагностики или лечения следующих заболеваний: [12]

  • Опухоль головного мозга
  • Повреждение головного мозга в результате травмы головы
  • Мозговая дисфункция, которая может иметь различные причины (энцефалопатия).
  • Воспаление головного мозга (энцефалит)
  • Гладить
  • Нарушения сна

Он также может:

Отделение интенсивной терапии (ОИТ)

[ редактировать ]

ЭЭГ также может использоваться в отделениях интенсивной терапии для мониторинга функций головного мозга, для мониторинга бессудорожных припадков/бессудорожного эпилептического статуса, для мониторинга эффекта седативных средств/анестезии у пациентов, находящихся в медикаментозной коме (для лечения рефрактерных припадков или повышенного внутричерепного давления ), а также для мониторинга вторичного повреждения головного мозга при таких состояниях, как субарахноидальное кровоизлияние (в настоящее время метод исследования).

В случаях, когда подозревается серьезное повреждение головного мозга, например, после остановки сердца, ЭЭГ может предоставить некоторую прогностическую информацию.

Если пациенту с эпилепсией предстоит резекционная операция , часто необходимо локализовать очаг (источник) эпилептической активности головного мозга с разрешением, превышающим то, которое обеспечивает ЭЭГ кожи головы. В этих случаях нейрохирурги обычно имплантируют полоски и сетки электродов или глубинные электроды под твердую мозговую оболочку , либо через краниотомию либо через трепанационное отверстие . Запись этих сигналов называется электрокортикографией (ЭКоГ), субдуральной ЭЭГ (сдЭЭГ), внутричерепной ЭЭГ (икЭЭГ) или стереотаксической ЭЭГ (сЭЭГ). Сигнал, записанный с помощью ЭКоГ, имеет другой масштаб активности, чем активность мозга, записанная с помощью ЭЭГ кожи головы. Низковольтные высокочастотные компоненты, которые невозможно легко (или вообще) увидеть на ЭЭГ кожи головы, можно четко увидеть на ЭКоГ. Кроме того, электроды меньшего размера (которые покрывают меньший участок поверхности мозга) позволяют улучшить пространственное разрешение, чтобы сузить области, критические для возникновения и распространения приступов. В некоторых клинических центрах регистрируются данные проникающих микроэлектродов. [13]

Домашняя амбулаторная ЭЭГ

[ редактировать ]

Иногда удобнее или клинически необходимо проводить амбулаторную запись ЭЭГ на дому у пациента. Продолжительность этих исследований обычно составляет 24–72 часа. [ нужна ссылка ]

Исследовательское использование

[ редактировать ]

ЭЭГ и связанное с ней исследование ERP широко используются в нейробиологии , когнитивной науке , когнитивной психологии , нейролингвистике и психофизиологических исследованиях, а также для изучения функций человека, таких как глотание. [14] [15] [16] Любые методы ЭЭГ, используемые в исследованиях, недостаточно стандартизированы для клинического использования, и многие исследования ERP не сообщают обо всех необходимых этапах обработки для сбора и обработки данных. [17] ограничивая воспроизводимость и тиражируемость многих исследований. Согласно систематическому обзору литературы и метаанализу, проведенному в 2024 году Институтом исследования результатов, ориентированных на пациента (PCORI), сканирование ЭЭГ не может быть надежно использовано для постановки клинического диагноза СДВГ. [18] Тем не менее, ЭЭГ продолжает использоваться в исследованиях психических нарушений, таких как расстройство слуховой обработки (APD), СДВ и СДВГ . [18]

Преимущества

[ редактировать ]

Существует несколько других методов исследования функции мозга, включая функциональную магнитно-резонансную томографию (фМРТ), позитронно-эмиссионную томографию (ПЭТ), магнитоэнцефалографию (МЭГ), спектроскопию ядерного магнитного резонанса (ЯМР или МРС), электрокортикографию (ЭКоГ), расчет однофотонной эмиссии. томография (SPECT), спектроскопия ближнего инфракрасного диапазона (NIRS) и оптический сигнал, связанный с событием (EROS). Несмотря на относительно низкую пространственную чувствительность ЭЭГ, «одномерные сигналы из локализованных периферических областей головы делают ее привлекательной своей упрощенной точностью и обеспечивают высокую производительность клинических и фундаментальных исследований». [19] Таким образом, ЭЭГ обладает некоторыми преимуществами перед некоторыми другими методами:

  • Затраты на оборудование значительно ниже, чем у большинства других методов. [20]
  • ЭЭГ предотвращает ограниченную доступность технологов для оказания неотложной помощи в больницах с высокой посещаемостью. [21]
  • Для ЭЭГ требуется только тихая комната и оборудование размером с портфель, тогда как для фМРТ, ОФЭКТ, ПЭТ, МРС или МЭГ требуется громоздкое и неподвижное оборудование. Например, для МЭГ требуется оборудование, состоящее из детекторов, охлаждаемых жидким гелием , которые можно использовать только в помещениях с магнитным экранированием, и общая стоимость которых превышает несколько миллионов долларов; [22] а фМРТ требует использования 1-тонного магнита, опять же, в экранированной комнате.
  • ЭЭГ может легко иметь высокое временное разрешение (хотя разрешение менее миллисекунды генерирует менее значимые данные), поскольку от двух до 32 потоков данных, генерируемых таким количеством электродов, легко сохраняются и обрабатываются, тогда как трехмерные пространственные технологии обеспечивают тысячи или миллионы раз множество потоков входных данных и, таким образом, ограничены аппаратным и программным обеспечением. [23] ЭЭГ обычно регистрируется с частотой дискретизации от 250 до 2000 Гц в клинических и исследовательских условиях.
  • ЭЭГ относительно терпима к движению субъекта, в отличие от большинства других методов нейровизуализации. Существуют даже методы минимизации и даже устранения артефактов движения в данных ЭЭГ. [24]
  • ЭЭГ бесшумна, что позволяет лучше изучить ответы на слуховые стимулы.
  • ЭЭГ не усугубляет клаустрофобию , в отличие от фМРТ, ПЭТ, МРС, ОФЭКТ и иногда МЭГ. [25]
  • ЭЭГ не предполагает воздействия магнитных полей высокой интенсивности (>1 Тесла ), как в некоторых других методах, особенно МРТ и МРС. Это может вызвать множество нежелательных проблем с данными, а также запретить использование этих методов с участниками, имеющими в организме металлические имплантаты, такие как металлосодержащие кардиостимуляторы. [26]
  • ЭЭГ не предполагает воздействия радиолигандов , в отличие от позитронно-эмиссионной томографии . [27]
  • Исследования ERP могут проводиться с использованием относительно простых парадигм по сравнению с исследованиями фМРТ с блочным дизайном IE.
  • Относительно неинвазивный метод , в отличие от электрокортикографии , которая требует размещения электродов на реальной поверхности мозга.

ЭЭГ также имеет некоторые характеристики, выгодно отличающиеся от поведенческого тестирования:

  • ЭЭГ может обнаружить скрытую обработку (т. е. обработку, не требующую ответа). [28]
  • ЭЭГ может использоваться у субъектов, которые не способны к двигательной реакции. [29]
  • ЭЭГ — это метод, широко используемый при изучении спортивных результатов, который ценится за свою портативность и легкий дизайн. [30]
  • Некоторые компоненты ERP можно обнаружить даже тогда, когда субъект не обращает внимания на стимулы.
  • В отличие от других способов изучения времени реакции, ERP могут прояснить этапы обработки (а не только результат). [31]
  • простота ЭЭГ позволяет легко отслеживать изменения мозга на разных этапах жизни. Анализ ЭЭГ сна может указать на важные аспекты сроков развития мозга, включая оценку созревания мозга подростков.

[32]

  • При ЭЭГ лучше понимается, какой сигнал измеряется, по сравнению с другими методами исследования, например, BOLD-ответом на МРТ.

Недостатки

[ редактировать ]
  • Низкое пространственное разрешение на коже головы. фМРТ , например, может напрямую отображать активные области мозга, в то время как ЭЭГ требует тщательной интерпретации только для того, чтобы выдвинуть гипотезу, какие области активируются конкретной реакцией. [33]
  • В зависимости от ориентации и местоположения диполя, вызывающего изменение ЭЭГ, может возникнуть ложная локализация из-за обратной проблемы. [34]
  • ЭЭГ плохо измеряет нервную активность, происходящую под верхними слоями мозга (корой).
  • В отличие от ПЭТ и МРС, он не может определить конкретные участки мозга, в которых можно обнаружить различные нейротрансмиттеры, лекарства и т. д. [27]
  • Часто подключение субъекта к ЭЭГ занимает много времени, так как требует точного размещения десятков электродов вокруг головы и использования различных гелей, солевых растворов и/или паст для поддержания хорошей проводимости, а также использования колпачка для сохранения их на месте. Хотя продолжительность времени различается в зависимости от конкретного используемого устройства ЭЭГ, как правило, подготовка субъекта к МЭГ, фМРТ, МРС и ОФЭКТ занимает значительно меньше времени.
  • Отношение сигнал/шум низкое, поэтому для извлечения полезной информации из ЭЭГ необходим сложный анализ данных и относительно большое количество субъектов. [35]
  • ЭЭГ в настоящее время не очень совместима с людьми с более грубыми и/или текстурированными волосами. Даже защитные стили могут создавать проблемы во время тестирования. В настоящее время исследователи пытаются создать лучшие варианты как для пациентов, так и для технических специалистов. [36] Кроме того, исследователи начинают внедрять методы сбора данных с учетом культурных особенностей, чтобы помочь уменьшить расовые предубеждения в исследованиях ЭЭГ. [37]

С другими методами нейровизуализации

[ редактировать ]

Одновременные записи ЭЭГ и снимки фМРТ были успешно получены. [38] [39] [40] [41] хотя эффективная запись обоих одновременно требует преодоления ряда технических трудностей, таких как наличие баллистокардиографических артефактов, импульсных артефактов МРТ и индукция электрических токов в проводах ЭЭГ, которые движутся в сильных магнитных полях МРТ. Несмотря на сложность, эти проблемы были успешно преодолены в ряде исследований. [42] [43]

МРТ создает детальные изображения, создаваемые за счет генерации сильных магнитных полей, которые могут вызвать потенциально опасную силу смещения и крутящий момент. Эти поля производят потенциально вредный радиочастотный нагрев и создают артефакты изображения, делающие изображения бесполезными. Из-за этих потенциальных рисков в среде МРТ можно использовать только определенные медицинские устройства.

Аналогичным образом также проводились одновременные записи с помощью МЭГ и ЭЭГ, что имеет несколько преимуществ по сравнению с использованием любого из методов по отдельности:

  • ЭЭГ требует точной информации об определенных аспектах черепа, которые можно только оценить, например, о радиусе черепа и проводимости различных мест черепа. В MEG этой проблемы нет, и одновременный анализ позволяет ее исправить.
  • И МЭГ, и ЭЭГ очень плохо обнаруживают активность под поверхностью коры, и, как и в случае с ЭЭГ, уровень ошибок увеличивается с глубиной под поверхностью коры, которую пытаются исследовать. Однако ошибки разных методов сильно различаются, и их объединение, таким образом, позволяет исправить часть этого шума.
  • У МЭГ практически нет доступа к источникам мозговой активности, находящимся ниже нескольких сантиметров под корой. ЭЭГ же может принимать сигналы с большей глубины, хотя и с высокой степенью шума. Сочетание этих двух методов облегчает определение того, что в сигнале ЭЭГ поступает с поверхности (поскольку МЭГ очень точно исследует сигналы с поверхности мозга), а что поступает из более глубоких слоев мозга, что позволяет анализировать более глубокие слои мозга. сигналы, чем ЭЭГ или МЭГ по отдельности. [44]

Недавно комбинированный подход ЭЭГ/МЭГ (ЭМЭГ) был исследован с целью реконструкции источника при диагностике эпилепсии. [45]

ЭЭГ также сочетается с позитронно-эмиссионной томографией . Это дает преимущество, позволяя исследователям увидеть, какие сигналы ЭЭГ связаны с действием различных лекарств в мозге. [46]

Недавние исследования с использованием методов машинного обучения , таких как нейронные сети со статистическими временными характеристиками, извлеченными из данных мозговых волн ЭЭГ лобных долей , показали высокий уровень успеха в классификации психических состояний (расслабленное, нейтральное, сосредоточенное), [47] психические эмоциональные состояния (Негативные, Нейтральные, Позитивные) [48] и таламокортикальная аритмия . [49]

Механизмы

[ редактировать ]

Электрический заряд мозга поддерживается миллиардами нейронов . [50] Нейроны электрически заряжаются (или «поляризуются») мембранными транспортными белками, которые перекачивают ионы через их мембраны. Нейроны постоянно обмениваются ионами с внеклеточной средой, например, для поддержания потенциала покоя и распространения потенциалов действия . Ионы с одинаковым зарядом отталкивают друг друга, и когда многие ионы выталкиваются из многих нейронов одновременно, они могут толкать своих соседей, которые толкают своих соседей, и так далее, в виде волны. Этот процесс известен как объемная проводимость. Когда волна ионов достигает электродов на коже головы, они могут толкать или притягивать электроны к металлу в электродах. Поскольку металл легко проводит выталкивание и притяжение электронов, разницу в напряжениях выталкивания или вытягивания между любыми двумя электродами можно измерить с помощью вольтметра . Запись этих напряжений с течением времени дает нам ЭЭГ. [51]

Электрический потенциал , генерируемый отдельным нейроном, слишком мал, чтобы его можно было уловить с помощью ЭЭГ или МЭГ. [52] Таким образом, активность ЭЭГ всегда отражает сумму синхронной активности тысяч или миллионов нейронов, имеющих одинаковую пространственную ориентацию. Если клетки не имеют одинаковой пространственной ориентации, их ионы не выстраиваются в линию и создают волны, которые необходимо обнаружить. Считается, что пирамидальные нейроны коры производят наибольшее количество сигналов ЭЭГ, поскольку они хорошо выровнены и срабатывают вместе. Поскольку градиенты поля напряжения падают пропорционально квадрату расстояния, активность глубинных источников обнаружить труднее, чем токи вблизи черепа. [53]

На ЭЭГ кожи головы наблюдаются колебания на разных частотах. Некоторые из этих колебаний имеют характерные диапазоны частот , пространственное распределение и связаны с различными состояниями функционирования мозга (например, бодрствованием и различными стадиями сна ). Эти колебания представляют собой синхронизированную активность в сети нейронов. Нейронные сети, лежащие в основе некоторых из этих колебаний, понятны (например, таламокортикальный резонанс, лежащий в основе веретен сна ), тогда как многие другие — нет (например, система, которая генерирует задний основной ритм). Исследования, измеряющие как ЭЭГ, так и спайки нейронов, обнаружили, что взаимосвязь между ними сложна: сочетание мощности ЭЭГ в гамма -диапазоне и фазы в дельта -диапазоне наиболее сильно связано с активностью нейронов. [54]

Компьютерный электроэнцефалограф Нейровизор-БММ 40 производится и предлагается в России.

При обычной ЭЭГ кожи головы запись осуществляется путем размещения на коже головы электродов с проводящим гелем или пастой, обычно после подготовки участка кожи головы путем легкой абразивной обработки для уменьшения импеданса из-за омертвевших клеток кожи. Во многих системах обычно используются электроды, каждый из которых прикреплен к отдельному проводу. В некоторых системах используются колпачки или сетки, в которые встроены электроды; это особенно распространено, когда необходимы массивы электродов высокой плотности. [ нужна ссылка ]

Расположение и названия электродов указаны по Международной системе 10–20. [55] для большинства клинических и исследовательских приложений (за исключением случаев, когда используются массивы высокой плотности). Эта система гарантирует, что наименование электродов будет единообразным в разных лабораториях. В большинстве клинических применений используются 19 записывающих электродов (плюс заземление и системный эталон). [56] обычно используется меньшее количество электродов При регистрации ЭЭГ новорожденных . Дополнительные электроды могут быть добавлены к стандартной установке, когда клиническое или исследовательское приложение требует повышенного пространственного разрешения для определенной области мозга. Массивы высокой плотности (обычно через крышку или сетку) могут содержать до 256 электродов, более или менее равномерно расположенных вокруг кожи головы.

Каждый электрод подключен к одному входу дифференциального усилителя (один усилитель на пару электродов); общий системный опорный электрод подключен к другому входу каждого дифференциального усилителя. Эти усилители усиливают напряжение между активным электродом и эталоном (обычно в 1 000–100 000 раз или 60–100 дБ прирост мощности ). В аналоговой ЭЭГ сигнал затем фильтруется (следующий абзац), и сигнал ЭЭГ выводится в виде отклонения ручки при прохождении под ней бумаги. Однако большинство систем ЭЭГ в наши дни являются цифровыми, и усиленный сигнал оцифровывается через аналого-цифровой преобразователь после прохождения через фильтр сглаживания . Аналого-цифровая выборка обычно происходит на частоте 256–512 Гц при клинической ЭЭГ кожи головы; В некоторых исследовательских приложениях используются частоты дискретизации до 20 кГц.

Во время записи можно использовать ряд процедур активации. Эти процедуры могут вызвать нормальную или аномальную активность ЭЭГ, которую иначе невозможно было бы увидеть. Эти процедуры включают гипервентиляцию, фотостимуляцию (стробоскопическим светом), закрытие глаз, умственную активность, сон и депривацию сна. Во время (стационарного) мониторинга эпилепсии пациенту могут быть отменены типичные противосудорожные препараты.

Цифровой сигнал ЭЭГ хранится в электронном виде и может быть отфильтрован для отображения. Типичные настройки фильтра верхних частот и фильтра нижних частот составляют 0,5–1 Гц и 35–70 Гц соответственно. Фильтр верхних частот обычно отфильтровывает медленные артефакты, такие как электрогальванические сигналы и артефакты движения, тогда как фильтр нижних частот отфильтровывает высокочастотные артефакты, такие как электромиографические сигналы. Дополнительный режекторный фильтр обычно используется для устранения помех, вызванных линиями электропередачи (60 Гц в США и 50 Гц во многих других странах). [13]

Сигналы ЭЭГ могут быть захвачены с помощью оборудования с открытым исходным кодом, такого как OpenBCI , и сигнал может быть обработан с помощью бесплатно доступного программного обеспечения для ЭЭГ, такого как EEGLAB или Neurophysical Biomarker Toolbox .

В рамках оценки хирургического вмешательства по поводу эпилепсии может потребоваться введение электродов вблизи поверхности мозга, под поверхность твердой мозговой оболочки . Это достигается с помощью фрезерования или краниотомии . Это называется по-разному: «электрокортикография (ЭКоГ)» , «внутричерепная ЭЭГ (И-ЭЭГ)» или «субдуральная ЭЭГ (SD-ЭЭГ)». Глубинные электроды также могут быть помещены в структуры головного мозга, такие как миндалевидное тело или гиппокамп , структуры, которые являются обычными эпилептическими очагами и не могут быть четко «видимы» с помощью ЭЭГ кожи головы. Электрокортикографический сигнал обрабатывается так же, как и цифровая ЭЭГ кожи головы (см. выше), с некоторыми оговорками. ЭКоГ обычно регистрируется с более высокой частотой дискретизации, чем ЭЭГ скальпа, из-за требований теоремы Найквиста — субдуральный сигнал состоит из более высокого преобладания более высокочастотных компонентов. Кроме того, многие артефакты, влияющие на ЭЭГ кожи головы, не влияют на ЭКоГ, и поэтому фильтрация изображения часто не требуется.

Типичный сигнал ЭЭГ взрослого человека имеет амплитуду от 10 до 100 мкВ при измерении на коже головы. [57]

Поскольку сигнал напряжения ЭЭГ представляет собой разность напряжений на двух электродах, отображение ЭЭГ для считывающего энцефалографа может быть настроено одним из нескольких способов. Представление каналов ЭЭГ называется монтажом .

Последовательный монтаж
Каждый канал (т.е. форма сигнала) представляет собой разницу между двумя соседними электродами. Весь монтаж состоит из серии этих каналов. Например, канал «Fp1-F3» представляет собой разницу напряжений между электродом Fp1 и электродом F3. Следующий канал монтажа, «F3-C3», представляет разность напряжений между F3 и C3 и так далее по всему массиву электродов.
Референтный монтаж
Каждый канал представляет разницу между определенным электродом и назначенным электродом сравнения. Для этой ссылки не существует стандартной позиции; однако он находится в другом положении, чем «записывающие» электроды. Позиции средней линии часто используются, поскольку они не усиливают сигнал в одном полушарии по сравнению с другим, например Cz, Oz, Pz и т. д., в качестве онлайн-справочника. Другие популярные офлайн-ссылки:
  • Ссылка REST: это ссылка на автономные вычисления на бесконечности, где потенциал равен нулю. REST (метод стандартизации эталонного электрода) использует эквивалентные источники внутри мозга любого набора записей кожи головы в качестве трамплина для связи реальных записей с любой онлайн- или оффлайн- (средней, связанными ушами и т. д.) ненулевой ссылкой на новые записи. с бесконечным нулем в качестве стандартизированной ссылки. [58]
  • «связанные уши»: физическое или математическое среднее количество электродов, прикрепленных как к мочкам ушей, так и к сосцевидным отросткам .
Средний эталонный монтаж
Выходные сигналы всех усилителей суммируются и усредняются, и этот усредненный сигнал используется в качестве общего опорного сигнала для каждого канала.
Лапласовский монтаж
Каждый канал представляет собой разницу между электродом и средневзвешенным значением окружающих электродов. [59]

При использовании аналоговых (бумажных) ЭЭГ технолог переключается между монтажами во время записи, чтобы выделить или лучше охарактеризовать те или иные особенности ЭЭГ. При цифровой ЭЭГ все сигналы обычно оцифровываются и сохраняются в определенном (обычно референтном) монтаже; поскольку любой монтаж может быть математически построен из любого другого, электроэнцефалограф может просматривать ЭЭГ в любом желаемом монтаже.

ЭЭГ читает клинический нейрофизиолог или невролог (в зависимости от местных обычаев и законов в отношении медицинских специальностей ), желательно тот, кто имеет специальную подготовку по интерпретации ЭЭГ для клинических целей. Это делается путем визуального осмотра сигналов, называемых графоэлементами. Использование компьютерной обработки сигналов ЭЭГ – так называемой количественной электроэнцефалографии – является несколько спорным при использовании в клинических целях (хотя существует множество исследовательских применений).

Сухие электроды ЭЭГ

[ редактировать ]

В начале 1990-х годов Бабак Тахери из Калифорнийского университета Дэвис продемонстрировал первые одно- и многоканальные сухие активные электродные матрицы с использованием микрообработки. Конструкция одноканального сухого электрода ЭЭГ и результаты были опубликованы в 1994 году. [60] Также было продемонстрировано, что массивный электрод работает лучше по сравнению с электродами из серебра / хлорида серебра . Устройство состояло из четырех узлов датчиков со встроенной электроникой для снижения шума за счет согласования импедансов . Преимущества таких электродов: (1) не используется электролит, (2) не требуется подготовка кожи, (3) значительно уменьшен размер датчика и (4) совместимость с системами ЭЭГ-мониторинга. Активная электродная решетка представляет собой интегрированную систему, состоящую из массива емкостных датчиков с локальной интегральной схемой, размещенной в корпусе с батареями для питания схемы. Такой уровень интеграции был необходим для достижения функциональных характеристик, получаемых электродом. Электрод был протестирован на электрическом испытательном стенде и на людях в четырех модальностях активности ЭЭГ, а именно: (1) спонтанная ЭЭГ, (2) потенциалы, связанные с сенсорными событиями, (3) потенциалы ствола головного мозга и (4) когнитивные события. - связанные потенциалы. Характеристики сухого электрода выгодно отличаются от стандартных влажных электродов с точки зрения подготовки кожи, отсутствия необходимости в геле (сухой электрод) и более высокого соотношения сигнал/шум. [61]

В 1999 году исследователи из Университета Кейс Вестерн Резерв в Кливленде , штат Огайо , под руководством Хантера Пекхэма использовали 64-электродную тюбетейку ЭЭГ, чтобы вернуть ограниченные движения рук парализованному Джиму Джатичу. Пока Джатич сосредоточился на простых, но противоположных понятиях, таких как вверх и вниз, его результаты ЭЭГ с бета-ритмом были проанализированы с помощью программного обеспечения для выявления закономерностей в шуме. Была определена базовая схема, которая использовалась для управления переключателем: активность выше среднего была включена, ниже средней — выключена. Помимо того, что Ятич мог управлять компьютерным курсором, сигналы также использовались для управления нервными контроллерами, встроенными в его руки, восстанавливая некоторые движения. [62]

В 2018 году было сообщено о функциональном сухом электроде, состоящем из полидиметилсилоксанового эластомера, наполненного проводящими углеродными нановолокнами . Исследование проводилось в Исследовательской лаборатории армии США . [63] Технология ЭЭГ часто предполагает нанесение геля на кожу головы, что обеспечивает высокое соотношение сигнал/шум. Это приводит к более воспроизводимым и надежным результатам экспериментов. Поскольку пациентам не нравится, когда их волосы наполняют гелем, а длительная установка требует наличия обученного персонала, использование ЭЭГ вне лабораторных условий может быть затруднительно. [64] Кроме того, было замечено, что производительность датчиков с мокрыми электродами снижается через несколько часов. [63] Поэтому исследования были направлены на разработку сухих и полусухих биоэлектронных интерфейсов ЭЭГ. [ нужна ссылка ]

Сигналы сухих электродов зависят от механического контакта. Следовательно, получение полезного сигнала может быть затруднено из-за сопротивления между кожей и электродом. [64] [63] Некоторые системы ЭЭГ пытаются обойти эту проблему, применяя солевой раствор. [65] Другие имеют полусухую природу и выделяют небольшое количество геля при контакте с кожей головы. [64] Другое решение использует подпружиненные штифты. Это может быть неудобно. Они также могут быть опасными, если их использовали в ситуации, когда пациент мог удариться головой, поскольку они могли застрять после ударной травмы. [63]

В настоящее время доступны гарнитуры с сухими электродами, имеющими до 30 каналов. [66] Такие конструкции способны компенсировать некоторое ухудшение качества сигнала, связанное с высокими импедансами, за счет оптимизации предварительного усиления, экранирования и вспомогательных механизмов. [67]

Ограничения

[ редактировать ]

ЭЭГ имеет несколько ограничений. Самым важным является его плохое пространственное разрешение. [68] ЭЭГ наиболее чувствительна к определенному набору постсинаптических потенциалов: генерируемых в поверхностных слоях коры, на гребнях извилин, непосредственно примыкающих к черепу, и радиальных к черепу. Дендриты, расположенные глубже в коре, внутри борозд , в срединных или глубоких структурах (таких как поясная извилина или гиппокамп ) или производящие токи, тангенциальные к черепу, вносят гораздо меньший вклад в сигнал ЭЭГ.

Записи ЭЭГ не фиксируют напрямую потенциалы действия аксонов . Потенциал действия можно точно представить как квадруполь тока , что означает, что результирующее поле убывает быстрее, чем поля, создаваемые текущим диполем постсинаптических потенциалов. [22] Кроме того, поскольку ЭЭГ представляет собой среднее число тысяч нейронов, необходима большая популяция клеток, находящихся в синхронной активности, чтобы вызвать значительные отклонения в записях. Потенциалы действия очень быстрые, и, как следствие, вероятность суммирования полей невелика. Тем не менее, нейронное обратное распространение , как обычно более длинный диполь дендритного тока, может быть обнаружено электродами ЭЭГ и является надежным индикатором возникновения нейронного выхода.

ЭЭГ не только улавливает почти исключительно дендритные токи, а не аксональные токи, они также демонстрируют предпочтение активности в популяциях параллельных дендритов и одновременной передаче тока в одном направлении. Пирамидные нейроны II/III и V слоев коры простирают апикальные дендриты до слоя I. Токи, движущиеся вверх или вниз по этим отросткам, лежат в основе большинства сигналов, вырабатываемых электроэнцефалографией. [69]

Таким образом, ЭЭГ предоставляет информацию с большим уклоном в пользу определенных типов, местоположений и ориентаций нейронов. Поэтому его вообще не следует использовать для заявлений о глобальной активности мозга. Мозговые оболочки , спинномозговая жидкость и череп «размазывают» сигнал ЭЭГ, скрывая его внутричерепной источник.

Математически невозможно реконструировать уникальный источник внутричерепного тока для данного сигнала ЭЭГ. [13] поскольку некоторые токи создают потенциалы, которые нейтрализуют друг друга. Это называется обратной задачей . Однако была проделана большая работа для получения удивительно точных оценок, по крайней мере, локализованного электрического диполя , который представляет собой зарегистрированные токи. [ нужна ссылка ]

ЭЭГ с учетом фМРТ, фНИРС, фУЗИ и ПЭТ

[ редактировать ]

ЭЭГ имеет несколько сильных сторон как инструмент исследования мозговой деятельности. ЭЭГ может обнаруживать изменения в течение миллисекунд, и это превосходно, учитывая, что потенциалу действия требуется примерно 0,5–130 миллисекунд для распространения по одному нейрону, в зависимости от типа нейрона. [70] Другие методы исследования активности мозга, такие как ПЭТ , фМРТ или фУЗИ, имеют временное разрешение от секунд до минут. ЭЭГ напрямую измеряет электрическую активность мозга, в то время как другие методы регистрируют изменения кровотока (например, ОФЭКТ , фМРТ, фУЗИ) или метаболической активности (например, ПЭТ, БИКС ), которые являются косвенными маркерами электрической активности мозга.

ЭЭГ можно использовать одновременно с фМРТ или фУЗИ, чтобы данные с высоким временным разрешением можно было записывать одновременно с данными с высоким пространственным разрешением, однако, поскольку данные, полученные из каждого из них, происходят в течение разного временного периода, наборы данных не обязательно представляют собой одну и ту же активность мозга.Существуют технические трудности, связанные с объединением ЭЭГ и фМРТ, включая необходимость удаления артефакта градиента МРТ , присутствующего во время получения данных МРТ. Кроме того, из-за магнитного поля МРТ в движущихся проводах электродов ЭЭГ могут индуцироваться токи.

ЭЭГ можно использовать одновременно с БИКС или ФУЗ без особых технических трудностей. Эти методы не влияют друг на друга, и комбинированное измерение может дать полезную информацию об электрической активности, а также о гемодинамике со средним пространственным разрешением.

ЭЭГ по отношению ко мне

[ редактировать ]

ЭЭГ отражает коррелированную синаптическую активность, обусловленную постсинаптическим потенциалом корковых нейронов . Ионные токи, участвующие в генерации потенциалов быстрого действия, могут не вносить большого вклада в усредненные потенциалы поля, представляющие ЭЭГ. [52] [71] Более конкретно, считается, что электрические потенциалы скальпа, вызывающие ЭЭГ, вызваны внеклеточными ионными токами, вызванными электрической активностью дендритов , тогда как поля, производящие магнитоэнцефалографические сигналы [22] связаны с внутриклеточными ионными токами. [72]

Нормальная деятельность

[ редактировать ]

ЭЭГ обычно описывается с точки зрения (1) ритмической активности и (2) переходных процессов. Ритмическая активность делится на полосы по частоте. В некоторой степени эти диапазоны частот являются предметом номенклатуры (т. е. любую ритмическую активность между 8–12 Гц можно охарактеризовать как «альфа»), но эти обозначения возникли потому, что было отмечено, что ритмическая активность в определенном диапазоне частот имеет определенную распространение по коже головы или определенное биологическое значение. Частотные диапазоны обычно извлекаются с использованием спектральных методов (например, Уэлча), как это реализовано, например, в свободно доступном программном обеспечении ЭЭГ, таком как EEGLAB или Neuroфизиологический Biomarker Toolbox .Вычислительную обработку ЭЭГ часто называют количественной электроэнцефалографией (кЭЭГ).

Большая часть церебрального сигнала, наблюдаемого на ЭЭГ кожи головы, попадает в диапазон 1–20 Гц (активность ниже или выше этого диапазона, вероятно, является артефактной при стандартных методах клинической регистрации). Сигналы подразделяются на полосы пропускания, известные как альфа, бета, тета и дельта, что обозначает большую часть ЭЭГ, используемую в клинической практике. [73]

Сравнение полос ЭЭГ

[ редактировать ]
Сравнение полос ЭЭГ
Группа Частота (Гц) Расположение Обычно Патологически
Дельта < 4 спереди у взрослых, сзади у детей; волны высокой амплитуды
  • подкорковые поражения
  • диффузные поражения
  • метаболическая энцефалопатия, гидроцефалия
  • глубокие поражения средней линии
Тета 4–7 Найден в местах, не связанных с текущей задачей.
  • выше у маленьких детей
  • сонливость у взрослых и подростков
  • холостой ход
  • Связано с торможением вызванных реакций (обнаружено, что оно резко возрастает в ситуациях, когда человек активно пытается подавить реакцию или действие). [74]
  • очаговые подкорковые поражения
  • метаболическая энцефалопатия
  • глубокие нарушения срединной линии
  • некоторые случаи гидроцефалии
Альфа 8–12 задние отделы головы с обеих сторон, амплитуда выше на доминантной стороне. Центральные участки (с3-с4) в покое
  • расслабленный/размышляющий
  • закрывая глаза
  • Также связан с контролем торможения, по-видимому, с целью определения времени тормозной активности в разных местах мозга.
  • есть
Бета 13–30 обе стороны, симметричное распределение, наиболее заметно спереди; волны малой амплитуды
  • Диапазон диапазона: активный спокойный → интенсивный → напряженный → легкая навязчивая реакция.
  • активное мышление, сосредоточенность, повышенная бдительность, тревожность
Гамма > 32 Соматосенсорная кора
  • Отображается во время кросс-модальной сенсорной обработки (восприятие, сочетающее в себе два разных чувства, например звук и зрение) [76] [77]
  • Также проявляется при сопоставлении в кратковременной памяти узнаваемых объектов, звуков или тактильных ощущений.
  • Снижение активности гамма-диапазона может быть связано со снижением когнитивных функций, особенно когда оно связано с тета-диапазоном; однако не было доказано, что это можно использовать в качестве клинического диагностического измерения.
В 8–12 Сенсомоторная кора
  • Показывает мотонейроны в состоянии покоя. [78]
  • Подавление мю может указывать на то, что двигательные зеркальные нейроны работают. Дефицит подавления Мю и, следовательно, зеркальных нейронов может играть роль в развитии аутизма . [79]

Практика использования в определениях только целых чисел возникла из практических соображений в те времена, когда на бумажных носителях можно было рассчитывать только целые циклы. Это приводит к пробелам в определениях, как видно в другом месте на этой странице. Теоретические определения всегда были более тщательно определены и включали все частоты. К сожалению, в стандартных справочных изданиях нет согласия относительно того, какими должны быть эти диапазоны   – значения для верхнего предела альфа и нижнего предела бета включают 12, 13, 14 и 15. Если за порог принять 14 Гц, то самая медленная бета-версия волна имеет примерно такую ​​же длительность, как и самый длинный всплеск (70 мс), что делает это значение наиболее полезным.

ЭЭГ человека с выраженным альфа-ритмом
ЭЭГ человека с выраженным альфа-ритмом

Волновые модели

[ редактировать ]
Дельта-волны
  • Дельта-волны – это диапазон частот до 4 Гц. Обычно это самые высокие по амплитуде и самые медленные волны. Обычно это наблюдается у взрослых в состоянии медленноволнового сна . Это также обычно наблюдается у младенцев. Он может возникать очагово при подкорковых поражениях и в целом при диффузных поражениях, метаболической энцефалопатии, гидроцефалии или глубоких срединных поражениях. Обычно она наиболее выражена спереди у взрослых (например, FIRDA – лобная перемежающаяся ритмическая дельта) и сзади у детей (например, OIRDA – затылочная перемежающаяся ритмическая дельта).
Тета-волны
  • Тета — это диапазон частот от 4 Гц до 7 Гц. Тета обычно наблюдается у маленьких детей. Это может наблюдаться в сонливости или возбуждении у детей старшего возраста и взрослых; это также можно увидеть в медитации . [80] Избыток теты для возраста представляет собой ненормальную активность. Его можно рассматривать как очаговое нарушение при очаговых подкорковых поражениях; его можно увидеть в генерализованном распределении при диффузном заболевании, метаболической энцефалопатии, глубоких срединных нарушениях или некоторых случаях гидроцефалии. Напротив, этот диапазон связан с сообщениями о расслабленных, медитативных и творческих состояниях.
Альфа-волны
  • Альфа — это диапазон частот от 8 Гц до 12 Гц. [81] Ганс Бергер назвал первую наблюдаемую им ритмическую активность ЭЭГ «альфа-волной». Это был «задний базовый ритм» (также называемый «задним доминирующим ритмом» или «задним альфа-ритмом»), наблюдаемый в задних отделах головы с обеих сторон, с более высокой амплитудой на доминантной стороне. Он возникает при закрытии глаз и расслаблении и ослабевает при открытии глаз или умственном напряжении. Задний основной ритм у маленьких детей на самом деле медленнее 8 Гц (следовательно, формально находится в тета-диапазоне).
Сенсомоторный ритм, он же мю-ритм.
Помимо заднего основного ритма, существуют и другие нормальные альфа-ритмы, такие как мю-ритм (альфа-активность в контрлатеральных сенсорных и моторных областях коры), который возникает, когда руки и руки простаивают; и «третий ритм» (альфа-активность в височных или лобных долях). [82] [83] Альфа может быть ненормальным; например, ЭЭГ с диффузным альфа-состоянием, возникающим при коме и не реагирующим на внешние раздражители, называется «альфа-комой».
Бета-волны
  • Бета — это диапазон частот от 13 Гц до примерно 30 Гц. Обычно он наблюдается с обеих сторон симметрично и наиболее заметен спереди. Бета-активность тесно связана с двигательным поведением и обычно снижается во время активных движений. [84] Низкоамплитудный бета-сигнал с множеством и различными частотами часто связан с активным, занятым или тревожным мышлением и активной концентрацией. Ритмичный бета с доминирующим набором частот связан с различными патологиями, такими как синдром Dup15q , и воздействием лекарственных препаратов, особенно бензодиазепинов . Он может отсутствовать или уменьшаться в участках кортикального повреждения. Это доминирующий ритм у пациентов, которые насторожены, тревожны или имеют открытые глаза.
Гамма-волны
  • Гамма — это диапазон частот примерно 30–100 Гц. Считается, что гамма-ритмы представляют собой объединение различных популяций нейронов в сеть с целью выполнения определенной когнитивной или двигательной функции. [13]
  • Диапазон Мю составляет 8–13 Гц и частично перекрывается с другими частотами. Он отражает синхронное возбуждение мотонейронов в состоянии покоя. Считается, что подавление мю отражает работу систем двигательных зеркальных нейронов, поскольку при наблюдении действия паттерн гаснет, возможно, потому, что нормальная и зеркальная нейронные системы «рассинхронизируются» и мешают друг другу. [79]

«Сверхмедленная» или «околопостоянная » активность регистрируется с использованием усилителей постоянного тока в некоторых исследовательских целях. Обычно его не регистрируют в клиническом контексте, поскольку сигнал на этих частотах подвержен ряду артефактов.

Некоторые особенности ЭЭГ скорее преходящи, чем ритмичны. Спайки и острые волны могут отражать судорожную активность или межприступную активность у лиц с эпилепсией или предрасположенностью к эпилепсии. Другие переходные характеристики являются нормальными: в нормальном сне наблюдаются вертексные волны и сонные веретена.

Существуют виды активности, которые статистически редки, но не связаны с дисфункцией или заболеванием. Их часто называют «нормальными вариантами». Мю-ритм является примером нормального варианта.

Нормальная электроэнцефалограмма (ЭЭГ) зависит от возраста. Пренатальная ЭЭГ и неонатальная ЭЭГ сильно отличаются от ЭЭГ взрослых. У плодов в третьем триместре и новорожденных наблюдаются два общих паттерна активности мозга: «прерывистый» и «чередующийся след». «Прерывистая» электрическая активность означает резкие всплески электрической активности, за которыми следуют волны низкой частоты. «Следовая альтернантная» электрическая активность описывает резкие всплески, за которыми следуют короткие интервалы с высокой амплитудой, и обычно указывает на спокойный сон новорожденных. [85] ЭЭГ в детстве обычно имеет более медленные колебания частоты, чем ЭЭГ взрослых.

Нормальная ЭЭГ также варьируется в зависимости от состояния. ЭЭГ используется наряду с другими измерениями ( ЭОГ , ЭМГ ) для определения стадий сна при полисомнографии . I стадия сна (эквивалентная сонливости в некоторых системах) проявляется на ЭЭГ выпадением заднего основного ритма. Может наблюдаться увеличение тета-частот. Сантамария и Чьяппа каталогизировали ряд разнообразных закономерностей, связанных с сонливостью. Для сна II стадии характерны сонные веретена — кратковременные пробежки ритмической активности в диапазоне 12–14 Гц (иногда называемые «сигма-диапазоном») с лобно-центральным максимумом. Большая часть активности на стадии II находится в диапазоне 3–6 Гц. Стадии сна III и IV определяются наличием дельта-частот и часто называются «медленноволновым сном». Стадии I–IV включают медленный (или «медленный») сон. ЭЭГ в фазе быстрого сна (быстрое движение глаз) чем-то похожа на ЭЭГ бодрствования.

ЭЭГ под общей анестезией зависит от типа применяемого анестетика. При использовании галогенированных анестетиков, таких как галотан , или внутривенных препаратов, таких как пропофол , на большей части кожи головы, особенно спереди, наблюдается быстрый (альфа или низкий бета) нереактивный паттерн ЭЭГ; В некоторых старых терминах это было известно как паттерн WAR (широко распространенный передний быстрый), в отличие от паттерна WAIS (широко распространенный медленный), связанного с высокими дозами опиатов . Эффекты анестезии на сигналы ЭЭГ начинают понимать на уровне действия лекарств на различные виды синапсов и цепей, которые обеспечивают синхронизацию активности нейронов. [86]

Артефакты

[ редактировать ]
Основные типы артефактов на ЭЭГ человека
Основные типы артефактов на ЭЭГ человека

ЭЭГ — чрезвычайно полезный метод изучения активности мозга, но измеряемый сигнал всегда испорчен артефактами , которые могут повлиять на анализ данных. Артефакт — это любой измеренный сигнал, который не возникает в мозге. Хотя существует множество алгоритмов удаления артефактов, проблема того, как с ними бороться, остается открытым вопросом. Источником артефактов могут быть проблемы, связанные с инструментом, такие как неисправные электроды, линейный шум или высокое сопротивление электрода, или они могут быть связаны с физиологией записываемого субъекта. Это может включать моргание и движение глаз, сердечную деятельность и мышечную активность, и эти типы артефактов сложнее удалить. Артефакты могут искажать визуальную интерпретацию данных ЭЭГ, поскольку некоторые из них могут имитировать когнитивную активность, что может повлиять на диагностику таких проблем, как болезнь Альцгеймера или нарушения сна. Таким образом, удаление таких артефактов из данных ЭЭГ, используемых для практических приложений, имеет первостепенное значение. [87]

Удаление артефактов

[ редактировать ]

Важно уметь отличать артефакты от подлинной мозговой активности, чтобы не допустить неверных интерпретаций данных ЭЭГ. Общими подходами к удалению артефактов из данных являются предотвращение, отклонение и аннулирование. Целью любого подхода является разработка методологии, способной идентифицировать и удалять артефакты, не влияя на качество сигнала ЭЭГ. Поскольку источники артефактов весьма различны, большинство исследователей сосредотачиваются на разработке алгоритмов, которые будут идентифицировать и удалять один тип шума в сигнале. Простая фильтрация с использованием режекторного фильтра обычно используется для отклонения компонентов с частотой 50/60 Гц. Однако такие простые фильтры не являются подходящим выбором для борьбы со всеми артефактами, поскольку в некоторых случаях их частоты будут перекрываться с частотами ЭЭГ.

Алгоритмы регрессии имеют умеренную вычислительную стоимость и просты. Они представляли собой наиболее популярный метод коррекции вплоть до середины 1990-х годов, когда они были заменены методами типа «слепого разделения источников». Алгоритмы регрессии основаны на предположении, что все артефакты состоят из одного или нескольких эталонных каналов. Вычитание этих опорных каналов из других загрязненных каналов либо во временной, либо в частотной области путем оценки влияния опорных каналов на другие каналы скорректирует каналы на наличие артефактов. Хотя требование эталонных каналов в конечном итоге приводит к замене этого класса алгоритмов, они по-прежнему представляют собой эталон, по которому оцениваются современные алгоритмы. [88] Алгоритмы слепого разделения источников (BSS), используемые для удаления артефактов, включают анализ главных компонентов (PCA) и анализ независимых компонентов (ICA), и несколько алгоритмов этого класса успешно справляются с большинством физиологических артефактов. [88]

Физиологические артефакты

[ редактировать ]

Глазные артефакты

[ редактировать ]

Глазные артефакты существенно влияют на сигнал ЭЭГ. Это происходит из-за движений глаз, вызывающих изменение электрических полей вокруг глаз, искажающих электрическое поле над кожей головы, и, поскольку ЭЭГ записывается на коже головы, это, следовательно, искажает записанный сигнал. Среди исследователей существуют разногласия: некоторые утверждают, что глазные артефакты являются или могут быть обоснованно описаны как единый генератор, в то время как другие утверждают, что важно понимать потенциально сложные механизмы. Для объяснения глазного артефакта были предложены три потенциальных механизма.

электрический диполь Первый - это дипольное движение роговицы и сетчатки, которое утверждает, что между роговицей и сетчаткой образуется , поскольку первый заряжен положительно, а второй - отрицательно. Когда глаз движется, то же самое происходит и с диполем, который воздействует на электрическое поле над кожей головы. Это самый стандартный вид. Второй механизм - это движение диполя сетчатки, которое похоже на первый, но отличается тем, что утверждает, что существует разность потенциалов, следовательно, диполь через сетчатку, при этом роговица оказывает незначительное влияние. Третий механизм – движение век. Известно, что при движении века происходит изменение напряжения вокруг глаз, даже если глазное яблоко этого не делает. Считается, что веко можно охарактеризовать как источник скользящего потенциала и что влияние моргания на записанную ЭЭГ отличается от воздействия движения глаз. [89]

Артефакты характерного типа трепетания век ранее назывались каппа-ритмом (или каппа-волнами). Обычно его можно увидеть в префронтальных отведениях, то есть прямо над глазами. Иногда их можно увидеть при умственной деятельности. Обычно они находятся в диапазоне Тета (4–7 Гц) или Альфа (7–14 Гц). Они были названы так потому, что считалось, что они происходят из мозга. Более позднее исследование показало, что они возникают из-за быстрого трепетания век, иногда настолько незначительного, что его было трудно увидеть. На самом деле они представляют собой шум в показаниях ЭЭГ, и технически их не следует называть ритмом или волной. Поэтому в настоящее время в электроэнцефалографии это явление называют артефактом трепетания век, а не каппа-ритмом (или волной). [90]

На распространение глазного артефакта влияет множество факторов, включая свойства черепа субъекта, нейронных тканей и кожи, но сигнал можно аппроксимировать как обратно пропорциональный расстоянию от квадрата глаз. Электроокулограмма . (ЭОГ) состоит из серии электродов, измеряющих изменения напряжения вблизи глаза, и является наиболее распространенным инструментом для устранения артефактов движения глаз в сигнале ЭЭГ [89]

Мышечные артефакты

[ редактировать ]

Еще одним источником артефактов являются различные движения мышц по телу. Этот конкретный класс артефактов обычно регистрируется всеми электродами на коже головы из-за миогенной активности (повышение или понижение артериального давления). Происхождение этих артефактов не имеет единого места и возникает из функционально независимых групп мышц, то есть характеристики артефакта не являются постоянными. Наблюдаемые закономерности, связанные с мышечными артефактами, будут меняться в зависимости от пола субъекта, конкретной мышечной ткани и степени ее сокращения. Частотный диапазон мышечных артефактов широк и перекрывается со всеми классическими ритмами ЭЭГ. Однако большая часть мощности сосредоточена в нижнем диапазоне наблюдаемых частот от 20 до 300 Гц, что делает гамма-диапазон особенно восприимчивым к мышечным артефактам. Некоторые мышечные артефакты могут иметь активность с частотой всего 2 Гц, поэтому мышечная активность также может влиять на дельта- и тета-диапазоны. Мышечные артефакты могут повлиять на исследования сна, поскольку они находятся в бессознательном состоянии. бруксизм (скрежет зубами), движения или храп могут серьезно повлиять на качество записанной ЭЭГ. Кроме того, на записи пациентов с эпилепсией может существенно влиять наличие мышечных артефактов. [91]

Сердечные артефакты

[ редактировать ]

Потенциал сердечной деятельности приводит к ошибкам электрокардиографа (ЭКГ) в ЭЭГ. [92] Артефакты, возникающие вследствие сердечной деятельности, можно устранить с помощью эталонного сигнала ЭКГ. [87]

Другие физиологические артефакты

[ редактировать ]

Глоссокинетические артефакты возникают из-за разницы потенциалов между основанием и кончиком языка. Незначительные движения языка могут исказить ЭЭГ, особенно при паркинсонизме и треморе . [ нужна ссылка ]

Экологические артефакты

[ редактировать ]

Помимо артефактов, генерируемых телом, многие артефакты происходят извне. Движение пациента или даже простое положение электродов может вызвать толчки электродов , всплески, возникающие из-за мгновенного изменения импеданса данного электрода. Плохое заземление местной энергосистемы электродов ЭЭГ может вызвать значительные артефакты на частоте 50 или 60 Гц, в зависимости от частоты . Третьим источником возможных помех может быть наличие капельницы ; такие устройства могут вызывать ритмичные, быстрые всплески низкого напряжения, которые можно принять за всплески. [ нужна ссылка ]

Аномальная активность

[ редактировать ]

Аномальную активность можно условно разделить на эпилептиформную и неэпилептиформную активность. Его также можно разделить на очаговый и диффузный.

Фокальные эпилептиформные разряды представляют собой быстрые синхронные потенциалы в большом количестве нейронов в несколько дискретной области мозга. Они могут возникать в виде межприступной активности между приступами и представлять собой область корковой раздражительности, которая может быть предрасположена к возникновению эпилептических припадков. Межприступные разряды не являются полностью надежными для определения того, болен ли пациент эпилепсией или где могут возникнуть приступы. (См. фокальную эпилепсию .)

Генерализованные эпилептиформные разряды часто имеют передний максимум, но наблюдаются синхронно по всему мозгу. Они сильно наводят на мысль о генерализованной эпилепсии.

Очаговая неэпилептиформная аномальная активность может возникать в участках головного мозга с очаговым поражением коры или белого вещества . Оно часто состоит из увеличения медленночастотных ритмов и/или утраты нормальных более высокочастотных ритмов. Это также может проявляться в виде очагового или одностороннего снижения амплитуды сигнала ЭЭГ.

Диффузная неэпилептиформная аномальная активность может проявляться в виде диффузных аномально медленных ритмов или двустороннего замедления нормальных ритмов, таких как PBR.

Электроды для интракортикальной энцефалограммы и субдуральные электроды можно использовать в тандеме для выявления и дискретизации артефактов эпилептиформных и других тяжелых неврологических явлений.

Более продвинутые методы измерения аномальных сигналов ЭЭГ также недавно привлекли внимание как возможные биомаркеры различных заболеваний, таких как болезнь Альцгеймера . [93]

Удаленная связь

[ редактировать ]

Системы декодирования воображаемой речи по ЭЭГ имеют приложения, например, в интерфейсах мозг-компьютер . [94]

ЭЭГ диагностика

[ редактировать ]

Министерство обороны (DoD) и Управление по делам ветеранов (VA), а также Исследовательская лаборатория армии США (ARL) сотрудничали в области ЭЭГ-диагностики с целью выявления черепно-мозговой травмы легкой и средней степени тяжести (mTBI) у боевых солдат. [95] В период с 2000 по 2012 год 75 процентов черепно-мозговых травм в ходе военных операций в США были классифицированы как mTBI. В ответ Министерство обороны разработало новые технологии, способные быстро, точно, неинвазивно и в полевых условиях обнаруживать mTBI для устранения этой травмы. [95]

У военнослужащих часто развиваются посттравматическое стрессовое расстройство и мтЧМТ во взаимосвязи. Оба состояния проявляются измененными низкочастотными колебаниями мозговых волн. [96] Измененные мозговые волны у пациентов с посттравматическим стрессовым расстройством проявляются снижением низкочастотных колебаний, тогда как травмы mTBI связаны с увеличением низкочастотных волновых колебаний. Эффективная ЭЭГ-диагностика может помочь врачам точно определить состояние и соответствующим образом лечить травмы, чтобы смягчить долгосрочные последствия. [97]

Традиционно клиническая оценка ЭЭГ включала визуальный осмотр. Вместо визуальной оценки топографии колебаний мозговых волн количественная электроэнцефалография (кЭЭГ), компьютеризированные алгоритмические методики, анализирует конкретную область мозга и преобразует данные в значимый «спектр мощности» этой области. [95] Точная дифференциация mTBI и посттравматического стрессового расстройства может значительно повысить положительные результаты выздоровления пациентов, особенно потому, что долгосрочные изменения в нейронной коммуникации могут сохраняться после первоначального случая mTBI. [97]

Еще одним распространенным измерением, сделанным на основе данных ЭЭГ, являются измерения сложности, такие как сложность Лемпеля-Зива , фрактальная размерность и спектральная плоскостность . [19] которые связаны с конкретными патологиями или стадиями патологии.

Экономика

[ редактировать ]

Недорогие устройства ЭЭГ существуют для недорогих исследований и потребительских рынков. Недавно несколько компаний миниатюризировали технологию ЭЭГ медицинского уровня, чтобы создать версии, доступные широкой публике. Некоторые из этих компаний создали коммерческие устройства ЭЭГ, которые продаются в розницу менее чем за 100 долларов США.

  • В 2004 году OpenEEG выпустила ModularEEG как аппаратное обеспечение с открытым исходным кодом. Совместимое программное обеспечение с открытым исходным кодом включает игру для балансировки мяча.
  • В 2007 году NeuroSky выпустила первую доступную потребительскую ЭЭГ вместе с игрой NeuroBoy. Это также было первое крупномасштабное устройство ЭЭГ, в котором использовалась технология сухого датчика. [98]
  • В 2008 году компания OCZ Technology разработала устройство для использования в видеоиграх, опираясь в первую очередь на электромиографию .
  • В 2008 году компания Final Fantasy разработчик Square Enix, , объявила о сотрудничестве с NeuroSky для создания игры Judecca . [99] [100]
  • В 2009 году Mattel в партнерстве с NeuroSky выпустила Mindflex — игру, в которой ЭЭГ использовалась для управления мячом через полосу препятствий. На сегодняшний день это, безусловно, самая продаваемая потребительская ЭЭГ. [99] [101]
  • В 2009 году Uncle Milton Industries в партнерстве с NeuroSky выпустила Star Wars Force Trainer — игру, созданную для создания иллюзии владения Силой . [99] [102]
  • В 2010 году NeuroSky добавила в MindSet функцию моргания и электромиографии. [103]
  • В 2011 году NeuroSky выпустила MindWave, устройство ЭЭГ, предназначенное для образовательных целей и игр. [104] MindWave получил награду Книги рекордов Гиннеса как «Самая тяжелая машина, перемещаемая с помощью интерфейса управления мозгом». [105]
  • В 2012 году японский проект гаджетов Neurowear выпустил Necomimi: гарнитуру с моторизованными кошачьими ушками. Гарнитура представляет собой устройство NeuroSky MindWave с двумя моторами на оголовье, где могут быть кошачьи уши. Чехлы в форме кошачьих ушей надеваются на моторы так, что, когда устройство регистрирует эмоциональные состояния, уши начинают двигаться. Например, в расслабленном состоянии уши опускаются в стороны и приободряются при повторном возбуждении.
  • В 2014 году OpenBCI выпустила одноименный интерфейс «мозг-компьютер» с открытым исходным кодом после успешной кампании на Kickstarter в 2013 году. Плата, позже переименованная в «Cyton», имеет 8 каналов, которые можно расширить до 16 с помощью модуля Daisy. Он поддерживает ЭЭГ, ЭКГ и ЭМГ . Плата Cyton основана на микросхеме Texas Instruments ADS1299 и микроконтроллере Arduino или PIC и первоначально стоила 399 долларов, а затем выросла до 999 долларов. В нем используются стандартные металлические чашечные электроды и проводящая паста.
  • В 2015 году компания Mind Solutions Inc выпустила самый маленький на сегодняшний день потребительский BCI — NeuroSync . Это устройство работает как датчик сухости и имеет размер не больше Bluetooth . наушника [106]
  • В 2015 году китайская компания Macrotellect выпустила BrainLink Pro и BrainLink Lite , портативный ЭЭГ потребительского уровня , предоставляющий 20 приложений для улучшения мозговой деятельности в Apple и магазинах приложений Android . [107]
  • В 2021 году BioSerenity выпустит Neuronaute и Icecap — одноразовую одноразовую гарнитуру ЭЭГ, которая позволяет осуществлять запись с качеством, эквивалентным традиционным чашечным электродам. [108] [109]

Будущие исследования

[ редактировать ]

ЭЭГ использовалась для многих целей, помимо обычного применения в клинической диагностике и традиционной когнитивной нейробиологии. Первое использование было во время Второй мировой войны авиационным корпусом армии США для выявления пилотов, которым грозил припадок; [110] долговременные записи ЭЭГ у пациентов с эпилепсией до сих пор используются для прогнозирования приступов . Нейрообратная связь остается важным расширением, и в ее наиболее развитой форме также пытаются использовать ее в качестве основы мозговых компьютерных интерфейсов . [111] ЭЭГ также довольно широко используется в области нейромаркетинга .

На ЭЭГ влияют лекарства, влияющие на функции мозга, химические вещества, составляющие основу психофармакологии . Ранние эксперименты Бергера зафиксировали влияние лекарств на ЭЭГ. Наука фармако-электроэнцефалографии разработала методы выявления веществ, которые систематически изменяют функции мозга для терапевтического и развлекательного использования.

Honda пытается разработать систему, которая позволит оператору управлять своим роботом Asimo с помощью ЭЭГ — технологии, которую компания в конечном итоге надеется внедрить в свои автомобили. [112]

ЭЭГ использовались в качестве доказательства в уголовных процессах в индийском штате Махараштра . [113] [114] Профилирование сигнатуры электрических колебаний мозга (BEOS), метод ЭЭГ, использовался в судебном процессе по делу штата Махараштра против Шармы, чтобы показать, что Шарма помнит, как использовала мышьяк для отравления своего бывшего жениха, хотя надежность и научная основа BEOS оспариваются. [115]

В настоящее время проводится множество исследований, направленных на то, чтобы сделать устройства ЭЭГ меньше, портативнее и проще в использовании. Так называемая «носимая ЭЭГ» основана на создании маломощной беспроводной электроники и «сухих» электродов, которые не требуют использования проводящего геля. [116] Целью портативной ЭЭГ является создание небольших устройств ЭЭГ, которые располагаются только на голове и могут записывать ЭЭГ в течение нескольких дней, недель или месяцев, как ушная ЭЭГ . Такой длительный и простой в использовании мониторинг может существенно изменить диагностику хронических заболеваний, таких как эпилепсия, и значительно улучшить признание систем BCI конечными пользователями. [117] Также проводятся исследования по поиску конкретных решений для увеличения срока службы батарей носимых устройств ЭЭГ за счет использования подхода к сокращению данных.

В научных исследованиях в настоящее время ЭЭГ часто используется в сочетании с машинным обучением . [118] Данные ЭЭГ предварительно обрабатываются, а затем передаются алгоритмам машинного обучения. Затем эти алгоритмы обучаются распознавать различные заболевания, такие как шизофрения , [119] эпилепсия [120] или деменция . [121] Кроме того, их все чаще используют для изучения обнаружения припадков. [122] [123] [124] [125] Используя машинное обучение, данные можно анализировать автоматически. В долгосрочной перспективе это исследование направлено на создание алгоритмов, которые помогут врачам в их клинической практике. [126] и обеспечить дальнейшее понимание болезней. [127] В этом ключе часто рассчитываются меры сложности данных ЭЭГ, такие как сложность Лемпеля-Зива , фрактальная размерность и спектральная плоскостность . [19] Было показано, что объединение или умножение таких измерений может выявить ранее скрытую информацию в данных ЭЭГ. [19]

Сигналы ЭЭГ от музыкальных исполнителей были использованы для создания мгновенных композиций и одного компакт-диска в рамках проекта Brainwave Music Project, запущенного в Компьютерном музыкальном центре Колумбийского университета Брэдом Гартоном и Дэйвом Солдером . [ нужна ссылка ] Точно так же часовая запись мозговых волн Энн Друян была включена в « Золотую пластинку «Вояджера» , запущенную на зондах «Вояджер» в 1977 году, на случай, если какой-либо внеземной разум сможет расшифровать ее мысли, в том числе о том, каково это — влюбиться. [ нужна ссылка ]

Первая запись ЭЭГ человека, полученная Гансом Бергером в 1924 году. Верхняя запись представляет собой ЭЭГ, а нижняя — временной сигнал частотой 10 Гц .
Ганс Бергер

В 1875 году Ричард Кейтон (1842–1926), врач, практикующий в Ливерпуле свои выводы об электрических явлениях обнаженных полушарий головного мозга кроликов и обезьян , представил в «Британском медицинском журнале» . В 1890 году польский физиолог Адольф Бек опубликовал исследование спонтанной электрической активности мозга кроликов и собак, включавшей ритмические колебания, изменяемые светом. Бек начал эксперименты по изучению электрической активности мозга животных. Бек поместил электроды прямо на поверхность мозга, чтобы проверить сенсорную стимуляцию. Его наблюдения за колебаниями активности мозга привели к выводу о мозговых волнах. [128]

В 1912 году украинский физиолог Неминский опубликовал первую ЭЭГ животных и вызванный потенциал млекопитающего Владимир Владимирович Правдич - (собаки). [129] В 1914 году Наполеон Цибульский и Еленска-Мацишина сфотографировали записи ЭЭГ экспериментально вызванных судорог. [ нужна ссылка ]

Немецкий физиолог и психиатр Ганс Бергер (1873–1941) записал первую ЭЭГ человека в 1924 году. [130] Развивая работу, ранее проведенную на животных Ричардом Кейтоном и другими, Бергер также изобрел электроэнцефалограф (давший устройству свое название), изобретение, описанное «как одно из самых удивительных, замечательных и важных достижений в истории клинической неврологии». [131] Его открытия были впервые подтверждены британскими учёными Эдгаром Дугласом Адрианом и БХК Мэтьюзом в 1934 году и развиты ими.

В 1934 году Фишер и Ловенбах впервые продемонстрировали эпилептиформные спайки. В 1935 году Гиббс , Дэвис и Леннокс описали межприступные пиковые волны и структуру клинических абсансных приступов с тремя циклами в секунду , что положило начало области клинической электроэнцефалографии. [132] Впоследствии, в 1936 году Гиббс и Джаспер сообщили о межприступном спайке как о фокальном признаке эпилепсии. В том же году первая лаборатория ЭЭГ открылась в Массачусетской больнице общего профиля. [ нужна ссылка ]

Франклин Оффнер (1911–1999), профессор биофизики Северо-Западного университета, разработал прототип ЭЭГ, включающий в себя пьезоэлектрический пишущий устройство, называемое кристаллографом (все устройство обычно называлось динографом Оффнера ).

В 1947 году было основано Американское общество ЭЭГ и проведен первый Международный конгресс ЭЭГ. В 1953 году Азеринский и Клейтман описали быстрый сон .

В 1950-х годах Уильям Грей Уолтер разработал дополнение к ЭЭГ, названное топографией ЭЭГ , которое позволяло картировать электрическую активность на поверхности мозга. В 1980-е годы эта теория пользовалась непродолжительным успехом и казалась особенно многообещающей для психиатрии. Он никогда не был принят неврологами и остается в первую очередь инструментом исследования.

Чак Кайзер с электродами электроэнцефалографа и преобразователем сигнала для использования в проекте «Джемини» , 1965 год.

Система электроэнцефалографа производства Beckman Instruments использовалась по крайней мере в одном из пилотируемых космических полетов проекта «Джемини» (1965–1966) для мониторинга мозговых волн астронавтов во время полета. Это был один из многих инструментов Beckman, специализирующихся на НАСА и используемых им. [133]

Первый случай использования ЭЭГ для управления физическим объектом — роботом — произошел в 1988 году. Робот следовал по линии или останавливался в зависимости от альфа-активности субъекта. Если испытуемый расслабится и закроет глаза, тем самым увеличивая альфа-активность, бот начнет двигаться. Если открыть глаза и уменьшить альфа-активность, робот остановится на траектории. [134]

В октябре 2018 года учёные соединили мозг трёх человек, чтобы поэкспериментировать с процессом обмена мыслями. В эксперименте с использованием ЭЭГ участвовали пять групп по три человека. Успешность эксперимента составила 81%. [135]

См. также

[ редактировать ]
  1. ^ Сравните ЕЕС : Моран А. (2 августа 2004 г.). Психология спорта и физических упражнений: критическое введение . Хоув, Восточный Суссекс: Рутледж. п. 104. ИСБН  9781134704101 . Проверено 6 июля 2024 г. [...] электроэнцефалографические (ЭЭК) методы [...]. В типичном эксперименте EEC к коже головы человека прикрепляют электрод, чтобы обнаружить электрическую активность нейронов в нижележащей области мозга. Затем к мочке уха человека прикрепляют другой электрод, где нет электрической активности, которую можно было бы обнаружить. Затем записывается EEC, указывающий на разницу электрических потенциалов, обнаруженную электродами [...]. В последние годы было проведено значительное количество исследований активности ЭЭК у спортсменов [...].
  2. ^ Амзика Ф, Лопес да Силва ФХ (ноябрь 2017 г.). Шомер Д.Л., Лопес да Силва Ф.Х. (ред.). Клеточные субстраты ритмов мозга . Том. 1. Издательство Оксфордского университета. дои : 10.1093/med/9780190228484.003.0002 .
  3. ^ Jump up to: а б Эрик Р. Кандел, Джон Кестер, Сара Мак, Стивен Сигельбаум (2021). Принципы нейронауки (6-е изд.). Нью-Йорк: Компании McGraw-Hill. п. 1450. ИСБН  978-1-259-64223-4 . OCLC   1199587061 .
  4. ^ «ЭЭГ: Медицинская энциклопедия MedlinePlus» . medlineplus.gov . Архивировано из оригинала 5 июля 2016 года . Проверено 24 июля 2022 г.
  5. ^ Чернецкий CC, Бергер Б.Дж. (2013). Лабораторные исследования и диагностические процедуры (6-е изд.). Сент-Луис, Миссури: Эльзевир. ISBN  978-1-4557-0694-5 .
  6. ^ Дешам А., Бен Абдалла А., Якобсон Э., Саха Т., Джаяни Г., Эль-Габалави Р. и др. (июль 2024 г.). «Анестезия и делирий под контролем электроэнцефалографии у пожилых людей после кардиохирургии: рандомизированное клиническое исследование ENGAGES-Canada». ДЖАМА . 332 (2): 112–123. дои : 10.1001/jama.2024.8144 . ПМЦ 11165413. ПМИД   38857019 .
  7. ^ Хао Д., Фриц Б.А., Саддави-Конефка Д., Паланка Б.Дж. (ноябрь 2023 г.). «Дебаты за против: анестезия под контролем электроэнцефалографии для уменьшения послеоперационного делирия». Анестезия и анальгезия . 137 (5): 976–982. дои : 10.1213/ANE.0000000000006399 . ПМИД   37862399 .
  8. ^ Jump up to: а б с Пиллаи Дж., Сперлинг М.Р. (2006). «Интериктальная ЭЭГ и диагностика эпилепсии» . Эпилепсия . 47 Приложение 1 (Приложение 1): 14–22. дои : 10.1111/j.1528-1167.2006.00654.x . ПМИД   17044820 . S2CID   8668713 . Архивировано из оригинала 23 октября 2022 года . Проверено 23 октября 2022 г.
  9. ^ Итак ЭЛ (август 2010 г.). «Интериктальные эпилептиформные разряды у людей без припадков в анамнезе: что они означают?». Журнал клинической нейрофизиологии . 27 (4): 229–238. дои : 10.1097/WNP.0b013e3181ea42a4 . ПМИД   20634716 .
  10. ^ «Реальность амбулаторной видео-ЭЭГ — предсказатели успешного захвата событий» . Клиническая практика неврологии . Проверено 5 декабря 2023 г.
  11. ^ ван Рой Л.Г., Хеллстрем-Вестас Л., де Врис Л.С. (август 2013 г.). «Лечение неонатальных судорог». Семинары по фетальной и неонатальной медицине . 18 (4): 209–215. дои : 10.1016/j.siny.2013.01.001 . ПМИД   23402893 .
  12. ^ «ЭЭГ (Электроэнцефалограмма) – Клиника Мэйо» . Клиника Мэйо . Архивировано из оригинала 30 августа 2019 года . Проверено 30 августа 2019 г.
  13. ^ Jump up to: а б с д Нидермейер Э., да Силва, Флорида (2004). Электроэнцефалография: основные принципы, клиническое применение и смежные области . Липпинкотт Уильямс и Уилкинс. ISBN  978-0-7817-5126-1 . [ нужна страница ]
  14. ^ Ян Х, Анг К.К., Ван С., Фуа К.С., Гуань С. (2016). «Нейральный и кортикальный анализ глотания и обнаружение двигательных образов глотания для реабилитации дисфагии — обзор». Интерфейсы «мозг-компьютер: лабораторные эксперименты для реальных приложений» . Прогресс в исследованиях мозга. Том. 228. стр. 185–219. дои : 10.1016/bs.pbr.2016.03.014 . ISBN  978-0-12-804216-8 . ПМИД   27590970 .
  15. ^ Естрович И., Койл Дж.Л., Сейдич Э. (октябрь 2015 г.). «Расшифровка глотания человека с помощью электроэнцефалографии: современный обзор» . Журнал нейронной инженерии . 12 (5): 051001. Бибкод : 2015JNEng..12e1001J . дои : 10.1088/1741-2560/12/5/051001 . ПМЦ   4596245 . ПМИД   26372528 .
  16. ^ Куэльяр М., Харкридер А.В., Дженсон Д., Торнтон Д., Бауэрс А., Салтуклароглу Т. (июль 2016 г.). «Частотно-временной анализ мю-ритма ЭЭГ как показатель сенсомоторной интеграции на более поздних стадиях глотания». Клиническая нейрофизиология . 127 (7): 2625–2635. дои : 10.1016/j.clinph.2016.04.027 . ПМИД   27291882 . S2CID   3746307 .
  17. ^ Клейсон П.Е., Карабин К.А., Болдуин С.А., Ларсон М.Дж. (ноябрь 2019 г.). «Методологическое отчетное поведение, размеры выборки и статистическая мощность в исследованиях потенциала, связанного с событиями: барьеры на пути воспроизводимости и воспроизводимости» . Психофизиология . 56 (11): e13437. дои : 10.1111/psyp.13437 . ПМИД   31322285 . S2CID   197665482 . Архивировано из оригинала 7 октября 2022 года . Проверено 7 октября 2022 г.
  18. ^ Jump up to: а б Петерсон Б.С., Трампуш Дж., Маглионе М., Большакова М., Браун М., Розель М. и др. (2024). «Диагностика и лечение СДВГ у детей и подростков» . effecthealthcare.ahrq.gov . doi : 10.23970/ahrqepccer267 . ПМИД   38657097 . Проверено 19 июня 2024 г.
  19. ^ Jump up to: а б с д Бернс Т., Раджан Р. (2015). «Объединение показателей сложности данных ЭЭГ: умножение показателей раскрывает ранее скрытую информацию» . F1000Исследования . 4 : 137. doi : 10.12688/f1000research.6590.1 . ПМЦ   4648221 . ПМИД   26594331 .
  20. ^ Веспа П.М., Ненов В., Нувер М.Р. (январь 1999 г.). «Непрерывный ЭЭГ-мониторинг в отделении интенсивной терапии: ранние результаты и клиническая эффективность». Журнал клинической нейрофизиологии . 16 (1): 1–13. дои : 10.1097/00004691-199901000-00001 . ПМИД   10082088 .
  21. ^ Шульц Т.Л. (март 2012 г.). «Технические советы: электроды ЭЭГ, совместимые с МРТ: преимущества, недостатки и финансовая осуществимость в клинических условиях». Нейродиагностический журнал . 52 (1): 69–81. ПМИД   22558648 .
  22. ^ Jump up to: а б с Хямяляйнен М., Хари Р., Ильмониеми Р.Ю., Кнуутила Дж., Лоунасмаа О.В. (1993). «Магнитоэнцефалография: теория, приборы и приложения к неинвазивным исследованиям работающего мозга человека» . Обзоры современной физики . 65 (2): 413–97. Бибкод : 1993RvMP...65..413H . дои : 10.1103/RevModPhys.65.413 . Архивировано из оригинала 26 января 2019 года . Проверено 10 сентября 2018 г.
  23. ^ Монтойя-Мартинес Дж., Ванторнхаут Дж., Бертран А., Франкарт Т. (2021). «Влияние количества и расположения электродов ЭЭГ на измерение нейронного отслеживания речи» . ПЛОС ОДИН . 16 (2): e0246769. Бибкод : 2021PLoSO..1646769M . bioRxiv   10.1101/800979 . дои : 10.1371/journal.pone.0246769 . ПМЦ   7877609 . ПМИД   33571299 .
  24. ^ О'Реган С., Фаул С., Марнейн В. (2010). «Автоматическое обнаружение артефактов ЭЭГ, возникающих при движениях головы». 2010 Ежегодная международная конференция IEEE Engineering in Medicine и Biology . стр. 6353–6. дои : 10.1109/IEMBS.2010.5627282 . ISBN  978-1-4244-4123-5 .
  25. ^ Мерфи К.Дж., Брунберг Дж.А. (1997). «Клаустрофобия, тревога и седативный эффект у взрослых при МРТ». Магнитно-резонансная томография . 15 (1): 51–54. дои : 10.1016/S0730-725X(96)00351-7 . ПМИД   9084025 .
  26. ^ Шенк Дж. Ф. (июнь 1996 г.). «Роль магнитной восприимчивости в магнитно-резонансной томографии: магнитная совместимость МРТ первого и второго рода». Медицинская физика . 23 (6): 815–850. Бибкод : 1996MedPh..23..815S . дои : 10.1118/1.597854 . ПМИД   8798169 .
  27. ^ Jump up to: а б Ясуно Ф., Браун А.К., Зогби С.С., Крушински Дж.Х., Чернет Э., Таушер Дж. и др. (январь 2008 г.). «Радиолиганд ПЭТ [11C]MePPEP обратимо и с высоким специфическим сигналом связывается с каннабиноидными рецепторами CB1 в мозге приматов, не являющихся людьми» . Нейропсихофармакология . 33 (2): 259–269. дои : 10.1038/sj.npp.1301402 . ПМИД   17392732 .
  28. ^ Малхолланд Т (2012). «Объективные ЭЭГ-методы исследования скрытых сдвигов зрительного внимания» . В McGuigan FJ, Schoonover RA (ред.). Психофизиология мышления: исследования скрытых процессов . Эльзевир. стр. 109–51. ISBN  978-0-323-14700-2 .
  29. ^ Хинтербергер Т., Кюблер А., Кайзер Дж., Нойман Н., Бирбаумер Н. (март 2003 г.). «Интерфейс мозг-компьютер (BCI) для запертых: сравнение различных классификаций ЭЭГ для устройства перевода мыслей». Клиническая нейрофизиология . 114 (3): 416–425. дои : 10.1016/S1388-2457(02)00411-X . ПМИД   12705422 . S2CID   11857440 .
  30. ^ Ченг М.Ю., Ван К.П., Хунг С.Л., Ту Ю.Л., Хуанг С.Дж., Кестер Д. и др. (сентябрь 2017 г.). «Более высокая мощность сенсомоторного ритма связана с лучшими показателями опытных стрелков из пневматического пистолета» . Психология спорта и физических упражнений . 32 : 47–53. doi : 10.1016/j.psychsport.2017.05.007 . S2CID   33780406 .
  31. ^ Серено СК, Рейнер К., Познер М.И. (июль 1998 г.). «Установление временной шкалы распознавания слов: данные по движениям глаз и потенциалам, связанным с событиями». НейроОтчёт . 9 (10): 2195–2200. дои : 10.1097/00001756-199807130-00009 . ПМИД   9694199 . S2CID   19466604 .
  32. ^ Фейнберг I, Кэмпбелл И.Г. (февраль 2013 г.). «Продольные траектории ЭЭГ сна указывают на сложные закономерности созревания мозга подростков» . Американский журнал физиологии. Регуляторная, интегративная и сравнительная физиология . 304 (4): R296–R303. дои : 10.1152/ajpregu.00422.2012 . ПМЦ   3567357 . ПМИД   23193115 .
  33. ^ Шринивасан Р. (1999). «Методы улучшения пространственного разрешения ЭЭГ». Международный журнал . 1 (1): 102–11.
  34. ^ Греч Р., Кассар Т., Мускат Дж., Камиллери К.П., Фабри С.Г., Зервакис М. и др. (ноябрь 2008 г.). «Обзор по решению обратной задачи анализа источников ЭЭГ» . Журнал нейроинженерии и реабилитации . 5 (1): 25. дои : 10.1186/1743-0003-5-25 . ПМК   2605581 . ПМИД   18990257 .
  35. ^ Шлёгль А., Слейтер М., Пфурчеллер Г. (2002). «Исследование присутствия и ЭЭГ» (PDF) . Архивировано (PDF) из оригинала 11 августа 2017 г. Проверено 24 августа 2013 г.
  36. ^ Этьен А., Ларойя Т., Вейгл Х., Афелин А., Келли С.К., Кришнан А. и др. (июль 2020 г.). «Новые электроды для надежной регистрации ЭЭГ грубых и вьющихся волос» . Ежегодная международная конференция Общества инженерии в медицине и биологии IEEE. Общество инженерии IEEE в медицине и биологии. Ежегодная международная конференция . 2020 : 6151–6154. дои : 10.1101/2020.02.26.965202 . ПМИД   33019375 .
  37. ^ Адамс Э.Дж., Скотт М.Э., Амаранте М., Рамирес К.А., Роули С.Дж., Нобл К.Г. и др. (апрель 2024 г.). «Содействие включению в ЭЭГ показателей активности мозга у детей» . npj Наука обучения . 9 (1): 27. Бибкод : 2024npjSL...9...27A . дои : 10.1038/s41539-024-00240-y . ПМЦ   10987610 . ПМИД   38565857 .
  38. ^ Хуанг-Хеллингер Ф.Р., Брейтер Х.К., МакКормак Г., Коэн М.С., Квонг К.К., Саттон Дж.П. и др. (1995). «Одновременная функциональная магнитно-резонансная томография и электрофизиологическая запись». Картирование человеческого мозга . 3 : 13–23. дои : 10.1002/hbm.460030103 . S2CID   145788101 .
  39. ^ Гольдман Р.И., Стерн Дж.М., Энгель Дж., Коэн М.С. (ноябрь 2000 г.). «Получение одновременной ЭЭГ и функциональной МРТ». Клиническая нейрофизиология . 111 (11): 1974–1980. дои : 10.1016/s1388-2457(00)00456-9 . ПМИД   11068232 . S2CID   11716369 .
  40. ^ Горовиц С.Г., Скудларски П., Гор Дж.К. (май 2002 г.). «Корреляции и диссоциации между ЖИРНЫМ сигналом и амплитудой P300 в необычной слуховой задаче: параметрический подход к объединению фМРТ и ERP». Магнитно-резонансная томография . 20 (4): 319–325. дои : 10.1016/S0730-725X(02)00496-4 . ПМИД   12165350 .
  41. ^ Лауфс Х., Кляйншмидт А., Байерле А., Эгер Э., Салек-Хаддади А., Прейбиш С. и др. (август 2003 г.). «ЭЭГ-коррелированная фМРТ альфа-активности человека». НейроИмидж . 19 (4): 1463–1476. CiteSeerX   10.1.1.586.3056 . дои : 10.1016/S1053-8119(03)00286-6 . ПМИД   12948703 . S2CID   6272011 .
  42. ^ Патент США 7286871 , Марк С. Коэн, «Метод и устройство для уменьшения загрязнения электрического сигнала», опубликован 20 мая 2004 г.  
  43. ^ Дифранческо М.В., Голландия С.К., Шафларски Дж.П. (октябрь 2008 г.). «Одновременная ЭЭГ/функциональная магнитно-резонансная томография при 4 Тесла: коррелирует активность мозга со спонтанным альфа-ритмом во время релаксации» . Журнал клинической нейрофизиологии . 25 (5): 255–264. дои : 10.1097/WNP.0b013e3181879d56 . ПМЦ   2662486 . ПМИД   18791470 .
  44. ^ Хуйзенга Х.М., ван Зуйен Т.Л., Хесленфельд DJ, Molenaar PC (июль 2001 г.). «Одновременный анализ источников МЭГ и ЭЭГ». Физика в медицине и биологии . 46 (7): 1737–1751. Бибкод : 2001PMB....46.1737H . CiteSeerX   10.1.1.4.8384 . дои : 10.1088/0031-9155/46/7/301 . ПМИД   11474922 . S2CID   250761006 .
  45. ^ Айдин Ю, Форверк Дж, Дюмпельманн М, Куппер П, Кугель Х, Хирс М и др. (2015). «Комбинированная ЭЭГ/МЭГ может превзойти мономодальную реконструкцию источника ЭЭГ или МЭГ при дооперационной диагностике эпилепсии» . ПЛОС ОН (Обзор). 10 (3): e0118753. Бибкод : 2015PLoSO..1018753A . дои : 10.1371/journal.pone.0118753 . ПМЦ   4356563 . ПМИД   25761059 .
  46. ^ Шрекенбергер М., Ланге-Асшенфельдт С., Ланге-Асшенфельд С., Лохманн М., Манн К., Зиссмайер Т. и др. (июнь 2004 г.). «Таламус как генератор и модулятор альфа-ритма ЭЭГ: комбинированное исследование ПЭТ/ЭЭГ с введением лоразепама у людей». НейроИмидж . 22 (2): 637–644. doi : 10.1016/j.neuroimage.2004.01.047 . ПМИД   15193592 . S2CID   31790623 .
  47. ^ Бёрд Дж., Мансо Л.Дж., Экарт А., Фариа Д.Р. (сентябрь 2018 г.). Исследование классификации психических состояний с использованием интерфейса «мозг-машина» на основе ЭЭГ . Остров Мадейра, Португалия: 9-я международная конференция по интеллектуальным системам 2018 . Проверено 3 декабря 2018 г.
  48. ^ Берд Джей-Джей, Экарт А., Букингемский компакт-диск, Фария ДР (2019). Классификация психических эмоциональных настроений с помощью мозго-машинного интерфейса на основе ЭЭГ . Колледж Святого Хью, Оксфордский университет, Великобритания: Международная конференция по цифровой обработке изображений и сигналов (DISP'19). Архивировано из оригинала 3 декабря 2018 года . Проверено 3 декабря 2018 г.
  49. ^ Ваннесте С., Сонг Джей Джей, Де Риддер Д. (март 2018 г.). «Таламокортикальная аритмия, обнаруженная с помощью машинного обучения» . Природные коммуникации . 9 (1): 1103. Бибкод : 2018NatCo...9.1103V . дои : 10.1038/s41467-018-02820-0 . ПМЦ   5856824 . ПМИД   29549239 .
  50. ^ Эркулано-Хаузель С (2009). «Человеческий мозг в цифрах: мозг примата в линейном масштабе» . Границы человеческой неврологии . 3:31 . doi : 10.3389/neuro.09.031.2009 . ПМК   2776484 . ПМИД   19915731 .
  51. ^ Татум В.О., Хусейн А.М., Бенбадис С.Р. (2008). Справочник по интерпретации ЭЭГ . Медицинское издательство Демос. [ нужна страница ]
  52. ^ Jump up to: а б Нуньес П.Л., Сринивасан Р. (1981). Электрические поля мозга: Нейрофизика ЭЭГ . Издательство Оксфордского университета. ISBN  978-0-19-502796-9 . [ нужна страница ]
  53. ^ Кляйн С., Торн Б.М. (3 октября 2006 г.). Биологическая психология . Нью-Йорк, штат Нью-Йорк: Стоит. ISBN  978-0-7167-9922-1 . [ нужна страница ]
  54. ^ Уиттингстолл К., Логотетис НК (октябрь 2009 г.). «Связь частотных диапазонов поверхностной ЭЭГ отражает пиковую активность зрительной коры обезьян» . Нейрон . 64 (2): 281–289. дои : 10.1016/j.neuron.2009.08.016 . ПМИД   19874794 . S2CID   17650488 .
  55. ^ Таул В.Л., Боланьос Дж., Суарес Д., Тан К., Гжещук Р., Левин Д.Н. и др. (январь 1993 г.). «Пространственное расположение электродов ЭЭГ: поиск наиболее подходящей сферы относительно кортикальной анатомии». Электроэнцефалография и клиническая нейрофизиология . 86 (1): 1–6. дои : 10.1016/0013-4694(93)90061-Y . ПМИД   7678386 .
  56. ^ «Руководство седьмое: предложение стандартных монтажей для использования в клинической ЭЭГ. Американское электроэнцефалографическое общество». Журнал клинической нейрофизиологии . 11 (1): 30–36. Январь 1994 г. doi : 10.1097/00004691-199401000-00008 . ПМИД   8195424 .
  57. ^ Орлиен Х., Гьерде И.О., Осет Дж.Х., Элден Г., Карлсен Б., Скейдсволл Х. и др. (март 2004 г.). «Фоновая активность ЭЭГ, описанная большой компьютеризированной базой данных». Клиническая нейрофизиология . 115 (3): 665–673. дои : 10.1016/j.clinph.2003.10.019 . ПМИД   15036063 . S2CID   25988980 .
  58. ^ Яо Д. (ноябрь 2001 г.). «Метод стандартизации привязки записей ЭЭГ кожи головы к бесконечной точке». Физиологическое измерение . 22 (4): 693–711. дои : 10.1088/0967-3334/22/4/305 . ПМИД   11761077 . S2CID   250847914 .
  59. ^ Нуньес П.Л., Пилгрин К.Л. (октябрь 1991 г.). «Сплайн-лапласиан в клинической нейрофизиологии: метод улучшения пространственного разрешения ЭЭГ». Журнал клинической нейрофизиологии . 8 (4): 397–413. дои : 10.1097/00004691-199110000-00005 . ПМИД   1761706 . S2CID   38459560 .
  60. ^ Тахери Б.А., Найт Р.Т., Смит Р.Л. (май 1994 г.). «Сухой электрод для регистрации ЭЭГ» . Электроэнцефалография и клиническая нейрофизиология . 90 (5): 376–383. дои : 10.1016/0013-4694(94)90053-1 . ПМИД   7514984 . Архивировано из оригинала 22 декабря 2019 года . Проверено 10 декабря 2019 г.
  61. ^ Ализаде-Тахери Б (1994). Активная микромашинная электродная матрица для регистрации сигналов ЭЭГ (кандидатская диссертация). Калифорнийский университет в Дэвисе. п. 82. Бибкод : 1994PhDT........82A .
  62. ^ Хокенберри Дж. (август 2001 г.). «Следующие умники» . Проводной журнал .
  63. ^ Jump up to: а б с д Слайфер Г.А., Хейрстон В.Д., Брэдфорд Дж.К., Бейн Э.Д., Мрозек Р.А. (2018). «Проводящие силиконовые эластомеры, наполненные углеродными нановолокнами, как мягкие сухие биоэлектронные интерфейсы» . ПЛОС ОДИН . 13 (2): e0189415. Бибкод : 2018PLoSO..1389415S . дои : 10.1371/journal.pone.0189415 . ПМК   5800568 . ПМИД   29408942 .
  64. ^ Jump up to: а б с Ван Ф, Ли Г, Чен Дж, Дуань Ю, Чжан Д (август 2016 г.). «Новые полусухие электроды для приложений интерфейса мозг-компьютер». Журнал нейронной инженерии . 13 (4): 046021. Бибкод : 2016JNEng..13d6021W . дои : 10.1088/1741-2560/13/4/046021 . ПМИД   27378253 . S2CID   26744679 .
  65. ^ Фидлер П., Грибель С., Педроса П., Фонсека С., Ваз Ф., Центнер Л. и др. (1 января 2015 г.). «Многоканальная ЭЭГ с новыми сухими электродами Ti/TiN» . Датчики и исполнительные механизмы A: Физические . 221 : 139–147. Бибкод : 2015SeAcA.221..139F . дои : 10.1016/j.sna.2014.10.010 . ISSN   0924-4247 .
  66. ^ «Сухие ЭЭГ-гарнитуры | Продукция | CGX» . CGX 2021 . Архивировано из оригинала 13 февраля 2020 года . Проверено 13 февраля 2020 г.
  67. ^ «Технология сухой ЭЭГ» . ООО «КСГ». Архивировано из оригинала 13 февраля 2020 года . Проверено 13 февраля 2020 г.
  68. ^ Кондилис Э.Д., Возны Т.А., Липски В.Дж., Попеску А., ДеСтефино В.Дж., Эсмаили Б. и др. (2014). «Обнаружение высокочастотных колебаний гибридными глубинными электродами в стандартных клинических внутричерепных ЭЭГ-записях» . Границы в неврологии . 5 : 149. дои : 10.3389/fneur.2014.00149 . ПМК   4123606 . ПМИД   25147541 .
  69. ^ Мураками С., Окада Ю. (сентябрь 2006 г.). «Вклад основных нейронов неокортекса в сигналы магнитоэнцефалографии и электроэнцефалографии» . Журнал физиологии . 575 (Часть 3): 925–936. дои : 10.1113/jphysicalol.2006.105379 . ЧВК   1995687 . ПМИД   16613883 .
  70. ^ Андерсон Дж. (22 октября 2004 г.). Когнитивная психология и ее последствия (в твердом переплете) (6-е изд.). Нью-Йорк, штат Нью-Йорк: Стоит. п. 17. ISBN  978-0-7167-0110-1 .
  71. ^ Крейцфельдт О.Д., Ватанабэ С., Люкс Х.Д. (январь 1966 г.). «Связь между явлениями ЭЭГ и потенциалами одиночных клеток коры. I. Вызванные ответы после таламической и перикортикальной стимуляции». Электроэнцефалография и клиническая нейрофизиология . 20 (1): 1–18. дои : 10.1016/0013-4694(66)90136-2 . ПМИД   4161317 .
  72. ^ Бузсаки Г (2006). Ритмы мозга . Издательство Оксфордского университета. ISBN  978-0-19-530106-9 . [ нужна страница ]
  73. ^ Татум В.О. (март 2014 г.). «Лекция Эллен Р. Грасс: необычная ЭЭГ». Нейродиагностический журнал . 54 (1): 3–21. ПМИД   24783746 .
  74. ^ Jump up to: а б Кирмизи-Алсан Э., Байрактароглу З., Гурвит Х., Кескин Ю.Х., Эмре М., Демиралп Т. (август 2006 г.). «Сравнительный анализ событийных потенциалов во время Go/NoGo и CPT: разложение электрофизиологических маркеров торможения реакции и устойчивого внимания». Исследования мозга . 1104 (1): 114–128. дои : 10.1016/j.brainres.2006.03.010 . ПМИД   16824492 . S2CID   18850757 .
  75. ^ Фрелих Дж., Сентурк Д. , Сараванапандян В., Гольшани П., Рейтер Л.Т., Санкар Р. и др. (декабрь 2016 г.). «Количественный электрофизиологический биомаркер синдрома дупликации 15q11.2-q13.1» . ПЛОС ОДИН . 11 (12): e0167179. Бибкод : 2016PLoSO..1167179F . дои : 10.1371/journal.pone.0167179 . ПМК   5157977 . ПМИД   27977700 .
  76. ^ Кисли М.А., Корнуэлл З.М. (ноябрь 2006 г.). «Гамма- и бета-нейронная активность, вызванная парадигмой сенсорного шлюзования: эффекты слуховой, соматосенсорной и кросс-модальной стимуляции» . Клиническая нейрофизиология . 117 (11): 2549–2563. дои : 10.1016/j.clinph.2006.08.003 . ПМК   1773003 . ПМИД   17008125 .
  77. ^ Канаяма Н., Сато А., Охира Х. (май 2007 г.). «Кроссмодальный эффект с иллюзией резиновой руки и активностью гамма-диапазона». Психофизиология . 44 (3): 392–402. дои : 10.1111/j.1469-8986.2007.00511.x . ПМИД   17371495 .
  78. ^ Гасто Х (1952). «[Электрокортикографическое исследование реактивности роландического ритма]». Ревю Неврологии . 87 (2): 176–182. ПМИД   13014777 .
  79. ^ Jump up to: а б Оберман Л.М., Хаббард Э.М., Макклири Дж.П., Альтшулер Э.Л., Рамачандран В.С., Пинеда Дж.А. (июль 2005 г.). «ЭЭГ-доказательства дисфункции зеркальных нейронов при расстройствах аутистического спектра». Исследования мозга. Когнитивные исследования мозга . 24 (2): 190–198. doi : 10.1016/j.cogbrainres.2005.01.014 . ПМИД   15993757 .
  80. ^ Кан Б.Р., Полич Дж. (март 2006 г.). «Состояния и особенности медитации: исследования ЭЭГ, ERP и нейровизуализации». Психологический вестник . 132 (2): 180–211. дои : 10.1037/0033-2909.132.2.180 . ПМИД   16536641 . S2CID   2151810 .
  81. ^ Джеррард П., Малкольм Р. (июнь 2007 г.). «Механизмы модафинила: обзор текущих исследований» . Нервно-психические заболевания и лечение . 3 (3): 349–364. ПМЦ   2654794 . ПМИД   19300566 .
  82. ^ Нидермейер Э. (июнь 1997 г.). «Альфа-ритмы как физиологические и аномальные явления» . Международный журнал психофизиологии . 26 (1–3): 31–49. дои : 10.1016/S0167-8760(97)00754-X . ПМИД   9202993 .
  83. ^ Фещенко В.А., Рейнзель Р.А., Веселис Р.А. (июль 2001 г.). «Множественность альфа-ритма у нормального человека». Журнал клинической нейрофизиологии . 18 (4): 331–344. дои : 10.1097/00004691-200107000-00005 . ПМИД   11673699 .
  84. ^ Пфурчеллер Г., Лопес да Силва Ф.Х. (ноябрь 1999 г.). «Синхронизация и десинхронизация ЭЭГ/МЭГ, связанная с событиями: основные принципы». Клиническая нейрофизиология . 110 (11): 1842–1857. дои : 10.1016/S1388-2457(99)00141-8 . ПМИД   10576479 . S2CID   24756702 .
  85. ^ Андерсон А.Л., Томасон М.Э. (ноябрь 2013 г.). «Функциональная пластичность до колыбели: обзор нейронной функциональной визуализации человеческого плода». Неврологические и биоповеденческие обзоры . 37 (9 частей Б): 2220–2232. doi : 10.1016/j.neubiorev.2013.03.013 . ПМИД   23542738 . S2CID   45733681 .
  86. ^ «Лаборатория МакИвера» . Стэнфордский университет. Архивировано из оригинала 23 ноября 2008 года . Проверено 16 декабря 2006 г.
  87. ^ Jump up to: а б Цзян X, Бянь ГБ, Тянь Цз (февраль 2019 г.). «Удаление артефактов из сигналов ЭЭГ: обзор» . Датчики . 19 (5): 987. Бибкод : 2019Senso..19..987J . дои : 10.3390/s19050987 . ПМК   6427454 . ПМИД   30813520 .
  88. ^ Jump up to: а б Алсуради Х., Пак В., Ид М. (2020). «Исследование нейрогаптики на основе ЭЭГ: обзор литературы» . Доступ IEEE . 8 : 49313–49328. Бибкод : 2020IEEA...849313A . дои : 10.1109/ACCESS.2020.2979855 . ISSN   2169-3536 . S2CID   214596892 .
  89. ^ Jump up to: а б Крофт Р.Дж., Барри Р.Дж. (февраль 2000 г.). «Удаление глазного артефакта на ЭЭГ: обзор». Neuropsyologie Clinique = Клиническая нейрофизиология . 30 (1): 5–19. дои : 10.1016/S0987-7053(00)00055-1 . ПМИД   10740792 . S2CID   13738373 .
  90. ^ Эпштейн CM (1983). Введение в ЭЭГ и вызванные потенциалы . JB Lippincott Co. ISBN компании  978-0-397-50598-2 . [ нужна страница ]
  91. ^ Чэнь X, Сюй X, Лю А, Ли С, Чен X, Чжан X и др. (15 июля 2019 г.). «Удаление мышечных артефактов на ЭЭГ: обзор и рекомендации» . Журнал датчиков IEEE . 19 (14): 5353–5368. Бибкод : 2019ISenJ..19.5353C . дои : 10.1109/JSEN.2019.2906572 . ISSN   1558-1748 . S2CID   116693954 .
  92. ^ Кая I (18 мая 2022 г.), «Краткое описание обработки артефактов ЭЭГ» , в Asadpour V (ред.), Интерфейс мозг-компьютер , Искусственный интеллект, том. 9, IntechOpen, arXiv : 2001.00693 , doi : 10.5772/intechopen.99127 , ISBN  978-1-83962-522-0 , S2CID   209832569 , заархивировано из оригинала 20 декабря 2022 г. , получено 20 декабря 2022 г.
  93. ^ Монтес Т., Поил С.С., Джонс Б.Ф., Маншанден И., Вербунт Дж.П., ван Дейк Б.В. и др. (февраль 2009 г.). «Измененные временные корреляции теменных альфа- и префронтальных тета-колебаний на ранней стадии болезни Альцгеймера» . Труды Национальной академии наук Соединенных Штатов Америки . 106 (5): 1614–1619. Бибкод : 2009PNAS..106.1614M . дои : 10.1073/pnas.0811699106 . ПМЦ   2635782 . ПМИД   19164579 .
  94. ^ Паначакель Дж.Т., Рамакришнан А.Г. (2021). «Расшифровка скрытой речи по данным ЭЭГ-всесторонний обзор» . Границы в неврологии . 15 : 642251. дои : 10.3389/fnins.2021.642251 . ПМЦ   8116487 . ПМИД   33994922 .
  95. ^ Jump up to: а б с Рапп П.Е., Кейзер Д.О., Альбано А., Эрнандес Р., Гибсон Д.Б., Замбон Р.А. и др. (2015). «Выявление черепно-мозговой травмы электрофизиологическими методами» . Границы человеческой неврологии . 9:11 . дои : 10.3389/fnhum.2015.00011 . ПМК   4316720 . ПМИД   25698950 .
  96. ^ Франке Л.М., Уокер В.К., Хок К.В., Уэрс-младший (август 2016 г.). «Различие медленных колебаний ЭЭГ между хронической легкой черепно-мозговой травмой и посттравматическим стрессовым расстройством». Международный журнал психофизиологии . 106 : 21–29. дои : 10.1016/j.ijpsycho.2016.05.010 . ПМИД   27238074 .
  97. ^ Jump up to: а б «Исследование: ЭЭГ может помочь отличить посттравматическое стрессовое расстройство от легкой черепно-мозговой травмы» . www.research.va.gov . Архивировано из оригинала 9 октября 2019 года . Проверено 9 октября 2019 г.
  98. ^ «Игры разума» . Экономист. 23 марта 2007 года. Архивировано из оригинала 12 декабря 2009 года . Проверено 12 августа 2010 г.
  99. ^ Jump up to: а б с Ли С (8 августа 2010 г.). «Чтение мыслей уже на рынке» . Лос-Анджелес Таймс . Архивировано из оригинала 4 января 2013 года.
  100. ^ Фрулингер Дж. (9 октября 2008 г.). «Развлекайтесь с помощью NeuroSky и игры по контролю над разумом Judecca от Square Enix» . Engadget. Архивировано из оригинала 30 октября 2010 года . Проверено 2 декабря 2010 г.
  101. ^ «Новые игры, основанные на мозговых волнах» . Физорг.com. Архивировано из оригинала 6 июня 2011 года . Проверено 2 декабря 2010 г.
  102. ^ Снайдер М. (7 января 2009 г.). «Игрушка обучает фанатов «Звездных войн» использованию Силы» . США сегодня . Архивировано из оригинала 23 октября 2012 года . Проверено 1 мая 2010 г.
  103. ^ «Новости – NeuroSky обновляет SDK, позволяет моргать глазами и играть в игры, основанные на мозговых волнах» . Гамасутра. 30 июня 2010 года. Архивировано из оригинала 22 февраля 2017 года . Проверено 2 декабря 2010 г.
  104. ^ Фиолет Э. «NeuroSky MindWave привносит интерфейс мозг-компьютер в образование» . www.ubergizmo.com . Убергизмо. Архивировано из оригинала 12 декабря 2017 года . Проверено 18 мая 2015 г.
  105. ^ «NeuroSky MindWave устанавливает мировой рекорд Гиннеса как «Самый крупный объект, перемещенный с помощью интерфейса мозг-компьютер» » . NeuroGadget.com . НейроГаджет. Архивировано из оригинала 15 октября 2013 года . Проверено 2 июня 2011 г.
  106. ^ «Представление продукта! Neurosync — самый маленький в мире интерфейс мозг-компьютер» . www.prnewswire.com . 15 июля 2015 года. Архивировано из оригинала 9 декабря 2018 года . Проверено 21 июля 2017 г.
  107. ^ «АПП – Макротеллект» . o.macrotellect.com . Архивировано из оригинала 23 января 2017 года . Проверено 8 декабря 2016 г.
  108. ^ «510(k) Предрыночное уведомление» . www.accessdata.fda.gov . Архивировано из оригинала 12 ноября 2021 года . Проверено 12 ноября 2021 г.
  109. ^ Белл Дж., изд. (8 января 2021 г.). «BioSerenity получает разрешение FDA на систему носимых устройств ЭЭГ» . НейроНьюс Интернешнл . Архивировано из оригинала 12 ноября 2021 года . Проверено 12 ноября 2021 г.
  110. ^ Кейпер А (2006). «Век нейроэлектроники» . Новая Атлантида . 11 . Новая Атлантида: 4–41. ПМИД   16789311 . Архивировано из оригинала 12 февраля 2016 года.
  111. ^ Ван Ф, да Круз Дж. Н., Нан В., Вонг С. М., Вай М. И., Роза А. (июнь 2016 г.). «Тренировка альфа-нейроуправления улучшает производительность BCI на основе SSVEP». Журнал нейронной инженерии . 13 (3): 036019. Бибкод : 2016JNEng..13c6019W . дои : 10.1088/1741-2560/13/3/036019 . ПМИД   27152666 . S2CID   206099640 .
  112. ^ «Разум превыше материи: мозговые волны контролируют Асимо» . Япония Таймс . 1 апреля 2009 г. Архивировано из оригинала 3 апреля 2009 г.
  113. ^ Нату Н (21 июля 2008 г.). «Этот мозговой тест показывает правду» . Таймс оф Индия . Архивировано из оригинала 18 июля 2012 года . Проверено 14 апреля 2021 г.
  114. ^ Пураник Д.А., Джозеф СК, Даундкар Б.Б., Гарад М.В. (ноябрь 2009 г.). Профилирование сигнатур мозга в Индии: его статус как вспомогательного средства в расследовании и подтверждающих доказательств, как видно из судебных решений (PDF) . Материалы XX Всеиндийской конференции судебно-медицинской экспертизы. стр. 815–822. Архивировано из оригинала (PDF) 3 марта 2016 г.
  115. ^ Годе Л.М. (2011). «Отпечатки пальцев мозга, научные данные и «Добер»: предостерегающий урок из Индии» . Юриметрика . 51 (3): 293–318. ISSN   0897-1277 . JSTOR   41307131 . Архивировано из оригинала 16 апреля 2021 года . Проверено 20 марта 2019 г.
  116. ^ Кассон А., Йейтс Д., Смит С., Дункан Дж., Родригес-Вильегас Э. (2010). «Носимая электроэнцефалография. Что это такое, зачем она нужна и что она собой представляет?». Журнал IEEE Engineering in Medicine and Biology . 29 (3): 44–56. дои : 10.1109/MEMB.2010.936545 . hdl : 10044/1/5910 . ПМИД   20659857 . S2CID   1891995 .
  117. ^ Луни Д., Кидмос П., Парк С., Унгструп М., Ранк М., Розенкранц К. и др. (1 ноября 2012 г.). «Концепция записи в ухе: ориентированный на пользователя и носимый мониторинг мозга». IEEE Пульс . 3 (6): 32–42. дои : 10.1109/MPUL.2012.2216717 . ПМИД   23247157 . S2CID   14103460 .
  118. ^ Лотте Ф., Бугрэн Л., Чихоки А., Клерк М., Конгедо М., Ракотомамонджи А. и др. (июнь 2018 г.). «Обзор алгоритмов классификации интерфейсов мозг-компьютер на основе ЭЭГ: обновление за 10 лет» . Журнал нейронной инженерии . 15 (3): 031005. Бибкод : 2018JNEng..15c1005L . дои : 10.1088/1741-2552/aab2f2 . ПМИД   29488902 .
  119. ^ Шим М, Хван Х.Дж., Ким Д.В., Ли Ш., Им CH (октябрь 2016 г.). «Диагностика шизофрении на основе машинного обучения с использованием комбинированных функций ЭЭГ на уровне датчика и источника». Исследования шизофрении . 176 (2–3): 314–319. дои : 10.1016/j.schres.2016.05.007 . ПМИД   27427557 . S2CID   44504680 .
  120. ^ Бюттнер Р., Фрик Дж., Риг Т. (12 ноября 2019 г.). «Высокоэффективное обнаружение эпилепсии по записям ЭЭГ без приступов: новый подход к машинному обучению с использованием очень специфических эпилептических поддиапазонов ЭЭГ» . Материалы ICIS 2019 . Архивировано из оригинала 21 января 2021 года . Проверено 13 января 2021 г.
  121. ^ Иерачитано С, Маммоне Н, Хуссейн А, Морабито (март 2020 г.). «Новый мультимодальный подход на основе машинного обучения для автоматической классификации записей ЭЭГ при деменции». Нейронные сети . 123 : 176–190. дои : 10.1016/j.neunet.2019.12.006 . ПМИД   31884180 . S2CID   209510497 .
  122. ^ Бхаттачарья А., Пачори Р.Б. (сентябрь 2017 г.). «Многомерный подход к обнаружению приступов ЭЭГ у конкретного пациента с использованием эмпирического вейвлет-преобразования». Транзакции IEEE по биомедицинской инженерии . 64 (9): 2003–2015. дои : 10.1109/TBME.2017.2650259 . ПМИД   28092514 . S2CID   3522546 .
  123. ^ Сааб К., Даннмон Дж., Ре К., Рубин Д., Ли-Мессер К. (20 апреля 2020 г.). «Слабый надзор как эффективный подход к автоматическому обнаружению приступов при электроэнцефалографии» . npj Цифровая медицина . 3 (1): 59. дои : 10.1038/s41746-020-0264-0 . ПМК   7170880 . ПМИД   32352037 .
  124. ^ Бомела В., Ван С., Чжоу К.А., Ли Дж.С. (май 2020 г.). «Вывод в реальном времени и обнаружение разрушительных сетей ЭЭГ при эпилептических припадках» . Научные отчеты . 10 (1): 8653. Бибкод : 2020NatSR..10.8653B . дои : 10.1038/s41598-020-65401-6 . ПМК   7251100 . ПМИД   32457378 .
  125. ^ Паессен, Западная Вирджиния (март 2018 г.). «Будущее обнаружения припадков». «Ланцет». Неврология . 17 (3): 200–202. дои : 10.1016/S1474-4422(18)30034-6 . ПМИД   29452676 . S2CID   3376296 .
  126. ^ Чен ПК, Лю Ю, Пэн Л (май 2019 г.). «Как разработать модели машинного обучения для здравоохранения». Природные материалы . 18 (5): 410–414. Бибкод : 2019NatMa..18..410C . дои : 10.1038/s41563-019-0345-0 . ПМИД   31000806 . S2CID   122563425 .
  127. ^ Рудин С (май 2019 г.). «Перестаньте объяснять модели машинного обучения «черный ящик» для принятия важных решений и вместо этого используйте интерпретируемые модели» . Природный машинный интеллект . 1 (5): 206–215. arXiv : 1811.10154 . дои : 10.1038/s42256-019-0048-x . ПМЦ   9122117 . ПМИД   35603010 .
  128. ^ Коэнен А., Файн Е., Заячковская О. (2014). «Адольф Бек: забытый пионер электроэнцефалографии». Журнал истории нейронаук . 23 (3): 276–286. дои : 10.1080/0964704x.2013.867600 . ПМИД   24735457 . S2CID   205664545 .
  129. ^ Правдич-Неминский В.В. (1913). «Попытка зарегистрировать электрические явления мозга». Центральный журнал физиологии . 27 :951–60.
  130. ^ Хаас Л.Ф. (январь 2003 г.). «Ганс Бергер (1873–1941), Ричард Катон (1842–1926) и электроэнцефалография» . Журнал неврологии, нейрохирургии и психиатрии . 74 (1): 9. дои : 10.1136/jnnp.74.1.9 . ПМК   1738204 . ПМИД   12486257 .
  131. ^ Милле Д. (июнь 2002 г.). Истоки ЭЭГ . 7-е ежегодное собрание Международного общества истории нейронаук (ISHN). Архивировано из оригинала 8 сентября 2020 года . Проверено 27 ноября 2010 г.
  132. ^ Гиббс Ф.А., Дэвис Х., Леннокс В.Г. (декабрь 1935 г.). «Электроэнцефалограмма при эпилепсии и в условиях нарушения сознания». Архив неврологии и психиатрии . 34 (6): 1133. doi : 10.1001/archneurpsyc.1935.02250240002001 .
  133. ^ «Beckman Instruments, поставляющая медицинское оборудование для мониторинга полетов» (PDF) . Обзор космических новостей . 3 марта 1965 г. стр. 4–5. Архивировано (PDF) из оригинала 7 августа 2019 г. Проверено 7 августа 2019 г.
  134. ^ Божиновский С (2013). «Управление роботами с помощью сигналов ЭЭГ, с 1988 года». Марковский С., Гусев М. (ред.). Инновации в сфере ИКТ 2012 . Достижения в области интеллектуальных систем и вычислений. Том. 207. Берлин, Гейдельберг: Шпрингер. стр. 1–11. дои : 10.1007/978-3-642-37169-1_1 . ISBN  978-3-642-37169-1 .
  135. ^ Цзян Л., Стокко А., Лоузи Д.М., Абернети Дж.А., Прат К.С., Рао Р.П. (апрель 2019 г.). «BrainNet: многопользовательский интерфейс «мозг-мозг» для прямого взаимодействия между мозгами» . Научные отчеты . 9 (1): 6115. arXiv : 1809.08632 . Бибкод : 2019NatSR...9.6115J . дои : 10.1038/s41598-019-41895-7 . ПМК   6467884 . ПМИД   30992474 .

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: bbfbe82d66baa9b075001a0128843d02__1721957100
URL1:https://arc.ask3.ru/arc/aa/bb/02/bbfbe82d66baa9b075001a0128843d02.html
Заголовок, (Title) документа по адресу, URL1:
Electroencephalography - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)