Минерал (питательное вещество)

В контексте питания минерал . является химическим элементом Некоторые «минералы» необходимы для жизни, но большинство нет. [ 1 ] [ 2 ] [ 3 ] Минералы являются одной из четырех групп основных питательных веществ; Другие - витамины , незаменимые жирные кислоты и незаменимые аминокислоты . [ 4 ] Пять основных минералов в организме человека - кальций , фосфор , калий , натрий и магний . [ 2 ] Остальные элементы называются « следами ». Общепринятыми следовыми элементами являются железо , хлор , кобальт , медь , цинк , марганец , молибден , йод и селен ; [ 5 ] Есть некоторые доказательства того, что может быть больше.
Четыре элемента составляют 96% человеческого тела по весу: углерод , водород , кислород и азот ( Chon ). Эти элементы обычно не включены в списки минералов питательных веществ. Их иногда называют макромайнерами. Незначительные минералы (также называемые следами ) составляют остаток и обычно являются в центре внимания дискуссий минералов в рационе.
Растения получают минералы из почвы . [ 6 ] Животные проглатывают растения, тем самым перемещая минералы в пищевую цепь . Более крупные организмы также могут потреблять почву (геофагию) или использовать минеральные ресурсы, такие как солевые облизы, для получения минералов.
Наконец, хотя минеральные и элементы во многих отношениях являются синонимичными, минералы только биодоступны до такой степени, что их можно поглощать. Чтобы быть поглощенным, минералы должны быть растворимыми или легко извлеченными потребляющим организмом. Например, молибден является важным минералом, но металлический молибден не имеет питания. Многие молибдаты являются источниками молибдена.
Essential chemical elements for humans
[edit]Nineteen chemical elements are known to be required to support human biochemical processes by serving structural and functional roles, and there is evidence for around ten more.[1][7]
Oxygen, hydrogen, carbon and nitrogen are the most abundant elements in the body by weight and make up about 96% of the weight of a human body. Calcium makes up 920 to 1200 grams of adult body weight, with 99% of it contained in bones and teeth. This is about 1.5% of body weight.[2] Phosphorus occurs in amounts of about 2/3 of calcium, and makes up about 1% of a person's body weight.[8] The other major minerals (potassium, sodium, chlorine, sulfur and magnesium) make up only about 0.85% of the weight of the body. Together these eleven chemical elements (H, C, N, O, Ca, P, K, Na, Cl, S, Mg) make up 99.85% of the body. The remaining ≈18 ultratrace minerals comprise just 0.15% of the body, or about one hundred grams in total for the average person. Total fractions in this paragraph are amounts based on summing percentages from the article on chemical composition of the human body.
Some diversity of opinion exist about the essential nature of various ultratrace elements in humans (and other mammals), even based on the same data. For example, whether chromium is essential in humans is debated. No Cr-containing biochemical has been purified. The United States and Japan designate chromium as an essential nutrient,[9][10] but the European Food Safety Authority (EFSA), representing the European Union, reviewed the question in 2014 and does not agree.[11]
Most of the known and suggested mineral nutrients are of relatively low atomic weight, and are reasonably common on land, or for sodium and iodine, in the ocean. They also tend to have soluble compounds at physiological pH ranges: elements without such soluble compounds tend to be either non-essential (Al) or, at best, may only be needed in traces (Si).[1]
Essential elements for higher organisms (eucarya).[12][13][14][15][1] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Legend:
Quantity elements
Essential trace elements
Essentiality or function debated
|
Roles in biological processes
[edit]Dietary element | RDA/AI Male/Female (US) [mg][16] | UL (US and EU) [mg][16][17] | Category | High nutrient density dietary sources |
Terms for deficiency/excess |
---|---|---|---|---|---|
Potassium | 4700 | NE; NE | A systemic electrolyte and is essential in coregulating ATP with sodium | Sweet potato, tomato, potato, beans, lentils, dairy products, seafood, banana, prune, carrot, orange[18] | hypokalemia / hyperkalemia |
Chlorine | 2300 | 3600; NE | Needed for production of hydrochloric acid in the stomach, in cellular pump functions and required in host defense | Table salt (sodium chloride) is the main dietary source. | hypochloremia / hyperchloremia |
Sodium | 1500 | 2300; NE | A systemic electrolyte and is essential in coregulating ATP with potassium | Table salt (sodium chloride, the main source), sea vegetables, milk, and spinach. | hyponatremia / hypernatremia |
Calcium | 1000 | 2500; 2500 | Needed for muscle, heart and digestive system health, builds bone (see hydroxyapatite), supports synthesis and function of blood cells, helps in blood clotting | Dairy products, eggs, canned fish with bones (salmon, sardines), green leafy vegetables, nuts, seeds, tofu, thyme, oregano, dill, cinnamon.[19] | hypocalcaemia / hypercalcaemia |
Phosphorus | 700 | 4000; 4000 | A component of bones (see hydroxyapatite), cells, in energy processing, in DNA and ATP (as phosphate) and many other functions | Red meat, dairy foods, fish, poultry, bread, rice, oats.[20][21] In biological contexts, usually seen as phosphate[22] | hypophosphatemia / hyperphosphatemia |
Magnesium | 420/320 | 350; 250 | Required for processing ATP and for bones | Spinach, legumes, nuts, seeds, whole grains, peanut butter, avocado[23] | hypomagnesemia (magnesium deficiency) / hypermagnesemia |
Iron | 8/18 | 45; NE | Required for many proteins and enzymes, notably hemoglobin to prevent anemia | Meat, seafood, nuts, beans, dark chocolate[24] | iron deficiency / iron overload disorder |
Zinc | 11/8 | 40; 25 | Required for several classes of enzymes such as matrix metalloproteinases, liver alcohol dehydrogenase, carbonic anhydrase and zinc finger proteins | Oysters*, red meat, poultry, nuts, whole grains, dairy products[25] | zinc deficiency / zinc toxicity |
Manganese | 2.3/1.8 | 11; NE | Required co-factor for superoxide dismutase | Grains, legumes, seeds, nuts, leafy vegetables, tea, coffee[26] | manganese deficiency / manganism |
Copper | 0.9 | 10; 5 | Required co-factor for cytochrome c oxidase | Liver, seafood, oysters, nuts, seeds; some: whole grains, legumes[26] | copper deficiency / copper toxicity |
Iodine | 0.150 | 1.1; 0.6 | Required for the synthesis of thyroid hormones and to help enzymes in host defense | Seaweed (kelp or kombu)*, grains, eggs, iodized salt[27] | iodine deficiency (goiter) / iodism (hyperthyroidism[28]) |
Molybdenum | 0.045 | 2; 0.6 | Required for the functioning of xanthine oxidase, aldehyde oxidase, and sulfite oxidase[29] | Legumes, whole grains, nuts[26] | molybdenum deficiency / molybdenum toxicity[30] |
Selenium | 0.055 | 0.4; 0.3 | Essential to activity of antioxidant enzymes like glutathione peroxidase | Brazil nuts, seafoods, organ meats, meats, grains, dairy products, eggs[31] | selenium deficiency / selenosis |
Cobalt | none | NE; NE | Cobalt is available for use by animals only after having been processed into complex molecules (e.g., vitamin B12) by bacteria. Humans contain only milligrams of cobalt in these cofactors. A deficiency of cobalt leads to pernicious anemia. | Animal muscle and liver are good dietary sources, also shellfish and crab meat.[32] | pernicious anemia / cobalt poisoning |
RDA = Recommended Dietary Allowance; AI= Adequate intake; UL = Tolerable upper intake level; Figures shown are for adults age 31–50, male or female neither pregnant nor lactating
* One serving of seaweed exceeds the US UL of 1100 μg but not the 3000 μg UL set by Japan.[33]
Dietary nutrition
[edit]Dietitians may recommend that minerals are best supplied by ingesting specific foods rich with the chemical element(s) of interest. The elements may be naturally present in the food (e.g., calcium in dairy milk) or added to the food (e.g., orange juice fortified with calcium; iodized salt fortified with iodine). Dietary supplements can be formulated to contain several different chemical elements (as compounds), a combination of vitamins and/or other chemical compounds, or a single element (as a compound or mixture of compounds), such as calcium (calcium carbonate, calcium citrate) or magnesium (magnesium oxide), or iron (ferrous sulfate, iron bis-glycinate).[citation needed]
The dietary focus on chemical elements derives from an interest in supporting the biochemical reactions of metabolism with the required elemental components.[34] Appropriate intake levels of certain chemical elements have been demonstrated to be required to maintain optimal health. Diet can meet all the body's chemical element requirements, although supplements can be used when some recommendations are not adequately met by the diet. An example would be a diet low in dairy products, and hence not meeting the recommendation for calcium.
Plants
[edit]
The list of minerals required for plants is similar to that for animals. Both use very similar enzymes, although differences exist. For example, legumes host molybdenum-containing nitrogenase, but animals do not. Many animals rely on hemoglobin (Fe) for oxygen transport, but plants do not. Fertilizers are often tailored to address mineral deficiencies in particular soils. Examples include molybdenum deficiency, manganese deficiency, zinc deficiency, and so on.
Safety
[edit]The gap between recommended daily intake and what are considered safe upper limits (ULs) can be small. For example, for calcium the U.S. Food and Drug Administration set the recommended intake for adults over 70 years at 1,200 mg/day and the UL at 2,000 mg/day.[16] The European Union also sets recommended amounts and upper limits, which are not always in accord with the U.S.[17] Likewise, Japan, which sets the UL for iodine at 3000 μg versus 1100 for the U.S. and 600 for the EU.[33] In the table above, magnesium appears to be an anomaly as the recommended intake for adult men is 420 mg/day (women 350 mg/day) while the UL is lower than the recommended, at 350 mg. The reason is that the UL is specific to consuming more than 350 mg of magnesium all at once, in the form of a dietary supplement, as this may cause diarrhea. Magnesium-rich foods do not cause this problem.[36]
Elements considered possibly essential for humans but not confirmed
[edit]Many ultratrace elements have been suggested as essential, but such claims have usually not been confirmed. Definitive evidence for efficacy comes from the characterization of a biomolecule containing the element with an identifiable and testable function.[5] One problem with identifying efficacy is that some elements are innocuous at low concentrations and are pervasive (examples: silicon and nickel in solid and dust), so proof of efficacy is lacking because deficiencies are difficult to reproduce.[34] Ultratrace elements of some minerals such as silicon and boron are known to have a role but the exact biochemical nature is unknown, and others such as arsenic are suspected to have a role in health, but with weaker evidence.[5] In particular, trace arsenic seems to have a positive effect on some organisms, but so does lead, showcasing the uncertainty behind whether some trace elements are truly essential.[1] Strontium is tolerated and is a component of some drugs,[37] but it is not essential, only beneficial.[1] Non-essential elements can sometimes appear in the body when they are chemically similar to essential elements (e.g. Rb+ and Cs+ replacing Na+), so that essentiality is not the same thing as uptake by a biological system.[1]
Element | Description | Excess |
---|---|---|
Bromine | Possibly important to basement membrane architecture and tissue development, as a needed catalyst to make collagen IV.[15] | bromism |
Arsenic | Essential in rat, hamster, goat and chicken models, but no research has been done in humans.[38] | arsenic poisoning |
Nickel | Nickel is an essential component of several enzymes, including urease and hydrogenase.[39] Although not required by humans, some are thought to be required by gut bacteria, such as urease required by some varieties of Bifidobacterium.[40] In humans, nickel may be a cofactor or structural component of certain metalloenzymes involved in hydrolysis, redox reactions and gene expression. Nickel deficiency depressed growth in goats, pigs, and sheep, and diminished circulating thyroid hormone concentration in rats.[41] | Nickel toxicity |
Fluorine | Might have a role in biologic mineralisation, and fluoride deficiency symptoms have been found in goats, but there is no clear evidence of essentiality in humans.[42] Research indicates that the primary dental benefit from fluoride occurs at the surface from topical exposure.[43][44] However, even if not essential, fluorine would still be a beneficial element for this reason.[42] Of the minerals in this table, fluoride is the only one for which the U.S. Institute of Medicine has established an Adequate Intake.[45] | Fluoride poisoning |
Boron | Boron is an essential plant nutrient, required primarily for maintaining the integrity of cell walls.[46][47][48] Boron has been shown to be essential to complete the life cycle in representatives of all kingdoms of life.[39][49] In animals, supplemental boron has been shown to reduce calcium excretion and activate vitamin D.[50] | No acute effects (LD50 of boric acid is 2.5 grams per kilogram body weight) |
Lithium | Based on plasma lithium concentrations, biological activity and epidemiological observations, there is evidence, not conclusive, that lithium is an essential nutrient.[13][14] | Lithium toxicity |
Chromium | Proposed to be involved in glucose and lipid metabolism, although its mechanisms of action in the body and the amounts needed for optimal health are not well-defined[51][52] | chromium deficiency / chromium toxicity |
Silicon | Deficiency symptoms have been found in chickens and rats, though not humans. Circumstantial evidence suggests that it is an essential nutrient, probably having an effect on the function and composition of brain and bone.[42] | |
Vanadium | Has an established, albeit specialized, biochemical role in other organisms (algae, lichens, fungi, bacteria), and there is significant circumstantial evidence for its essentiality in humans. It is rather toxic for a trace element and the requirement, if essential, is probably small.[42] | |
Tin | Rats fed a tin-free diet exhibited improper growth, but the evidence for essentiality is otherwise limited.[1][42] | Tin poisoning |
Other | Tungsten, the early lanthanides, and cadmium have specialized biochemical uses in certain lower organisms, but these elements appear not to be used by mammals.[42] |
Mineral ecology
[edit]Diverse ions are used by animals and microorganisms for the process of mineralizing structures, called biomineralization, used to construct bones, seashells, eggshells,[53] exoskeletons and mollusc shells.[54][citation needed]
Minerals can be bioengineered by bacteria which act on metals to catalyze mineral dissolution and precipitation.[55] Mineral nutrients are recycled by bacteria distributed throughout soils, oceans, freshwater, groundwater, and glacier meltwater systems worldwide.[55][56] Bacteria absorb dissolved organic matter containing minerals as they scavenge phytoplankton blooms.[56] Mineral nutrients cycle through this marine food chain, from bacteria and phytoplankton to flagellates and zooplankton, which are then eaten by other marine life.[55][56] In terrestrial ecosystems, fungi have similar roles as bacteria, mobilizing minerals from matter inaccessible by other organisms, then transporting the acquired nutrients to local ecosystems.[57][58]
See also
[edit]References
[edit]- ^ Jump up to: a b c d e f g h Zoroddu, Maria Antonietta; Aaseth, Jan; Crisponi, Guido; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria Marina (2019). "The essential metals for humans: a brief overview". Journal of Inorganic Biochemistry. 195: 120–129. doi:10.1016/j.jinorgbio.2019.03.013.
- ^ Jump up to: a b c Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David (2013). Handbook of Nutrition and Food (3rd ed.). CRC Press. p. 199. ISBN 978-1-4665-0572-8. Retrieved 3 July 2016.
- ^ "Minerals". MedlinePlus, National Library of Medicine, US National Institutes of Health. 22 December 2016. Retrieved 24 December 2016.
- ^ "Vitamin and mineral supplement fact sheets". Office of Dietary Supplements, US National Institutes of Health, Bethesda, MD. 2016. Retrieved 19 December 2016.
- ^ Jump up to: a b c Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David (19 April 2016). Handbook of Nutrition and Food, Third Edition. CRC Press. pp. 211–24. ISBN 978-1-4665-0572-8. Retrieved 3 July 2016.
- ^ "Minerals". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. 2016.
- ^ Nelson, David L.; Michael M. Cox (15 February 2000). Lehninger Principles of Biochemistry, Third Edition (3 Har/Com ed.). W. H. Freeman. pp. 1200. ISBN 1-57259-931-6.
- ^ "Phosphorus in diet". MedlinePlus, National Library of Medicine, US National Institutes of Health. 2 December 2016. Retrieved 24 December 2016.
- ^ Institute of Medicine (US) Panel on Micronutrients (2001). "6, Chromium". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Chromium, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Chromium. National Academies Press (US). pp. 197–223.
- ^ "Overview of Dietary Reference Intakes for Japanese (2015)" (PDF).
- ^ "Scientific Opinion on Dietary Reference Values for chromium". European Food Safety Authority. 18 September 2014. Retrieved 20 March 2018.
- ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al. Baltimore: Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [1]
- ^ Jump up to: a b Szklarska D, Rzymski P (May 2019). "Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification". Biol Trace Elem Res. 189 (1): 18–27. doi:10.1007/s12011-018-1455-2. PMC 6443601. PMID 30066063.
- ^ Jump up to: a b Enderle J, Klink U, di Giuseppe R, Koch M, Seidel U, Weber K, Birringer M, Ratjen I, Rimbach G, Lieb W (August 2020). "Plasma Lithium Levels in a General Population: A Cross-Sectional Analysis of Metabolic and Dietary Correlates". Nutrients. 12 (8): 2489. doi:10.3390/nu12082489. PMC 7468710. PMID 32824874.
- ^ Jump up to: a b McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (June 2014). "Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture". Cell. 157 (6): 1380–92. doi:10.1016/j.cell.2014.05.009. PMC 4144415. PMID 24906154.
- ^ Jump up to: a b c "Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes" (PDF). Food and Nutrition Board, Institute of Medicine, National Academies of Sciences. Archived from the original (PDF) on 14 June 2022. Retrieved 25 August 2023.
- ^ Jump up to: a b Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006, retrieved 4 January 2020
- ^ "Dietary Guidelines for Americans 2005: Appendix B-1. Food Sources of Potassium". United States Department of Agriculture. 2005.
- ^ Drewnowski A (2010). "The Nutrient Rich Foods Index helps to identify healthy, affordable foods" (PDF). Am J Clin Nutr. 91(suppl) (4): 1095S–1101S. doi:10.3945/ajcn.2010.28450D. PMID 20181811.
- ^ "NHS Choices:Vitamins and minerals – Others". Retrieved 8 November 2011.
- ^ Corbridge, DE (1 February 1995). Phosphorus: An Outline of Its Chemistry, Biochemistry, and Technology (5th ed.). Amsterdam: Elsevier Science Pub Co. p. 1220. ISBN 0-444-89307-5.
- ^ "Phosphorus". Linus Pauling Institute, Oregon State University. 2014. Retrieved 8 September 2018.
- ^ "Magnesium—Fact Sheet for Health Professionals". National Institutes of Health. 2016.
- ^ "Iron—Dietary Supplement Fact Sheet". National Institutes of Health. 2016.
- ^ "Zinc—Fact Sheet for Health Professionals". National Institutes of Health. 2016.
- ^ Jump up to: a b c Schlenker, Eleanor; Gilbert, Joyce Ann (28 August 2014). Williams' Essentials of Nutrition and Diet Therapy. Elsevier Health Sciences. pp. 162–3. ISBN 978-0-323-29401-0. Retrieved 15 July 2016.
- ^ "Iodine—Fact Sheet for Health Professionals". National Institutes of Health. 2016.
- ^ Jameson, J. Larry; De Groot, Leslie J. (25 February 2015). Endocrinology: Adult and Pediatric. Elsevier Health Sciences. p. 1510. ISBN 978-0-323-32195-2. Retrieved 14 July 2016.
- ^ Sardesai VM (December 1993). "Molybdenum: an essential trace element". Nutr Clin Pract. 8 (6): 277–81. doi:10.1177/0115426593008006277. PMID 8302261.
- ^ Momcilović, B. (September 1999). "A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the "Lucor metallicum" family". Archives of Industrial Hygiene and Toxicology. 50 (3). De Gruyter: 289–97. PMID 10649845.
- ^ "Selenium—Fact Sheet for Health Professionals". National Institutes of Health. 2016.
- ^ "Vitamin B-12 (µg)" (PDF). USDA National Nutrient Database for Standard Reference Release 28. 27 October 2015. Archived (PDF) from the original on 26 January 2017. Retrieved 1 December 2022.
- ^ Jump up to: a b "Overview of Dietary Reference Intakes for Japanese" (PDF). Minister of Health, Labour and Welfare, Japan. 2015. p. 39. Retrieved 5 January 2020.
- ^ Jump up to: a b Lippard, SJ; Berg JM (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books. p. 411. ISBN 0-935702-72-5.
- ^ Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren; Kamiya, Nobuo (May 2011). "Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å" (PDF). Nature. 473 (7345): 55–60. Bibcode:2011Natur.473...55U. doi:10.1038/nature09913. PMID 21499260. S2CID 205224374.
- ^ Институт медицины (США) Постоянный комитет по научной оценке диетических эталонных потреблений (1997). "6, магний". Диетические эталонные потребления для кальция, фосфора, магния, витамина D и фторида . Национальная академическая пресса (США). С. 190–249.
- ^ Pors Nielsen, S. (2004). «Биологическая роль стронция» . Кость . 35 (3): 583–588. doi : 10.1016/j.bone.2004.04.026 . PMID 15336592 . Получено 6 октября 2010 года .
- ^ Анке М. Арсеник. В кн.: Мерц В. Эд., Следные элементы в питании человека и животных, 5 -е изд. Орландо, Флорида: Академическая пресса, 1986, 347–372; Утус Эо, Экспендизм для основной существенности, окружающая среда. Геохим. Health, 1992, 14: 54–56; Утус Эо, сущность мышьяка и факторы, влияющие на ее важность. В кн.: Chappell WR, Abernathy Co, Cothern Crds., Воздействие и здоровье мышьяка. Нортвуд, Великобритания: научные и технологические письма, 1994, 199–208.
- ^ Jump up to: а беременный Berdanier, Carolyn D.; Дуайер, Йоханна Т.; Хебер, Дэвид (19 апреля 2016 года). Справочник по питанию и пище, третье издание . CRC Press. С. 211–26. ISBN 978-1-4665-0572-8 Полем Получено 3 июля 2016 года .
- ^ Сигел, Астрид; Сигел, Гельмут; Сигел, Роланд Ко (27 января 2014 г.). Взаимосвязи между важными ионами металлов и заболеваниями человека . Springer Science & Business Media. п. 349. ISBN 978-94-007-7500-8 Полем Получено 4 июля 2016 года .
- ^ Институт медицины (29 сентября 2006 г.). Диетические эталонные потребления: основное руководство по требованиям к питательным веществам . Национальная академическая пресса. С. 313–19, 415–22. ISBN 978-0-309-15742-1 Полем Получено 21 июня 2016 года .
- ^ Jump up to: а беременный в дюймовый и фон Ультратрисные минералы. Авторы: Nielsen, Forrest H. USDA, ARS Источник: современное питание в здоровье и болезнях / редакторах, Морис Э. Шилс ... и др. Балтимор: Уильямс и Уилкинс, C1999., С. 283-303. Дата выпуска: 1999 URI: [2]
- ^ Kakei M, Sakae T, Yoshikawa M (2012). «Аспекты, касающиеся лечения фторидами для усиления и реминерализации кристаллов апатита» . Журнал биологии твердой ткани . 21 (3): 475–6. doi : 10.2485/jhtb.21.257 . Получено 1 июня 2017 года .
- ^ Loskill P, Zeitz C, Grandthyll S, Thewes N, Müller F, Bischoff M, Herrmann M, Jacobs K (май 2013). «Снижение адгезии полости рта на гидроксиапатите при обработке фтора». Langmuir . 29 (18): 5528–33. doi : 10.1021/la4008558 . PMID 23556545 .
- ^ Институт медицины (1997). «Фторид» . Диетические эталонные потребления для кальция, фосфора, магния, витамина D и фторида . Вашингтон, округ Колумбия: Национальная академическая пресса. С. 288–313. doi : 10.17226/5776 . ISBN 978-0-309-06403-3 Полем PMID 23115811 .
- ^ Малер, Р.Л. «Основные растительные микроэлементы. Борон в Айдахо» (PDF) . Университет Айдахо. Архивировано из оригинала (PDF) 1 октября 2009 года . Получено 5 мая 2009 года .
- ^ «Функции бора в питании растений» (PDF) . US Borax Inc. Архивирована из оригинала (PDF) 20 марта 2009 года.
- ^ Блевинс Д.Г., Лукашевский К.М. (июнь 1998 г.). «Бор в структуре и функции растений». Анну. Преподобный Plant Physiol. Растение мол. Биол . 49 : 481–500. doi : 10.1146/annurev.arplant.49.1.481 . PMID 15012243 .
- ^ Эрдман, Джон В. младший; Макдональд, Ян А.; Зейзель, Стивен Х. (30 мая 2012 г.). Представьте знания в области питания . Джон Уайли и сыновья. п. 1324. ISBN 978-0-470-96310-4 Полем Получено 4 июля 2016 года .
- ^ Нильсен, Ф.Х. (1997). «Бор в питании человека и животных» . Растение и почва . 193 (2): 199–208. doi : 10.1023/a: 1004276311956 . ISSN 0032-079X . S2CID 12163109 .
- ^ Ким, Мюнг Джин; Андерсон, Джон; Мэллори, Кэролайн (1 февраля 2014 г.). Человеческое питание . Jones & Bartlett Publishers. п. 241. ISBN 978-1-4496-4742-1 Полем Получено 10 июля 2016 года .
- ^ Gropper, Sareen S.; Смит, Джек Л. (1 июня 2012 г.). Продвинутое питание и метаболизм человека . Cengage Learning. С. 527–8. ISBN 978-1-133-10405-6 Полем Получено 10 июля 2016 года .
- ^ Хантон, П (2005). «Исследование структуры и качества яичной скорлупы: исторический обзор» . Бразильский журнал птицеводства . 7 (2): 67–71. Doi : 10.1590/s1516-635x2005000200001 .
- ^ Керри, JD (1999). «Конструкция минерализованных твердых тканей для их механических функций». Журнал экспериментальной биологии . 202 (Pt 23): 3285–94. doi : 10.1242/jeb.202.23.3285 . PMID 10562511 .
- ^ Jump up to: а беременный в Уоррен Л.А., Кауфман, я (февраль 2003 г.). «Geoscience. Микробные геоинженеры». Наука . 299 (5609): 1027–9. doi : 10.1126/science.1072076 . PMID 12586932 . S2CID 19993145 .
- ^ Jump up to: а беременный в Азам, F; Fenchel, t; Field, JG; Грей, JS; Мейер-Рейл, Ла; Thingstad, F (1983). «Экологическая роль микробов с водой в море» (PDF) . Мар. ЭКОЛ. Прогик Сервис 10 : 257–63. Bibcode : 1983meps ... 10..257a . doi : 10.3354/meps010257 .
- ^ Дж. Дайтон (2007). Терраторию " Крик, Кристиан П.; Druzinnaya, Irina S (Eds.). 2 -е изд. Берлин: Спрингер. стр. 287–300 . ISBN 978-3-540-71840-6 .
- ^ GADD GM (январь 2017 г.). «Геомикология элементарного велосипеда и трансформаций в окружающей среде» (PDF) . Микробиол Спектр . 5 (1): 371–386. doi : 10.1128/microbiolspec.funk-0010-2016 . ISBN 9781555819576 Полем PMID 28128071 . S2CID 4704240 .
Дальнейшее чтение
[ редактировать ]- Хамфри Боуэн (1979) Экологическая химия элементов . Академическая пресса, ISBN 0-12-120450-2 .
- Хамфри Боуэн (1966). Следы в биохимии . Академическая пресса .
Внешние ссылки
[ редактировать ]
- «Витамины и минералы» . nhs.uk. 23 октября 2017 года.
- Концепция питательной пищи: к оценке плотности питательных веществ
- Металлы в питании