Jump to content

Треугольное число

(Перенаправлено с Термиала )
Первые шесть треугольных чисел (не начинающиеся с T 0 )
График треугольных чисел

Треугольное число или треугольное число подсчитывает объекты, расположенные в равностороннем треугольнике . Треугольные числа являются разновидностью фигурных чисел , другими примерами являются квадратные числа и кубические числа . - е N треугольное число — это количество точек в треугольном расположении с n точками на каждой стороне и равно сумме n натуральных чисел от 1 до n . Последовательность треугольных чисел, начиная с 0-го треугольного числа , равна

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666...

(последовательность A000217 в OEIS )

Формула [ править ]

Вывод треугольных чисел из выровненного слева треугольника Паскаля .
  Треугольные числа

Треугольные числа задаются следующими явными формулами:

где — обозначение биномиального коэффициента . Он представляет собой количество различных пар, которые можно выбрать из n + 1 объектов, и читается вслух как « n плюс один выбирает два».

Тот факт, что -е треугольное число равно можно проиллюстрировать с помощью визуального доказательства . [1] Для каждого треугольного числа , представьте себе расположение объектов «полупрямоугольником», соответствующее треугольному числу, как на рисунке ниже. Копирование этого расположения и вращение его для создания прямоугольной фигуры удваивает количество объектов, создавая прямоугольник с размерами. , что также является количеством объектов в прямоугольнике. Ясно, что само треугольное число всегда равно ровно половине числа предметов в такой фигуре, или: . Пример следует:

(зеленый плюс желтый) означает, что (зеленый).

Эту формулу можно доказать формально с помощью математической индукции . [2] Это явно верно для :

Предположим теперь, что для некоторого натурального числа , . Добавление к этому приводит

поэтому, если формула верна для , это верно для . Поскольку это очевидно верно для , следовательно, это верно для , , и, наконец, все натуральные числа по индукции.

Говорят , что немецкий математик и учёный Карл Фридрих Гаусс обнаружил эту зависимость ещё в ранней юности, умножив n / 2 пары чисел в сумме по значениям каждой пары n + 1 . [3] Однако, независимо от правдивости этой истории, Гаусс не был первым, кто открыл эту формулу, и некоторые считают вероятным, что ее происхождение восходит к пифагорейцам в V веке до нашей эры. [4] Обе формулы были описаны ирландским монахом Дикуилом примерно в 816 году в его «Computus» . [5] Доступен английский перевод отчета Дикуила. [6]

Треугольное число T n решает проблему рукопожатий , заключающуюся в подсчете количества рукопожатий, если каждый человек в комнате с n + 1 людьми пожимает руку каждому человеку один раз. Другими словами, решение проблемы рукопожатия n человек равно T n −1 . [7] Функция T является аддитивным аналогом функции факториала , которая представляет собой произведение целых чисел от 1 до n .

Эта же функция была придумана как « Терминальная функция ». [8] автором Дональда Кнута книги «Искусство компьютерного программирования» и обозначен как n? (аналог факториала n! )

Например, 10 терминов эквивалентны:

что, конечно, соответствует десятому треугольному числу .


Количество отрезков между ближайшими парами точек в треугольнике можно представить через количество точек или с помощью рекуррентного соотношения :

В пределе соотношение между двумя числами, точками и отрезками линий равно

Отношения с другими фигурными числами [ править ]

Треугольные числа имеют самые разнообразные отношения с другими фигурными числами.

Проще говоря, сумма двух последовательных треугольных чисел представляет собой квадратное число, причем сумма представляет собой квадрат разницы между ними (и, таким образом, разница между двумя числами является квадратным корнем из суммы). Алгебраически,

Этот факт можно продемонстрировать графически, расположив треугольники в противоположных направлениях, чтобы получился квадрат:

6 + 10 = 16         10 + 15 = 25    

Двойник треугольного числа, как в наглядном доказательстве из приведенного выше раздела § Формула , называется проническим числом .

Существует бесконечно много треугольных чисел, которые также являются квадратными числами; например, 1, 36, 1225. Некоторые из них можно сгенерировать с помощью простой рекурсивной формулы: с

Все квадратно-треугольные числа находятся из рекурсии с и

Квадрат, длина стороны которого равна треугольному числу, можно разбить на квадраты и полуквадраты, площади которых складываются в кубы. Это показывает, что квадрат n- го треугольного числа равен сумме первых n чисел куба.

Кроме того, квадрат n- го треугольного числа равен сумме кубов целых чисел от 1 до n . Это также можно выразить как

Сумма первых n треугольных чисел есть n- е тетраэдрическое число :

В более общем смысле, разница между n m -угольным числом и n ( m + 1) -угольным числом представляет собой ( n − 1) -е треугольное число. Например, шестое семиугольное число (81) минус шестое шестиугольное число (66) равняется пятому треугольному числу, 15. Любое другое треугольное число является шестиугольным числом. Зная треугольные числа, можно вычислить любое центрированное многоугольное число ; n - е центрированное k -угольное число получается по формуле

где Т — треугольное число.

Положительная разность двух треугольных чисел является трапециевидным числом .

Найдена закономерность для треугольных чисел и для тетраэдрических чисел который использует биномиальные коэффициенты , может быть обобщен. Это приводит к формуле: [9]

Четвертое треугольное число равно третьему тетраэдрическому числу, поскольку n- е k -симплексное число равно k -му n -симплексному числу из-за симметрии треугольника Паскаля , а его диагонали являются симплексными числами; аналогично пятое треугольное число (15) равно третьему числу пентатопа и так далее.

Другая недвижимость [ править ]

Треугольные числа соответствуют случаю первой степени формулы Фаульхабера .

Перемежающиеся треугольные числа (1, 6, 15, 28,...) также являются шестиугольными числами.

Каждое четное совершенное число является треугольным (а также шестиугольным) и определяется формулой где Mp простое число Мерсенна . Нечетные совершенные числа неизвестны; следовательно, все известные совершенные числа треугольны.

Например, третье треугольное число — (3×2=)6, седьмое — (7×4=)28, 31-е — (31×16=)496, а 127-е — (127×64=)8128.

Последняя цифра треугольного числа — 0, 1, 3, 5, 6 или 8, поэтому такие числа никогда не оканчиваются на 2, 4, 7 или 9. Последней цифре 3 должна предшествовать цифра 0 или 5; последней восьмерке должна предшествовать цифра 2 или 7.

В системе счисления 10 ненулевого цифровой корень треугольного числа всегда равен 1, 3, 6 или 9. Следовательно, каждое треугольное число либо делится на три, либо имеет остаток 1 при делении на 9:

0 = 9 × 0

1 = 9 × 0 + 1

3 = 9 × 0 + 3

6 = 9 × 0 + 6

10 = 9 × 1 + 1

15 = 9 × 1 + 6

21 = 9 × 2 + 3

28 = 9 × 3 + 1

36 = 9 × 4

45 = 9 × 5

55 = 9 × 6 + 1

66 = 9 × 7 + 3

78 = 9 × 8 + 6

91 = 9 × 10 + 1

...

Цифровой корневой шаблон для треугольных чисел, повторяющийся каждые девять членов, как показано выше, — это «1, 3, 6, 1, 6, 3, 1, 9, 9».

Однако обратное утверждение выше не всегда верно. Например, цифровой корень из 12, который не является треугольным числом, равен 3 и делится на три.

Если x — треугольное число, то ax + b также является треугольным числом, учитывая, что a — нечетный квадрат и b = а - 1 / 8 . Обратите внимание, что b всегда будет треугольным числом, поскольку 8 T n + 1 = (2 n + 1) 2 , который дает, что все нечетные квадраты обнаруживаются путем умножения треугольного числа на 8 и добавления 1, а процесс для b, учитывая, что a является нечетным квадратом, является обратной этой операцией.Первые несколько пар этой формы (не считая + 81x 0 ): 9x , +1 25x + 3 , 49x + + , 121x + 10 , 1x 15 + , 169x 6 , 21 ... и т. д. Учитывая, что x равен T n , эти формулы дают T 3 n + 1 , T 5 n + 2 , T 7 n + 3 , T 9 n + 4 и т. д.

Сумма обратных величин всех ненулевых треугольных чисел равна

Это можно показать, используя основную сумму телескопического ряда :

Две другие формулы, касающиеся треугольных чисел: и оба из которых могут быть легко установлены либо путем рассмотрения точечных рисунков (см. выше), либо с помощью какой-либо простой алгебры.

В 1796 году Гаусс открыл, что каждое положительное целое число представимо в виде суммы трёх треугольных чисел (возможно, включая Т 0 = 0), записав в дневнике свои знаменитые слова: « ΕΥΡΗΚΑ! num = Δ + Δ + Δ ». Из этой теоремы не следует, что треугольные числа различны (как в случае 20 = 10 + 10 + 0) или что должно существовать решение ровно с тремя ненулевыми треугольными числами. Это частный случай теоремы Ферма о многоугольных числах .

Самое большое треугольное число вида 2 к − 1 равно 4095 (см. уравнение Рамануджана–Нагелла ).

Вацлав Францишек Серпинский поставил вопрос о существовании четырех различных треугольных чисел в геометрической прогрессии . предположил, Польский математик Казимир Шимичек что это невозможно, и позже это доказали Фанг и Чен в 2007 году. [10] [11]

Формулы, включающие выражение целого числа как суммы треугольных чисел, связаны с тета-функциями , в частности с тета-функцией Рамануджана . [12] [13]

Сумма двух последовательных треугольных чисел является квадратным числом, поскольку: [14] [15]

Это свойство, в просторечии известное как теорема Теона Смирнского , [16] наглядно демонстрируется в следующей сумме, которая представляет собой как суммы цифр :

Приложения [ править ]

Максимальное количество кусков p , которое можно получить с помощью n прямых разрезов, равно n -му треугольному числу плюс один, образуя последовательность ленивого поставщика провизии (OEIS A000124).

из Полностью подключенная сеть n вычислительных устройств требует наличия T n - 1 кабелей или других соединений; это эквивалентно проблеме рукопожатия, упомянутой выше.

по круговой системе В формате турнира, использующем групповой этап , количество матчей, которые необходимо сыграть между n командами, равно треугольному числу T n − 1 . Например, групповой этап с 4 командами требует 6 матчей, а групповой этап с 8 командами — 28 матчей. Это также эквивалентно проблеме установления связи и проблемам полностью подключенной сети.

Одним из способов расчета амортизации актива является метод суммы цифр лет , который включает в себя определение T n , где n — продолжительность срока службы актива в годах. Ежегодно товар теряет ( b s ) × n - y / T n , где b — начальная стоимость предмета (в денежных единицах), s — его окончательная ликвидационная стоимость, n — общее количество лет, в течение которых предмет можно использовать, а y — текущий год в графике амортизации. Согласно этому методу, предмет со сроком годности n = 4 года потеряет 4/10 год , его «убыточной» стоимости в первый 3/10 во , втором 2/10 в и третьем, 1/10 в размере четвертом, накапливая общий износ в 10/10 ) от ( целая убыточной стоимости.

Дизайнеры настольных игр Джеффри Энгельштейн и Исаак Шалев описывают треугольные числа как достигшие «почти статуса мантры или коана среди гейм-дизайнеров », описывая их как «глубоко интуитивные» и «используемые в огромном количестве игр, [доказывая] невероятно универсальные. в предоставлении возрастающих вознаграждений за более крупные наборы без чрезмерного стимулирования специализации и исключения всех других стратегий». [17]

Треугольные корни и тесты треугольных для чисел

По аналогии с квадратным корнем из x можно определить (положительный) треугольный корень из x как число n такое, что T n = x : [18]

что непосредственно следует из квадратичной формулы . Таким образом, целое число x является треугольным тогда и только тогда, когда 8 x + 1 — квадрат. Аналогично, если положительный треугольный корень n из x является целым числом, то x n - е треугольное число. [18]

Альтернативное название [ править ]

Как уже говорилось, альтернативное название, предложенное Дональдом Кнутом , по аналогии с факториалами , — «термиальное», с обозначением n ? для n- го треугольного числа. [19] Однако, хотя это название и обозначения используются в некоторых других источниках, [20] они не получили широкого распространения.

См. также [ править ]

Ссылки [ править ]

  1. ^ «Треугольная числовая последовательность» . Математика — это весело .
  2. ^ Спивак, Михаил (2008). Исчисление (4-е изд.). Хьюстон, Техас: Опубликуй или погибни. стр. 21–22. ISBN  978-0-914098-91-1 .
  3. ^ Хейс, Брайан. «День расплаты Гаусса» . Американский учёный . Вычислительная наука. Архивировано из оригинала 02 апреля 2015 г. Проверено 16 апреля 2014 г.
  4. ^ Ивс, Ховард. «Веб-страница цитирует ВВЕДЕНИЕ В ИСТОРИЮ МАТЕМАТИКИ» . Матцентрал . Проверено 28 марта 2015 г.
  5. ^ Эспозито, М. Неопубликованный астрономический трактат ирландского монаха Дикуила. Труды Королевской ирландской академии, XXXVI C. Дублин, 1907, 378–446.
  6. ^ Росс, Х.Э. и Нотт, Б.И. «Дикуил (9 век) о треугольных и квадратных числах». Британский журнал истории математики, 2019, 34 (2), 79–94. https://doi.org/10.1080/26375451.2019.1598687 .
  7. ^ «Проблема рукопожатия | Национальная ассоциация математических кружков» . MathCircles.org . Архивировано из оригинала 10 марта 2016 года . Проверено 12 января 2022 г.
  8. ^ Кнут, Дональд. Искусство компьютерного программирования . Том. 1 (3-е изд.). п. 48.
  9. ^ Бауманн, Михаэль Генрих (12 декабря 2018 г.). « K -мерная пирамида шампанского» (PDF) . Отчеты по математическому семестру (на немецком языке). 66 :89-100. дои : 10.1007/s00591-018-00236-x . ISSN   1432-1815 . S2CID   125426184 .
  10. ^ Чен, Фанг: Треугольные числа в геометрической прогрессии
  11. ^ Клык: отсутствие геометрической прогрессии, содержащей четыре треугольных числа.
  12. ^ Лю, Чжи-Го (1 декабря 2003 г.). «Личность Рамануджана и представление целых чисел в виде суммы треугольных чисел». Журнал Рамануджана . 7 (4): 407–434. doi : 10.1023/B:RAMA.0000012425.42327.ae . ISSN   1382-4090 . S2CID   122221070 .
  13. ^ Сунь, Чжи-Хун (24 января 2016 г.). «Тэта-функции Рамануджана и суммы треугольных чисел». arXiv : 1601.06378 [ math.NT ].
  14. ^ Белдон, Том; Гардинер, Тони (2002). «Треугольные числа и совершенные квадраты» . Математический вестник . 86 (507): 423–431. JSTOR   3621134 . Проверено 25 апреля 2024 г.
  15. ^ Эрик В. Вайсштейн. «Треугольное число» . Вольфрам Математический мир . Проверено 14 апреля 2024 г. См. уравнения 18–20.
  16. ^ Шелл-Геллаш, Эми; Тху, Джон (15 октября 2015 г.). Алгебра в контексте: Вводная алгебра от истоков к приложениям . Издательство Университета Джонса Хопкинса. п. 210. ИСБН  9781421417288 .
  17. ^ Энгельштейн, Джеффри; Шалев, Исаак (25 июня 2019 г.). Строительные блоки дизайна настольных игр . дои : 10.1201/9780429430701 . ISBN  978-0-429-43070-1 . S2CID   198342061 .
  18. ^ Перейти обратно: а б Эйлер, Леонард ; Лагранж, Жозеф Луи (1810), Элементы алгебры , том. 1 (2-е изд.), Дж. Джонсон и Ко, стр. 332–335.
  19. ^ Дональд Э. Кнут (1997). Искусство компьютерного программирования: Том 1: Фундаментальные алгоритмы . 3-е изд. Аддисон Уэсли Лонгман, США с. 48.
  20. ^ Стоун, Джон Дэвид (2018), Алгоритмы функционального программирования , Springer, стр. 282, номер домена : 10.1007/978-3-662-57970-1 , ISBN  978-3-662-57968-8 , S2CID   53079729

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: d782a3f6a07e04ad59f7551b97da2d14__1719009480
URL1:https://arc.ask3.ru/arc/aa/d7/14/d782a3f6a07e04ad59f7551b97da2d14.html
Заголовок, (Title) документа по адресу, URL1:
Triangular number - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)