Rho-ассоциированная протеинкиназа
КАМЕНЬ | |
---|---|
Идентификаторы | |
Символ | Rho-ассоциированная протеинкиназа |
Альт. символы | Rho-ассоциированная протеинкиназа, содержащая спиральную спираль |
ген NCBI | 579202 |
Другие данные | |
Номер ЕС | 2.7.11.1 |
Rho-ассоциированная протеинкиназа ( ROCK ) представляет собой киназу, принадлежащую к семейству AGC (PKA/PKG/PKC) серин-треонин-специфичных протеинкиназ . Он участвует главным образом в регуляции формы и движения клеток, воздействуя на цитоскелет .
ROCK ( ROCK1 и ROCK2 ) встречаются у млекопитающих (человек, крыса, мышь, корова), рыбок данио, Xenopus , беспозвоночных ( C. elegans , комар, дрозофила ) и кур. Человеческий ROCK1 имеет молекулярную массу 158 кДа и является основным нижестоящим эффектором малой ГТФазы RhoA . ROCK млекопитающих состоит из киназного домена, области спиральной спирали и домена гомологии плекстрина (PH), который снижает киназную активность ROCK за счет аутоингибирующей внутримолекулярной складки, если RhoA-GTP отсутствует. [1] [2]
Крысиные ROCK были обнаружены как первые эффекторы Rho, и они индуцируют образование стрессовых волокон и фокальных спаек путем фосфорилирования MLC (легкой цепи миозина). [3] Благодаря этому фосфорилированию увеличивается актин - связывание миозина II и, следовательно, сократительная способность . две мышиные изоформы ROCK ROCK1 Идентифицированы и ROCK2. ROCK1 в основном экспрессируется в легких , печени , селезенке , почках и семенниках . Однако ROCK2 распределяется преимущественно в мозге и сердце . [1] [2] [4]
Протеинкиназа C и Rho-ассоциированная протеинкиназа участвуют в регуляции поступления ионов кальция; эти ионы кальция, в свою очередь, стимулируют киназу легкой цепи миозина, вызывая сокращение. [5] Rho-ассоциированные протеинкиназы представляют собой сериновые или треониновые киназы, которые определяют чувствительность к кальцию в гладкомышечных клетках.
Функция
[ редактировать ]ROCK играет роль в широком спектре различных клеточных явлений, поскольку ROCK является нижестоящим эффекторным белком малой ГТФазы Rho , которая является одним из основных регуляторов цитоскелета .
1. ROCK является ключевым регулятором организации актина и, следовательно, регулятором миграции клеток следующим образом:
Различные субстраты могут фосфорилироваться с помощью ROCK, включая киназу LIM , легкую цепь миозина (MLC) и фосфатазу MLC . Эти субстраты после фосфорилирования регулируют организацию и сократимость актиновых нитей следующим образом: [2]
- Количество актиновых нитей
ROCK косвенно ингибирует деполимеризацию актиновых филаментов: ROCK фосфорилирует и активирует киназу LIM , которая, в свою очередь, фосфорилирует ADF/кофилин , тем самым инактивируя его активность по деполимеризации актина. Это приводит к стабилизации актиновых филаментов и увеличению их количества. Таким образом, со временем мономеры актина, необходимые для продолжения полимеризации актина и миграции, становятся ограниченными. Увеличение стабильных актиновых нитей и потеря мономеров актина способствуют уменьшению миграции клеток. [2] [6]
- Сократимость клеток
ROCK также регулирует миграцию клеток, способствуя сокращению клеток и, таким образом, контактам клеток с субстратом. ROCK увеличивает активность моторного белка миозина II двумя разными механизмами:
- Во-первых, фосфорилирование легкой цепи миозина ( MLC миозина II ) увеличивает активность АТФазы . Таким образом, несколько связанных и активных миозинов, которые асинхронно активны на нескольких актиновых нитях, перемещают актиновые нити друг против друга, что приводит к итоговому укорочению актиновых волокон.
- Во-вторых, ROCK инактивирует фосфатазу MLC , что приводит к повышению уровня фосфорилированного MLC.
Таким образом, в обоих случаях активация ROCK с помощью Rho индуцирует образование актиновых стрессовых волокон , пучков актиновых филаментов противоположной полярности, содержащих миозин II, тропомиозин, кальдесмон и MLC-киназу, и, следовательно, фокальных контактов, которые представляют собой незрелые интегрина. точки адгезии на основе с внеклеточным субстратом. [2] [7]
2. Другие функции и цели
- RhoA-GTP стимулирует фосфолипид-фосфатазную активность PTEN ( гомолога фосфатазы и тензина), человеческого белка-супрессора опухолей . Эта стимуляция, похоже, зависит от ROCK. [8] [9] Таким образом, PTEN важен для предотвращения неконтролируемого деления клеток, которое наблюдается в раковых клетках.
- ROCK играет важную роль в контроле клеточного цикла; по-видимому, он ингибирует преждевременное разделение двух центриолей в G1 и, как предполагается, необходим для сокращения борозды расщепления, что необходимо для завершения цитокинеза . [2] [10] [11] [12] [13] [14]
- ROCK также, по-видимому, противодействуют сигнальному пути инсулина , что приводит к уменьшению размера клеток и влияет на судьбу клеток. [2]
- ROCKS играют роль в мембранном пузырении , морфологическом изменении, наблюдаемом в клетках, подвергающихся апоптозу . Проапоптотическая протеаза, каспаза 3, активирует активность киназы ROCK, расщепляя С-концевой домен PH. В результате аутоингибирующая внутримолекулярная складка ROCK уничтожается. ROCK также регулирует фосфорилирование MLC и сократимость актомиозина, которые регулируют пузырение мембран. [2]
- ROCKs способствуют ретракции нейритов , вызывая коллапс конуса роста за счет активации сократимости актомиозина. Также возможно, что фосфорилирование белка-2-медиатора коллапсинового ответа (CRMP2) с помощью ROCK ингибирует функцию CRPM2, способствующую росту аксонов, что приводит к коллапсу конуса роста. [2]
- ROCK регулируют межклеточную адгезию: потеря активности ROCK, по-видимому, приводит к потере целостности плотных соединений в эндотелиальных клетках. В эпителиальных клетках ингибирование ROCK, по-видимому, снижает целостность плотных соединений. Активный ROCK в этих клетках, по-видимому, стимулирует нарушение межклеточных контактов, опосредованных E-кадгерином, путем активации сократимости актомиозина. [2]
3. Другие цели ROCK
- NHE1 (натрий-водородный обменник, участвующий в фокальных спайках и организации актина)
- белки промежуточных филаментов: виментин, GFAP (глиальный фибриллярный кислый белок), NF-L (белок нейрофиламента L)
- F-актин-связывающие белки: аддуцин, EF-1&alpha (фактор элонгации, кофактор трансляции), MARCKS (миристилированный, богатый аланином субстрат C-киназы), капонин (неизвестная функция) и ERM (участвующий в связывании актинового цитоскелета с плазматическая мембрана).
Гомологи
[ редактировать ]Rho-ассоциированная протеинкиназа 1, содержащая спиральную спираль | |||
---|---|---|---|
Идентификаторы | |||
Символ | РОК1 | ||
ген NCBI | 6093 | ||
HGNC | 10251 | ||
МОЙ БОГ | 601702 | ||
RefSeq | НМ_005406 | ||
ЮниПрот | Q13464 | ||
|
Rho-ассоциированная протеинкиназа 2, содержащая спиральную спираль | |||
---|---|---|---|
Идентификаторы | |||
Символ | РОК2 | ||
ген NCBI | 9475 | ||
HGNC | 10252 | ||
МОЙ БОГ | 604002 | ||
RefSeq | НМ_004850 | ||
ЮниПрот | О75116 | ||
|
Две мышиные изоформы ROCK, ROCK1 и ROCK2, обладают высокой гомологией . Они имеют 65% аминокислотных общих последовательностей и 92% гомологию внутри своих киназных доменов. [1] [4]
ROCK гомологичны другим киназам многоклеточных животных, таким как киназа миотонической дистрофии ( DMPK ), киназа, связывающая белок 42 контроля деления клеток, связанный с DMPK ( Cdc42 ) (MRCK) и цитрон-киназа. Все эти киназы состоят из N-концевого киназного домена, спиральной структуры и других функциональных мотивов на С-конце. [2]
Регулирование
[ редактировать ]ROCK представляет собой эффекторную молекулу, расположенную ниже Rho GTPазы Rho, которая увеличивает активность киназы ROCK при связывании с ней.
Аутоторможение
Активность ROCK регулируется нарушением внутримолекулярного аутоингибирования. В целом структура белков ROCK состоит из N-концевого киназного домена, спирально-спиральной области и домена PH, содержащего богатый цистеином домен (CRD) на С-конце. Rho-связывающий домен (RBD) расположен в непосредственной близости от домена PH.
Активность киназы ингибируется внутримолекулярным связыванием между С-концевым кластером домена RBD и доменом PH с N-концевым киназным доменом ROCK. Таким образом, киназная активность отключается, когда ROCK сворачивается внутримолекулярно. Киназная активность включается, когда Rho-GTP связывается с Rho-связывающим доменом ROCK, нарушая аутоингибирующее взаимодействие внутри ROCK, что высвобождает киназный домен, поскольку ROCK больше не сворачивается внутримолекулярно. [2]
Другие регуляторы
Также было показано, что Ро не единственный активатор ROCK. ROCK также может регулироваться липидами, в частности арахидоновой кислотой , и олигомеризацией белка , которая индуцирует N-концевое трансфосфорилирование. [2]
Ингибиторы
[ редактировать ]Болезнь
[ редактировать ]Этот раздел нуждается в расширении . Вы можете помочь, добавив к нему . ( январь 2020 г. ) |
Исследования последних двух десятилетий показали, что передача сигналов ROCK играет важную роль во многих заболеваниях, включая сердечно-сосудистые заболевания . [15] [16] нейродегенеративные заболевания, такие как болезнь Альцгеймера , болезнь Паркинсона и боковой амиотрофический склероз , [17] и рак . [18] Например, предполагалось, что ROCK играет важную роль в плейотропных эффектах статинов . ROCK1/2 вместе с киназами MRCKα/β участвуют в пластичности миграции раковых клеток, феномене, который дает раковым клеткам преимущество в выживании во время лечения лекарствами ( резистентность к лекарствам ). [19]
Исследователи разрабатывают ингибиторы ROCK, такие как RKI-1447, для лечения различных заболеваний, включая рак. [20] [21] Например, такие лекарства могут предотвратить распространение рака, блокируя миграцию клеток и предотвращая распространение раковых клеток в соседние ткани. [1]
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Jump up to: а б с д Хаманн С., Шретер Т. (январь 2010 г.). «Ингибиторы Rho-киназы как терапевтические средства: от пан-ингибирования к селективности изоформ» . Клеточные и молекулярные науки о жизни . 67 (2): 171–7. дои : 10.1007/s00018-009-0189-x . ПМЦ 11115778 . ПМИД 19907920 . S2CID 6445354 .
- ^ Jump up to: а б с д и ж г час я дж к л м Риенто К., Ридли Эй Джей (июнь 2003 г.). «Камни: многофункциональные киназы в поведении клеток». Обзоры природы. Молекулярно-клеточная биология . 4 (6): 446–56. дои : 10.1038/nrm1128 . ПМИД 12778124 . S2CID 40665081 .
- ^ Люнг Т., Чен XQ, Мансер Э., Лим Л. (октябрь 1996 г.). «p160 RhoA-связывающая киназа ROK альфа является членом семейства киназ и участвует в реорганизации цитоскелета» . Молекулярная и клеточная биология . 16 (10): 5313–27. дои : 10.1128/mcb.16.10.5313 . ПМК 231530 . ПМИД 8816443 .
- ^ Jump up to: а б Накагава О, Фудзисава К, Ишизаки Т, Сайто Ю, Накао К, Нарумия С (август 1996 г.). «ROCK-I и ROCK-II, две изоформы Rho-ассоциированного белка серин/треониновой киназы, образующего спиральную спираль, у мышей» . Письма ФЭБС . 392 (2): 189–93. дои : 10.1016/0014-5793(96)00811-3 . ПМИД 8772201 . S2CID 6684411 .
- ^ Анджум I (июнь 2018 г.). «Механизмы сенсибилизации кальция в гладких мышцах детрузора». Журнал фундаментальной и клинической физиологии и фармакологии . 29 (3): 227–235. дои : 10.1515/jbcpp-2017-0071 . ПМИД 29306925 . S2CID 20486807 .
- ^ Маэкава М, Ишизаки Т, Боку С, Ватанабэ Н, Фудзита А, Ивамацу А, Обината Т, Охаси К, Мизуно К, Нарумия С (август 1999 г.). «Передача сигнала от Rho к актиновому цитоскелету через протеинкиназы ROCK и LIM-киназу». Наука . 285 (5429): 895–8. дои : 10.1126/science.285.5429.895 . ПМИД 10436159 .
- ^ Ван Ю, Чжэн XR, Риддик Н, Брайден М, Баур В, Чжан X, Серкс Х.К. (февраль 2009 г.). «Регуляция изоформы ROCK миозинфосфатазы и сократимости в гладкомышечных клетках сосудов» . Исследование кровообращения . 104 (4): 531–40. дои : 10.1161/CIRCRESAHA.108.188524 . ПМЦ 2649695 . ПМИД 19131646 .
- ^ Ли З, Донг Икс, Донг Икс, Ван З, Лю В, Дэн Н, Дин Ю, Тан Л, Хла Т, Цзэн Р, Ли Л, Ву Д (апрель 2005 г.). «Регуляция PTEN малыми GTPases Rho». Природная клеточная биология . 7 (4): 399–404. дои : 10.1038/ncb1236 . ПМИД 15793569 . S2CID 19316266 .
- ^ «Ген Энтреза: гомолог фосфатазы PTEN и тензина (мутировал при множественных поздних стадиях рака 1)» .
- ^ Гао С.Ю., Ли С.И., Чен Дж., Пан Л., Сайто С., Терашита Т., Сайто К., Мияваки К., Сигэмото К., Моминоки К., Мацуда С., Кобаяши Н. (2004). «Сигнальный путь Rho-ROCK регулирует процесс образования культивируемых подоцитов на основе микротрубочек - ингибирование ROCK способствует удлинению процесса». Нефрон Экспериментальная нефрология . 97 (2): e49–61. дои : 10.1159/000078406 . ПМИД 15218323 . S2CID 45342422 .
- ^ Дрехсель Д.Н., Хайман А.А., Холл А, Глотцер М. (январь 1997 г.). «Потребность в Rho и Cdc42 во время цитокинеза у эмбрионов Xenopus» . Современная биология . 7 (1): 12–23. дои : 10.1016/S0960-9822(06)00023-6 . ПМИД 8999996 . S2CID 16144917 .
- ^ Косако Х, Ёсида Т, Мацумура Ф, Ишизаки Т, Нарумия С, Инагаки М (декабрь 2000 г.). «Rho-киназа/ROCK участвует в цитокинезе посредством фосфорилирования легкой цепи миозина, а не белков эзрин/радиксин/моезин в борозде расщепления» . Онкоген . 19 (52): 6059–64. дои : 10.1038/sj.onc.1203987 . ПМИД 11146558 . S2CID 39115039 .
- ^ Ясуи Ю, Амано М, Нагата К, Инагаки Н, Накамура Х, Сая Х, Кайбути К, Инагаки М (ноябрь 1998 г.). «Роль Rho-ассоциированной киназы в цитокинезе; мутации в сайтах фосфорилирования Rho-ассоциированной киназы нарушают цитокинетическую сегрегацию глиальных филаментов» . Журнал клеточной биологии . 143 (5): 1249–58. дои : 10.1083/jcb.143.5.1249 . ПМК 2133074 . ПМИД 9832553 .
- ^ Пикны А.Дж., Mains PE (июнь 2002 г.). «Rho-связывающая киназа (LET-502) и миозинфосфатаза (MEL-11) регулируют цитокинез у ранних эмбрионов Caenorhabditis elegans» . Журнал клеточной науки . 115 (Часть 11): 2271–82. дои : 10.1242/jcs.115.11.2271 . ПМИД 12006612 .
- ^ Сладоевич Н., Ю Б., Ляо Дж. К. (декабрь 2017 г.). «РОК как терапевтическая мишень при ишемическом инсульте» . Экспертный обзор нейротерапии . 17 (12): 1167–1177. дои : 10.1080/14737175.2017.1395700 . ПМК 6221831 . ПМИД 29057688 .
- ^ Ю Б., Сладоевич Н., Блер Дж. Э., Ляо Дж. К. (январь 2020 г.). «Нацеливание Rho-ассоциированной протеинкиназы, образующей спиральную спираль (ROCK), на сердечно-сосудистый фиброз и уплотнение» . Мнение экспертов о терапевтических целях . 24 (1): 47–62. дои : 10.1080/14728222.2020.1712593 . ISSN 1744-7631 . ПМЦ 7662835 . ПМИД 31906742 . S2CID 210043399 .
- ^ Чонг СМ, Ай Н, Ли С.М. (2017). «РОК в ЦНС: различные роли изоформ и терапевтическая мишень при нейродегенеративных заболеваниях». Текущие цели по борьбе с наркотиками . 18 (4): 455–462. дои : 10.2174/1389450117666160401123825 . ISSN 1873-5592 . ПМИД 27033194 .
- ^ Вэй Л., Сурма М., Ши С., Ламберт-Читэм Н., Ши Дж. (август 2016 г.). «Новый взгляд на роль Ро-киназы при раке» . Archivum Immunologiae et Therapiae Experimentalis . 64 (4): 259–78. дои : 10.1007/s00005-015-0382-6 . ПМЦ 4930737 . ПМИД 26725045 .
- ^ Кале, Виджай Пралхад; Хенгст, Джереми А.; Десаи, Дхимант Х.; Амин, Шанту Г.; Юн, Чон К. (01 июня 2015 г.). «Регуляторная роль киназ ROCK и MRCK в пластичности миграции раковых клеток» . Письма о раке . 361 (2): 185–196. дои : 10.1016/j.canlet.2015.03.017 . ISSN 0304-3835 . ПМИД 25796438 .
- ^ Кале, Виджай Пралхад; Хенгст, Джереми А.; Десаи, Дхимант Х.; Дик, Тэрин Э.; Чоу, Кэтрин Н.; Колледж, Эшли Л.; Такахаши, Ёсинори; Сун, Шэнь-Шу; Амин, Шанту Г.; Юн, Чон К. (28 ноября 2014 г.). «Новый селективный мультикиназный ингибитор ROCK и MRCK эффективно блокирует миграцию и инвазию раковых клеток» . Письма о раке . 354 (2): 299–310. дои : 10.1016/j.canlet.2014.08.032 . ISSN 0304-3835 . ПМЦ 4182185 . ПМИД 25172415 .
- ^ Фэн Ю, ЛоГрассо П.В., Деферт О, Ли Р (март 2016 г.). «Ингибиторы ро-киназы (ROCK) и их терапевтический потенциал». Журнал медицинской химии . 59 (6): 2269–2300. doi : 10.1021/acs.jmedchem.5b00683 . ISSN 1520-4804 . ПМИД 26486225 .