7
| ||||
---|---|---|---|---|
Кардинал | Семь | |||
Порядковый номер | 7-е место (седьмой) | |||
Система счисления | семилетний | |||
Факторизация | основной | |||
Основной | 4-й | |||
Делители | 1, 7 | |||
Греческая цифра | Ζ´ | |||
Римская цифра | VII, VII | |||
Греческий префикс | гепта- / гепт- | |||
Латинский префикс | Семь | |||
Двоичный | 111 2 | |||
тройной | 21 3 | |||
Сенарий | 11 6 | |||
Восьмеричный | 7 8 | |||
Двенадцатеричный | 7 12 | |||
Шестнадцатеричный | 7 16 | |||
Греческая цифра | Z , ζ | |||
амхарский | ፯ | |||
арабский , курдский , персидский | ٧ | |||
Синдхи , урду | ۷ | |||
Бенгальский | ৭ | |||
Китайская цифра | семь, семь | |||
Деванагари | ७ | |||
телугу | ౭ | |||
тамильский | ௭ | |||
иврит | Г | |||
кхмерский | 7 | |||
тайский | ๗ | |||
Каннада | ೭ | |||
малаялам | ൭ | |||
Армянский | Это | |||
Вавилонская цифра | 𒐛 | |||
Египетский иероглиф | 𓐀 | |||
Азбука Морзе | _ _... |
7 ( семь ) — натуральное число , следующее за 6 и предшествующее 8 . Это единственное простое число, предшествующее кубу .
Как раннее простое число в ряду положительных целых чисел , число семь имеет очень символические ассоциации в религии , мифологии , суевериях и философии . Из семи классических планет семь — это количество дней в неделе. [ 1 ] Число 7 часто считается счастливым в западной культуре и считается весьма символичным. В отличие от западной культуры, во вьетнамской культуре число семь иногда считается несчастливым. [ нужна ссылка ]
Эволюция арабской цифры
[ редактировать ]Этот раздел нуждается в дополнительных цитатах для проверки . ( Май 2024 г. ) |

Ранние цифры Брахми 7 писались более или менее одним росчерком в виде кривой, которая выглядела как прописная буква ⟨J⟩, перевернутая вертикально (ᒉ). Основной вклад западно-арабских народов заключался в том, чтобы сделать более длинную линию диагональной, а не прямой, хотя они проявили некоторую тенденцию к тому, чтобы сделать цифру более прямолинейной. Восточные арабские народы развили цифру от формы, которая выглядела примерно как 6, до формы, похожей на заглавную букву V. Обе современные арабские формы повлияли на европейскую форму, двухстрочную форму, состоящую из горизонтальной верхней черты, соединенной справа с буквой. штрих, идущий вниз к левому нижнему углу, линия, слегка изогнутая в некоторых вариантах шрифта. Как и в случае с европейской цифрой, чамская и кхмерская цифра 7 также эволюционировала, чтобы выглядеть как цифра 1, хотя и по-другому, поэтому они также стремились сделать свои 7 более разными. Для кхмеров это часто заключалось в добавлении горизонтальной линии вверху цифры. [ 2 ] Это аналогично горизонтальной черте посередине, которая иногда используется в рукописном письме в западном мире, но почти никогда не используется в компьютерных шрифтах . Однако эта горизонтальная черта важна для того, чтобы отличить глиф, обозначающий семь, от глифа, обозначающего один, в письменной форме, в которой в глифе, обозначающем 1, используется длинная черта вверх. В некоторых греческих диалектах начала XII века более длинная диагональ линии рисовалась довольно полукруглая поперечная линия.

На семисегментных дисплеях цифра 7 — это цифра с наиболее распространенным графическим вариантом (1, 6 и 9 также имеют варианты глифов). В большинстве калькуляторов используются три сегмента линии, но на калькуляторах Sharp , Casio и некоторых других марок цифра 7 записывается четырьмя сегментами, потому что в Японии, Корее и Тайване цифра 7 пишется с «крючком» слева, как ① в следующую иллюстрацию.

форма символа цифры 7 имеет восходящую часть В то время как в большинстве современных шрифтов , в шрифтах с текстовыми цифрами символ обычно имеет нижний нижний предел (⁊), как, например, в .

Большинство жителей континентальной Европы, [ 3 ] Индонезия, [ нужна ссылка ] а некоторые в Великобритании, Ирландии и Канаде, а также в Латинской Америке пишут 7 с перечеркнутой посередине ( 7 ), иногда с искривленной верхней линией. Линия посередине полезна, чтобы четко отличить цифру от цифры один, поскольку они могут выглядеть похожими при написании определенными стилями почерка. Эта форма используется в официальных правилах почерка для начальной школы в России, Украине, Болгарии, Польше, других славянских странах, [ 4 ] Франция, [ 5 ] Италия, Бельгия, Нидерланды, Финляндия, [ 6 ] Румыния, Германия, Греция, [ 7 ] и Венгрия. [ нужна ссылка ]
По математике
[ редактировать ]Семь, четвертое простое число, — это не только простое число Мерсенна (поскольку ), но также и двойное простое число Мерсенна , поскольку показатель степени 3 сам по себе является простым числом Мерсенна. [ 8 ] Это также простое число Ньюмана–Шенкса–Вильямса , [ 9 ] простое число Вудала , [ 10 ] факториал простого числа , [ 11 ] число Харшада , счастливое простое число , [ 12 ] ( счастливое число счастливое простое число), [ 13 ] безопасный прайм (единственный Безопасное простое число Мерсенна ), простое число Лейланда второго рода и четвертое число Хигнера . [ 14 ] Семь — наименьшее натуральное число, которое нельзя представить в виде суммы квадратов трёх целых чисел.
Семигранная фигура – семиугольник . [ 15 ] Правильные . n -угольники для n ⩽ 6 можно построить только с помощью циркуля и линейки , что делает семиугольник первым правильным многоугольником, который невозможно построить напрямую с помощью этих простых инструментов [ 16 ] Фигурные числа, изображающие семиугольники, называются семиугольными числами . [ 17 ] 7 также является центрированным шестиугольным числом . [ 18 ]
7 — единственное число D, для которого уравнение 2 н − Д = х 2 имеет более двух решений для n и x natural . В частности, уравнение 2 н − 7 = х 2 известно как уравнение Рамануджана-Нагелла . 7 — одно из семи чисел в положительно определенной квадратичной целочисленной матрице, представляющей все нечетные числа: {1, 3, 5, 7, 11, 15, 33}. [ 19 ] [ 20 ]
Существует 7 фризов в двух измерениях, состоящих из симметрий плоскости , группа переводов которых изоморфна групп группе целых чисел . [ 21 ] Они относятся к 17 группам обоев , трансформации и изометрии которых повторяют двумерные узоры на плоскости. [ 22 ] [ 23 ]
Семиугольник в евклидовом пространстве не может создавать однородные мозаики рядом с другими многоугольниками, как правильный пятиугольник . Однако это один из четырнадцати многоугольников, которые могут заполнить мозаику из плоских вершин , в данном случае только рядом с правильным треугольником и 42-сторонним многоугольником ( 3.7.42 ). [ 24 ] [ 25 ] Это также одна из двадцати одной такой конфигурации из семнадцати комбинаций многоугольников, в которой присутствуют самые большие и самые маленькие многоугольники. [ 26 ] [ 27 ] В противном случае для любого правильного n -стороннего многоугольника максимальное количество пересекающихся диагоналей (кроме его центра) не превышает 7. [ 28 ]
В калейдоскопических конструкциях Витхоффа семь различных образующих точек, лежащих на зеркальных краях трехстороннего треугольника Шварца , используются для создания наиболее однородных мозаик и многогранников ; восьмая точка, лежащая на всех трех зеркалах, технически вырождена и предназначена только для обозначения курносых форм. [ 29 ]
Семь из восьми полуправильных мозаик являются витоффовыми (единственное исключение — вытянутая треугольная мозаика ), где существуют три правильных мозаики , все из которых являются витоффовыми. [ 30 ] Семь из девяти однородных раскрасок квадратной мозаики также являются витоффовыми. [ 31 ] В двух измерениях существует ровно семь 7-однородных мозаик Кротенхердта и нет других таких k -однородных мозаик для k > 7, и это также единственное k, для которого количество мозаик Кротенхердта согласуется с k . [ 32 ] [ 33 ]
Плоскость Фано , наименьшая возможная конечная проективная плоскость , имеет 7 точек и 7 прямых, расположенных так, что каждая прямая содержит 3 точки и 3 прямые пересекают каждую точку. [ 34 ] Это связано с другими проявлениями числа семь по отношению к исключительным объектам , например, с тем фактом, что октонионы содержат семь различных квадратных корней из -1, семимерные векторы имеют векторное произведение и количество равноугольных линий , возможных в семимерных числах. многомерное пространство аномально велико. [ 35 ] [ 36 ] [ 37 ]

Самым низким известным измерением экзотической сферы является седьмое измерение, в котором имеется в общей сложности 28 дифференцируемых структур; могут существовать экзотические гладкие структуры на четырехмерной сфере . [ 38 ] [ 39 ]
В гиперболическом пространстве 7 — высшая размерность несимплексных гиперкомпактных многогранников Винберга ранга n + 4 зеркала, где существует одна уникальная фигура с одиннадцатью гранями . [ 40 ] С другой стороны, такие фигуры с зеркалами ранга n + 3 существуют в измерениях 4, 5, 6 и 8; не в 7.
Существует семь основных типов катастроф . [ 41 ]
При броске двух стандартных шестигранных игральных костей семь из них имеют результат 6 из 6. 2 (или 1 / 6 ) вероятность выпадения (1–6, 6–1, 2–5, 5–2, 3–4 или 4–3), наибольшая из любого числа. [ 42 ] Противоположные стороны стандартной шестигранной игральной кости всегда в сумме дают 7.
Задачи Премии тысячелетия — это семь математических задач , поставленных Математическим институтом Клея в 2000 году. [ 43 ] В настоящее время шесть проблем остаются нерешенными . [ 44 ]
Основные расчеты
[ редактировать ]Умножение | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 50 | 100 | 1000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 × х | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 | 112 | 119 | 126 | 133 | 140 | 147 | 154 | 161 | 168 | 175 | 350 | 700 | 7000 |
Разделение | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 ÷ х | 7 | 3.5 | 2. 3 | 1.75 | 1.4 | 1.1 6 | 1 | 0.875 | 0. 7 | 0.7 | 0. 63 | 0.58 3 | 0. 538461 | 0.5 | 0.4 6 |
х ÷ 7 | 0. 142857 | 0. 285714 | 0. 428571 | 0. 571428 | 0. 714285 | 0. 857142 | 1. 142857 | 1. 285714 | 1. 428571 | 1. 571428 | 1. 714285 | 1. 857142 | 2 | 2. 142857 |
Возведение в степень | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 х | 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 | 1977326743 | 13841287201 | 96889010407 |
х 7 | 1 | 128 | 2187 | 16384 | 78125 | 279936 | 823543 | 2097152 | 4782969 | 10000000 | 19487171 | 35831808 | 62748517 |
В десятичном формате
[ редактировать ]В десятичном представлении обратная цифра 7 повторяет шесть цифр (как 0,142857 ), [ 45 ] [ 46 ] сумма которых при возврате к 1 равна 28.
999 999 разделить на 7 — ровно 142 857 . Следовательно, когда обычная дробь с 7 в знаменателе преобразуется в десятичное представление, результат имеет ту же шестизначную повторяющуюся последовательность после запятой, но последовательность может начинаться с любой из этих шести цифр. [ 47 ] Например, 1/7 = 0,142857 142857... и 2/7 = 0,285714 285714....
Действительно, если отсортировать цифры числа 142 857 по возрастанию, 124 578, то можно узнать, с какой из цифр будет начинаться десятичная часть числа. Остаток от деления любого числа на 7 даст позицию в последовательности 124578, с которой будет начинаться десятичная часть полученного числа. Например, 628 ÷ 7 = 89 + 5/7 ; здесь 5 — остаток и будет соответствовать номеру 7 в рейтинге возрастающей последовательности. Итак, в данном случае 628 ÷ 7 = 89,714285 . Другой пример: 5238 ÷ 7 = 748 + 2/7 следовательно , , остаток равен 2, и это соответствует номеру 2 в последовательности. В данном случае 5238 ÷ 7 = 748,285714 .
В науке
[ редактировать ]- Семь цветов в радуге
- Семь континентов
- Семь климатов
- Нейтральный баланс pH
- Количество нот в диатонической гамме западной музыки
- Количество пятен, наиболее часто встречающихся на божьих коровках
- Атомный номер азота
- Количество двухатомных молекул
- Семь основных кристаллических систем
В психологии
[ редактировать ]- Семь плюс-минус два как модель рабочей памяти
- Семь психологических типов, названных Семью Лучами в учении Алисы А. Бэйли.
- В западной культуре семь неизменно считается любимым числом людей. [ 48 ] [ 49 ]
- При угадывании чисел 1–10, скорее всего, выпадет число 7. [ 50 ]
- Семилетний зуд — термин, который предполагает, что счастье в браке снижается примерно через семь лет.
Классическая античность
[ редактировать ]Пифагорейцы . наделяли определенные числа уникальными духовными свойствами Число семь считалось особенно интересным, поскольку оно представляло собой союз физического (число 4 ) с духовным (число 3 ). [ 51 ] В пифагорейской нумерологии число 7 означает духовность.
Ссылки из классической античности на число семь включают:
- Семь классических планет и производные Семь небес
- Семь чудес древнего мира
- Семь металлов древности
- Семь дней в неделе
- Семь морей
- Семь мудрецов
- Семь чемпионов, сражавшихся с Фивами
- Семь холмов Рима и семь римских царей
- Семь сестер , дочери Атласа, также известного как Плеяды.
Религия и мифология
[ редактировать ]иудаизм
[ редактировать ]Число семь образует широко распространенную типологическую модель в еврейских Священных Писаниях , в том числе:
- Семь дней (точнее йом ) Творения, ведущих к седьмому дню или субботе (Бытие 1)
- Семикратная месть постигла Каина за убийство Авеля (Бытие 4:15).
- Семь пар каждого чистого животного, погруженного Ноем в ковчег (Бытие 7:2)
- Семь лет изобилия и семь лет голода во сне фараона (Бытие 41)
- Седьмой сын Иакова, Гад , имя которого означает удачу (Бытие 46:16).
- Семь раз кропят кровью тельца пред Богом (Левит 4:6)
- Семь народов Бог сказал израильтянам, что они вытеснят их, когда они войдут в землю Израиля (Второзаконие 7:1)
- Семь дней (де-юре, но де-факто восемь дней) праздника Пасхи (Исход 13: 3–10).
- Семисвечник ) или Менора (Исход 25
- Семь труб, на которых играли семь священников в течение семи дней, чтобы разрушить стены Иерихона (Иисус Навин 6:8)
- Семь вещей, которые отвратительны Богу (Притчи 6:16–19)
- Семь столпов дома мудрости (Притчи 9:1)
- Семь архангелов во второканонической книге Товита (12:15)
Ссылки на число семь в еврейских знаниях и практике включают:
- Семь разделов еженедельного чтения алия Торы или
- Семь алиет в субботу
- Семь благословений, произносимых под хупой во время еврейской свадебной церемонии
- Семь дней праздничной трапезы для еврейских жениха и невесты после свадьбы, известной как Шева Берахот или Семь благословений.
- Семь Ушпиццинских молитв еврейским патриархам во время праздника Суккот
христианство
[ редактировать ]Следуя традиции еврейской Библии , Новый Завет также использует число семь как часть типологической модели:

- Семь хлебов умножились на семь корзин излишков (Матфея 15:32–37).
- Семь бесов были изгнаны из Марии Магдалины (Луки 8:2)
- Семь последних слов Иисуса на кресте
- Семь мужей честной репутации, полных Святого Духа и мудрости (Деяния 6:3)
- Семь духов Божиих , семь церквей и семь печатей в книге Откровения.
Ссылки на число семь в христианских знаниях и практике включают:
- Семь даров Святого Духа
- Семь телесных актов милосердия и семь духовных актов милосердия
- Семь смертных грехов : похоть, чревоугодие, жадность, леность, гнев, зависть и гордыня, и семь террас горы Чистилища.
- Семь добродетелей : целомудрие, воздержание, милосердие, трудолюбие, доброта, терпение и смирение.
- Семь радостей и семь печалей Богородицы
- Семь спящих из христианского мифа
- Семь Таинств в католической церкви (хотя в некоторых традициях указано другое количество)
ислам
[ редактировать ]Ссылки на число семь в исламских знаниях и практике включают:
- Семь аятов в суре «аль-Фатиха» , первой главе священного Корана.
- Семь обходов мусульманских паломников вокруг Каабы в Мекке во время хаджа и умры
- Семь прогулок между Аль-Сафой и Аль-Марвой совершали мусульманские паломники во время хаджа и умры.
- Семь дверей в ад (для рая количество дверей восемь)
- Семь небес (множественное число неба), упомянутые в Коране 65:12.
- Ночное путешествие на седьмое небо (сообщается о вознесении на небеса для встречи с Богом) Исра и Мирадж в суре Аль-Исра .
- Седьмой день рождения детей состоялось
- Семь провозглашателей божественного откровения ( натиков ) по словам знаменитого фатимидского исмаилитского сановника Насира Хосрова. [ 52 ]
- Коран Circle Seven , священное писание Храма мавританской науки Америки.
- Семь земель, упомянутых в Коране [ нужны разъяснения ]
- Семь детей Мухаммеда
- Семь лет изобилия и семь лет засухи в Египте во времена Юсуфа (Иосифа), как упоминается в Коране . [ 53 ]
индуизм
[ редактировать ]Ссылки на число семь в индуистских знаниях и практике включают:
- Семь миров во вселенной и семь морей в мире в индуистской космологии
- Семь мудрецов или Саптариши и их семь жен или Сапта Матрка в индуизме.
- Семь чакр в восточной философии
- Семь звезд в созвездии под названием « Саптариши Мандалам» в индийской астрономии.
- Семь обещаний, или Саптапади , и семь обходов вокруг костра на индуистских свадьбах.
- Семь девственных богинь или Саптха Каннимар, которым поклоняются в храмах Тамил Наду , Индия. [ 54 ] [ 55 ]
- Семь холмов в Тирумале, известных как Йеду Кондалаваду на телугу или эжу малайян на тамильском , что означает «Бог семи холмов».
- Семь шагов, сделанных Буддой при рождении
- Семь божественных прародительниц человечества в Хаси мифологии
- Семь октетов или Саптак Свар в индийской музыке как основа раг композиций
- Семь социальных грехов, перечисленных Махатмой Ганди
Восточная традиция
[ редактировать ]Другие упоминания числа семь в восточных традициях включают:

- Семь богов удачи или богов удачи в японской мифологии
- Семиветвистый меч в японской мифологии.
- Семь мудрецов бамбуковой рощи в Китае
- Семь второстепенных символов ян в даосской инь-ян.
Другие ссылки
[ редактировать ]Другие упоминания числа семь в традициях всего мира включают:
- Число семь имело мистическое и религиозное значение в месопотамской культуре не позднее XXII века до нашей эры. Вероятно, это произошло потому, что в шумерской шестидесятеричной системе счисления деление на семь было первым делением, которое приводило к бесконечно повторяющимся дробям . [ 56 ]
- Семь ладоней в египетском священном локте
- Семь рангов в митраизме
- Семь холмов Стамбула
- Семь островов Атлантиды
- Семь чероки кланов
- Семь жизней кошек в Иране и немецко - романских языковых культурах [ 57 ]
- Семь пальцев на каждой руке, семь пальцев на каждой ноге и семь зрачков в каждом глазу ирландского эпического героя Кухулина.
- Седьмые сыновья будут оборотнями в галицком фольклоре или сыном женщины и оборотня в других европейских фольклорах.
- Седьмые сыновья седьмого сына будут магами с особыми способностями к исцелению и ясновидению в одних культурах или вампирами в других.
- Семь выдающихся легендарных монстров в мифологии Гуарани
- Семь врат, которые прошла Инанна во время своего спуска в подземный мир.
- Семь мудрых мастеров , цикл средневековых рассказов.
- Семь сестер- богинь или судеб в балтийской мифологии назывались Дейвес Валдитойос . [ 58 ]
- Семь легендарных золотых городов, таких как Сибола , которые, по мнению испанцев, существовали в Южной Америке.
- Семь лет, проведенных Томасом Рифматором в волшебном королевстве по одноименной британской народной сказке
- Семилетний цикл, в котором Королева Фей платит десятину Аду (или, возможно, Хель ) в сказке о Там Лине.
- Семь долин , текст Пророка-основателя Бахауллы в вере Бахаи.
- Семь сверхвселенных в космологии Урантии [ 59 ]
- Семь, священное число Йемайи. [ 60 ]
- Семь отверстий, обозначающих глаза (سبع عيون) в ассирийской бусине от сглаза, иногда две, а иногда девять. [ 61 ]
См. также
[ редактировать ]


- Диатоническая гамма (7 нот)
- Семь цветов радуги
- Семь континентов
- Семь гуманитарных наук
- Семь чудес древнего мира
- Семь дней недели
- Семеричная (система счисления)
- Седьмой класс (школа)
- Се7ен (значения)
- Семерки (значения)
- Треугольник площадью одна седьмая
- Z со штрихом (Ƶ)
- Список автомагистралей под номером 7
Примечания
[ редактировать ]- ^ Карл Б. Бойер , История математики (1968), стр.52, 2-е изд.
- ^ Жорж Ифра, Универсальная история чисел: от предыстории до изобретения компьютера пер. Дэвид Беллос и др. Лондон: The Harvill Press (1998): 395, рис. 24.67.
- ^ Эева Тёрманен (8 сентября 2011 г.). «Аамулехти: Совет образования рассматривает возможность восстановления линии номер 7» . Технологии и экономика (на финском языке). Архивировано из оригинала 17 сентября 2011 года . Проверено 9 сентября 2011 г.
- ^ «Образование по написанию цифр в 1 классе». Архивировано 2 октября 2008 г. в Wayback Machine (на русском языке).
- ^ «Пример учебных материалов для дошкольников» (на французском языке)
- ^ Элли Харью (6 августа 2015 г.). « Nenonen seiska» вернулась: вы знали, откуда взялась косая черта?» . Илталехти (на финском языке).
- ^ » « Математика для первого класса (PDF) (на греческом языке). Министерство образования, исследований и религий. п. 33 . Проверено 7 мая 2018 г.
- ^ Вайсштейн, Эрик В. «Двойное число Мерсенна» . mathworld.wolfram.com . Проверено 6 августа 2020 г.
- ^ «A088165 Слоана: простые числа Нового Южного Уэльса» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ «A050918 Слоана: простые числа Вудала» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ «A088054 Слоана: Факториал простых чисел» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ «A031157 Слоана: числа одновременно и счастливые, и простые» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ «A035497 Слоана: Счастливые простые числа» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ «А003173 Слоана: числа Хегнера» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ Вайсштейн, Эрик В. «Семиугольник» . mathworld.wolfram.com . Проверено 25 августа 2020 г.
- ^ Вайсштейн, Эрик В. «7» . mathworld.wolfram.com . Проверено 7 августа 2020 г.
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A000566 (Семиугольные числа (или 7-угольные числа))» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 9 января 2023 г.
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A003215» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 1 июня 2016 г.
- ^ Коэн, Анри (2007). «Следствия теоремы Хассе – Минковского». Теория чисел, том I: Инструменты и диофантовые уравнения . Тексты для аспирантов по математике . Том. 239 (1-е изд.). Спрингер . стр. 312–314. дои : 10.1007/978-0-387-49923-9 . ISBN 978-0-387-49922-2 . OCLC 493636622 . Збл 1119.11001 .
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A116582 (Числа из теоремы Бхаргавы 33.)» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 3 февраля 2024 г.
- ^ Хейден, Андерс; Спарр, Гуннар; Нильсен, Мэдс; Йохансен, Питер (2 августа 2003 г.). Компьютерное зрение – ECCV 2002: 7-я Европейская конференция по компьютерному зрению, Копенгаген, Дания, 28–31 мая 2002 г. Материалы. Часть II . Спрингер. п. 661. ИСБН 978-3-540-47967-3 .
Узор фриза можно отнести к одной из 7 групп фризов...
- ^ Грюнбаум, Бранко ; Шепард, GC (1987). «Раздел 1.4 Группы симметрии мозаик». Плитки и узоры . Нью-Йорк: WH Freeman and Company. стр. 40–45. дои : 10.2307/2323457 . ISBN 0-7167-1193-1 . JSTOR 2323457 . OCLC 13092426 . S2CID 119730123 .
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A004029 (Количество n-мерных пространственных групп.)» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 30 января 2023 г.
- ^ Грюнбаум, Бранко ; Шепард, Джеффри (ноябрь 1977 г.). «Замощения правильными многоугольниками» (PDF) . Журнал «Математика» . 50 (5). Taylor & Francisco, Ltd.: 231. doi : 10.2307/2689529 . JSTOR 2689529 . S2CID 123776612 . Збл 0385.51006 .
- ^ Джардин, Кевин. «Щит — плитка 3.7.42» . Несовершенное соответствие . Проверено 9 января 2023 г. 3.7.42 как единичная грань в нерегулярной мозаике.
- ^ Грюнбаум, Бранко ; Шепард, Джеффри (ноябрь 1977 г.). «Замощения правильными многоугольниками» (PDF) . Журнал «Математика» . 50 (5). Тейлор и Фрэнсис, ООО: 229–230. дои : 10.2307/2689529 . JSTOR 2689529 . S2CID 123776612 . Збл 0385.51006 .
- ^ Даллас, Элмсли Уильям (1855). «Часть II. (VII): О круге с его вписанными и описанными фигурами — равное деление и построение многоугольников» . Элементы плоской практической геометрии . Лондон: Джон В. Паркер и сын, Вест-Стрэнд. п. 134.
- «...Таким образом, будет обнаружено, что, включая использование одних и тех же фигур, существует семнадцать различных комбинаций правильных многоугольников, с помощью которых это может быть достигнуто; а именно:
- Когда используются три многоугольника, существует десять способов; а именно, 6,6,6 – 3,7,42 – 3,8,24 – 3,9,18 – 3,10,15 – 3,12,12 – 4,5,20 – 4,6,12 – 4 ,8,8 — 5,5,10 .
- С четырьмя многоугольниками есть четыре пути, а именно: 4,4,4,4 — 3,3,4,12 — 3,3,6,6 — 3,4,4,6 .
- С пятью многоугольниками есть два пути: 3,3,3,4,4 — 3,3,3,3,6 .
- С шестью многоугольниками в одну сторону — все равносторонние треугольники [ 3.3.3.3.3.3 ]».
- ^ Пунен, Бьорн ; Рубинштейн, Михаил (1998). «Количество точек пересечения диагоналей правильного многоугольника» (PDF) . SIAM Journal по дискретной математике . 11 (1). Филадельфия: Общество промышленной и прикладной математики : 135–156. arXiv : математика/9508209 . дои : 10.1137/S0895480195281246 . МР 1612877 . S2CID 8673508 . Збл 0913.51005 .
- ^ Коксетер, HSM (1999). «Глава 3: Конструкция Витгофа для однородных многогранников» . Красота геометрии: двенадцать эссе . Минеола, Нью-Йорк: Dover Publications. стр. 326–339. ISBN 9780486409191 . OCLC 41565220 . S2CID 227201939 . Збл 0941.51001 .
- ^ Грюнбаум, Бранко ; Шепард, GC (1987). «Раздел 2.1: Регулярные и однородные мозаики». Плитки и узоры . Нью-Йорк: WH Freeman and Company. стр. 62–64. дои : 10.2307/2323457 . ISBN 0-7167-1193-1 . JSTOR 2323457 . OCLC 13092426 . S2CID 119730123 .
- ^ Грюнбаум, Бранко ; Шепард, GC (1987). «Раздел 2.9 Архимедовы и равномерные раскраски». Плитки и узоры . Нью-Йорк: WH Freeman and Company. стр. 102–107. дои : 10.2307/2323457 . ISBN 0-7167-1193-1 . JSTOR 2323457 . OCLC 13092426 . S2CID 119730123 .
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A068600 (Количество n-однородных мозаик, имеющих n различных расположений многоугольников вокруг своих вершин.)» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 9 января 2023 г.
- ^ Грюнбаум, Бранко ; Шепард, Джеффри (ноябрь 1977 г.). «Замощения правильными многоугольниками» (PDF) . Журнал «Математика» . 50 (5). Taylor & Francisco, Ltd.: 236. doi : 10.2307/2689529 . JSTOR 2689529 . S2CID 123776612 . Збл 0385.51006 .
- ^ Писански, Томаж ; Серватиус, Бриджит (2013). «Раздел 1.1: Hexagrammum Mysticum» . Конфигурации с графической точки зрения . Расширенные тексты Birkhäuser (1-е изд.). Бостон, Массачусетс: Биркхойзер . стр. 5–6. дои : 10.1007/978-0-8176-8364-1 . ISBN 978-0-8176-8363-4 . OCLC 811773514 . Збл 1277.05001 .
- ^ Мэсси, Уильям С. (декабрь 1983 г.). «Перекрестные произведения векторов в евклидовых пространствах более высокой размерности» (PDF) . Американский математический ежемесячник . 90 (10). Тейлор и Фрэнсис, Ltd : 697–701. дои : 10.2307/2323537 . JSTOR 2323537 . S2CID 43318100 . Збл 0532.55011 . Архивировано из оригинала (PDF) 26 февраля 2021 г. Проверено 23 февраля 2023 г.
- ^ Баэз, Джон К. (2002). «Октонионы» . Бюллетень Американского математического общества . 39 (2). Американское математическое общество : 152–153. дои : 10.1090/S0273-0979-01-00934-X . МР 1886087 . S2CID 586512 .
- ^ Стейси, Блейк С. (2021). Первый курс спорадических СИЦ . Чам, Швейцария: Springer. стр. 2–4. ISBN 978-3-030-76104-2 . OCLC 1253477267 .
- ^ Беренс, М.; Хилл, М.; Хопкинс, MJ; Маховальд, М. (2020). «Обнаружение экзотических сфер в малых измерениях с помощью коксования J» . Журнал Лондонского математического общества . 101 (3). Лондонское математическое общество : 1173. arXiv : 1708.06854 . дои : 10.1112/jlms.12301 . МР 4111938 . S2CID 119170255 . Збл 1460.55017 .
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A001676 (Количество классов h-кобордизмов гладких гомотопических n-сфер.)» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 23 февраля 2023 г.
- ^ Тумаркин, Павел; Феликсон, Анна (2008). «О d -мерных компактных гиперболических многогранниках Кокстера с d + 4 гранями» (PDF) . Труды Московского математического общества . 69 . Провиденс, Род-Айленд: Американское математическое общество (перевод): 105–151. дои : 10.1090/S0077-1554-08-00172-6 . МР 2549446 . S2CID 37141102 . Збл 1208.52012 .
- ^ Антони, Ф. де; Лауро, Н.; Рицци, А. (6 декабря 2012 г.). КОМПСТАТ: Труды по вычислительной статистике, 7-й симпозиум, состоявшийся в Риме, 1986 г. Springer Science & Business Media. п. 13. ISBN 978-3-642-46890-2 .
...каждая катастрофа может быть составлена из набора так называемых элементарных катастроф семи фундаментальных типов.
- ^ Вайсштейн, Эрик В. «Кости» . mathworld.wolfram.com . Проверено 25 августа 2020 г.
- ^ «Проблемы тысячелетия | Математический институт Клэя» . www.claymath.org . Проверено 25 августа 2020 г.
- ^ «Гипотеза Пуанкаре | Математический институт Клэя» . 15 декабря 2013 г. Архивировано из оригинала 15 декабря 2013 г. Проверено 25 августа 2020 г.
- ^ Уэллс, Д. (1987). Словарь любопытных и интересных чисел Penguin . Лондон: Книги Пингвинов . стр. 171–174. ISBN 0-14-008029-5 . OCLC 39262447 . S2CID 118329153 .
- ^ Слоан, Нью-Джерси (ред.). «Последовательность A060283 (Периодическая часть десятичной дроби обратного n-го простого числа (ведущие 0 перенесены в конец)» . Электронная энциклопедия целочисленных последовательностей . Фонд ОЭИС . Проверено 2 апреля 2024 г.
- ^ Брайан Банч, Королевство бесконечных чисел . Нью-Йорк: WH Freeman & Company (2000): 82.
- ^ Гонсалес, Робби (4 декабря 2014 г.). «Почему люди любят число семь?» . Гизмодо . Проверено 20 февраля 2022 г.
- ^ Беллос, Алекс. «Самые популярные числа в мире [отрывок]» . Научный американец . Проверено 20 февраля 2022 г.
- ^ Кубовый, Михаил; Псотка, Джозеф (май 1976 г.). «Преобладание семерки и кажущаяся спонтанность числового выбора» . Журнал экспериментальной психологии: человеческое восприятие и деятельность . 2 (2): 291–294. дои : 10.1037/0096-1523.2.2.291 . Проверено 20 февраля 2022 г.
- ^ «Символика числа – 7» .
- ^ «Насир-и Хосрав» , Антология философии в Персии , IBTauris, стр. 305–361, 2001, doi : 10.5040/9780755610068.ch-008 , ISBN 978-1-84511-542-5 , получено 17 ноября 2020 г.
- ↑ Сура Юсуф 12:46.
- ^ Раджараджан, РКК (2020). «Бесподобные проявления Деви» . Царковские индологические исследования (Краков, Польша) . XXII.1: 221–243. doi : 10.12797/СНГ.22.2020.01.09 . S2CID 226326183 .
- ^ Раджараджан, РКК (2020). «Вечное «Паттини»: от архаической богини дерева вэнкай до авангардного Акамампикай» . Studia Orientalia Electronica (Хельсинки, Финляндия) . 8 (1): 120–144. дои : 10.23993/store.84803 . S2CID 226373749 .
- ^ Происхождение мистического числа семь в месопотамской культуре: деление на семь в шестидесятеричной системе счисления
- ^ « Британская энциклопедия «Числовая символика» » . Britannica.com . Проверено 7 сентября 2012 г.
- ^ Климка, Либертас (01.03.2012). «Судьба древнебалтийской мифологии и религии». Литовский . 58 (1). doi : 10.6001/lituanistica.v58i1.2293 . ISSN 0235-716X .
- ^ «Глава I. Творческий тезис о совершенстве Уильяма С. Сэдлера-младшего – Книга Урантии – Фонд Урантия» . urantia.org . 17 августа 2011 г.
- ^ Йемайя . Церковь Сантерия Ориша. Проверено 25 ноября 2022 г.
- ^ Эргиль, Лейла Ивонн (10 июня 2021 г.). «Талисман Турции по суевериям: сглаз, гранаты и прочее» . Ежедневный Сабах . Проверено 5 апреля 2023 г.
Ссылки
[ редактировать ]- Уэллс, Д. Словарь любопытных и интересных чисел Penguin , Лондон: Penguin Group (1987): 70–71.