Jump to content

Общая теория относительности

Продолжительность: 35 секунд.
черной дыры Компьютерное моделирование замедленного движения двойной системы GW150914, как ее видит ближайший наблюдатель, в течение 0,33 с после ее финального подъема , слияния и звонка . Звездное поле за черными дырами сильно искажается и кажется вращающимся и движущимся из-за сильного гравитационного линзирования , поскольку само пространство-время искажается и увлекается вращающимися черными дырами . [1]

Общая теория относительности , также известная как общая теория относительности и теория гравитации Эйнштейна , представляет собой геометрическую теорию гравитации , опубликованную Альбертом Эйнштейном в 1915 году, и является текущим описанием гравитации в современной физике . Общая теория относительности обобщает специальную теорию относительности и уточняет закон всемирного тяготения Ньютона , обеспечивая единое описание гравитации как геометрического свойства пространства и времени или четырехмерного пространства-времени . В частности, кривизна пространства-времени напрямую связана с энергией и импульсом любой материи и излучения присутствующей . Связь задается уравнениями поля Эйнштейна , системой дифференциальных уравнений в частных производных второго порядка .

Закон всемирного тяготения Ньютона , описывающий классическую гравитацию, можно рассматривать как предсказание общей теории относительности для почти плоской геометрии пространства-времени вокруг стационарных распределений масс. Однако некоторые предсказания общей теории относительности выходят за рамки закона всемирного тяготения Ньютона в классической физике . Эти предсказания касаются течения времени, геометрии пространства, движения тел в свободном падении и распространения света и включают гравитационное замедление времени , гравитационное линзирование , гравитационное красное смещение света, временную задержку Шапиро и сингулярности / черный цвет. отверстия . До сих пор было показано, что все тесты общей теории относительности согласуются с теорией. Зависящие от времени решения общей теории относительности позволяют нам говорить об истории Вселенной и обеспечили современную основу для космологии , что привело к открытию Большого взрыва и космического микроволнового фонового излучения. Несмотря на появление ряда альтернативных теорий Общая теория относительности продолжает оставаться простейшей теорией, согласующейся с экспериментальными данными .

Однако примирение общей теории относительности с законами квантовой физики остается проблемой, поскольку существует отсутствие самосогласованной теории квантовой гравитации . Пока неизвестно, как гравитацию можно объединить с тремя негравитационными силами: сильной , слабой и электромагнитной .

Теория Эйнштейна имеет астрофизические последствия, включая предсказание черных дыр — областей пространства, в которых пространство и время искажены таким образом, что ничто, даже свет , не может покинуть их. Черные дыры — это конечное состояние массивных звезд . Микроквазары и активные ядра галактик считаются звездными черными дырами и сверхмассивными черными дырами . Оно также предсказывает гравитационное линзирование , при котором искривление света приводит к получению нескольких изображений одного и того же отдаленного астрономического явления. Другие предсказания включают существование гравитационных волн , которые наблюдались непосредственно физической коллаборацией LIGO и другими обсерваториями. Кроме того, общая теория относительности послужила основой космологических моделей расширяющейся Вселенной .

Общую теорию относительности, получившую широкое признание как необыкновенную красоту , часто называют самой красивой из всех существующих физических теорий. [2]

История [ править ]

Анри Пуанкаре Теория динамики электрона 1905 года была релятивистской теорией, которую он применил ко всем силам, включая гравитацию. В то время как другие думали, что гравитация мгновенная или имеет электромагнитное происхождение, он предположил, что теория относительности «была следствием наших методов измерения». В своей теории он показал, что гравитационные волны распространяются со скоростью света. [3] Вскоре после этого Эйнштейн начал думать о том, как включить гравитацию в свою релятивистскую теорию. В 1907 году, начав с простого мысленного эксперимента с участием наблюдателя в свободном падении (FFO), он приступил к восьмилетним поискам релятивистской теории гравитации. После многочисленных отклонений и фальстартов его работа завершилась представлением Прусской академии наук в ноябре 1915 года того, что сейчас известно как уравнения поля Эйнштейна, которые составляют ядро ​​общей теории относительности Эйнштейна. [4] Эти уравнения определяют, как на геометрию пространства и времени влияют присутствующие материя и излучение. [5] Версия неевклидовой геометрии , называемая римановой геометрией , позволила Эйнштейну разработать общую теорию относительности, предоставив ключевую математическую основу, на которой он поместил свои физические идеи гравитации. [6] На эту идею указал математик Марсель Гроссман и опубликовали Гроссманн и Эйнштейн в 1913 году. [7]

Уравнения поля Эйнштейна нелинейны и считаются трудными для решения. Эйнштейн использовал методы аппроксимации при разработке первоначальных предсказаний теории. Но в 1916 году астрофизик Карл Шварцшильд нашел первое нетривиальное точное решение уравнений поля Эйнштейна — метрику Шварцшильда . Это решение заложило основу для описания заключительных стадий гравитационного коллапса и объектов, известных сегодня как черные дыры. первые шаги по обобщению решения Шварцшильда на электрически заряженные В том же году были предприняты объекты, что в конечном итоге привело к решению Рейсснера-Нордстрема , которое теперь связано с электрически заряженными черными дырами . [8] В 1917 году Эйнштейн применил свою теорию ко Вселенной в целом, положив начало релятивистской космологии. В соответствии с современным мышлением он предположил, что Вселенная статична, добавив к своим первоначальным уравнениям поля новый параметр — космологическую постоянную — чтобы соответствовать этому наблюдательному предположению. [9] Однако к 1929 году работы Хаббла и других показали, что наша Вселенная расширяется. Это легко описывается расширяющимися космологическими решениями, найденными Фридманом в 1922 году, которые не требуют космологической постоянной. Лемэтр использовал эти решения для формулирования самой ранней версии модели Большого взрыва , в которой наша Вселенная развилась из чрезвычайно горячего и плотного раннего состояния. [10] Позже Эйнштейн объявил космологическую константу самой большой ошибкой в ​​своей жизни. [11]

В тот период общая теория относительности оставалась чем-то вроде диковинки среди физических теорий. Она явно превосходила ньютоновскую гравитацию , согласовываясь со специальной теорией относительности и объясняя несколько эффектов, необъяснимых теорией Ньютона. Эйнштейн показал в 1915 году, как его теория объясняла аномальное смещение перигелия планеты Меркурий без каких-либо произвольных параметров (« факторов выдумки »), [12] а в 1919 году экспедиция под руководством Эддингтона подтвердила предсказание общей теории относительности об отклонении звездного света Солнцем во время полного солнечного затмения 29 мая 1919 года . [13] мгновенно сделав Эйнштейна знаменитым. [14] Тем не менее, эта теория оставалась вне основного направления теоретической физики и астрофизики до тех пор, пока не начались ее разработки примерно между 1960 и 1975 годами, которые сейчас известны как золотой век общей теории относительности . [15] Физики начали понимать концепцию черной дыры и идентифицировать квазары как одно из астрофизических проявлений этих объектов. [16] Все более точные испытания Солнечной системы подтвердили предсказательную силу теории. [17] и релятивистская космология также стала поддаваться прямым наблюдательным проверкам. [18]

Общая теория относительности приобрела репутацию теории необыкновенной красоты. [2] [19] [20] Субраманьян Чандрасекхар отметил, что на многих уровнях общая теория относительности демонстрирует то, что Фрэнсис Бэкон назвал «странностью пропорций» ( т. е . элементы, вызывающие изумление и удивление). Он сопоставляет фундаментальные концепции (пространство и время в сравнении с материей и движением), которые ранее считались совершенно независимыми. Чандрасекхар также отметил, что единственными ориентирами Эйнштейна в поисках точной теории были принцип эквивалентности и его ощущение того, что правильное описание гравитации должно быть геометрическим в своей основе, так что в том, как это происходит, существовал «элемент откровения». Эйнштейн пришел к своей теории. [21] Другими элементами красоты, связанными с общей теорией относительности, являются ее простота и симметрия, способ, которым она включает в себя инвариантность и унификацию, а также ее идеальная логическая последовательность. [22]

В предисловии к книге «Относительность: специальная и общая теория » Эйнштейн сказал: «Настоящая книга призвана, насколько это возможно, дать точное представление о теории относительности тем читателям, которые с общенаучной и философской точки зрения с точки зрения тех, кто интересуется теорией, но не знаком с математическим аппаратом теоретической физики. Работа предполагает уровень образования, соответствующий уровню вступительного экзамена в университет, и, несмотря на краткость книги, изрядный объем. терпение и сила воли со стороны читателя. Автор не пожалел усилий, стремясь изложить основные идеи в наиболее простой и доходчивой форме и в целом в той последовательности и связи, в которой они действительно возникли. ." [23]

От классической механики к общей теории относительности [ править ]

Общую теорию относительности можно понять, исследуя ее сходства с классической физикой и отличия от нее. Первым шагом является осознание того, что классическая механика и закон гравитации Ньютона допускают геометрическое описание. Сочетание этого описания с законами специальной теории относительности приводит к эвристическому выводу общей теории относительности. [24] [25]

ньютоновской Геометрия гравитации

Согласно общей теории относительности, объекты в гравитационном поле ведут себя аналогично объектам в ускоряющемся пространстве. Например, наблюдатель увидит падение шара в ракете (слева) так же, как и на Земле (справа), при условии, что ускорение ракеты равно 9,8 м/с. 2 (ускорение силы тяжести на поверхности Земли).

В основе классической механики лежит представление о том, что движение тела можно описать как комбинацию свободного (или инерционного ) движения и отклонений от этого свободного движения. Такие отклонения вызваны внешними силами, действующими на тело в соответствии со вторым законом движения Ньютона , который гласит, что результирующая сила, действующая на тело, равна (инерционной) массе этого тела, умноженной на его ускорение . [26] Предпочтительные инерционные движения связаны с геометрией пространства и времени: в стандартных системах отсчета классической механики объекты, находящиеся в свободном движении, движутся по прямым линиям с постоянной скоростью. Говоря современным языком, их пути — это геодезические , прямые мировые линии в искривленном пространстве-времени. [27]

И наоборот, можно было бы ожидать, что инерционные движения, идентифицированные путем наблюдения за реальными движениями тел и учета внешних сил (таких как электромагнетизм или трение ), могут быть использованы для определения геометрии пространства, а также координаты времени . Однако, когда в игру вступает гравитация, возникает двусмысленность. Согласно закону гравитации Ньютона и независимо подтвержденному экспериментами, такими как эксперимент Этвёша и его последователей (см. Эксперимент Этвёша ), существует универсальность свободного падения (также известная как принцип слабой эквивалентности или универсальное равенство инерционного и пассивного движения). -гравитационная масса): траектория пробного тела в свободном падении зависит только от его положения и начальной скорости, но не от каких-либо свойств его материала. [28] Упрощенная версия этого воплощена в эксперименте Эйнштейна с лифтом , показанном на рисунке справа: для наблюдателя, находящегося в закрытой комнате, невозможно решить, отображая траекторию тел, таких как брошенный мяч, является ли комната неподвижно в гравитационном поле и ускоряющемся шаре или в свободном пространстве на борту ракеты, ускоряющейся со скоростью, равной скорости гравитационного поля, по отношению к шару, который при выпуске имеет нулевое ускорение. [29]

Учитывая универсальность свободного падения, не существует заметного различия между движением по инерции и движением под действием силы гравитации. Это предполагает определение нового класса движения по инерции, а именно класса объектов, находящихся в свободном падении под действием силы тяжести. Этот новый класс предпочтительных движений также определяет геометрию пространства и времени — в математических терминах это геодезическое движение, связанное с определенной связью , которая зависит от градиента гравитационного потенциала . Пространство в этой конструкции все еще имеет обычную евклидову геометрию . Однако пространство- время в целом сложнее. Как можно показать с помощью простых мысленных экспериментов, прослеживающих траектории свободного падения различных пробных частиц, результат транспортировки векторов пространства-времени, которые могут обозначать скорость частицы (времяподобные векторы), будет меняться в зависимости от траектории частицы; математически говоря, ньютоновская связь неинтегрируема . Отсюда можно сделать вывод, что пространство-время искривлено. В результате Теория Ньютона-Картана представляет собой геометрическую формулировку ньютоновской гравитации с использованием только ковариантных концепций, то есть описания, которое справедливо в любой желаемой системе координат. [30] В этом геометрическом описании приливные эффекты — относительное ускорение тел в свободном падении — связаны с производной связи, показывая, как измененная геометрия вызвана наличием массы. [31]

Релятивистское обобщение

Световой конус

Какой бы интригующей ни была геометрическая ньютоновская гравитация, ее основа, классическая механика, представляет собой всего лишь предельный случай (специальной) релятивистской механики. [32] На языке симметрии : там, где гравитацией можно пренебречь, физика является лоренц-инвариантной, как в специальной теории относительности, а не инвариантом Галилея, как в классической механике. (Определяющей симметрией специальной теории относительности является группа Пуанкаре , которая включает перемещения, вращения, ускорения и отражения.) Различия между ними становятся существенными, когда мы имеем дело со скоростями, приближающимися к скорости света , и с явлениями высоких энергий. [33]

Благодаря лоренцевой симметрии в игру вступают дополнительные структуры. Они определяются набором световых конусов (см. изображение). Световые конусы определяют причинную структуру: для каждого события A существует набор событий, которые в принципе могут либо влиять, либо подвергаться влиянию A посредством сигналов или взаимодействий, которым не обязательно двигаться быстрее света (например, событие Б на изображении), а также набор событий, для которых такое влияние невозможно (например, событие С на изображении). Эти множества не зависят от наблюдателя . [34] В сочетании с мировыми линиями свободно падающих частиц световые конусы можно использовать для восстановления полуримановой метрики пространства-времени, по крайней мере, с точностью до положительного скалярного коэффициента. В математических терминах это определяет конформную структуру [35] или конформная геометрия.

Специальная теория относительности определяется отсутствием гравитации. Для практических приложений это подходящая модель, когда гравитацией можно пренебречь. Принимая во внимание гравитацию и предполагая универсальность движения свободного падения, применимо рассуждение, аналогичное предыдущему разделу: не существует глобальных инерциальных систем отсчета . Вместо этого существуют приблизительные инерциальные системы отсчета, движущиеся рядом со свободно падающими частицами. В переводе на язык пространства-времени: прямые времяподобные линии, определяющие невесомую инерциальную систему отсчета, деформируются в линии, изогнутые относительно друг друга, что позволяет предположить, что включение гравитации требует изменения геометрии пространства-времени. [36]

Априори неясно, совпадают ли новые локальные системы отсчёта в свободном падении с системами отсчёта, в которых действуют законы специальной теории относительности — эта теория основана на распространении света и, следовательно, на электромагнетизме, который мог бы иметь другой набор предпочтительных кадров . Но, используя разные предположения относительно специальных релятивистских систем отсчета (например, о том, что они закреплены на Земле или находятся в свободном падении), можно сделать разные предсказания относительно гравитационного красного смещения, то есть того, как частота света смещается по мере изменения светового потока. распространяется через гравитационное поле (см. ниже ). Фактические измерения показывают, что в свободно падающих системах свет распространяется так же, как в специальной теории относительности. [37] Обобщение этого утверждения, а именно, что законы специальной теории относительности соблюдают хорошее приближение в свободно падающих (и невращающихся) системах отсчета, известно как принцип эквивалентности Эйнштейна , важнейший руководящий принцип для обобщения специальной релятивистской физики, включая гравитацию. . [38]

Те же экспериментальные данные показывают, что время, измеряемое часами в гравитационном поле — собственное время , если выражаться техническим термином, — не подчиняется правилам специальной теории относительности. На языке геометрии пространства-времени оно не измеряется метрикой Минковского . Как и в случае Ньютона, это наводит на мысль о более общей геометрии. В малых масштабах все системы отсчета, находящиеся в свободном падении, эквивалентны и примерно соответствуют системе Минковского. Следовательно, мы сейчас имеем дело с искривленным обобщением пространства Минковского. Метрический тензор , определяющий геометрию (в частности, то, как измеряются длины и углы), не является метрикой Минковского специальной теории относительности, это обобщение, известное как полу- или псевдориманова метрика. Более того, каждой римановой метрике естественно сопоставляется один конкретный вид связи — связность Леви-Чивита , и это, по сути, связь, которая удовлетворяет принципу эквивалентности и делает пространство локально Минковским (т. е. в подходящих локально инерциальные координаты , метрика Минковского, а ее первые частные производные и коэффициенты связи обращаются в нуль). [39]

Уравнения Эйнштейна [ править ]

Сформулировав релятивистскую, геометрическую версию эффектов гравитации, остается вопрос об источнике гравитации. В ньютоновской гравитации источником является масса. В специальной теории относительности масса оказывается частью более общей величины, называемой тензором энергии-импульса , которая включает в себя как энергии и импульса, плотность так и напряжение : давление и сдвиг. [40] Используя принцип эквивалентности, этот тензор легко обобщается на искривленное пространство-время. Продолжая далее аналогию с геометрической ньютоновской гравитацией, естественно предположить, что уравнение поля гравитации связывает этот тензор и тензор Риччи , который описывает особый класс приливных эффектов: изменение объема небольшого облака пробных частиц, которое сначала покоятся, а затем свободно падают. В специальной теории относительности сохранение энергии -импульса соответствует утверждению о том, что тензор энергии-импульса не имеет дивергенций . Эту формулу также легко обобщить на искривленное пространство-время, заменив частные производные их аналогами для искривленного многообразия , ковариантными производными, изучаемыми в дифференциальной геометрии. При этом дополнительном условии — ковариантная дивергенция тензора энергии-импульса и, следовательно, всего, что находится на другой стороне уравнения, равна нулю — простейшим нетривиальным набором уравнений являются так называемые уравнения Эйнштейна (поля):

Уравнения поля Эйнштейна

В левой части находится тензор Эйнштейна , , который является симметричным и представляет собой определенную бездивергентную комбинацию тензора Риччи и метрика. В частности,

— скаляр кривизны. Сам тензор Риччи связан с более общим тензором кривизны Римана следующим образом:

С правой стороны, является константой и – тензор энергии-импульса. Все тензоры записаны в абстрактной индексной нотации . [41] Сопоставление предсказаний теории с результатами наблюдений за планет орбитами или, что то же самое, обеспечение того, что пределом слабой гравитации и низкой скорости является механика Ньютона, константа пропорциональности оказывается , где ньютоновская постоянная гравитации и скорость света в вакууме. [42] Когда материи нет и тензор энергии-импульса обращается в нуль, результатом являются вакуумные уравнения Эйнштейна:

В общей теории относительности мировая линия частицы, свободной от всех внешних, негравитационных сил, представляет собой особый тип геодезической в ​​искривленном пространстве-времени. Другими словами, свободно движущаяся или падающая частица всегда движется по геодезической.

Геодезическое уравнение :

где — скалярный параметр движения (например, собственное время ), а являются символами Кристоффеля (иногда называемыми коэффициентами аффинной связности или коэффициентами связности Леви-Чивита ), которые симметричны по двум нижним индексам. Греческие индексы могут принимать значения: 0, 1, 2, 3, а соглашение о суммировании. для повторяющихся индексов используется и . Величина в левой части этого уравнения представляет собой ускорение частицы, и поэтому это уравнение аналогично законам движения Ньютона , которые также дают формулы для ускорения частицы. В этом уравнении движения используются обозначения Эйнштейна , что означает, что повторяющиеся индексы суммируются (т.е. от нуля до трех). Символы Кристоффеля являются функциями четырех координат пространства-времени и поэтому не зависят от скорости или ускорения или других характеристик пробной частицы , движение которой описывается уравнением геодезических.

Полная сила в общей теории относительности [ править ]

В общей теории относительности эффективная гравитационная потенциальная энергия объекта массы m, вращающегося вокруг массивного центрального тела M, определяется выражением [43] [44]

Тогда консервативную полную силу можно получить как [ нужна ссылка ]

где L угловой момент . Первый член представляет собой силу ньютоновской гравитации , которая описывается законом обратных квадратов. Второй член представляет собой центробежную силу при круговом движении. Третий член представляет собой релятивистский эффект.

Альтернативы теории общей относительности

Существуют альтернативы общей теории относительности, основанные на тех же предпосылках, которые включают дополнительные правила и/или ограничения, ведущие к другим уравнениям поля. Примерами являются теория Уайтхеда , теория Бранса-Дикке , телепараллелизм , f ( R )-гравитация и теория Эйнштейна-Картана . [45]

Определение и основные приложения [ править ]

Вывод, описанный в предыдущем разделе, содержит всю информацию, необходимую для определения общей теории относительности, описания ее ключевых свойств и решения вопроса решающей важности в физике, а именно, как эту теорию можно использовать для построения моделей.

Определение и основные свойства [ править ]

Общая теория относительности — это метрическая теория гравитации. В его основе лежат уравнения Эйнштейна , которые описывают связь между геометрией четырехмерного псевдориманова многообразия, представляющего пространство-время, и энергией-импульсом, содержащейся в этом пространстве-времени. [46] Явления, которые в классической механике приписываются действию силы гравитации (такие как свободное падение , орбитальное движение и космического корабля траектории ), соответствуют инерционному движению в искривленной геометрии пространства-времени в общей теории относительности; нет гравитационной силы, отклоняющей объекты от их естественных прямых траекторий. Вместо этого гравитация соответствует изменениям свойств пространства и времени, что, в свою очередь, меняет самые прямые пути, по которым объекты будут естественным образом следовать. [47] Искривление, в свою очередь, вызвано энергией-импульсом материи. Перефразируя релятивиста Джона Арчибальда Уиллера , пространство-время указывает материи, как двигаться; материя сообщает пространству-времени, как искривляться. [48]

Хотя общая теория относительности заменяет скалярный гравитационный потенциал классической физики симметричным ранга второго тензором сводится к первому , последний в некоторых предельных случаях . Для слабых гравитационных полей и малой скорости относительно скорости света предсказания теории сходятся с предсказаниями закона всемирного тяготения Ньютона. [49]

Поскольку общая теория относительности построена с использованием тензоров, она демонстрирует общую ковариантность : ее законы – и дальнейшие законы, сформулированные в рамках общей релятивистской структуры – принимают одну и ту же форму во всех системах координат . [50] Более того, теория не содержит никаких инвариантных геометрических фоновых структур, т.е. она не зависит от фона . Таким образом, оно удовлетворяет более строгому общему принципу относительности , а именно, что законы физики одинаковы для всех наблюдателей. [51] Локально , как это выражено в принципе эквивалентности, пространство-время является Минковским , а законы физики демонстрируют локальную лоренц-инвариантность . [52]

Построение модели [ править ]

Основная концепция построения общерелятивистской модели — это решение уравнений Эйнштейна . Учитывая как уравнения Эйнштейна, так и подходящие уравнения для свойств материи, такое решение состоит из конкретного полуриманова многообразия (обычно определяемого путем задания метрики в определенных координатах) и конкретных полей материи, определенных на этом многообразии. Материя и геометрия должны удовлетворять уравнениям Эйнштейна, поэтому, в частности, тензор энергии-импульса материи должен быть бездивергентным. Разумеется, материя также должна удовлетворять любым дополнительным уравнениям, налагаемым на ее свойства. Короче говоря, такое решение — это модель Вселенной, которая удовлетворяет законам общей теории относительности и, возможно, дополнительным законам, управляющим любой присутствующей материей. [53]

Уравнения Эйнштейна представляют собой нелинейные уравнения в частных производных, и поэтому их трудно точно решить. [54] ряд точных решений , хотя лишь немногие из них имеют прямое физическое применение. Тем не менее известен [55] Наиболее известными точными решениями, а также наиболее интересными с точки зрения физики являются решение Шварцшильда , решение Рейсснера-Нордстрема и метрика Керра , каждое из которых соответствует определенному типу черной дыры в пустой Вселенной. [56] и вселенные Фридмана-Леметра-Робертсона-Уокера и де Ситтера , каждая из которых описывает расширяющийся космос. [57] Точные решения, представляющие большой теоретический интерес, включают вселенную Гёделя (которая открывает интригующую возможность путешествий во времени в искривленном пространстве-времени), решение Тауба-НУТ (модель Вселенной, которая является однородной , но анизотропной ) и пространство анти-де Ситтера (которое недавно приобрела известность в контексте так называемой гипотезы Малдасены ). [58]

Given the difficulty of finding exact solutions, Einstein's field equations are also solved frequently by numerical integration on a computer, or by considering small perturbations of exact solutions. In the field of numerical relativity, powerful computers are employed to simulate the geometry of spacetime and to solve Einstein's equations for interesting situations such as two colliding black holes.[59] In principle, such methods may be applied to any system, given sufficient computer resources, and may address fundamental questions such as naked singularities. Approximate solutions may also be found by perturbation theories such as linearized gravity[60] and its generalization, the post-Newtonian expansion, both of which were developed by Einstein. The latter provides a systematic approach to solving for the geometry of a spacetime that contains a distribution of matter that moves slowly compared with the speed of light. The expansion involves a series of terms; the first terms represent Newtonian gravity, whereas the later terms represent ever smaller corrections to Newton's theory due to general relativity.[61] An extension of this expansion is the parametrized post-Newtonian (PPN) formalism, which allows quantitative comparisons between the predictions of general relativity and alternative theories.[62]

Consequences of Einstein's theory[edit]

General relativity has a number of physical consequences. Some follow directly from the theory's axioms, whereas others have become clear only in the course of many years of research that followed Einstein's initial publication.

Gravitational time dilation and frequency shift[edit]

Schematic representation of the gravitational redshift of a light wave escaping from the surface of a massive body

Assuming that the equivalence principle holds,[63] gravity influences the passage of time. Light sent down into a gravity well is blueshifted, whereas light sent in the opposite direction (i.e., climbing out of the gravity well) is redshifted; collectively, these two effects are known as the gravitational frequency shift. More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation.[64]

Gravitational redshift has been measured in the laboratory[65] and using astronomical observations.[66] Gravitational time dilation in the Earth's gravitational field has been measured numerous times using atomic clocks,[67] while ongoing validation is provided as a side effect of the operation of the Global Positioning System (GPS).[68] Tests in stronger gravitational fields are provided by the observation of binary pulsars.[69] All results are in agreement with general relativity.[70] However, at the current level of accuracy, these observations cannot distinguish between general relativity and other theories in which the equivalence principle is valid.[71]

Light deflection and gravitational time delay[edit]

Deflection of light (sent out from the location shown in blue) near a compact body (shown in gray)

General relativity predicts that the path of light will follow the curvature of spacetime as it passes near a star. This effect was initially confirmed by observing the light of stars or distant quasars being deflected as it passes the Sun.[72]

This and related predictions follow from the fact that light follows what is called a light-like or null geodesic—a generalization of the straight lines along which light travels in classical physics. Such geodesics are the generalization of the invariance of lightspeed in special relativity.[73] As one examines suitable model spacetimes (either the exterior Schwarzschild solution or, for more than a single mass, the post-Newtonian expansion),[74] several effects of gravity on light propagation emerge. Although the bending of light can also be derived by extending the universality of free fall to light,[75] the angle of deflection resulting from such calculations is only half the value given by general relativity.[76]

Closely related to light deflection is the Shapiro Time Delay, the phenomenon that light signals take longer to move through a gravitational field than they would in the absence of that field. There have been numerous successful tests of this prediction.[77] In the parameterized post-Newtonian formalism (PPN), measurements of both the deflection of light and the gravitational time delay determine a parameter called γ, which encodes the influence of gravity on the geometry of space.[78]

Gravitational waves[edit]

Ring of test particles deformed by a passing (linearized, amplified for better visibility) gravitational wave

Predicted in 1916[79][80] by Albert Einstein, there are gravitational waves: ripples in the metric of spacetime that propagate at the speed of light. These are one of several analogies between weak-field gravity and electromagnetism in that, they are analogous to electromagnetic waves. On 11 February 2016, the Advanced LIGO team announced that they had directly detected gravitational waves from a pair of black holes merging.[81][82][83]

The simplest type of such a wave can be visualized by its action on a ring of freely floating particles. A sine wave propagating through such a ring towards the reader distorts the ring in a characteristic, rhythmic fashion (animated image to the right).[84] Since Einstein's equations are non-linear, arbitrarily strong gravitational waves do not obey linear superposition, making their description difficult. However, linear approximations of gravitational waves are sufficiently accurate to describe the exceedingly weak waves that are expected to arrive here on Earth from far-off cosmic events, which typically result in relative distances increasing and decreasing by or less. Data analysis methods routinely make use of the fact that these linearized waves can be Fourier decomposed.[85]

Some exact solutions describe gravitational waves without any approximation, e.g., a wave train traveling through empty space[86] or Gowdy universes, varieties of an expanding cosmos filled with gravitational waves.[87] But for gravitational waves produced in astrophysically relevant situations, such as the merger of two black holes, numerical methods are presently the only way to construct appropriate models.[88]

Orbital effects and the relativity of direction[edit]

General relativity differs from classical mechanics in a number of predictions concerning orbiting bodies. It predicts an overall rotation (precession) of planetary orbits, as well as orbital decay caused by the emission of gravitational waves and effects related to the relativity of direction.

Precession of apsides[edit]

Newtonian (red) vs. Einsteinian orbit (blue) of a lone planet orbiting a star. The influence of other planets is ignored.

In general relativity, the apsides of any orbit (the point of the orbiting body's closest approach to the system's center of mass) will precess; the orbit is not an ellipse, but akin to an ellipse that rotates on its focus, resulting in a rose curve-like shape (see image). Einstein first derived this result by using an approximate metric representing the Newtonian limit and treating the orbiting body as a test particle. For him, the fact that his theory gave a straightforward explanation of Mercury's anomalous perihelion shift, discovered earlier by Urbain Le Verrier in 1859, was important evidence that he had at last identified the correct form of the gravitational field equations.[89]

The effect can also be derived by using either the exact Schwarzschild metric (describing spacetime around a spherical mass)[90] or the much more general post-Newtonian formalism.[91] It is due to the influence of gravity on the geometry of space and to the contribution of self-energy to a body's gravity (encoded in the nonlinearity of Einstein's equations).[92] Relativistic precession has been observed for all planets that allow for accurate precession measurements (Mercury, Venus, and Earth),[93] as well as in binary pulsar systems, where it is larger by five orders of magnitude.[94]

In general relativity the perihelion shift , expressed in radians per revolution, is approximately given by[95]

where:

Orbital decay[edit]

Orbital decay for PSR J0737−3039: time shift (in s), tracked over 16 years (2021).[96]

According to general relativity, a binary system will emit gravitational waves, thereby losing energy. Due to this loss, the distance between the two orbiting bodies decreases, and so does their orbital period. Within the Solar System or for ordinary double stars, the effect is too small to be observable. This is not the case for a close binary pulsar, a system of two orbiting neutron stars, one of which is a pulsar: from the pulsar, observers on Earth receive a regular series of radio pulses that can serve as a highly accurate clock, which allows precise measurements of the orbital period. Because neutron stars are immensely compact, significant amounts of energy are emitted in the form of gravitational radiation.[97]

The first observation of a decrease in orbital period due to the emission of gravitational waves was made by Hulse and Taylor, using the binary pulsar PSR1913+16 they had discovered in 1974. This was the first detection of gravitational waves, albeit indirect, for which they were awarded the 1993 Nobel Prize in physics.[98] Since then, several other binary pulsars have been found, in particular the double pulsar PSR J0737−3039, where both stars are pulsars[99] and which was last reported to also be in agreement with general relativity in 2021 after 16 years of observations.[96]

Geodetic precession and frame-dragging[edit]

Several relativistic effects are directly related to the relativity of direction.[100] One is geodetic precession: the axis direction of a gyroscope in free fall in curved spacetime will change when compared, for instance, with the direction of light received from distant stars—even though such a gyroscope represents the way of keeping a direction as stable as possible ("parallel transport").[101] For the Moon–Earth system, this effect has been measured with the help of lunar laser ranging.[102] More recently, it has been measured for test masses aboard the satellite Gravity Probe B to a precision of better than 0.3%.[103][104]

Near a rotating mass, there are gravitomagnetic or frame-dragging effects. A distant observer will determine that objects close to the mass get "dragged around". This is most extreme for rotating black holes where, for any object entering a zone known as the ergosphere, rotation is inevitable.[105] Such effects can again be tested through their influence on the orientation of gyroscopes in free fall.[106] Somewhat controversial tests have been performed using the LAGEOS satellites, confirming the relativistic prediction.[107] Also the Mars Global Surveyor probe around Mars has been used.[108]

Interpretations[edit]

Neo-Lorentzian Interpretation[edit]

Examples of physicists who support neo-Lorentzian explanations of general relativity are Franco Selleri and Antony Valentini.[109]

Astrophysical applications[edit]

Gravitational lensing[edit]

Einstein cross: four images of the same astronomical object, produced by a gravitational lens

The deflection of light by gravity is responsible for a new class of astronomical phenomena. If a massive object is situated between the astronomer and a distant target object with appropriate mass and relative distances, the astronomer will see multiple distorted images of the target. Such effects are known as gravitational lensing.[110] Depending on the configuration, scale, and mass distribution, there can be two or more images, a bright ring known as an Einstein ring, or partial rings called arcs.[111]The earliest example was discovered in 1979;[112] since then, more than a hundred gravitational lenses have been observed.[113] Even if the multiple images are too close to each other to be resolved, the effect can still be measured, e.g., as an overall brightening of the target object; a number of such "microlensing events" have been observed.[114]

Gravitational lensing has developed into a tool of observational astronomy. It is used to detect the presence and distribution of dark matter, provide a "natural telescope" for observing distant galaxies, and to obtain an independent estimate of the Hubble constant. Statistical evaluations of lensing data provide valuable insight into the structural evolution of galaxies.[115]

Gravitational-wave astronomy[edit]

Artist's impression of the space-borne gravitational wave detector LISA

Observations of binary pulsars provide strong indirect evidence for the existence of gravitational waves (see Orbital decay, above). Detection of these waves is a major goal of current relativity-related research.[116] Several land-based gravitational wave detectors are currently in operation, most notably the interferometric detectors GEO 600, LIGO (two detectors), TAMA 300 and VIRGO.[117] Various pulsar timing arrays are using millisecond pulsars to detect gravitational waves in the 10−9 to 10−6 hertz frequency range, which originate from binary supermassive blackholes.[118] A European space-based detector, eLISA / NGO, is currently under development,[119] with a precursor mission (LISA Pathfinder) having launched in December 2015.[120]

Observations of gravitational waves promise to complement observations in the electromagnetic spectrum.[121] They are expected to yield information about black holes and other dense objects such as neutron stars and white dwarfs, about certain kinds of supernova implosions, and about processes in the very early universe, including the signature of certain types of hypothetical cosmic string.[122] In February 2016, the Advanced LIGO team announced that they had detected gravitational waves from a black hole merger.[81][82][83]

Black holes and other compact objects[edit]

Simulation based on the equations of general relativity: a star collapsing to form a black hole while emitting gravitational waves

Whenever the ratio of an object's mass to its radius becomes sufficiently large, general relativity predicts the formation of a black hole, a region of space from which nothing, not even light, can escape. In the currently accepted models of stellar evolution, neutron stars of around 1.4 solar masses, and stellar black holes with a few to a few dozen solar masses, are thought to be the final state for the evolution of massive stars.[123] Usually a galaxy has one supermassive black hole with a few million to a few billion solar masses in its center,[124] and its presence is thought to have played an important role in the formation of the galaxy and larger cosmic structures.[125]

Astronomically, the most important property of compact objects is that they provide a supremely efficient mechanism for converting gravitational energy into electromagnetic radiation.[126] Accretion, the falling of dust or gaseous matter onto stellar or supermassive black holes, is thought to be responsible for some spectacularly luminous astronomical objects, notably diverse kinds of active galactic nuclei on galactic scales and stellar-size objects such as microquasars.[127] In particular, accretion can lead to relativistic jets, focused beams of highly energetic particles that are being flung into space at almost light speed.[128]General relativity plays a central role in modelling all these phenomena,[129] and observations provide strong evidence for the existence of black holes with the properties predicted by the theory.[130]

Black holes are also sought-after targets in the search for gravitational waves (cf. Gravitational waves, above). Merging black hole binaries should lead to some of the strongest gravitational wave signals reaching detectors here on Earth, and the phase directly before the merger ("chirp") could be used as a "standard candle" to deduce the distance to the merger events–and hence serve as a probe of cosmic expansion at large distances.[131] The gravitational waves produced as a stellar black hole plunges into a supermassive one should provide direct information about the supermassive black hole's geometry.[132]

Cosmology[edit]

This blue horseshoe is a distant galaxy that has been magnified and warped into a nearly complete ring by the strong gravitational pull of the massive foreground luminous red galaxy.

The current models of cosmology are based on Einstein's field equations, which include the cosmological constant since it has important influence on the large-scale dynamics of the cosmos,

where is the spacetime metric.[133] Isotropic and homogeneous solutions of these enhanced equations, the Friedmann–Lemaître–Robertson–Walker solutions,[134] allow physicists to model a universe that has evolved over the past 14 billion years from a hot, early Big Bang phase.[135] Once a small number of parameters (for example the universe's mean matter density) have been fixed by astronomical observation,[136] further observational data can be used to put the models to the test.[137] Predictions, all successful, include the initial abundance of chemical elements formed in a period of primordial nucleosynthesis,[138] the large-scale structure of the universe,[139] and the existence and properties of a "thermal echo" from the early cosmos, the cosmic background radiation.[140]

Astronomical observations of the cosmological expansion rate allow the total amount of matter in the universe to be estimated, although the nature of that matter remains mysterious in part. About 90% of all matter appears to be dark matter, which has mass (or, equivalently, gravitational influence), but does not interact electromagnetically and, hence, cannot be observed directly.[141] There is no generally accepted description of this new kind of matter, within the framework of known particle physics[142] or otherwise.[143] Observational evidence from redshift surveys of distant supernovae and measurements of the cosmic background radiation also show that the evolution of our universe is significantly influenced by a cosmological constant resulting in an acceleration of cosmic expansion or, equivalently, by a form of energy with an unusual equation of state, known as dark energy, the nature of which remains unclear.[144]

An inflationary phase,[145] an additional phase of strongly accelerated expansion at cosmic times of around 10−33 seconds, was hypothesized in 1980 to account for several puzzling observations that were unexplained by classical cosmological models, such as the nearly perfect homogeneity of the cosmic background radiation.[146] Recent measurements of the cosmic background radiation have resulted in the first evidence for this scenario.[147] However, there is a bewildering variety of possible inflationary scenarios, which cannot be restricted by current observations.[148] An even larger question is the physics of the earliest universe, prior to the inflationary phase and close to where the classical models predict the big bang singularity. An authoritative answer would require a complete theory of quantum gravity, which has not yet been developed[149] (cf. the section on quantum gravity, below).

Exotic solutions: time travel, warp drives[edit]

Kurt Gödel showed[150] that solutions to Einstein's equations exist that contain closed timelike curves (CTCs), which allow for loops in time. The solutions require extreme physical conditions unlikely ever to occur in practice, and it remains an open question whether further laws of physics will eliminate them completely. Since then, other—similarly impractical—GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. Stephen Hawking introduced chronology protection conjecture, which is an assumption beyond those of standard general relativity to prevent time travel.

Some exact solutions in general relativity such as Alcubierre drive present examples of warp drive but these solutions requires exotic matter distribution, and generally suffers from semiclassical instability.[151]

Advanced concepts[edit]

Asymptotic symmetries[edit]

The spacetime symmetry group for special relativity is the Poincaré group, which is a ten-dimensional group of three Lorentz boosts, three rotations, and four spacetime translations. It is logical to ask what symmetries if any might apply in General Relativity. A tractable case might be to consider the symmetries of spacetime as seen by observers located far away from all sources of the gravitational field. The naive expectation for asymptotically flat spacetime symmetries might be simply to extend and reproduce the symmetries of flat spacetime of special relativity, viz., the Poincaré group.

In 1962 Hermann Bondi, M. G. van der Burg, A. W. Metzner[152] and Rainer K. Sachs[153] addressed this asymptotic symmetry problem in order to investigate the flow of energy at infinity due to propagating gravitational waves. Their first step was to decide on some physically sensible boundary conditions to place on the gravitational field at light-like infinity to characterize what it means to say a metric is asymptotically flat, making no a priori assumptions about the nature of the asymptotic symmetry group—not even the assumption that such a group exists. Then after designing what they considered to be the most sensible boundary conditions, they investigated the nature of the resulting asymptotic symmetry transformations that leave invariant the form of the boundary conditions appropriate for asymptotically flat gravitational fields. What they found was that the asymptotic symmetry transformations actually do form a group and the structure of this group does not depend on the particular gravitational field that happens to be present. This means that, as expected, one can separate the kinematics of spacetime from the dynamics of the gravitational field at least at spatial infinity. The puzzling surprise in 1962 was their discovery of a rich infinite-dimensional group (the so-called BMS group) as the asymptotic symmetry group, instead of the finite-dimensional Poincaré group, which is a subgroup of the BMS group. Not only are the Lorentz transformations asymptotic symmetry transformations, there are also additional transformations that are not Lorentz transformations but are asymptotic symmetry transformations. In fact, they found an additional infinity of transformation generators known as supertranslations. This implies the conclusion that General Relativity (GR) does not reduce to special relativity in the case of weak fields at long distances. It turns out that the BMS symmetry, suitably modified, could be seen as a restatement of the universal soft graviton theorem in quantum field theory (QFT), which relates universal infrared (soft) QFT with GR asymptotic spacetime symmetries.[154]

Causal structure and global geometry[edit]

Penrose–Carter diagram of an infinite Minkowski universe

In general relativity, no material body can catch up with or overtake a light pulse. No influence from an event A can reach any other location X before light sent out at A to X. In consequence, an exploration of all light worldlines (null geodesics) yields key information about the spacetime's causal structure. This structure can be displayed using Penrose–Carter diagrams in which infinitely large regions of space and infinite time intervals are shrunk ("compactified") so as to fit onto a finite map, while light still travels along diagonals as in standard spacetime diagrams.[155]

Aware of the importance of causal structure, Roger Penrose and others developed what is known as global geometry. In global geometry, the object of study is not one particular solution (or family of solutions) to Einstein's equations. Rather, relations that hold true for all geodesics, such as the Raychaudhuri equation, and additional non-specific assumptions about the nature of matter (usually in the form of energy conditions) are used to derive general results.[156]

Horizons[edit]

Using global geometry, some spacetimes can be shown to contain boundaries called horizons, which demarcate one region from the rest of spacetime. The best-known examples are black holes: if mass is compressed into a sufficiently compact region of space (as specified in the hoop conjecture, the relevant length scale is the Schwarzschild radius[157]), no light from inside can escape to the outside. Since no object can overtake a light pulse, all interior matter is imprisoned as well. Passage from the exterior to the interior is still possible, showing that the boundary, the black hole's horizon, is not a physical barrier.[158]

The ergosphere of a rotating black hole, which plays a key role when it comes to extracting energy from such a black hole

Early studies of black holes relied on explicit solutions of Einstein's equations, notably the spherically symmetric Schwarzschild solution (used to describe a static black hole) and the axisymmetric Kerr solution (used to describe a rotating, stationary black hole, and introducing interesting features such as the ergosphere). Using global geometry, later studies have revealed more general properties of black holes. With time they become rather simple objects characterized by eleven parameters specifying: electric charge, mass–energy, linear momentum, angular momentum, and location at a specified time. This is stated by the black hole uniqueness theorem: "black holes have no hair", that is, no distinguishing marks like the hairstyles of humans. Irrespective of the complexity of a gravitating object collapsing to form a black hole, the object that results (having emitted gravitational waves) is very simple.[159]

Even more remarkably, there is a general set of laws known as black hole mechanics, which is analogous to the laws of thermodynamics. For instance, by the second law of black hole mechanics, the area of the event horizon of a general black hole will never decrease with time, analogous to the entropy of a thermodynamic system. This limits the energy that can be extracted by classical means from a rotating black hole (e.g. by the Penrose process).[160] There is strong evidence that the laws of black hole mechanics are, in fact, a subset of the laws of thermodynamics, and that the black hole area is proportional to its entropy.[161] This leads to a modification of the original laws of black hole mechanics: for instance, as the second law of black hole mechanics becomes part of the second law of thermodynamics, it is possible for the black hole area to decrease as long as other processes ensure that entropy increases overall. As thermodynamical objects with nonzero temperature, black holes should emit thermal radiation. Semiclassical calculations indicate that indeed they do, with the surface gravity playing the role of temperature in Planck's law. This radiation is known as Hawking radiation (cf. the quantum theory section, below).[162]

There are many other types of horizons. In an expanding universe, an observer may find that some regions of the past cannot be observed ("particle horizon"), and some regions of the future cannot be influenced (event horizon).[163] Even in flat Minkowski space, when described by an accelerated observer (Rindler space), there will be horizons associated with a semiclassical radiation known as Unruh radiation.[164]

Singularities[edit]

Another general feature of general relativity is the appearance of spacetime boundaries known as singularities. Spacetime can be explored by following up on timelike and lightlike geodesics—all possible ways that light and particles in free fall can travel. But some solutions of Einstein's equations have "ragged edges"—regions known as spacetime singularities, where the paths of light and falling particles come to an abrupt end, and geometry becomes ill-defined. In the more interesting cases, these are "curvature singularities", where geometrical quantities characterizing spacetime curvature, such as the Ricci scalar, take on infinite values.[165] Well-known examples of spacetimes with future singularities—where worldlines end—are the Schwarzschild solution, which describes a singularity inside an eternal static black hole,[166] or the Kerr solution with its ring-shaped singularity inside an eternal rotating black hole.[167] The Friedmann–Lemaître–Robertson–Walker solutions and other spacetimes describing universes have past singularities on which worldlines begin, namely Big Bang singularities, and some have future singularities (Big Crunch) as well.[168]

Given that these examples are all highly symmetric—and thus simplified—it is tempting to conclude that the occurrence of singularities is an artifact of idealization.[169] The famous singularity theorems, proved using the methods of global geometry, say otherwise: singularities are a generic feature of general relativity, and unavoidable once the collapse of an object with realistic matter properties has proceeded beyond a certain stage[170] and also at the beginning of a wide class of expanding universes.[171] However, the theorems say little about the properties of singularities, and much of current research is devoted to characterizing these entities' generic structure (hypothesized e.g. by the BKL conjecture).[172] The cosmic censorship hypothesis states that all realistic future singularities (no perfect symmetries, matter with realistic properties) are safely hidden away behind a horizon, and thus invisible to all distant observers. While no formal proof yet exists, numerical simulations offer supporting evidence of its validity.[173]

Evolution equations[edit]

Each solution of Einstein's equation encompasses the whole history of a universe—it is not just some snapshot of how things are, but a whole, possibly matter-filled, spacetime. It describes the state of matter and geometry everywhere and at every moment in that particular universe. Due to its general covariance, Einstein's theory is not sufficient by itself to determine the time evolution of the metric tensor. It must be combined with a coordinate condition, which is analogous to gauge fixing in other field theories.[174]

To understand Einstein's equations as partial differential equations, it is helpful to formulate them in a way that describes the evolution of the universe over time. This is done in "3+1" formulations, where spacetime is split into three space dimensions and one time dimension. The best-known example is the ADM formalism.[175] These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always exist, and are uniquely defined, once suitable initial conditions have been specified.[176] Such formulations of Einstein's field equations are the basis of numerical relativity.[177]

Global and quasi-local quantities[edit]

The notion of evolution equations is intimately tied in with another aspect of general relativistic physics. In Einstein's theory, it turns out to be impossible to find a general definition for a seemingly simple property such as a system's total mass (or energy). The main reason is that the gravitational field—like any physical field—must be ascribed a certain energy, but that it proves to be fundamentally impossible to localize that energy.[178]

Nevertheless, there are possibilities to define a system's total mass, either using a hypothetical "infinitely distant observer" (ADM mass)[179] or suitable symmetries (Komar mass).[180] If one excludes from the system's total mass the energy being carried away to infinity by gravitational waves, the result is the Bondi mass at null infinity.[181] Just as in classical physics, it can be shown that these masses are positive.[182] Corresponding global definitions exist for momentum and angular momentum.[183] There have also been a number of attempts to define quasi-local quantities, such as the mass of an isolated system formulated using only quantities defined within a finite region of space containing that system. The hope is to obtain a quantity useful for general statements about isolated systems, such as a more precise formulation of the hoop conjecture.[184]

Relationship with quantum theory[edit]

If general relativity were considered to be one of the two pillars of modern physics, then quantum theory, the basis of understanding matter from elementary particles to solid-state physics, would be the other.[185] However, how to reconcile quantum theory with general relativity is still an open question.

Quantum field theory in curved spacetime[edit]

Ordinary quantum field theories, which form the basis of modern elementary particle physics, are defined in flat Minkowski space, which is an excellent approximation when it comes to describing the behavior of microscopic particles in weak gravitational fields like those found on Earth.[186] In order to describe situations in which gravity is strong enough to influence (quantum) matter, yet not strong enough to require quantization itself, physicists have formulated quantum field theories in curved spacetime. These theories rely on general relativity to describe a curved background spacetime, and define a generalized quantum field theory to describe the behavior of quantum matter within that spacetime.[187] Using this formalism, it can be shown that black holes emit a blackbody spectrum of particles known as Hawking radiation leading to the possibility that they evaporate over time.[188] As briefly mentioned above, this radiation plays an important role for the thermodynamics of black holes.[189]

Quantum gravity[edit]

Projection of a Calabi–Yau manifold, one of the ways of compactifying the extra dimensions posited by string theory

The demand for consistency between a quantum description of matter and a geometric description of spacetime,[190] as well as the appearance of singularities (where curvature length scales become microscopic), indicate the need for a full theory of quantum gravity: for an adequate description of the interior of black holes, and of the very early universe, a theory is required in which gravity and the associated geometry of spacetime are described in the language of quantum physics.[191] Despite major efforts, no complete and consistent theory of quantum gravity is currently known, even though a number of promising candidates exist.[192][193]

Attempts to generalize ordinary quantum field theories, used in elementary particle physics to describe fundamental interactions, so as to include gravity have led to serious problems.[194] Some have argued that at low energies, this approach proves successful, in that it results in an acceptable effective (quantum) field theory of gravity.[195] At very high energies, however, the perturbative results are badly divergent and lead to models devoid of predictive power ("perturbative non-renormalizability").[196]

Simple spin network of the type used in loop quantum gravity

One attempt to overcome these limitations is string theory, a quantum theory not of point particles, but of minute one-dimensional extended objects.[197] The theory promises to be a unified description of all particles and interactions, including gravity;[198] the price to pay is unusual features such as six extra dimensions of space in addition to the usual three.[199] In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity[200] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity.[201]

Another approach starts with the canonical quantization procedures of quantum theory. Using the initial-value-formulation of general relativity (cf. evolution equations above), the result is the Wheeler–deWitt equation (an analogue of the Schrödinger equation) which, regrettably, turns out to be ill-defined without a proper ultraviolet (lattice) cutoff.[202] However, with the introduction of what are now known as Ashtekar variables,[203] this leads to a promising model known as loop quantum gravity. Space is represented by a web-like structure called a spin network, evolving over time in discrete steps.[204]

Depending on which features of general relativity and quantum theory are accepted unchanged, and on what level changes are introduced,[205] there are numerous other attempts to arrive at a viable theory of quantum gravity, some examples being the lattice theory of gravity based on the Feynman Path Integral approach and Regge calculus,[192] dynamical triangulations,[206] causal sets,[207] twistor models[208] or the path integral based models of quantum cosmology.[209]

Observation of gravitational waves from binary black hole merger GW150914

All candidate theories still have major formal and conceptual problems to overcome. They also face the common problem that, as yet, there is no way to put quantum gravity predictions to experimental tests (and thus to decide between the candidates where their predictions vary), although there is hope for this to change as future data from cosmological observations and particle physics experiments becomes available.[210]

Current status[edit]

General relativity has emerged as a highly successful model of gravitation and cosmology, which has so far passed many unambiguous observational and experimental tests. However, there are strong indications that the theory is incomplete.[211] The problem of quantum gravity and the question of the reality of spacetime singularities remain open.[212] Observational data that is taken as evidence for dark energy and dark matter could indicate the need for new physics.[213]

Even taken as is, general relativity is rich with possibilities for further exploration. Mathematical relativists seek to understand the nature of singularities and the fundamental properties of Einstein's equations,[214] while numerical relativists run increasingly powerful computer simulations (such as those describing merging black holes).[215] In February 2016, it was announced that the existence of gravitational waves was directly detected by the Advanced LIGO team on 14 September 2015.[83][216][217] A century after its introduction, general relativity remains a highly active area of research.[218]

See also[edit]

References[edit]

  1. ^ "GW150914: LIGO Detects Gravitational Waves". Black-holes.org. Retrieved 18 April 2016.
  2. ^ Jump up to: Jump up to: a b Landau & Lifshitz 1975, p. 228 "...the general theory of relativity...was established by Einstein, and represents probably the most beautiful of all existing physical theories."
  3. ^ Poincaré 1905
  4. ^ O'Connor, J.J.; Robertson, E.F. (May 1996). "General relativity]". History Topics: Mathematical Physics Index, Scotland: School of Mathematics and Statistics, University of St. Andrews, archived from the original on 4 February 2015, retrieved 4 February 2015
  5. ^ Pais 1982, ch. 9 to 15, Janssen 2005; an up-to-date collection of current research, including reprints of many of the original articles, is Renn 2007; an accessible overview can be found in Renn 2005, pp. 110ff. Einstein's original papers are found in Digital Einstein, volumes 4 and 6. An early key article is Einstein 1907, cf. Pais 1982, ch. 9. The publication featuring the field equations is Einstein 1915, cf. Pais 1982, ch. 11–15
  6. ^ Moshe Carmeli (2008).Relativity: Modern Large-Scale Structures of the Cosmos. pp.92, 93.World Scientific Publishing
  7. ^ Grossmann for the mathematical part and Einstein for the physical part (1913). Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Outline of a Generalized Theory of Relativity and of a Theory of Gravitation), Zeitschrift für Mathematik und Physik, 62, 225–261. English translate
  8. ^ Schwarzschild 1916a, Schwarzschild 1916b and Reissner 1916 (later complemented in Nordström 1918)
  9. ^ Einstein 1917, cf. Pais 1982, ch. 15e
  10. ^ Hubble's original article is Hubble 1929; an accessible overview is given in Singh 2004, ch. 2–4
  11. ^ As reported in Gamow 1970. Einstein's condemnation would prove to be premature, cf. the section Cosmology, below
  12. ^ Pais 1982, pp. 253–254
  13. ^ Kennefick 2005, Kennefick 2007
  14. ^ Pais 1982, ch. 16
  15. ^ Thorne 2003, p. 74
  16. ^ Israel 1987, ch. 7.8–7.10, Thorne 1994, ch. 3–9
  17. ^ Sections Orbital effects and the relativity of direction, Gravitational time dilation and frequency shift and Light deflection and gravitational time delay, and references therein
  18. ^ Section Cosmology and references therein; the historical development is in Overbye 1999
  19. ^ Wald 1984, p. 3
  20. ^ Rovelli 2015, pp. 1–6 "General relativity is not just an extraordinarily beautiful physical theory providing the best description of the gravitational interaction we have so far. It is more."
  21. ^ Chandrasekhar 1984, p. 6
  22. ^ Engler 2002
  23. ^ Albert Einstein (2011). Relativity – The Special and General Theory. Read Books Ltd. p. 4. ISBN 978-1-4474-9358-7. Extract of page 4
  24. ^ The following exposition re-traces that of Ehlers 1973, sec. 1
  25. ^ Al-Khalili, Jim (26 March 2021). "Gravity and Me: The force that shapes our lives". www.bbc.co.uk. Retrieved 9 April 2021.
  26. ^ Arnold 1989, ch. 1
  27. ^ Ehlers 1973, pp. 5f
  28. ^ Will 1993, sec. 2.4, Will 2006, sec. 2
  29. ^ Wheeler 1990, ch. 2
  30. ^ Ehlers 1973, sec. 1.2, Havas 1964, Künzle 1972. The simple thought experiment in question was first described in Heckmann & Schücking 1959
  31. ^ Ehlers 1973, pp. 10f
  32. ^ Good introductions are, in order of increasing presupposed knowledge of mathematics, Giulini 2005, Mermin 2005, and Rindler 1991; for accounts of precision experiments, cf. part IV of Ehlers & Lämmerzahl 2006
  33. ^ An in-depth comparison between the two symmetry groups can be found in Giulini 2006
  34. ^ Rindler 1991, sec. 22, Synge 1972, ch. 1 and 2
  35. ^ Ehlers 1973, sec. 2.3
  36. ^ Ehlers 1973, sec. 1.4, Schutz 1985, sec. 5.1
  37. ^ Ehlers 1973, pp. 17ff; a derivation can be found in Mermin 2005, ch. 12. For the experimental evidence, cf. the section Gravitational time dilation and frequency shift, below
  38. ^ Rindler 2001, sec. 1.13; for an elementary account, see Wheeler 1990, ch. 2; there are, however, some differences between the modern version and Einstein's original concept used in the historical derivation of general relativity, cf. Norton 1985
  39. ^ Ehlers 1973, sec. 1.4 for the experimental evidence, see once more section Gravitational time dilation and frequency shift. Choosing a different connection with non-zero torsion leads to a modified theory known as Einstein–Cartan theory
  40. ^ Ehlers 1973, p. 16, Kenyon 1990, sec. 7.2, Weinberg 1972, sec. 2.8
  41. ^ Ehlers 1973, pp. 19–22; for similar derivations, see sections 1 and 2 of ch. 7 in Weinberg 1972. The Einstein tensor is the only divergence-free tensor that is a function of the metric coefficients, their first and second derivatives at most, and allows the spacetime of special relativity as a solution in the absence of sources of gravity, cf. Lovelock 1972. The tensors on both side are of second rank, that is, they can each be thought of as 4×4 matrices, each of which contains ten independent terms; hence, the above represents ten coupled equations. The fact that, as a consequence of geometric relations known as Bianchi identities, the Einstein tensor satisfies a further four identities reduces these to six independent equations, e.g. Schutz 1985, sec. 8.3
  42. ^ Kenyon 1990, sec. 7.4
  43. ^ Weinberg, Steven (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley. ISBN 978-0-471-92567-5.
  44. ^ Cheng, Ta-Pei (2005). Relativity, Gravitation and Cosmology: a Basic Introduction. Oxford and New York: Oxford University Press. ISBN 978-0-19-852957-6.
  45. ^ Brans & Dicke 1961, Weinberg 1972, sec. 3 in ch. 7, Goenner 2004, sec. 7.2, and Trautman 2006, respectively
  46. ^ Wald 1984, ch. 4, Weinberg 1972, ch. 7 or, in fact, any other textbook on general relativity
  47. ^ At least approximately, cf. Poisson 2004a
  48. ^ Wheeler 1990, p. xi
  49. ^ Wald 1984, sec. 4.4
  50. ^ Wald 1984, sec. 4.1
  51. ^ For the (conceptual and historical) difficulties in defining a general principle of relativity and separating it from the notion of general covariance, see Giulini 2007
  52. ^ section 5 in ch. 12 of Weinberg 1972
  53. ^ Introductory chapters of Stephani et al. 2003
  54. ^ A review showing Einstein's equation in the broader context of other PDEs with physical significance is Geroch 1996
  55. ^ For background information and a list of solutions, cf. Stephani et al. 2003; a more recent review can be found in MacCallum 2006
  56. ^ Chandrasekhar 1983, ch. 3,5,6
  57. ^ Narlikar 1993, ch. 4, sec. 3.3
  58. ^ Brief descriptions of these and further interesting solutions can be found in Hawking & Ellis 1973, ch. 5
  59. ^ Lehner 2002
  60. ^ For instance Wald 1984, sec. 4.4
  61. ^ Will 1993, sec. 4.1 and 4.2
  62. ^ Will 2006, sec. 3.2, Will 1993, ch. 4
  63. ^ Rindler 2001, pp. 24–26 vs. pp. 236–237 and Ohanian & Ruffini 1994, pp. 164–172. Einstein derived these effects using the equivalence principle as early as 1907, cf. Einstein 1907 and the description in Pais 1982, pp. 196–198
  64. ^ Rindler 2001, pp. 24–26; Misner, Thorne & Wheeler 1973, § 38.5
  65. ^ Pound–Rebka experiment, see Pound & Rebka 1959, Pound & Rebka 1960; Pound & Snider 1964; a list of further experiments is given in Ohanian & Ruffini 1994, table 4.1 on p. 186
  66. ^ Greenstein, Oke & Shipman 1971; the most recent and most accurate Sirius B measurements are published in Barstow, Bond et al. 2005.
  67. ^ Starting with the Hafele–Keating experiment, Hafele & Keating 1972a and Hafele & Keating 1972b, and culminating in the Gravity Probe A experiment; an overview of experiments can be found in Ohanian & Ruffini 1994, table 4.1 on p. 186
  68. ^ GPS is continually tested by comparing atomic clocks on the ground and aboard orbiting satellites; for an account of relativistic effects, see Ashby 2002 and Ashby 2003
  69. ^ Stairs 2003 and Kramer 2004
  70. ^ General overviews can be found in section 2.1. of Will 2006; Will 2003, pp. 32–36; Ohanian & Ruffini 1994, sec. 4.2
  71. ^ Ohanian & Ruffini 1994, pp. 164–172
  72. ^ Cf. Kennefick 2005 for the classic early measurements by Arthur Eddington's expeditions. For an overview of more recent measurements, see Ohanian & Ruffini 1994, ch. 4.3. For the most precise direct modern observations using quasars, cf. Shapiro et al. 2004
  73. ^ This is not an independent axiom; it can be derived from Einstein's equations and the Maxwell Lagrangian using a WKB approximation, cf. Ehlers 1973, sec. 5
  74. ^ Blanchet 2006, sec. 1.3
  75. ^ Rindler 2001, sec. 1.16; for the historical examples, Israel 1987, pp. 202–204; in fact, Einstein published one such derivation as Einstein 1907. Such calculations tacitly assume that the geometry of space is Euclidean, cf. Ehlers & Rindler 1997
  76. ^ From the standpoint of Einstein's theory, these derivations take into account the effect of gravity on time, but not its consequences for the warping of space, cf. Rindler 2001, sec. 11.11
  77. ^ For the Sun's gravitational field using radar signals reflected from planets such as Venus and Mercury, cf. Shapiro 1964, Weinberg 1972, ch. 8, sec. 7; for signals actively sent back by space probes (transponder measurements), cf. Bertotti, Iess & Tortora 2003; for an overview, see Ohanian & Ruffini 1994, table 4.4 on p. 200; for more recent measurements using signals received from a pulsar that is part of a binary system, the gravitational field causing the time delay being that of the other pulsar, cf. Stairs 2003, sec. 4.4
  78. ^ Will 1993, sec. 7.1 and 7.2
  79. ^ Einstein, A (22 June 1916). "Näherungsweise Integration der Feldgleichungen der Gravitation". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (part 1): 688–696. Bibcode:1916SPAW.......688E. Archived from the original on 21 March 2019. Retrieved 12 February 2016.
  80. ^ Einstein, A (31 January 1918). "Über Gravitationswellen". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (part 1): 154–167. Bibcode:1918SPAW.......154E. Archived from the original on 21 March 2019. Retrieved 12 February 2016.
  81. ^ Jump up to: Jump up to: a b Castelvecchi, Davide; Witze, Witze (11 February 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361. S2CID 182916902. Retrieved 11 February 2016.
  82. ^ Jump up to: Jump up to: a b B. P. Abbott; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
  83. ^ Jump up to: Jump up to: a b c "Gravitational waves detected 100 years after Einstein's prediction". NSF – National Science Foundation. 11 February 2016.
  84. ^ Most advanced textbooks on general relativity contain a description of these properties, e.g. Schutz 1985, ch. 9
  85. ^ For example Jaranowski & Królak 2005
  86. ^ Rindler 2001, ch. 13
  87. ^ Gowdy 1971, Gowdy 1974
  88. ^ See Lehner 2002 for a brief introduction to the methods of numerical relativity, and Seidel 1998 for the connection with gravitational wave astronomy
  89. ^ Schutz 2003, pp. 48–49, Pais 1982, pp. 253–254
  90. ^ Rindler 2001, sec. 11.9
  91. ^ Will 1993, pp. 177–181
  92. ^ In consequence, in the parameterized post-Newtonian formalism (PPN), measurements of this effect determine a linear combination of the terms β and γ, cf. Will 2006, sec. 3.5 and Will 1993, sec. 7.3
  93. ^ The most precise measurements are VLBI measurements of planetary positions; see Will 1993, ch. 5, Will 2006, sec. 3.5, Anderson et al. 1992; for an overview, Ohanian & Ruffini 1994, pp. 406–407
  94. ^ Kramer et al. 2006
  95. ^ Dediu, Magdalena & Martín-Vide 2015, p. 141.
  96. ^ Jump up to: Jump up to: a b Kramer, M.; Stairs, I. H.; Manchester, R. N.; Wex, N.; Deller, A. T.; Coles, W. A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; Damour, T. (13 December 2021). "Strong-Field Gravity Tests with the Double Pulsar". Physical Review X. 11 (4): 041050. arXiv:2112.06795. Bibcode:2021PhRvX..11d1050K. doi:10.1103/PhysRevX.11.041050. ISSN 2160-3308. S2CID 245124502.
  97. ^ Stairs 2003, Schutz 2003, pp. 317–321, Bartusiak 2000, pp. 70–86
  98. ^ Weisberg & Taylor 2003; for the pulsar discovery, see Hulse & Taylor 1975; for the initial evidence for gravitational radiation, see Taylor 1994
  99. ^ Kramer 2004
  100. ^ Penrose 2004, § 14.5, Misner, Thorne & Wheeler 1973, § 11.4
  101. ^ Weinberg 1972, sec. 9.6, Ohanian & Ruffini 1994, sec. 7.8
  102. ^ Bertotti, Ciufolini & Bender 1987, Nordtvedt 2003
  103. ^ Kahn 2007
  104. ^ A mission description can be found in Everitt et al. 2001; a first post-flight evaluation is given in Everitt, Parkinson & Kahn 2007; further updates will be available on the mission website Kahn 1996–2012.
  105. ^ Townsend 1997, sec. 4.2.1, Ohanian & Ruffini 1994, pp. 469–471
  106. ^ Ohanian & Ruffini 1994, sec. 4.7, Weinberg 1972, sec. 9.7; for a more recent review, see Schäfer 2004
  107. ^ Ciufolini & Pavlis 2004, Ciufolini, Pavlis & Peron 2006, Iorio 2009
  108. ^ Iorio 2006, Iorio 2010
  109. ^ Einstein, Relativity, and Absolute Simultaneity. London: Routledge. 2007. ISBN 978-1-134-00389-1.
  110. ^ For overviews of gravitational lensing and its applications, see Ehlers, Falco & Schneider 1992 and Wambsganss 1998
  111. ^ For a simple derivation, see Schutz 2003, ch. 23; cf. Narayan & Bartelmann 1997, sec. 3
  112. ^ Walsh, Carswell & Weymann 1979
  113. ^ Images of all the known lenses can be found on the pages of the CASTLES project, Kochanek et al. 2007
  114. ^ Roulet & Mollerach 1997
  115. ^ Narayan & Bartelmann 1997, sec. 3.7
  116. ^ Barish 2005, Bartusiak 2000, Blair & McNamara 1997
  117. ^ Hough & Rowan 2000
  118. ^ Hobbs, George; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; et al. (2010), "The international pulsar timing array project: using pulsars as a gravitational wave detector", Classical and Quantum Gravity, 27 (8): 084013, arXiv:0911.5206, Bibcode:2010CQGra..27h4013H, doi:10.1088/0264-9381/27/8/084013, S2CID 56073764
  119. ^ Danzmann & Rüdiger 2003
  120. ^ "LISA pathfinder overview". ESA. Retrieved 23 April 2012.
  121. ^ Thorne 1995
  122. ^ Cutler & Thorne 2002
  123. ^ Miller 2002, lectures 19 and 21
  124. ^ Celotti, Miller & Sciama 1999, sec. 3
  125. ^ Springel et al. 2005 and the accompanying summary Gnedin 2005
  126. ^ Blandford 1987, sec. 8.2.4
  127. ^ For the basic mechanism, see Carroll & Ostlie 1996, sec. 17.2; for more about the different types of astronomical objects associated with this, cf. Robson 1996
  128. ^ For a review, see Begelman, Blandford & Rees 1984. To a distant observer, some of these jets even appear to move faster than light; this, however, can be explained as an optical illusion that does not violate the tenets of relativity, see Rees 1966
  129. ^ For stellar end states, cf. Oppenheimer & Snyder 1939 or, for more recent numerical work, Font 2003, sec. 4.1; for supernovae, there are still major problems to be solved, cf. Buras et al. 2003; for simulating accretion and the formation of jets, cf. Font 2003, sec. 4.2. Also, relativistic lensing effects are thought to play a role for the signals received from X-ray pulsars, cf. Kraus 1998
  130. ^ The evidence includes limits on compactness from the observation of accretion-driven phenomena ("Eddington luminosity"), see Celotti, Miller & Sciama 1999, observations of stellar dynamics in the center of our own Milky Way galaxy, cf. Schödel et al. 2003, and indications that at least some of the compact objects in question appear to have no solid surface, which can be deduced from the examination of X-ray bursts for which the central compact object is either a neutron star or a black hole; cf. Remillard et al. 2006 for an overview, Narayan 2006, sec. 5. Observations of the "shadow" of the Milky Way galaxy's central black hole horizon are eagerly sought for, cf. Falcke, Melia & Agol 2000
  131. ^ Dalal et al. 2006
  132. ^ Barack & Cutler 2004
  133. ^ Einstein 1917; cf. Pais 1982, pp. 285–288
  134. ^ Carroll 2001, ch. 2
  135. ^ Bergström & Goobar 2003, ch. 9–11; use of these models is justified by the fact that, at large scales of around hundred million light-years and more, our own universe indeed appears to be isotropic and homogeneous, cf. Peebles et al. 1991
  136. ^ E.g. with WMAP data, see Spergel et al. 2003
  137. ^ These tests involve the separate observations detailed further on, see, e.g., fig. 2 in Bridle et al. 2003
  138. ^ Peebles 1966; for a recent account of predictions, see Coc, Vangioni‐Flam et al. 2004; an accessible account can be found in Weiss 2006; compare with the observations in Olive & Skillman 2004, Bania, Rood & Balser 2002, O'Meara et al. 2001, and Charbonnel & Primas 2005
  139. ^ Lahav & Suto 2004, Bertschinger 1998, Springel et al. 2005
  140. ^ Alpher & Herman 1948, for a pedagogical introduction, see Bergström & Goobar 2003, ch. 11; for the initial detection, see Penzias & Wilson 1965 and, for precision measurements by satellite observatories, Mather et al. 1994 (COBE) and Bennett et al. 2003 (WMAP). Future measurements could also reveal evidence about gravitational waves in the early universe; this additional information is contained in the background radiation's polarization, cf. Kamionkowski, Kosowsky & Stebbins 1997 and Seljak & Zaldarriaga 1997
  141. ^ Evidence for this comes from the determination of cosmological parameters and additional observations involving the dynamics of galaxies and galaxy clusters cf. Peebles 1993, ch. 18, evidence from gravitational lensing, cf. Peacock 1999, sec. 4.6, and simulations of large-scale structure formation, see Springel et al. 2005
  142. ^ Peacock 1999, ch. 12, Peskin 2007; in particular, observations indicate that all but a negligible portion of that matter is not in the form of the usual elementary particles ("non-baryonic matter"), cf. Peacock 1999, ch. 12
  143. ^ Namely, some physicists have questioned whether or not the evidence for dark matter is, in fact, evidence for deviations from the Einsteinian (and the Newtonian) description of gravity cf. the overview in Mannheim 2006, sec. 9
  144. ^ Carroll 2001; an accessible overview is given in Caldwell 2004. Here, too, scientists have argued that the evidence indicates not a new form of energy, but the need for modifications in our cosmological models, cf. Mannheim 2006, sec. 10; aforementioned modifications need not be modifications of general relativity, they could, for example, be modifications in the way we treat the inhomogeneities in the universe, cf. Buchert 2008
  145. ^ A good introduction is Linde 2005; for a more recent review, see Linde 2006
  146. ^ More precisely, these are the flatness problem, the horizon problem, and the monopole problem; a pedagogical introduction can be found in Narlikar 1993, sec. 6.4, see also Börner 1993, sec. 9.1
  147. ^ Spergel et al. 2007, sec. 5,6
  148. ^ More concretely, the potential function that is crucial to determining the dynamics of the inflaton is simply postulated, but not derived from an underlying physical theory
  149. ^ Brandenberger 2008, sec. 2
  150. ^ Gödel 1949
  151. ^ Finazzi, Stefano; Liberati, Stefano; Barceló, Carlos (15 June 2009). "Semiclassical instability of dynamical warp drives". Physical Review D. 79 (12): 124017. arXiv:0904.0141. Bibcode:2009PhRvD..79l4017F. doi:10.1103/PhysRevD.79.124017. S2CID 59575856.
  152. ^ Bondi, H.; Van der Burg, M.G.J.; Metzner, A. (1962). "Gravitational waves in general relativity: VII. Waves from axisymmetric isolated systems". Proceedings of the Royal Society of London A. A269 (1336): 21–52. Bibcode:1962RSPSA.269...21B. doi:10.1098/rspa.1962.0161. S2CID 120125096.
  153. ^ Sachs, R. (1962). "Asymptotic symmetries in gravitational theory". Physical Review. 128 (6): 2851–2864. Bibcode:1962PhRv..128.2851S. doi:10.1103/PhysRev.128.2851.
  154. ^ Strominger, Andrew (2017). "Lectures on the Infrared Structure of Gravity and Gauge Theory". arXiv:1703.05448 [hep-th]. ...redacted transcript of a course given by the author at Harvard in spring semester 2016. It contains a pedagogical overview of recent developments connecting the subjects of soft theorems, the memory effect and asymptotic symmetries in four-dimensional QED, nonabelian gauge theory and gravity with applications to black holes. To be published Princeton University Press, 158 pages.
  155. ^ Frauendiener 2004, Wald 1984, sec. 11.1, Hawking & Ellis 1973, sec. 6.8, 6.9
  156. ^ Wald 1984, sec. 9.2–9.4 and Hawking & Ellis 1973, ch. 6
  157. ^ Thorne 1972; for more recent numerical studies, see Berger 2002, sec. 2.1
  158. ^ Israel 1987. A more exact mathematical description distinguishes several kinds of horizon, notably event horizons and apparent horizons cf. Hawking & Ellis 1973, pp. 312–320 or Wald 1984, sec. 12.2; there are also more intuitive definitions for isolated systems that do not require knowledge of spacetime properties at infinity, cf. Ashtekar & Krishnan 2004
  159. ^ For first steps, cf. Israel 1971; see Hawking & Ellis 1973, sec. 9.3 or Heusler 1996, ch. 9 and 10 for a derivation, and Heusler 1998 as well as Beig & Chruściel 2006 as overviews of more recent results
  160. ^ The laws of black hole mechanics were first described in Bardeen, Carter & Hawking 1973; a more pedagogical presentation can be found in Carter 1979; for a more recent review, see Wald 2001, ch. 2. A thorough, book-length introduction including an introduction to the necessary mathematics Poisson 2004. For the Penrose process, see Penrose 1969
  161. ^ Bekenstein 1973, Bekenstein 1974
  162. ^ The fact that black holes radiate, quantum mechanically, was first derived in Hawking 1975; a more thorough derivation can be found in Wald 1975. A review is given in Wald 2001, ch. 3
  163. ^ Narlikar 1993, sec. 4.4.4, 4.4.5
  164. ^ Horizons: cf. Rindler 2001, sec. 12.4. Unruh effect: Unruh 1976, cf. Wald 2001, ch. 3
  165. ^ Hawking & Ellis 1973, sec. 8.1, Wald 1984, sec. 9.1
  166. ^ Townsend 1997, ch. 2; a more extensive treatment of this solution can be found in Chandrasekhar 1983, ch. 3
  167. ^ Townsend 1997, ch. 4; for a more extensive treatment, cf. Chandrasekhar 1983, ch. 6
  168. ^ Ellis & Van Elst 1999; a closer look at the singularity itself is taken in Börner 1993, sec. 1.2
  169. ^ Here one should remind to the well-known fact that the important "quasi-optical" singularities of the so-called eikonal approximations of many wave equations, namely the "caustics", are resolved into finite peaks beyond that approximation.
  170. ^ Namely when there are trapped null surfaces, cf. Penrose 1965
  171. ^ Hawking 1966
  172. ^ The conjecture was made in Belinskii, Khalatnikov & Lifschitz 1971; for a more recent review, see Berger 2002. An accessible exposition is given by Garfinkle 2007
  173. ^ The restriction to future singularities naturally excludes initial singularities such as the big bang singularity, which in principle be visible to observers at later cosmic time. The cosmic censorship conjecture was first presented in Penrose 1969; a textbook-level account is given in Wald 1984, pp. 302–305. For numerical results, see the review Berger 2002, sec. 2.1
  174. ^ Hawking & Ellis 1973, sec. 7.1
  175. ^ Arnowitt, Deser & Misner 1962; for a pedagogical introduction, see Misner, Thorne & Wheeler 1973, § 21.4–§ 21.7
  176. ^ Fourès-Bruhat 1952 and Bruhat 1962; for a pedagogical introduction, see Wald 1984, ch. 10; an online review can be found in Reula 1998
  177. ^ Gourgoulhon 2007; for a review of the basics of numerical relativity, including the problems arising from the peculiarities of Einstein's equations, see Lehner 2001
  178. ^ Misner, Thorne & Wheeler 1973, § 20.4
  179. ^ Arnowitt, Deser & Misner 1962
  180. ^ Komar 1959; for a pedagogical introduction, see Wald 1984, sec. 11.2; although defined in a totally different way, it can be shown to be equivalent to the ADM mass for stationary spacetimes, cf. Ashtekar & Magnon-Ashtekar 1979
  181. ^ For a pedagogical introduction, see Wald 1984, sec. 11.2
  182. ^ Wald 1984, p. 295 and refs therein; this is important for questions of stability—if there were negative mass states, then flat, empty Minkowski space, which has mass zero, could evolve into these states
  183. ^ Townsend 1997, ch. 5
  184. ^ Such quasi-local mass–energy definitions are the Hawking energy, Geroch energy, or Penrose's quasi-local energy–momentum based on twistor methods; cf. the review article Szabados 2004
  185. ^ An overview of quantum theory can be found in standard textbooks such as Messiah 1999; a more elementary account is given in Hey & Walters 2003
  186. ^ Ramond 1990, Weinberg 1995, Peskin & Schroeder 1995; a more accessible overview is Auyang 1995
  187. ^ Wald 1994, Birrell & Davies 1984
  188. ^ For Hawking radiation Hawking 1975, Wald 1975; an accessible introduction to black hole evaporation can be found in Traschen 2000
  189. ^ Wald 2001, ch. 3
  190. ^ Put simply, matter is the source of spacetime curvature, and once matter has quantum properties, we can expect spacetime to have them as well. Cf. Carlip 2001, sec. 2
  191. ^ Schutz 2003, p. 407
  192. ^ Jump up to: Jump up to: a b Hamber 2009
  193. ^ A timeline and overview can be found in Rovelli 2000
  194. ^ 't Hooft & Veltman 1974
  195. ^ Donoghue 1995
  196. ^ In particular, a perturbative technique known as renormalization, an integral part of deriving predictions which take into account higher-energy contributions, cf. Weinberg 1996, ch. 17, 18, fails in this case; cf. Veltman 1975, Goroff & Sagnotti 1985; for a recent comprehensive review of the failure of perturbative renormalizability for quantum gravity see Hamber 2009
  197. ^ An accessible introduction at the undergraduate level can be found in Zwiebach 2004; more complete overviews can be found in Polchinski 1998a and Polchinski 1998b
  198. ^ At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges, e.g. Ibanez 2000. The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity, e.g. Green, Schwarz & Witten 1987, sec. 2.3, 5.3
  199. ^ Green, Schwarz & Witten 1987, sec. 4.2
  200. ^ Weinberg 2000, ch. 31
  201. ^ Townsend 1996, Duff 1996
  202. ^ Kuchař 1973, sec. 3
  203. ^ These variables represent geometric gravity using mathematical analogues of electric and magnetic fields; cf. Ashtekar 1986, Ashtekar 1987
  204. ^ For a review, see Thiemann 2007; more extensive accounts can be found in Rovelli 1998, Ashtekar & Lewandowski 2004 as well as in the lecture notes Thiemann 2003
  205. ^ Isham 1994, Sorkin 1997
  206. ^ Loll 1998
  207. ^ Sorkin 2005
  208. ^ Penrose 2004, ch. 33 and refs therein
  209. ^ Hawking 1987
  210. ^ Ashtekar 2007, Schwarz 2007
  211. ^ Мэддокс 1998 , стр. 52–59, 98–122; Пенроуз 2004 , с. 34.1, гл. 30
  212. ^ раздел Квантовая гравитация , выше
  213. ^ раздел «Космология » выше.
  214. ^ Фридрих 2005 г.
  215. ^ Обзор различных проблем и методов, разрабатываемых для их решения, см. Lehner 2002.
  216. ^ См в Bartusiak 2000 . отчет до этого года ; самые свежие новости можно найти на веб-сайтах крупных коллабораций детекторов, таких как GEO600 и LIGO.
  217. ^ Самые последние статьи о поляризации гравитационных волн спирализующихся компактных двойных систем см. Blanchet et al. 2008 г. , и Арун и др. 2008 год ; обзор работ по компактным двоичным системам см. в Blanchet 2006 и Futamase & Itoh 2006 ; общий обзор экспериментальных проверок общей теории относительности см. в Will 2006.
  218. ^ См., например, журнал «Живые обзоры в относительности» .

Библиография [ править ]

Дальнейшее чтение [ править ]

Популярные книги [ править ]

Учебники для начинающих бакалавров [ править ]

  • Каллахан, Джеймс Дж. (2000), Геометрия пространства-времени: введение в специальную и общую теорию относительности , Нью-Йорк: Springer, ISBN  978-0-387-98641-8
  • Тейлор, Эдвин Ф.; Уилер, Джон Арчибальд (2000), Исследование черных дыр: введение в общую теорию относительности , Аддисон Уэсли, ISBN  978-0-201-38423-9

Учебники для продвинутых студентов [ править ]

Учебники для аспирантов [ править ]

Книги специалистов [ править ]

Журнальные статьи [ править ]

Внешние ссылки [ править ]

  • Курсы
  • Лекции
  • Учебники

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: e4cd89a5783acdd25e868eeabe44ef39__1718556720
URL1:https://arc.ask3.ru/arc/aa/e4/39/e4cd89a5783acdd25e868eeabe44ef39.html
Заголовок, (Title) документа по адресу, URL1:
General relativity - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)