Общая теория относительности
Общая теория относительности |
---|
Общая теория относительности , также известная как общая теория относительности и теория гравитации Эйнштейна , представляет собой геометрическую теорию гравитации , опубликованную Альбертом Эйнштейном в 1915 году, и является текущим описанием гравитации в современной физике . Общая теория относительности обобщает специальную теорию относительности и уточняет закон всемирного тяготения Ньютона , обеспечивая единое описание гравитации как геометрического свойства пространства и времени или четырехмерного пространства-времени . В частности, кривизна пространства-времени напрямую связана с энергией и импульсом любой материи и излучения присутствующей . Связь задается уравнениями поля Эйнштейна , системой дифференциальных уравнений в частных производных второго порядка .
Закон всемирного тяготения Ньютона , который описывает классическую гравитацию, можно рассматривать как предсказание общей теории относительности для почти плоской геометрии пространства-времени вокруг стационарных распределений масс. Однако некоторые предсказания общей теории относительности выходят за рамки закона всемирного тяготения Ньютона в классической физике . Эти предсказания касаются течения времени, геометрии пространства, движения тел в свободном падении и распространения света и включают гравитационное замедление времени , гравитационное линзирование , гравитационное красное смещение света, временную задержку Шапиро и сингулярности / черный цвет. отверстия . До сих пор было показано, что все тесты общей теории относительности согласуются с теорией. Зависящие от времени решения общей теории относительности позволяют нам говорить об истории Вселенной и обеспечили современную основу для космологии , что привело к открытию Большого взрыва и космического микроволнового фонового излучения. Несмотря на появление ряда альтернативных теорий Общая теория относительности продолжает оставаться простейшей теорией, согласующейся с экспериментальными данными .
Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity. It is not yet known how gravity can be unified with the three non-gravitational forces: strong, weak and electromagnetic.
Einstein's theory has astrophysical implications, including the prediction of black holes—regions of space in which space and time are distorted in such a way that nothing, not even light, can escape from them. Black holes are the end-state for massive stars. Microquasars and active galactic nuclei are believed to be stellar black holes and supermassive black holes. It also predicts gravitational lensing, where the bending of light results in multiple images of the same distant astronomical phenomenon. Other predictions include the existence of gravitational waves, which have been observed directly by the physics collaboration LIGO and other observatories. In addition, general relativity has provided the base of cosmological models of an expanding universe.
Widely acknowledged as a theory of extraordinary beauty, general relativity has often been described as the most beautiful of all existing physical theories.[2]
History
[edit]Henri Poincaré's 1905 theory of the dynamics of the electron was a relativistic theory which he applied to all forces, including gravity. While others thought that gravity was instantaneous or of electromagnetic origin, he suggested that relativity was "something due to our methods of measurement". In his theory, he showed that gravitational waves propagate at the speed of light.[3] Soon afterwards, Einstein started thinking about how to incorporate gravity into his relativistic framework. In 1907, beginning with a simple thought experiment involving an observer in free fall (FFO), he embarked on what would be an eight-year search for a relativistic theory of gravity. After numerous detours and false starts, his work culminated in the presentation to the Prussian Academy of Science in November 1915 of what are now known as the Einstein field equations, which form the core of Einstein's general theory of relativity.[4] These equations specify how the geometry of space and time is influenced by whatever matter and radiation are present.[5] A version of non-Euclidean geometry, called Riemannian geometry, enabled Einstein to develop general relativity by providing the key mathematical framework on which he fit his physical ideas of gravity.[6] This idea was pointed out by mathematician Marcel Grossmann and published by Grossmann and Einstein in 1913.[7]
The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the groundwork for the description of the final stages of gravitational collapse, and the objects known today as black holes. In the same year, the first steps towards generalizing Schwarzschild's solution to electrically charged objects were taken, eventually resulting in the Reissner–Nordström solution, which is now associated with electrically charged black holes.[8] In 1917, Einstein applied his theory to the universe as a whole, initiating the field of relativistic cosmology. In line with contemporary thinking, he assumed a static universe, adding a new parameter to his original field equations—the cosmological constant—to match that observational presumption.[9] By 1929, however, the work of Hubble and others had shown that our universe is expanding. This is readily described by the expanding cosmological solutions found by Friedmann in 1922, which do not require a cosmological constant. Lemaître used these solutions to formulate the earliest version of the Big Bang models, in which our universe has evolved from an extremely hot and dense earlier state.[10] Einstein later declared the cosmological constant the biggest blunder of his life.[11]
During that period, general relativity remained something of a curiosity among physical theories. It was clearly superior to Newtonian gravity, being consistent with special relativity and accounting for several effects unexplained by the Newtonian theory. Einstein showed in 1915 how his theory explained the anomalous perihelion advance of the planet Mercury without any arbitrary parameters ("fudge factors"),[12] and in 1919 an expedition led by Eddington confirmed general relativity's prediction for the deflection of starlight by the Sun during the total solar eclipse of 29 May 1919,[13] instantly making Einstein famous.[14] Yet the theory remained outside the mainstream of theoretical physics and astrophysics until developments between approximately 1960 and 1975, now known as the golden age of general relativity.[15] Physicists began to understand the concept of a black hole, and to identify quasars as one of these objects' astrophysical manifestations.[16] Ever more precise solar system tests confirmed the theory's predictive power,[17] and relativistic cosmology also became amenable to direct observational tests.[18]
General relativity has acquired a reputation as a theory of extraordinary beauty.[2][19][20] Subrahmanyan Chandrasekhar has noted that at multiple levels, general relativity exhibits what Francis Bacon has termed a "strangeness in the proportion" (i.e. elements that excite wonderment and surprise). It juxtaposes fundamental concepts (space and time versus matter and motion) which had previously been considered as entirely independent. Chandrasekhar also noted that Einstein's only guides in his search for an exact theory were the principle of equivalence and his sense that a proper description of gravity should be geometrical at its basis, so that there was an "element of revelation" in the manner in which Einstein arrived at his theory.[21] Other elements of beauty associated with the general theory of relativity are its simplicity and symmetry, the manner in which it incorporates invariance and unification, and its perfect logical consistency.[22]
In the preface to Relativity: The Special and the General Theory, Einstein said "The present book is intended, as far as possible, to give an exact insight into the theory of Relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics. The work presumes a standard of education corresponding to that of a university matriculation examination, and, despite the shortness of the book, a fair amount of patience and force of will on the part of the reader. The author has spared himself no pains in his endeavour to present the main ideas in the simplest and most intelligible form, and on the whole, in the sequence and connection in which they actually originated."[23]
From classical mechanics to general relativity
[edit]General relativity can be understood by examining its similarities with and departures from classical physics. The first step is the realization that classical mechanics and Newton's law of gravity admit a geometric description. The combination of this description with the laws of special relativity results in a heuristic derivation of general relativity.[24][25]
Geometry of Newtonian gravity
[edit]At the base of classical mechanics is the notion that a body's motion can be described as a combination of free (or inertial) motion, and deviations from this free motion. Such deviations are caused by external forces acting on a body in accordance with Newton's second law of motion, which states that the net force acting on a body is equal to that body's (inertial) mass multiplied by its acceleration.[26] The preferred inertial motions are related to the geometry of space and time: in the standard reference frames of classical mechanics, objects in free motion move along straight lines at constant speed. In modern parlance, their paths are geodesics, straight world lines in curved spacetime.[27]
Conversely, one might expect that inertial motions, once identified by observing the actual motions of bodies and making allowances for the external forces (such as electromagnetism or friction), can be used to define the geometry of space, as well as a time coordinate. However, there is an ambiguity once gravity comes into play. According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment), there is a universality of free fall (also known as the weak equivalence principle, or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free fall depends only on its position and initial speed, but not on any of its material properties.[28] A simplified version of this is embodied in Einstein's elevator experiment, illustrated in the figure on the right: for an observer in an enclosed room, it is impossible to decide, by mapping the trajectory of bodies such as a dropped ball, whether the room is stationary in a gravitational field and the ball accelerating, or in free space aboard a rocket that is accelerating at a rate equal to that of the gravitational field versus the ball which upon release has nil acceleration.[29]
Given the universality of free fall, there is no observable distinction between inertial motion and motion under the influence of the gravitational force. This suggests the definition of a new class of inertial motion, namely that of objects in free fall under the influence of gravity. This new class of preferred motions, too, defines a geometry of space and time—in mathematical terms, it is the geodesic motion associated with a specific connection which depends on the gradient of the gravitational potential. Space, in this construction, still has the ordinary Euclidean geometry. However, spacetime as a whole is more complicated. As can be shown using simple thought experiments following the free-fall trajectories of different test particles, the result of transporting spacetime vectors that can denote a particle's velocity (time-like vectors) will vary with the particle's trajectory; mathematically speaking, the Newtonian connection is not integrable. From this, one can deduce that spacetime is curved. The resulting Newton–Cartan theory is a geometric formulation of Newtonian gravity using only covariant concepts, i.e. a description which is valid in any desired coordinate system.[30] In this geometric description, tidal effects—the relative acceleration of bodies in free fall—are related to the derivative of the connection, showing how the modified geometry is caused by the presence of mass.[31]
Relativistic generalization
[edit]As intriguing as geometric Newtonian gravity may be, its basis, classical mechanics, is merely a limiting case of (special) relativistic mechanics.[32] In the language of symmetry: where gravity can be neglected, physics is Lorentz invariant as in special relativity rather than Galilei invariant as in classical mechanics. (The defining symmetry of special relativity is the Poincaré group, which includes translations, rotations, boosts and reflections.) The differences between the two become significant when dealing with speeds approaching the speed of light, and with high-energy phenomena.[33]
With Lorentz symmetry, additional structures come into play. They are defined by the set of light cones (see image). The light-cones define a causal structure: for each event A, there is a set of events that can, in principle, either influence or be influenced by A via signals or interactions that do not need to travel faster than light (such as event B in the image), and a set of events for which such an influence is impossible (such as event C in the image). These sets are observer-independent.[34] In conjunction with the world-lines of freely falling particles, the light-cones can be used to reconstruct the spacetime's semi-Riemannian metric, at least up to a positive scalar factor. In mathematical terms, this defines a conformal structure[35] or conformal geometry.
Special relativity is defined in the absence of gravity. For practical applications, it is a suitable model whenever gravity can be neglected. Bringing gravity into play, and assuming the universality of free fall motion, an analogous reasoning as in the previous section applies: there are no global inertial frames. Instead there are approximate inertial frames moving alongside freely falling particles. Translated into the language of spacetime: the straight time-like lines that define a gravity-free inertial frame are deformed to lines that are curved relative to each other, suggesting that the inclusion of gravity necessitates a change in spacetime geometry.[36]
A priori, it is not clear whether the new local frames in free fall coincide with the reference frames in which the laws of special relativity hold—that theory is based on the propagation of light, and thus on electromagnetism, which could have a different set of preferred frames. But using different assumptions about the special-relativistic frames (such as their being earth-fixed, or in free fall), one can derive different predictions for the gravitational redshift, that is, the way in which the frequency of light shifts as the light propagates through a gravitational field (cf. below). The actual measurements show that free-falling frames are the ones in which light propagates as it does in special relativity.[37] The generalization of this statement, namely that the laws of special relativity hold to good approximation in freely falling (and non-rotating) reference frames, is known as the Einstein equivalence principle, a crucial guiding principle for generalizing special-relativistic physics to include gravity.[38]
The same experimental data shows that time as measured by clocks in a gravitational field—proper time, to give the technical term—does not follow the rules of special relativity. In the language of spacetime geometry, it is not measured by the Minkowski metric. As in the Newtonian case, this is suggestive of a more general geometry. At small scales, all reference frames that are in free fall are equivalent, and approximately Minkowskian. Consequently, we are now dealing with a curved generalization of Minkowski space. The metric tensor that defines the geometry—in particular, how lengths and angles are measured—is not the Minkowski metric of special relativity, it is a generalization known as a semi- or pseudo-Riemannian metric. Furthermore, each Riemannian metric is naturally associated with one particular kind of connection, the Levi-Civita connection, and this is, in fact, the connection that satisfies the equivalence principle and makes space locally Minkowskian (that is, in suitable locally inertial coordinates, the metric is Minkowskian, and its first partial derivatives and the connection coefficients vanish).[39]
Einstein's equations
[edit]Having formulated the relativistic, geometric version of the effects of gravity, the question of gravity's source remains. In Newtonian gravity, the source is mass. In special relativity, mass turns out to be part of a more general quantity called the energy–momentum tensor, which includes both energy and momentum densities as well as stress: pressure and shear.[40] Using the equivalence principle, this tensor is readily generalized to curved spacetime. Drawing further upon the analogy with geometric Newtonian gravity, it is natural to assume that the field equation for gravity relates this tensor and the Ricci tensor, which describes a particular class of tidal effects: the change in volume for a small cloud of test particles that are initially at rest, and then fall freely. In special relativity, conservation of energy–momentum corresponds to the statement that the energy–momentum tensor is divergence-free. This formula, too, is readily generalized to curved spacetime by replacing partial derivatives with their curved-manifold counterparts, covariant derivatives studied in differential geometry. With this additional condition—the covariant divergence of the energy–momentum tensor, and hence of whatever is on the other side of the equation, is zero—the simplest nontrivial set of equations are what are called Einstein's (field) equations:
On the left-hand side is the Einstein tensor, , which is symmetric and a specific divergence-free combination of the Ricci tensor and the metric. In particular,
is the curvature scalar. The Ricci tensor itself is related to the more general Riemann curvature tensor as
On the right-hand side, is a constant and is the energy–momentum tensor. All tensors are written in abstract index notation.[41] Matching the theory's prediction to observational results for planetary orbits or, equivalently, assuring that the weak-gravity, low-speed limit is Newtonian mechanics, the proportionality constant is found to be , where is the Newtonian constant of gravitation and the speed of light in vacuum.[42] When there is no matter present, so that the energy–momentum tensor vanishes, the results are the vacuum Einstein equations,
In general relativity, the world line of a particle free from all external, non-gravitational force is a particular type of geodesic in curved spacetime. In other words, a freely moving or falling particle always moves along a geodesic.
The geodesic equation is:
where is a scalar parameter of motion (e.g. the proper time), and are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) which is symmetric in the two lower indices. Greek indices may take the values: 0, 1, 2, 3 and the summation convention is used for repeated indices and . The quantity on the left-hand-side of this equation is the acceleration of a particle, and so this equation is analogous to Newton's laws of motion which likewise provide formulae for the acceleration of a particle. This equation of motion employs the Einstein notation, meaning that repeated indices are summed (i.e. from zero to three). The Christoffel symbols are functions of the four spacetime coordinates, and so are independent of the velocity or acceleration or other characteristics of a test particle whose motion is described by the geodesic equation.
Total force in general relativity
[edit]In general relativity, the effective gravitational potential energy of an object of mass m revolving around a massive central body M is given by[43][44]
A conservative total force can then be obtained as its negative gradient
where L is the angular momentum. The first term represents the force of Newtonian gravity, which is described by the inverse-square law. The second term represents the centrifugal force in the circular motion. The third term represents the relativistic effect.
Alternatives to general relativity
[edit]There are alternatives to general relativity built upon the same premises, which include additional rules and/or constraints, leading to different field equations. Examples are Whitehead's theory, Brans–Dicke theory, teleparallelism, f(R) gravity and Einstein–Cartan theory.[45]
Definition and basic applications
[edit]The derivation outlined in the previous section contains all the information needed to define general relativity, describe its key properties, and address a question of crucial importance in physics, namely how the theory can be used for model-building.
Definition and basic properties
[edit]General relativity is a metric theory of gravitation. At its core are Einstein's equations, which describe the relation between the geometry of a four-dimensional pseudo-Riemannian manifold representing spacetime, and the energy–momentum contained in that spacetime.[46] Phenomena that in classical mechanics are ascribed to the action of the force of gravity (such as free-fall, orbital motion, and spacecraft trajectories), correspond to inertial motion within a curved geometry of spacetime in general relativity; there is no gravitational force deflecting objects from their natural, straight paths. Instead, gravity corresponds to changes in the properties of space and time, which in turn changes the straightest-possible paths that objects will naturally follow.[47] The curvature is, in turn, caused by the energy–momentum of matter. Paraphrasing the relativist John Archibald Wheeler, spacetime tells matter how to move; matter tells spacetime how to curve.[48]
While general relativity replaces the scalar gravitational potential of classical physics by a symmetric rank-two tensor, the latter reduces to the former in certain limiting cases. For weak gravitational fields and slow speed relative to the speed of light, the theory's predictions converge on those of Newton's law of universal gravitation.[49]
As it is constructed using tensors, general relativity exhibits general covariance: its laws—and further laws formulated within the general relativistic framework—take on the same form in all coordinate systems.[50] Furthermore, the theory does not contain any invariant geometric background structures, i.e. it is background independent. It thus satisfies a more stringent general principle of relativity, namely that the laws of physics are the same for all observers.[51] Locally, as expressed in the equivalence principle, spacetime is Minkowskian, and the laws of physics exhibit local Lorentz invariance.[52]
Model-building
[edit]The core concept of general-relativistic model-building is that of a solution of Einstein's equations. Given both Einstein's equations and suitable equations for the properties of matter, such a solution consists of a specific semi-Riemannian manifold (usually defined by giving the metric in specific coordinates), and specific matter fields defined on that manifold. Matter and geometry must satisfy Einstein's equations, so in particular, the matter's energy–momentum tensor must be divergence-free. The matter must, of course, also satisfy whatever additional equations were imposed on its properties. In short, such a solution is a model universe that satisfies the laws of general relativity, and possibly additional laws governing whatever matter might be present.[53]
Einstein's equations are nonlinear partial differential equations and, as such, difficult to solve exactly.[54] Nevertheless, a number of exact solutions are known, although only a few have direct physical applications.[55] The best-known exact solutions, and also those most interesting from a physics point of view, are the Schwarzschild solution, the Reissner–Nordström solution and the Kerr metric, each corresponding to a certain type of black hole in an otherwise empty universe,[56] and the Friedmann–Lemaître–Robertson–Walker and de Sitter universes, each describing an expanding cosmos.[57] Exact solutions of great theoretical interest include the Gödel universe (which opens up the intriguing possibility of time travel in curved spacetimes), the Taub–NUT solution (a model universe that is homogeneous, but anisotropic), and anti-de Sitter space (which has recently come to prominence in the context of what is called the Maldacena conjecture).[58]
Given the difficulty of finding exact solutions, Einstein's field equations are also solved frequently by numerical integration on a computer, or by considering small perturbations of exact solutions. In the field of numerical relativity, powerful computers are employed to simulate the geometry of spacetime and to solve Einstein's equations for interesting situations such as two colliding black holes.[59] In principle, such methods may be applied to any system, given sufficient computer resources, and may address fundamental questions such as naked singularities. Approximate solutions may also be found by perturbation theories such as linearized gravity[60] and its generalization, the post-Newtonian expansion, both of which were developed by Einstein. The latter provides a systematic approach to solving for the geometry of a spacetime that contains a distribution of matter that moves slowly compared with the speed of light. The expansion involves a series of terms; the first terms represent Newtonian gravity, whereas the later terms represent ever smaller corrections to Newton's theory due to general relativity.[61] An extension of this expansion is the parametrized post-Newtonian (PPN) formalism, which allows quantitative comparisons between the predictions of general relativity and alternative theories.[62]
Consequences of Einstein's theory
[edit]General relativity has a number of physical consequences. Some follow directly from the theory's axioms, whereas others have become clear only in the course of many years of research that followed Einstein's initial publication.
Gravitational time dilation and frequency shift
[edit]Assuming that the equivalence principle holds,[63] gravity influences the passage of time. Light sent down into a gravity well is blueshifted, whereas light sent in the opposite direction (i.e., climbing out of the gravity well) is redshifted; collectively, these two effects are known as the gravitational frequency shift. More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation.[64]
Gravitational redshift has been measured in the laboratory[65] and using astronomical observations.[66] Gravitational time dilation in the Earth's gravitational field has been measured numerous times using atomic clocks,[67] while ongoing validation is provided as a side effect of the operation of the Global Positioning System (GPS).[68] Tests in stronger gravitational fields are provided by the observation of binary pulsars.[69] All results are in agreement with general relativity.[70] However, at the current level of accuracy, these observations cannot distinguish between general relativity and other theories in which the equivalence principle is valid.[71]
Light deflection and gravitational time delay
[edit]General relativity predicts that the path of light will follow the curvature of spacetime as it passes near a star. This effect was initially confirmed by observing the light of stars or distant quasars being deflected as it passes the Sun.[72]
This and related predictions follow from the fact that light follows what is called a light-like or null geodesic—a generalization of the straight lines along which light travels in classical physics. Such geodesics are the generalization of the invariance of lightspeed in special relativity.[73] As one examines suitable model spacetimes (either the exterior Schwarzschild solution or, for more than a single mass, the post-Newtonian expansion),[74] several effects of gravity on light propagation emerge. Although the bending of light can also be derived by extending the universality of free fall to light,[75] the angle of deflection resulting from such calculations is only half the value given by general relativity.[76]
Closely related to light deflection is the Shapiro Time Delay, the phenomenon that light signals take longer to move through a gravitational field than they would in the absence of that field. There have been numerous successful tests of this prediction.[77] In the parameterized post-Newtonian formalism (PPN), measurements of both the deflection of light and the gravitational time delay determine a parameter called γ, which encodes the influence of gravity on the geometry of space.[78]
Gravitational waves
[edit]Predicted in 1916[79][80] by Albert Einstein, there are gravitational waves: ripples in the metric of spacetime that propagate at the speed of light. These are one of several analogies between weak-field gravity and electromagnetism in that, they are analogous to electromagnetic waves. On 11 February 2016, the Advanced LIGO team announced that they had directly detected gravitational waves from a pair of black holes merging.[81][82][83]
The simplest type of such a wave can be visualized by its action on a ring of freely floating particles. A sine wave propagating through such a ring towards the reader distorts the ring in a characteristic, rhythmic fashion (animated image to the right).[84] Since Einstein's equations are non-linear, arbitrarily strong gravitational waves do not obey linear superposition, making their description difficult. However, linear approximations of gravitational waves are sufficiently accurate to describe the exceedingly weak waves that are expected to arrive here on Earth from far-off cosmic events, which typically result in relative distances increasing and decreasing by or less. Data analysis methods routinely make use of the fact that these linearized waves can be Fourier decomposed.[85]
Some exact solutions describe gravitational waves without any approximation, e.g., a wave train traveling through empty space[86] or Gowdy universes, varieties of an expanding cosmos filled with gravitational waves.[87] But for gravitational waves produced in astrophysically relevant situations, such as the merger of two black holes, numerical methods are presently the only way to construct appropriate models.[88]
Orbital effects and the relativity of direction
[edit]General relativity differs from classical mechanics in a number of predictions concerning orbiting bodies. It predicts an overall rotation (precession) of planetary orbits, as well as orbital decay caused by the emission of gravitational waves and effects related to the relativity of direction.
Precession of apsides
[edit]In general relativity, the apsides of any orbit (the point of the orbiting body's closest approach to the system's center of mass) will precess; the orbit is not an ellipse, but akin to an ellipse that rotates on its focus, resulting in a rose curve-like shape (see image). Einstein first derived this result by using an approximate metric representing the Newtonian limit and treating the orbiting body as a test particle. For him, the fact that his theory gave a straightforward explanation of Mercury's anomalous perihelion shift, discovered earlier by Urbain Le Verrier in 1859, was important evidence that he had at last identified the correct form of the gravitational field equations.[89]
The effect can also be derived by using either the exact Schwarzschild metric (describing spacetime around a spherical mass)[90] or the much more general post-Newtonian formalism.[91] It is due to the influence of gravity on the geometry of space and to the contribution of self-energy to a body's gravity (encoded in the nonlinearity of Einstein's equations).[92] Relativistic precession has been observed for all planets that allow for accurate precession measurements (Mercury, Venus, and Earth),[93] as well as in binary pulsar systems, where it is larger by five orders of magnitude.[94]
In general relativity the perihelion shift , expressed in radians per revolution, is approximately given by[95]
where:
- is the semi-major axis
- is the orbital period
- is the speed of light in vacuum
- is the orbital eccentricity
Orbital decay
[edit]According to general relativity, a binary system will emit gravitational waves, thereby losing energy. Due to this loss, the distance between the two orbiting bodies decreases, and so does their orbital period. Within the Solar System or for ordinary double stars, the effect is too small to be observable. This is not the case for a close binary pulsar, a system of two orbiting neutron stars, one of which is a pulsar: from the pulsar, observers on Earth receive a regular series of radio pulses that can serve as a highly accurate clock, which allows precise measurements of the orbital period. Because neutron stars are immensely compact, significant amounts of energy are emitted in the form of gravitational radiation.[97]
The first observation of a decrease in orbital period due to the emission of gravitational waves was made by Hulse and Taylor, using the binary pulsar PSR1913+16 they had discovered in 1974. This was the first detection of gravitational waves, albeit indirect, for which they were awarded the 1993 Nobel Prize in physics.[98] Since then, several other binary pulsars have been found, in particular the double pulsar PSR J0737−3039, where both stars are pulsars[99] and which was last reported to also be in agreement with general relativity in 2021 after 16 years of observations.[96]
Geodetic precession and frame-dragging
[edit]Several relativistic effects are directly related to the relativity of direction.[100] One is geodetic precession: the axis direction of a gyroscope in free fall in curved spacetime will change when compared, for instance, with the direction of light received from distant stars—even though such a gyroscope represents the way of keeping a direction as stable as possible ("parallel transport").[101] For the Moon–Earth system, this effect has been measured with the help of lunar laser ranging.[102] More recently, it has been measured for test masses aboard the satellite Gravity Probe B to a precision of better than 0.3%.[103][104]
Near a rotating mass, there are gravitomagnetic or frame-dragging effects. A distant observer will determine that objects close to the mass get "dragged around". This is most extreme for rotating black holes where, for any object entering a zone known as the ergosphere, rotation is inevitable.[105] Such effects can again be tested through their influence on the orientation of gyroscopes in free fall.[106] Somewhat controversial tests have been performed using the LAGEOS satellites, confirming the relativistic prediction.[107] Also the Mars Global Surveyor probe around Mars has been used.[108]
Astrophysical applications
[edit]Gravitational lensing
[edit]The deflection of light by gravity is responsible for a new class of astronomical phenomena. If a massive object is situated between the astronomer and a distant target object with appropriate mass and relative distances, the astronomer will see multiple distorted images of the target. Such effects are known as gravitational lensing.[109] Depending on the configuration, scale, and mass distribution, there can be two or more images, a bright ring known as an Einstein ring, or partial rings called arcs.[110]The earliest example was discovered in 1979;[111] since then, more than a hundred gravitational lenses have been observed.[112] Even if the multiple images are too close to each other to be resolved, the effect can still be measured, e.g., as an overall brightening of the target object; a number of such "microlensing events" have been observed.[113]
Gravitational lensing has developed into a tool of observational astronomy. It is used to detect the presence and distribution of dark matter, provide a "natural telescope" for observing distant galaxies, and to obtain an independent estimate of the Hubble constant. Statistical evaluations of lensing data provide valuable insight into the structural evolution of galaxies.[114]
Gravitational-wave astronomy
[edit]Observations of binary pulsars provide strong indirect evidence for the existence of gravitational waves (see Orbital decay, above). Detection of these waves is a major goal of current relativity-related research.[115] Several land-based gravitational wave detectors are currently in operation, most notably the interferometric detectors GEO 600, LIGO (two detectors), TAMA 300 and VIRGO.[116] Various pulsar timing arrays are using millisecond pulsars to detect gravitational waves in the 10−9 to 10−6 hertz frequency range, which originate from binary supermassive blackholes.[117] A European space-based detector, eLISA / NGO, is currently under development,[118] with a precursor mission (LISA Pathfinder) having launched in December 2015.[119]
Observations of gravitational waves promise to complement observations in the electromagnetic spectrum.[120] They are expected to yield information about black holes and other dense objects such as neutron stars and white dwarfs, about certain kinds of supernova implosions, and about processes in the very early universe, including the signature of certain types of hypothetical cosmic string.[121] In February 2016, the Advanced LIGO team announced that they had detected gravitational waves from a black hole merger.[81][82][83]
Black holes and other compact objects
[edit]Whenever the ratio of an object's mass to its radius becomes sufficiently large, general relativity predicts the formation of a black hole, a region of space from which nothing, not even light, can escape. In the currently accepted models of stellar evolution, neutron stars of around 1.4 solar masses, and stellar black holes with a few to a few dozen solar masses, are thought to be the final state for the evolution of massive stars.[122] Usually a galaxy has one supermassive black hole with a few million to a few billion solar masses in its center,[123] and its presence is thought to have played an important role in the formation of the galaxy and larger cosmic structures.[124]
Astronomically, the most important property of compact objects is that they provide a supremely efficient mechanism for converting gravitational energy into electromagnetic radiation.[125] Accretion, the falling of dust or gaseous matter onto stellar or supermassive black holes, is thought to be responsible for some spectacularly luminous astronomical objects, notably diverse kinds of active galactic nuclei on galactic scales and stellar-size objects such as microquasars.[126] In particular, accretion can lead to relativistic jets, focused beams of highly energetic particles that are being flung into space at almost light speed.[127]General relativity plays a central role in modelling all these phenomena,[128] and observations provide strong evidence for the existence of black holes with the properties predicted by the theory.[129]
Black holes are also sought-after targets in the search for gravitational waves (cf. Gravitational waves, above). Merging black hole binaries should lead to some of the strongest gravitational wave signals reaching detectors here on Earth, and the phase directly before the merger ("chirp") could be used as a "standard candle" to deduce the distance to the merger events–and hence serve as a probe of cosmic expansion at large distances.[130] The gravitational waves produced as a stellar black hole plunges into a supermassive one should provide direct information about the supermassive black hole's geometry.[131]
Cosmology
[edit]The current models of cosmology are based on Einstein's field equations, which include the cosmological constant since it has important influence on the large-scale dynamics of the cosmos,
where is the spacetime metric.[132] Isotropic and homogeneous solutions of these enhanced equations, the Friedmann–Lemaître–Robertson–Walker solutions,[133] allow physicists to model a universe that has evolved over the past 14 billion years from a hot, early Big Bang phase.[134] Once a small number of parameters (for example the universe's mean matter density) have been fixed by astronomical observation,[135] further observational data can be used to put the models to the test.[136] Predictions, all successful, include the initial abundance of chemical elements formed in a period of primordial nucleosynthesis,[137] the large-scale structure of the universe,[138] and the existence and properties of a "thermal echo" from the early cosmos, the cosmic background radiation.[139]
Astronomical observations of the cosmological expansion rate allow the total amount of matter in the universe to be estimated, although the nature of that matter remains mysterious in part. About 90% of all matter appears to be dark matter, which has mass (or, equivalently, gravitational influence), but does not interact electromagnetically and, hence, cannot be observed directly.[140] There is no generally accepted description of this new kind of matter, within the framework of known particle physics[141] or otherwise.[142] Observational evidence from redshift surveys of distant supernovae and measurements of the cosmic background radiation also show that the evolution of our universe is significantly influenced by a cosmological constant resulting in an acceleration of cosmic expansion or, equivalently, by a form of energy with an unusual equation of state, known as dark energy, the nature of which remains unclear.[143]
An inflationary phase,[144] an additional phase of strongly accelerated expansion at cosmic times of around 10−33 seconds, was hypothesized in 1980 to account for several puzzling observations that were unexplained by classical cosmological models, such as the nearly perfect homogeneity of the cosmic background radiation.[145] Recent measurements of the cosmic background radiation have resulted in the first evidence for this scenario.[146] However, there is a bewildering variety of possible inflationary scenarios, which cannot be restricted by current observations.[147] An even larger question is the physics of the earliest universe, prior to the inflationary phase and close to where the classical models predict the big bang singularity. An authoritative answer would require a complete theory of quantum gravity, which has not yet been developed[148] (cf. the section on quantum gravity, below).
Exotic solutions: time travel, warp drives
[edit]Kurt Gödel showed[149] that solutions to Einstein's equations exist that contain closed timelike curves (CTCs), which allow for loops in time. The solutions require extreme physical conditions unlikely ever to occur in practice, and it remains an open question whether further laws of physics will eliminate them completely. Since then, other—similarly impractical—GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. Stephen Hawking introduced chronology protection conjecture, which is an assumption beyond those of standard general relativity to prevent time travel.
Some exact solutions in general relativity such as Alcubierre drive present examples of warp drive but these solutions requires exotic matter distribution, and generally suffers from semiclassical instability.[150]
Advanced concepts
[edit]Asymptotic symmetries
[edit]The spacetime symmetry group for special relativity is the Poincaré group, which is a ten-dimensional group of three Lorentz boosts, three rotations, and four spacetime translations. It is logical to ask what symmetries if any might apply in General Relativity. A tractable case might be to consider the symmetries of spacetime as seen by observers located far away from all sources of the gravitational field. The naive expectation for asymptotically flat spacetime symmetries might be simply to extend and reproduce the symmetries of flat spacetime of special relativity, viz., the Poincaré group.
In 1962 Hermann Bondi, M. G. van der Burg, A. W. Metzner[151] and Rainer K. Sachs[152] addressed this asymptotic symmetry problem in order to investigate the flow of energy at infinity due to propagating gravitational waves. Their first step was to decide on some physically sensible boundary conditions to place on the gravitational field at light-like infinity to characterize what it means to say a metric is asymptotically flat, making no a priori assumptions about the nature of the asymptotic symmetry group—not even the assumption that such a group exists. Then after designing what they considered to be the most sensible boundary conditions, they investigated the nature of the resulting asymptotic symmetry transformations that leave invariant the form of the boundary conditions appropriate for asymptotically flat gravitational fields. What they found was that the asymptotic symmetry transformations actually do form a group and the structure of this group does not depend on the particular gravitational field that happens to be present. This means that, as expected, one can separate the kinematics of spacetime from the dynamics of the gravitational field at least at spatial infinity. The puzzling surprise in 1962 was their discovery of a rich infinite-dimensional group (the so-called BMS group) as the asymptotic symmetry group, instead of the finite-dimensional Poincaré group, which is a subgroup of the BMS group. Not only are the Lorentz transformations asymptotic symmetry transformations, there are also additional transformations that are not Lorentz transformations but are asymptotic symmetry transformations. In fact, they found an additional infinity of transformation generators known as supertranslations. This implies the conclusion that General Relativity (GR) does not reduce to special relativity in the case of weak fields at long distances. It turns out that the BMS symmetry, suitably modified, could be seen as a restatement of the universal soft graviton theorem in quantum field theory (QFT), which relates universal infrared (soft) QFT with GR asymptotic spacetime symmetries.[153]
Causal structure and global geometry
[edit]In general relativity, no material body can catch up with or overtake a light pulse. No influence from an event A can reach any other location X before light sent out at A to X. In consequence, an exploration of all light worldlines (null geodesics) yields key information about the spacetime's causal structure. This structure can be displayed using Penrose–Carter diagrams in which infinitely large regions of space and infinite time intervals are shrunk ("compactified") so as to fit onto a finite map, while light still travels along diagonals as in standard spacetime diagrams.[154]
Aware of the importance of causal structure, Roger Penrose and others developed what is known as global geometry. In global geometry, the object of study is not one particular solution (or family of solutions) to Einstein's equations. Rather, relations that hold true for all geodesics, such as the Raychaudhuri equation, and additional non-specific assumptions about the nature of matter (usually in the form of energy conditions) are used to derive general results.[155]
Horizons
[edit]Using global geometry, some spacetimes can be shown to contain boundaries called horizons, which demarcate one region from the rest of spacetime. The best-known examples are black holes: if mass is compressed into a sufficiently compact region of space (as specified in the hoop conjecture, the relevant length scale is the Schwarzschild radius[156]), no light from inside can escape to the outside. Since no object can overtake a light pulse, all interior matter is imprisoned as well. Passage from the exterior to the interior is still possible, showing that the boundary, the black hole's horizon, is not a physical barrier.[157]
Early studies of black holes relied on explicit solutions of Einstein's equations, notably the spherically symmetric Schwarzschild solution (used to describe a static black hole) and the axisymmetric Kerr solution (used to describe a rotating, stationary black hole, and introducing interesting features such as the ergosphere). Using global geometry, later studies have revealed more general properties of black holes. With time they become rather simple objects characterized by eleven parameters specifying: electric charge, mass–energy, linear momentum, angular momentum, and location at a specified time. This is stated by the black hole uniqueness theorem: "black holes have no hair", that is, no distinguishing marks like the hairstyles of humans. Irrespective of the complexity of a gravitating object collapsing to form a black hole, the object that results (having emitted gravitational waves) is very simple.[158]
Even more remarkably, there is a general set of laws known as black hole mechanics, which is analogous to the laws of thermodynamics. For instance, by the second law of black hole mechanics, the area of the event horizon of a general black hole will never decrease with time, analogous to the entropy of a thermodynamic system. This limits the energy that can be extracted by classical means from a rotating black hole (e.g. by the Penrose process).[159] There is strong evidence that the laws of black hole mechanics are, in fact, a subset of the laws of thermodynamics, and that the black hole area is proportional to its entropy.[160] This leads to a modification of the original laws of black hole mechanics: for instance, as the second law of black hole mechanics becomes part of the second law of thermodynamics, it is possible for the black hole area to decrease as long as other processes ensure that entropy increases overall. As thermodynamical objects with nonzero temperature, black holes should emit thermal radiation. Semiclassical calculations indicate that indeed they do, with the surface gravity playing the role of temperature in Planck's law. This radiation is known as Hawking radiation (cf. the quantum theory section, below).[161]
There are many other types of horizons. In an expanding universe, an observer may find that some regions of the past cannot be observed ("particle horizon"), and some regions of the future cannot be influenced (event horizon).[162] Even in flat Minkowski space, when described by an accelerated observer (Rindler space), there will be horizons associated with a semiclassical radiation known as Unruh radiation.[163]
Singularities
[edit]Another general feature of general relativity is the appearance of spacetime boundaries known as singularities. Spacetime can be explored by following up on timelike and lightlike geodesics—all possible ways that light and particles in free fall can travel. But some solutions of Einstein's equations have "ragged edges"—regions known as spacetime singularities, where the paths of light and falling particles come to an abrupt end, and geometry becomes ill-defined. In the more interesting cases, these are "curvature singularities", where geometrical quantities characterizing spacetime curvature, such as the Ricci scalar, take on infinite values.[164] Well-known examples of spacetimes with future singularities—where worldlines end—are the Schwarzschild solution, which describes a singularity inside an eternal static black hole,[165] or the Kerr solution with its ring-shaped singularity inside an eternal rotating black hole.[166] The Friedmann–Lemaître–Robertson–Walker solutions and other spacetimes describing universes have past singularities on which worldlines begin, namely Big Bang singularities, and some have future singularities (Big Crunch) as well.[167]
Given that these examples are all highly symmetric—and thus simplified—it is tempting to conclude that the occurrence of singularities is an artifact of idealization.[168] The famous singularity theorems, proved using the methods of global geometry, say otherwise: singularities are a generic feature of general relativity, and unavoidable once the collapse of an object with realistic matter properties has proceeded beyond a certain stage[169] and also at the beginning of a wide class of expanding universes.[170] However, the theorems say little about the properties of singularities, and much of current research is devoted to characterizing these entities' generic structure (hypothesized e.g. by the BKL conjecture).[171] The cosmic censorship hypothesis states that all realistic future singularities (no perfect symmetries, matter with realistic properties) are safely hidden away behind a horizon, and thus invisible to all distant observers. While no formal proof yet exists, numerical simulations offer supporting evidence of its validity.[172]
Evolution equations
[edit]Each solution of Einstein's equation encompasses the whole history of a universe—it is not just some snapshot of how things are, but a whole, possibly matter-filled, spacetime. It describes the state of matter and geometry everywhere and at every moment in that particular universe. Due to its general covariance, Einstein's theory is not sufficient by itself to determine the time evolution of the metric tensor. It must be combined with a coordinate condition, which is analogous to gauge fixing in other field theories.[173]
To understand Einstein's equations as partial differential equations, it is helpful to formulate them in a way that describes the evolution of the universe over time. This is done in "3+1" formulations, where spacetime is split into three space dimensions and one time dimension. The best-known example is the ADM formalism.[174] These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always exist, and are uniquely defined, once suitable initial conditions have been specified.[175] Such formulations of Einstein's field equations are the basis of numerical relativity.[176]
Global and quasi-local quantities
[edit]The notion of evolution equations is intimately tied in with another aspect of general relativistic physics. In Einstein's theory, it turns out to be impossible to find a general definition for a seemingly simple property such as a system's total mass (or energy). The main reason is that the gravitational field—like any physical field—must be ascribed a certain energy, but that it proves to be fundamentally impossible to localize that energy.[177]
Nevertheless, there are possibilities to define a system's total mass, either using a hypothetical "infinitely distant observer" (ADM mass)[178] or suitable symmetries (Komar mass).[179] If one excludes from the system's total mass the energy being carried away to infinity by gravitational waves, the result is the Bondi mass at null infinity.[180] Just as in classical physics, it can be shown that these masses are positive.[181] Corresponding global definitions exist for momentum and angular momentum.[182] There have also been a number of attempts to define quasi-local quantities, such as the mass of an isolated system formulated using only quantities defined within a finite region of space containing that system. The hope is to obtain a quantity useful for general statements about isolated systems, such as a more precise formulation of the hoop conjecture.[183]
Relationship with quantum theory
[edit]If general relativity were considered to be one of the two pillars of modern physics, then quantum theory, the basis of understanding matter from elementary particles to solid-state physics, would be the other.[184] However, how to reconcile quantum theory with general relativity is still an open question.
Quantum field theory in curved spacetime
[edit]Ordinary quantum field theories, which form the basis of modern elementary particle physics, are defined in flat Minkowski space, which is an excellent approximation when it comes to describing the behavior of microscopic particles in weak gravitational fields like those found on Earth.[185] In order to describe situations in which gravity is strong enough to influence (quantum) matter, yet not strong enough to require quantization itself, physicists have formulated quantum field theories in curved spacetime. These theories rely on general relativity to describe a curved background spacetime, and define a generalized quantum field theory to describe the behavior of quantum matter within that spacetime.[186] Using this formalism, it can be shown that black holes emit a blackbody spectrum of particles known as Hawking radiation leading to the possibility that they evaporate over time.[187] As briefly mentioned above, this radiation plays an important role for the thermodynamics of black holes.[188]
Quantum gravity
[edit]The demand for consistency between a quantum description of matter and a geometric description of spacetime,[189] as well as the appearance of singularities (where curvature length scales become microscopic), indicate the need for a full theory of quantum gravity: for an adequate description of the interior of black holes, and of the very early universe, a theory is required in which gravity and the associated geometry of spacetime are described in the language of quantum physics.[190] Despite major efforts, no complete and consistent theory of quantum gravity is currently known, even though a number of promising candidates exist.[191][192]
Attempts to generalize ordinary quantum field theories, used in elementary particle physics to describe fundamental interactions, so as to include gravity have led to serious problems.[193] Some have argued that at low energies, this approach proves successful, in that it results in an acceptable effective (quantum) field theory of gravity.[194] At very high energies, however, the perturbative results are badly divergent and lead to models devoid of predictive power ("perturbative non-renormalizability").[195]
One attempt to overcome these limitations is string theory, a quantum theory not of point particles, but of minute one-dimensional extended objects.[196] The theory promises to be a unified description of all particles and interactions, including gravity;[197] the price to pay is unusual features such as six extra dimensions of space in addition to the usual three.[198] In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity[199] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity.[200]
Another approach starts with the canonical quantization procedures of quantum theory. Using the initial-value-formulation of general relativity (cf. evolution equations above), the result is the Wheeler–deWitt equation (an analogue of the Schrödinger equation) which, regrettably, turns out to be ill-defined without a proper ultraviolet (lattice) cutoff.[201] However, with the introduction of what are now known as Ashtekar variables,[202] this leads to a promising model known as loop quantum gravity. Space is represented by a web-like structure called a spin network, evolving over time in discrete steps.[203]
Depending on which features of general relativity and quantum theory are accepted unchanged, and on what level changes are introduced,[204] there are numerous other attempts to arrive at a viable theory of quantum gravity, some examples being the lattice theory of gravity based on the Feynman Path Integral approach and Regge calculus,[191] dynamical triangulations,[205] causal sets,[206] twistor models[207] or the path integral based models of quantum cosmology.[208]
All candidate theories still have major formal and conceptual problems to overcome. They also face the common problem that, as yet, there is no way to put quantum gravity predictions to experimental tests (and thus to decide between the candidates where their predictions vary), although there is hope for this to change as future data from cosmological observations and particle physics experiments becomes available.[209]
Current status
[edit]General relativity has emerged as a highly successful model of gravitation and cosmology, which has so far passed many unambiguous observational and experimental tests. However, there are strong indications that the theory is incomplete.[210] The problem of quantum gravity and the question of the reality of spacetime singularities remain open.[211] Observational data that is taken as evidence for dark energy and dark matter could indicate the need for new physics.[212]
Even taken as is, general relativity is rich with possibilities for further exploration. Mathematical relativists seek to understand the nature of singularities and the fundamental properties of Einstein's equations,[213] while numerical relativists run increasingly powerful computer simulations (such as those describing merging black holes).[214] In February 2016, it was announced that the existence of gravitational waves was directly detected by the Advanced LIGO team on 14 September 2015.[83][215][216] A century after its introduction, general relativity remains a highly active area of research.[217]
See also
[edit]- Alcubierre drive – Hypothetical FTL transportation by warping space (warp drive)
- Alternatives to general relativity – Proposed theories of gravity
- Contributors to general relativity
- Derivations of the Lorentz transformations
- Ehrenfest paradox – Paradox in special relativity
- Einstein–Hilbert action – Concept in general relativity
- Einstein's thought experiments – Albert Einstein's hypothetical situations to argue scientific points
- General relativity priority dispute – Debate about credit for general relativity
- Introduction to the mathematics of general relativity – non-technical introduction to the mathematics of general relativity
- Nordström's theory of gravitation – Predecessor to the theory of relativity
- Ricci calculus – Tensor index notation for tensor-based calculations
- Timeline of gravitational physics and relativity
References
[edit]- ^ "GW150914: LIGO Detects Gravitational Waves". Black-holes.org. Retrieved 18 April 2016.
- ^ Jump up to: a b Landau & Lifshitz 1975, p. 228 "...the general theory of relativity...was established by Einstein, and represents probably the most beautiful of all existing physical theories."
- ^ Poincaré 1905
- ^ O'Connor, J.J.; Robertson, E.F. (May 1996). "General relativity]". History Topics: Mathematical Physics Index, Scotland: School of Mathematics and Statistics, University of St. Andrews, archived from the original on 4 February 2015, retrieved 4 February 2015
- ^ Pais 1982, ch. 9 to 15, Janssen 2005; an up-to-date collection of current research, including reprints of many of the original articles, is Renn 2007; an accessible overview can be found in Renn 2005, pp. 110ff. Einstein's original papers are found in Digital Einstein, volumes 4 and 6. An early key article is Einstein 1907, cf. Pais 1982, ch. 9. The publication featuring the field equations is Einstein 1915, cf. Pais 1982, ch. 11–15
- ^ Moshe Carmeli (2008).Relativity: Modern Large-Scale Structures of the Cosmos. pp.92, 93.World Scientific Publishing
- ^ Grossmann for the mathematical part and Einstein for the physical part (1913). Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Outline of a Generalized Theory of Relativity and of a Theory of Gravitation), Zeitschrift für Mathematik und Physik, 62, 225–261. English translate
- ^ Schwarzschild 1916a, Schwarzschild 1916b and Reissner 1916 (later complemented in Nordström 1918)
- ^ Einstein 1917, cf. Pais 1982, ch. 15e
- ^ Hubble's original article is Hubble 1929; an accessible overview is given in Singh 2004, ch. 2–4
- ^ As reported in Gamow 1970. Einstein's condemnation would prove to be premature, cf. the section Cosmology, below
- ^ Pais 1982, pp. 253–254
- ^ Kennefick 2005, Kennefick 2007
- ^ Pais 1982, ch. 16
- ^ Thorne 2003, p. 74
- ^ Israel 1987, ch. 7.8–7.10, Thorne 1994, ch. 3–9
- ^ Sections Orbital effects and the relativity of direction, Gravitational time dilation and frequency shift and Light deflection and gravitational time delay, and references therein
- ^ Section Cosmology and references therein; the historical development is in Overbye 1999
- ^ Wald 1984, p. 3
- ^ Rovelli 2015, pp. 1–6 "General relativity is not just an extraordinarily beautiful physical theory providing the best description of the gravitational interaction we have so far. It is more."
- ^ Chandrasekhar 1984, p. 6
- ^ Engler 2002
- ^ Albert Einstein (2011). Relativity – The Special and General Theory. Read Books Ltd. p. 4. ISBN 978-1-4474-9358-7. Extract of page 4
- ^ The following exposition re-traces that of Ehlers 1973, sec. 1
- ^ Al-Khalili, Jim (26 March 2021). "Gravity and Me: The force that shapes our lives". www.bbc.co.uk. Retrieved 9 April 2021.
- ^ Arnold 1989, ch. 1
- ^ Ehlers 1973, pp. 5f
- ^ Will 1993, sec. 2.4, Will 2006, sec. 2
- ^ Wheeler 1990, ch. 2
- ^ Ehlers 1973, sec. 1.2, Havas 1964, Künzle 1972. The simple thought experiment in question was first described in Heckmann & Schücking 1959
- ^ Ehlers 1973, pp. 10f
- ^ Good introductions are, in order of increasing presupposed knowledge of mathematics, Giulini 2005, Mermin 2005, and Rindler 1991; for accounts of precision experiments, cf. part IV of Ehlers & Lämmerzahl 2006
- ^ An in-depth comparison between the two symmetry groups can be found in Giulini 2006
- ^ Rindler 1991, sec. 22, Synge 1972, ch. 1 and 2
- ^ Ehlers 1973, sec. 2.3
- ^ Ehlers 1973, sec. 1.4, Schutz 1985, sec. 5.1
- ^ Ehlers 1973, pp. 17ff; a derivation can be found in Mermin 2005, ch. 12. For the experimental evidence, cf. the section Gravitational time dilation and frequency shift, below
- ^ Rindler 2001, sec. 1.13; for an elementary account, see Wheeler 1990, ch. 2; there are, however, some differences between the modern version and Einstein's original concept used in the historical derivation of general relativity, cf. Norton 1985
- ^ Ehlers 1973, sec. 1.4 for the experimental evidence, see once more section Gravitational time dilation and frequency shift. Choosing a different connection with non-zero torsion leads to a modified theory known as Einstein–Cartan theory
- ^ Ehlers 1973, p. 16, Kenyon 1990, sec. 7.2, Weinberg 1972, sec. 2.8
- ^ Ehlers 1973, pp. 19–22; for similar derivations, see sections 1 and 2 of ch. 7 in Weinberg 1972. The Einstein tensor is the only divergence-free tensor that is a function of the metric coefficients, their first and second derivatives at most, and allows the spacetime of special relativity as a solution in the absence of sources of gravity, cf. Lovelock 1972. The tensors on both side are of second rank, that is, they can each be thought of as 4×4 matrices, each of which contains ten independent terms; hence, the above represents ten coupled equations. The fact that, as a consequence of geometric relations known as Bianchi identities, the Einstein tensor satisfies a further four identities reduces these to six independent equations, e.g. Schutz 1985, sec. 8.3
- ^ Kenyon 1990, sec. 7.4
- ^ Weinberg, Steven (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley. ISBN 978-0-471-92567-5.
- ^ Cheng, Ta-Pei (2005). Relativity, Gravitation and Cosmology: a Basic Introduction. Oxford and New York: Oxford University Press. ISBN 978-0-19-852957-6.
- ^ Brans & Dicke 1961, Weinberg 1972, sec. 3 in ch. 7, Goenner 2004, sec. 7.2, and Trautman 2006, respectively
- ^ Wald 1984, ch. 4, Weinberg 1972, ch. 7 or, in fact, any other textbook on general relativity
- ^ At least approximately, cf. Poisson 2004a
- ^ Wheeler 1990, p. xi
- ^ Wald 1984, sec. 4.4
- ^ Wald 1984, sec. 4.1
- ^ For the (conceptual and historical) difficulties in defining a general principle of relativity and separating it from the notion of general covariance, see Giulini 2007
- ^ section 5 in ch. 12 of Weinberg 1972
- ^ Introductory chapters of Stephani et al. 2003
- ^ A review showing Einstein's equation in the broader context of other PDEs with physical significance is Geroch 1996
- ^ For background information and a list of solutions, cf. Stephani et al. 2003; a more recent review can be found in MacCallum 2006
- ^ Chandrasekhar 1983, ch. 3,5,6
- ^ Narlikar 1993, ch. 4, sec. 3.3
- ^ Brief descriptions of these and further interesting solutions can be found in Hawking & Ellis 1973, ch. 5
- ^ Lehner 2002
- ^ For instance Wald 1984, sec. 4.4
- ^ Will 1993, sec. 4.1 and 4.2
- ^ Will 2006, sec. 3.2, Will 1993, ch. 4
- ^ Rindler 2001, pp. 24–26 vs. pp. 236–237 and Ohanian & Ruffini 1994, pp. 164–172. Einstein derived these effects using the equivalence principle as early as 1907, cf. Einstein 1907 and the description in Pais 1982, pp. 196–198
- ^ Rindler 2001, pp. 24–26; Misner, Thorne & Wheeler 1973, § 38.5
- ^ Pound–Rebka experiment, see Pound & Rebka 1959, Pound & Rebka 1960; Pound & Snider 1964; a list of further experiments is given in Ohanian & Ruffini 1994, table 4.1 on p. 186
- ^ Greenstein, Oke & Shipman 1971; the most recent and most accurate Sirius B measurements are published in Barstow, Bond et al. 2005.
- ^ Starting with the Hafele–Keating experiment, Hafele & Keating 1972a and Hafele & Keating 1972b, and culminating in the Gravity Probe A experiment; an overview of experiments can be found in Ohanian & Ruffini 1994, table 4.1 on p. 186
- ^ GPS is continually tested by comparing atomic clocks on the ground and aboard orbiting satellites; for an account of relativistic effects, see Ashby 2002 and Ashby 2003
- ^ Stairs 2003 and Kramer 2004
- ^ General overviews can be found in section 2.1. of Will 2006; Will 2003, pp. 32–36; Ohanian & Ruffini 1994, sec. 4.2
- ^ Ohanian & Ruffini 1994, pp. 164–172
- ^ Cf. Kennefick 2005 for the classic early measurements by Arthur Eddington's expeditions. For an overview of more recent measurements, see Ohanian & Ruffini 1994, ch. 4.3. For the most precise direct modern observations using quasars, cf. Shapiro et al. 2004
- ^ This is not an independent axiom; it can be derived from Einstein's equations and the Maxwell Lagrangian using a WKB approximation, cf. Ehlers 1973, sec. 5
- ^ Blanchet 2006, sec. 1.3
- ^ Rindler 2001, sec. 1.16; for the historical examples, Israel 1987, pp. 202–204; in fact, Einstein published one such derivation as Einstein 1907. Such calculations tacitly assume that the geometry of space is Euclidean, cf. Ehlers & Rindler 1997
- ^ From the standpoint of Einstein's theory, these derivations take into account the effect of gravity on time, but not its consequences for the warping of space, cf. Rindler 2001, sec. 11.11
- ^ For the Sun's gravitational field using radar signals reflected from planets such as Venus and Mercury, cf. Shapiro 1964, Weinberg 1972, ch. 8, sec. 7; for signals actively sent back by space probes (transponder measurements), cf. Bertotti, Iess & Tortora 2003; for an overview, see Ohanian & Ruffini 1994, table 4.4 on p. 200; for more recent measurements using signals received from a pulsar that is part of a binary system, the gravitational field causing the time delay being that of the other pulsar, cf. Stairs 2003, sec. 4.4
- ^ Will 1993, sec. 7.1 and 7.2
- ^ Einstein, A (22 June 1916). "Näherungsweise Integration der Feldgleichungen der Gravitation". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (part 1): 688–696. Bibcode:1916SPAW.......688E. Archived from the original on 21 March 2019. Retrieved 12 February 2016.
- ^ Einstein, A (31 January 1918). "Über Gravitationswellen". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (part 1): 154–167. Bibcode:1918SPAW.......154E. Archived from the original on 21 March 2019. Retrieved 12 February 2016.
- ^ Jump up to: a b Castelvecchi, Davide; Witze, Witze (11 February 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361. S2CID 182916902. Retrieved 11 February 2016.
- ^ Jump up to: a b B. P. Abbott; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
- ^ Jump up to: a b c "Gravitational waves detected 100 years after Einstein's prediction". NSF – National Science Foundation. 11 February 2016.
- ^ Most advanced textbooks on general relativity contain a description of these properties, e.g. Schutz 1985, ch. 9
- ^ For example Jaranowski & Królak 2005
- ^ Rindler 2001, ch. 13
- ^ Gowdy 1971, Gowdy 1974
- ^ See Lehner 2002 for a brief introduction to the methods of numerical relativity, and Seidel 1998 for the connection with gravitational wave astronomy
- ^ Schutz 2003, pp. 48–49, Pais 1982, pp. 253–254
- ^ Rindler 2001, sec. 11.9
- ^ Will 1993, pp. 177–181
- ^ In consequence, in the parameterized post-Newtonian formalism (PPN), measurements of this effect determine a linear combination of the terms β and γ, cf. Will 2006, sec. 3.5 and Will 1993, sec. 7.3
- ^ The most precise measurements are VLBI measurements of planetary positions; see Will 1993, ch. 5, Will 2006, sec. 3.5, Anderson et al. 1992; for an overview, Ohanian & Ruffini 1994, pp. 406–407
- ^ Kramer et al. 2006
- ^ Dediu, Magdalena & Martín-Vide 2015, p. 141.
- ^ Jump up to: a b Kramer, M.; Stairs, I. H.; Manchester, R. N.; Wex, N.; Deller, A. T.; Coles, W. A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; Damour, T. (13 December 2021). "Strong-Field Gravity Tests with the Double Pulsar". Physical Review X. 11 (4): 041050. arXiv:2112.06795. Bibcode:2021PhRvX..11d1050K. doi:10.1103/PhysRevX.11.041050. ISSN 2160-3308. S2CID 245124502.
- ^ Stairs 2003, Schutz 2003, pp. 317–321, Bartusiak 2000, pp. 70–86
- ^ Weisberg & Taylor 2003; for the pulsar discovery, see Hulse & Taylor 1975; for the initial evidence for gravitational radiation, see Taylor 1994
- ^ Kramer 2004
- ^ Penrose 2004, § 14.5, Misner, Thorne & Wheeler 1973, § 11.4
- ^ Weinberg 1972, sec. 9.6, Ohanian & Ruffini 1994, sec. 7.8
- ^ Bertotti, Ciufolini & Bender 1987, Nordtvedt 2003
- ^ Kahn 2007
- ^ A mission description can be found in Everitt et al. 2001; a first post-flight evaluation is given in Everitt, Parkinson & Kahn 2007; further updates will be available on the mission website Kahn 1996–2012.
- ^ Townsend 1997, sec. 4.2.1, Ohanian & Ruffini 1994, pp. 469–471
- ^ Ohanian & Ruffini 1994, sec. 4.7, Weinberg 1972, sec. 9.7; for a more recent review, see Schäfer 2004
- ^ Ciufolini & Pavlis 2004, Ciufolini, Pavlis & Peron 2006, Iorio 2009
- ^ Iorio 2006, Iorio 2010
- ^ For overviews of gravitational lensing and its applications, see Ehlers, Falco & Schneider 1992 and Wambsganss 1998
- ^ For a simple derivation, see Schutz 2003, ch. 23; cf. Narayan & Bartelmann 1997, sec. 3
- ^ Walsh, Carswell & Weymann 1979
- ^ Images of all the known lenses can be found on the pages of the CASTLES project, Kochanek et al. 2007
- ^ Roulet & Mollerach 1997
- ^ Narayan & Bartelmann 1997, sec. 3.7
- ^ Barish 2005, Bartusiak 2000, Blair & McNamara 1997
- ^ Hough & Rowan 2000
- ^ Hobbs, George; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; et al. (2010), "The international pulsar timing array project: using pulsars as a gravitational wave detector", Classical and Quantum Gravity, 27 (8): 084013, arXiv:0911.5206, Bibcode:2010CQGra..27h4013H, doi:10.1088/0264-9381/27/8/084013, S2CID 56073764
- ^ Danzmann & Rüdiger 2003
- ^ "LISA pathfinder overview". ESA. Retrieved 23 April 2012.
- ^ Thorne 1995
- ^ Cutler & Thorne 2002
- ^ Miller 2002, lectures 19 and 21
- ^ Celotti, Miller & Sciama 1999, sec. 3
- ^ Springel et al. 2005 and the accompanying summary Gnedin 2005
- ^ Blandford 1987, sec. 8.2.4
- ^ For the basic mechanism, see Carroll & Ostlie 1996, sec. 17.2; for more about the different types of astronomical objects associated with this, cf. Robson 1996
- ^ For a review, see Begelman, Blandford & Rees 1984. To a distant observer, some of these jets even appear to move faster than light; this, however, can be explained as an optical illusion that does not violate the tenets of relativity, see Rees 1966
- ^ For stellar end states, cf. Oppenheimer & Snyder 1939 or, for more recent numerical work, Font 2003, sec. 4.1; for supernovae, there are still major problems to be solved, cf. Buras et al. 2003; for simulating accretion and the formation of jets, cf. Font 2003, sec. 4.2. Also, relativistic lensing effects are thought to play a role for the signals received from X-ray pulsars, cf. Kraus 1998
- ^ The evidence includes limits on compactness from the observation of accretion-driven phenomena ("Eddington luminosity"), see Celotti, Miller & Sciama 1999, observations of stellar dynamics in the center of our own Milky Way galaxy, cf. Schödel et al. 2003, and indications that at least some of the compact objects in question appear to have no solid surface, which can be deduced from the examination of X-ray bursts for which the central compact object is either a neutron star or a black hole; cf. Remillard et al. 2006 for an overview, Narayan 2006, sec. 5. Observations of the "shadow" of the Milky Way galaxy's central black hole horizon are eagerly sought for, cf. Falcke, Melia & Agol 2000
- ^ Dalal et al. 2006
- ^ Barack & Cutler 2004
- ^ Einstein 1917; cf. Pais 1982, pp. 285–288
- ^ Carroll 2001, ch. 2
- ^ Bergström & Goobar 2003, ch. 9–11; use of these models is justified by the fact that, at large scales of around hundred million light-years and more, our own universe indeed appears to be isotropic and homogeneous, cf. Peebles et al. 1991
- ^ E.g. with WMAP data, see Spergel et al. 2003
- ^ These tests involve the separate observations detailed further on, see, e.g., fig. 2 in Bridle et al. 2003
- ^ Peebles 1966; for a recent account of predictions, see Coc, Vangioni‐Flam et al. 2004; an accessible account can be found in Weiss 2006; compare with the observations in Olive & Skillman 2004, Bania, Rood & Balser 2002, O'Meara et al. 2001, and Charbonnel & Primas 2005
- ^ Lahav & Suto 2004, Bertschinger 1998, Springel et al. 2005
- ^ Alpher & Herman 1948, for a pedagogical introduction, see Bergström & Goobar 2003, ch. 11; for the initial detection, see Penzias & Wilson 1965 and, for precision measurements by satellite observatories, Mather et al. 1994 (COBE) and Bennett et al. 2003 (WMAP). Future measurements could also reveal evidence about gravitational waves in the early universe; this additional information is contained in the background radiation's polarization, cf. Kamionkowski, Kosowsky & Stebbins 1997 and Seljak & Zaldarriaga 1997
- ^ Evidence for this comes from the determination of cosmological parameters and additional observations involving the dynamics of galaxies and galaxy clusters cf. Peebles 1993, ch. 18, evidence from gravitational lensing, cf. Peacock 1999, sec. 4.6, and simulations of large-scale structure formation, see Springel et al. 2005
- ^ Peacock 1999, ch. 12, Peskin 2007; in particular, observations indicate that all but a negligible portion of that matter is not in the form of the usual elementary particles ("non-baryonic matter"), cf. Peacock 1999, ch. 12
- ^ Namely, some physicists have questioned whether or not the evidence for dark matter is, in fact, evidence for deviations from the Einsteinian (and the Newtonian) description of gravity cf. the overview in Mannheim 2006, sec. 9
- ^ Carroll 2001; an accessible overview is given in Caldwell 2004. Here, too, scientists have argued that the evidence indicates not a new form of energy, but the need for modifications in our cosmological models, cf. Mannheim 2006, sec. 10; aforementioned modifications need not be modifications of general relativity, they could, for example, be modifications in the way we treat the inhomogeneities in the universe, cf. Buchert 2008
- ^ A good introduction is Linde 2005; for a more recent review, see Linde 2006
- ^ More precisely, these are the flatness problem, the horizon problem, and the monopole problem; a pedagogical introduction can be found in Narlikar 1993, sec. 6.4, see also Börner 1993, sec. 9.1
- ^ Spergel et al. 2007, sec. 5,6
- ^ More concretely, the potential function that is crucial to determining the dynamics of the inflaton is simply postulated, but not derived from an underlying physical theory
- ^ Brandenberger 2008, sec. 2
- ^ Gödel 1949
- ^ Finazzi, Stefano; Liberati, Stefano; Barceló, Carlos (15 June 2009). "Semiclassical instability of dynamical warp drives". Physical Review D. 79 (12): 124017. arXiv:0904.0141. Bibcode:2009PhRvD..79l4017F. doi:10.1103/PhysRevD.79.124017. S2CID 59575856.
- ^ Bondi, H.; Van der Burg, M.G.J.; Metzner, A. (1962). "Gravitational waves in general relativity: VII. Waves from axisymmetric isolated systems". Proceedings of the Royal Society of London A. A269 (1336): 21–52. Bibcode:1962RSPSA.269...21B. doi:10.1098/rspa.1962.0161. S2CID 120125096.
- ^ Sachs, R. (1962). "Asymptotic symmetries in gravitational theory". Physical Review. 128 (6): 2851–2864. Bibcode:1962PhRv..128.2851S. doi:10.1103/PhysRev.128.2851.
- ^ Strominger, Andrew (2017). "Lectures on the Infrared Structure of Gravity and Gauge Theory". arXiv:1703.05448 [hep-th].
...redacted transcript of a course given by the author at Harvard in spring semester 2016. It contains a pedagogical overview of recent developments connecting the subjects of soft theorems, the memory effect and asymptotic symmetries in four-dimensional QED, nonabelian gauge theory and gravity with applications to black holes. To be published Princeton University Press, 158 pages.
- ^ Frauendiener 2004, Wald 1984, sec. 11.1, Hawking & Ellis 1973, sec. 6.8, 6.9
- ^ Wald 1984, sec. 9.2–9.4 and Hawking & Ellis 1973, ch. 6
- ^ Thorne 1972; for more recent numerical studies, see Berger 2002, sec. 2.1
- ^ Israel 1987. A more exact mathematical description distinguishes several kinds of horizon, notably event horizons and apparent horizons cf. Hawking & Ellis 1973, pp. 312–320 or Wald 1984, sec. 12.2; there are also more intuitive definitions for isolated systems that do not require knowledge of spacetime properties at infinity, cf. Ashtekar & Krishnan 2004
- ^ For first steps, cf. Israel 1971; see Hawking & Ellis 1973, sec. 9.3 or Heusler 1996, ch. 9 and 10 for a derivation, and Heusler 1998 as well as Beig & Chruściel 2006 as overviews of more recent results
- ^ The laws of black hole mechanics were first described in Bardeen, Carter & Hawking 1973; a more pedagogical presentation can be found in Carter 1979; for a more recent review, see Wald 2001, ch. 2. A thorough, book-length introduction including an introduction to the necessary mathematics Poisson 2004. For the Penrose process, see Penrose 1969
- ^ Bekenstein 1973, Bekenstein 1974
- ^ The fact that black holes radiate, quantum mechanically, was first derived in Hawking 1975; a more thorough derivation can be found in Wald 1975. A review is given in Wald 2001, ch. 3
- ^ Narlikar 1993, sec. 4.4.4, 4.4.5
- ^ Horizons: cf. Rindler 2001, sec. 12.4. Unruh effect: Unruh 1976, cf. Wald 2001, ch. 3
- ^ Hawking & Ellis 1973, sec. 8.1, Wald 1984, sec. 9.1
- ^ Townsend 1997, ch. 2; a more extensive treatment of this solution can be found in Chandrasekhar 1983, ch. 3
- ^ Townsend 1997, ch. 4; for a more extensive treatment, cf. Chandrasekhar 1983, ch. 6
- ^ Ellis & Van Elst 1999; a closer look at the singularity itself is taken in Börner 1993, sec. 1.2
- ^ Here one should remind to the well-known fact that the important "quasi-optical" singularities of the so-called eikonal approximations of many wave equations, namely the "caustics", are resolved into finite peaks beyond that approximation.
- ^ Namely when there are trapped null surfaces, cf. Penrose 1965
- ^ Hawking 1966
- ^ The conjecture was made in Belinskii, Khalatnikov & Lifschitz 1971; for a more recent review, see Berger 2002. An accessible exposition is given by Garfinkle 2007
- ^ The restriction to future singularities naturally excludes initial singularities such as the big bang singularity, which in principle be visible to observers at later cosmic time. The cosmic censorship conjecture was first presented in Penrose 1969; a textbook-level account is given in Wald 1984, pp. 302–305. For numerical results, see the review Berger 2002, sec. 2.1
- ^ Hawking & Ellis 1973, sec. 7.1
- ^ Arnowitt, Deser & Misner 1962; for a pedagogical introduction, see Misner, Thorne & Wheeler 1973, § 21.4–§ 21.7
- ^ Fourès-Bruhat 1952 and Bruhat 1962; for a pedagogical introduction, see Wald 1984, ch. 10; an online review can be found in Reula 1998
- ^ Gourgoulhon 2007; for a review of the basics of numerical relativity, including the problems arising from the peculiarities of Einstein's equations, see Lehner 2001
- ^ Misner, Thorne & Wheeler 1973, § 20.4
- ^ Arnowitt, Deser & Misner 1962
- ^ Komar 1959; for a pedagogical introduction, see Wald 1984, sec. 11.2; although defined in a totally different way, it can be shown to be equivalent to the ADM mass for stationary spacetimes, cf. Ashtekar & Magnon-Ashtekar 1979
- ^ For a pedagogical introduction, see Wald 1984, sec. 11.2
- ^ Wald 1984, p. 295 and refs therein; this is important for questions of stability—if there were negative mass states, then flat, empty Minkowski space, which has mass zero, could evolve into these states
- ^ Townsend 1997, ch. 5
- ^ Such quasi-local mass–energy definitions are the Hawking energy, Geroch energy, or Penrose's quasi-local energy–momentum based on twistor methods; cf. the review article Szabados 2004
- ^ An overview of quantum theory can be found in standard textbooks such as Messiah 1999; a more elementary account is given in Hey & Walters 2003
- ^ Ramond 1990, Weinberg 1995, Peskin & Schroeder 1995; a more accessible overview is Auyang 1995
- ^ Wald 1994, Birrell & Davies 1984
- ^ For Hawking radiation Hawking 1975, Wald 1975; an accessible introduction to black hole evaporation can be found in Traschen 2000
- ^ Wald 2001, ch. 3
- ^ Put simply, matter is the source of spacetime curvature, and once matter has quantum properties, we can expect spacetime to have them as well. Cf. Carlip 2001, sec. 2
- ^ Schutz 2003, p. 407
- ^ Jump up to: a b Hamber 2009
- ^ A timeline and overview can be found in Rovelli 2000
- ^ 't Hooft & Veltman 1974
- ^ Donoghue 1995
- ^ In particular, a perturbative technique known as renormalization, an integral part of deriving predictions which take into account higher-energy contributions, cf. Weinberg 1996, ch. 17, 18, fails in this case; cf. Veltman 1975, Goroff & Sagnotti 1985; for a recent comprehensive review of the failure of perturbative renormalizability for quantum gravity see Hamber 2009
- ^ An accessible introduction at the undergraduate level can be found in Zwiebach 2004; more complete overviews can be found in Polchinski 1998a and Polchinski 1998b
- ^ At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges, e.g. Ibanez 2000. The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity, e.g. Green, Schwarz & Witten 1987, sec. 2.3, 5.3
- ^ Green, Schwarz & Witten 1987, sec. 4.2
- ^ Weinberg 2000, ch. 31
- ^ Townsend 1996, Duff 1996
- ^ Kuchař 1973, sec. 3
- ^ These variables represent geometric gravity using mathematical analogues of electric and magnetic fields; cf. Ashtekar 1986, Ashtekar 1987
- ^ For a review, see Thiemann 2007; more extensive accounts can be found in Rovelli 1998, Ashtekar & Lewandowski 2004 as well as in the lecture notes Thiemann 2003
- ^ Isham 1994, Sorkin 1997
- ^ Loll 1998
- ^ Sorkin 2005
- ^ Penrose 2004, ch. 33 and refs therein
- ^ Hawking 1987
- ^ Аштекар 2007 , Шварц 2007
- ^ Мэддокс 1998 , стр. 52–59, 98–122; Пенроуз 2004 , с. 34.1, гл. 30
- ^ раздел Квантовая гравитация , выше
- ^ раздел «Космология » выше.
- ^ Фридрих 2005 г.
- ^ Обзор различных проблем и методов, разрабатываемых для их решения, см. Lehner 2002.
- ^ См в Bartusiak 2000 . отчет до этого года ; самые свежие новости можно найти на веб-сайтах крупнейших коллабораций детекторов, таких как GEO600 и LIGO.
- ^ Самые последние статьи о поляризации гравитационных волн спирализующихся компактных двойных систем см. Blanchet et al. 2008 г. , и Арун и др. 2008 год ; обзор работ по компактным двоичным системам см. в Blanchet 2006 и Futamase & Itoh 2006 ; общий обзор экспериментальных проверок общей теории относительности см. в Will 2006.
- ^ См., например, журнал «Живые обзоры в относительности» .
Библиография
[ редактировать ]- Альфер, РА ; Герман, Р.К. (1948), «Эволюция Вселенной», Nature , 162 (4124): 774–775, Бибкод : 1948Natur.162..774A , doi : 10.1038/162774b0 , S2CID 4113488
- Андерсон, доктор медицинских наук; Кэмпбелл, Дж. К.; Юргенс, РФ; Лау, Э.Л. (1992), «Последние разработки в области испытаний общей теории относительности на Солнечной системе», Сато, Х.; Накамура, Т. (ред.), Труды шестого совещания Марселя Гроссмана по общей теории относительности , World Scientific, стр. 353–355, ISBN 978-981-02-0950-6
- Арнольд, VI (1989), Математические методы классической механики , Springer, ISBN 978-3-540-96890-0
- Арновитт, Ричард ; Дезер, Стэнли ; Миснер, Чарльз В. (1962), «Динамика общей теории относительности», в Виттене, Луи (редактор), Гравитация: введение в текущие исследования , Уайли, стр. 227–265.
- Арун, КГ; Бланше, Л.; Айер, БР; Кусайла, MSS (2008), «Вдохновляющие компактные двойные системы на квазиэллиптических орбитах: полный поток энергии 3PN», Physical Review D , 77 (6): 064035, arXiv : 0711.0302 , Bibcode : 2008PhRvD..77f4035A , doi : 10.1103/ ФизРевД.77.064035 , S2CID 55825202
- Эшби, Нил (2002), «Относительность и система глобального позиционирования» (PDF) , Physics Today , 55 (5): 41–47, Бибкод : 2002PhT....55e..41A , doi : 10.1063/1.1485583
- Эшби, Нил (2003), «Относительность в системе глобального позиционирования», Living Reviews in Relativity , 6 (1): 1, Bibcode : 2003LRR.....6....1A , doi : 10.12942/lrr-2003 -1 , ПМК 5253894 , ПМИД 28163638
- Аштекар, Абхай (1986), «Новые переменные для классической и квантовой гравитации», Phys. Преподобный Летт. , 57 (18): 2244–2247, Bibcode : 1986PhRvL..57.2244A , doi : 10.1103/PhysRevLett.57.2244 , PMID 10033673
- Аштекар, Абхай (1987), «Новая гамильтонова формулировка общей теории относительности», Phys. Rev. , D36 (6): 1587–1602, Bibcode : 1987PhRvD..36.1587A , doi : 10.1103/PhysRevD.36.1587 , PMID 9958340
- Аштекар, Абхай (2007), «Петлевая квантовая гравитация: четыре последних достижения и дюжина часто задаваемых вопросов», Одиннадцатая встреча Марселя Гроссмана - о последних разработках в теоретической и экспериментальной общей теории относительности, гравитации и релятивистских теориях поля - Материалы встречи MG11 по общей теории относительности : 126, arXiv : 0705.2222 , Bibcode : 2008mgm..conf..126A , doi : 10.1142/9789812834300_0008 , ISBN 978-981-283-426-3 , S2CID 119663169
- Аштекар, Абхай; Кришнан, Бадри (2004), «Изолированные и динамические горизонты и их приложения», Living Reviews in Relativity , 7 (1): 10, arXiv : gr-qc/0407042 , Bibcode : 2004LRR.....7...10A , doi : 10.12942/lrr-2004-10 , PMC 5253930 , PMID 28163644
- Аштекар, Абхай; Левандовски, Ежи (2004), «Фоновая независимая квантовая гравитация: отчет о состоянии», класс. Квантовая гравитация. , 21 (15): R53–R152, arXiv : gr-qc/0404018 , Bibcode : 2004CQGra..21R..53A , doi : 10.1088/0264-9381/21/15/R01 , S2CID 119175535
- Аштекар, Абхай; Магнон-Аштекар, Энн (1979), «О сохраняющихся величинах в общей теории относительности», Journal of Mathematical Physics , 20 (5): 793–800, Бибкод : 1979JMP....20..793A , doi : 10.1063/1.524151
- Ауян, Санни Ю. (1995), Как возможна квантовая теория поля? , Издательство Оксфордского университета, ISBN 978-0-19-509345-2
- Баня, ТМ; Руд, RT; Бальзер, Д.С. (2002), «Космологическая плотность барионов по наблюдениям 3He+ в Млечном Пути», Nature , 415 (6867): 54–57, Бибкод : 2002Natur.415...54B , doi : 10.1038/415054a , ПМИД 11780112 , С2КИД 4303625
- Барак, Леор; Катлер, Курт (2004), «Источники захвата LISA: приблизительные формы сигналов, отношение сигнал/шум и точность оценки параметров», Phys. Rev. , D69 (8): 082005, arXiv : gr-qc/0310125 , Bibcode : 2004PhRvD..69h2005B , doi : 10.1103/PhysRevD.69.082005 , S2CID 21565397
- Бардин, Дж. М. ; Картер, Б .; Хокинг, SW (1973), «Четыре закона механики черных дыр» , Comm. Математика. Физ. , 31 (2): 161–170, Bibcode : 1973CMaPh..31..161B , doi : 10.1007/BF01645742 , S2CID 54690354
- Бариш, Барри (2005), «На пути к обнаружению гравитационных волн», Флоридес, П.; Нолан, Б.; Оттевил А. (ред.), Общая теория относительности и гравитация. Материалы 17-й Международной конференции , World Scientific, стр. 24–34, Bibcode : 2005grg..conf.....F , ISBN 978-981-256-424-5
- Барстоу, М.; Бонд, Ховард Э.; Хольберг, Дж.Б.; Берли, MR; Хубени, И.; Кестер, Д. (2005), «Спектроскопия бальмеровских линий на Сириусе Б космическим телескопом Хаббл», Mon. Нет. Р. Астрон. Соц. , 362 (4): 1134–1142, arXiv : astro-ph/0506600 , Bibcode : 2005MNRAS.362.1134B , doi : 10.1111/j.1365-2966.2005.09359.x , S2CID 4607496
- Бартусяк, Марсия (2000), Неоконченная симфония Эйнштейна: слушая звуки пространства-времени , Беркли, ISBN 978-0-425-18620-6
- Бегельман, Митчелл С.; Бландфорд, Роджер Д .; Рис, Мартин Дж. (1984), «Теория внегалактических радиоисточников», Rev. Mod. Физ. , 56 (2): 255–351, Bibcode : 1984RvMP...56..255B , doi : 10.1103/RevModPhys.56.255
- Бейг, Роберт; Хрушель, Петр Т. (2006), «Стационарные черные дыры», Франсуаза, Ж.-П.; Набер, Г.; Цоу, Т.С. (ред.), Энциклопедия математической физики, том 2 , Elsevier, стр. 2041, arXiv : gr-qc/0502041 , Bibcode : 2005gr.qc.....2041B , ISBN 978-0-12-512660-1
- Бекенштейн, Джейкоб Д. (1973), «Черные дыры и энтропия», Phys. Rev. , D7 (8): 2333–2346, Bibcode : 1973PhRvD...7.2333B , doi : 10.1103/PhysRevD.7.2333 , S2CID 122636624
- Бекенштейн, Джейкоб Д. (1974), «Обобщенный второй закон термодинамики в физике черных дыр», Phys. Rev. , D9 (12): 3292–3300, Bibcode : 1974PhRvD...9.3292B , doi : 10.1103/PhysRevD.9.3292 , S2CID 123043135
- Белинский, В.А.; Халатников И.М. ; Лифшиц, Э.М. (1971), «Колебательный подход к особой точке в релятивистской космологии», Advances in Physics , 19 (80): 525–573, Bibcode : 1970AdPhy..19..525B , doi : 10.1080/00018737000101171 ; оригинал статьи на русском языке: Belinsky, V. A.; Lifshits, I. M.; Khalatnikov, E. M. (1970), "Колебательный Режим Приближения К Особой Точке В Релятивистской Космологии", Uspekhi Fizicheskikh Nauk , 102 (11): 463–500, Bibcode : 1970UsFiN.102..463B , doi : 10.3367/ufnr.0102.197011d.0463
- Беннетт, CL; Халперн, М.; Хиншоу, Г.; Ярошик, Н.; Когут, А.; Лимон, М.; Мейер, СС; Пейдж, Л.; и др. (2003), «Наблюдения первого года обучения с помощью микроволнового зонда анизотропии Уилкинсона (WMAP): предварительные карты и основные результаты», Astrophys. J. Приложение. Сер. , 148 (1): 1–27, arXiv : astro-ph/0302207 , Bibcode : 2003ApJS..148....1B , doi : 10.1086/377253 , S2CID 115601
- Бергер, Беверли К. (2002), «Численные подходы к особенностям пространства-времени», Living Reviews in Relativity , 5 (1): 1, arXiv : gr-qc/0201056 , Bibcode : 2002LRR.....5.... 1B , doi : 10.12942/lrr-2002-1 , PMC 5256073 , PMID 28179859
- Бергстрем, Ларс; Губар, Ариэль (2003), Космология и астрофизика элементарных частиц (2-е изд.), Wiley & Sons, ISBN 978-3-540-43128-2
- Бертотти, Бруно ; Чуфолини, Игнацио; Бендер, Питер Л. (1987), «Новый тест общей теории относительности: измерение скорости геодезической прецессии де Ситтера для перигея Луны», Physical Review Letters , 58 (11): 1062–1065, Бибкод : 1987PhRvL..58.1062B , doi : 10.1103/PhysRevLett.58.1062 , PMID 10034329
- Бертотти, Бруно; Иесс, Л.; Тортора, П. (2003), «Испытание общей теории относительности с использованием радиосвязи с космическим кораблем Кассини», Nature , 425 (6956): 374–376, Бибкод : 2003Natur.425..374B , doi : 10.1038/nature01997 , PMID 14508481 , S2CID 4337125
- Берчингер, Эдмунд (1998), «Моделирование формирования структур во Вселенной», Annu. Преподобный Астрон. Астрофиз. , 36 (1): 599–654, Бибкод : 1998ARA&A..36..599B , doi : 10.1146/annurev.astro.36.1.599
- Биррелл, Северная Дакота; Дэвис, ПК (1984), Квантовые поля в искривленном пространстве , издательство Кембриджского университета, ISBN 978-0-521-27858-4
- Блэр, Дэвид ; Макнамара, Джефф (1997), Рябь на космическом море. В поисках гравитационных волн , Персей, ISBN 978-0-7382-0137-5
- Бланше, Л.; Фэй, Г.; Айер, БР; Синха, С. (2008), «Третья постньютоновская поляризация гравитационных волн и связанные с ней сферические гармонические моды для спирали компактных двойных систем на квазикруговых орбитах», Classical and Quantum Gravity , 25 (16): 165003, arXiv : 0802.1249 , Bibcode : 2008CQGra..25p5003B , doi : 10.1088/0264-9381/25/16/165003 , S2CID 54608927
- Бланше, Люк (2006), «Гравитационное излучение от постньютоновских источников и вдохновляющие компактные двойные системы», Living Reviews in Relativity , 9 (1): 4, Bibcode : 2006LRR.....9....4B , doi : 10.12942/lrr-2006-4 , PMC 5255899 , PMID 28179874
- Бландфорд, Р.Д. (1987), «Астрофизические черные дыры», Хокинг, Стивен В.; Израиль, Вернер (ред.), 300 лет гравитации , Cambridge University Press, стр. 277–329, ISBN. 978-0-521-37976-2
- Бёрнер, Герхард (1993), Ранняя Вселенная. Факты и вымысел , Springer, ISBN 978-0-387-56729-7
- Бранденбергер, Роберт Х. (2008), «Концептуальные проблемы инфляционной космологии и новый подход к формированию космологических структур», Лемуан, Мартин; Мартин, Джером; Питер, Патрик (ред.), Инфляционная космология , Конспект лекций по физике, том. 738, стр. 393–424, arXiv : hep-th/0701111 , Bibcode : 2007LNP...738..393B , doi : 10.1007/978-3-540-74353-8_11 , ISBN 978-3-540-74352-1 , S2CID 18752698
- Бранс, Швейцария ; Дике, Р.Х. (1961), «Принцип Маха и релятивистская теория гравитации», Physical Review , 124 (3): 925–935, Бибкод : 1961PhRv..124..925B , doi : 10.1103/PhysRev.124.925
- Уздечка, Сара Л.; Лахав, Офер; Острайкер, Джеремия П .; Стейнхардт, Пол Дж. (2003), «Точная космология? Еще не все», Science , 299 (5612): 1532–1533, arXiv : astro-ph/0303180 , Bibcode : 2003Sci...299.1532B , doi : 10.1126/ science.1082158 , PMID 12624255 , S2CID 119368762
- Брюа, Ивонн (1962), «Проблема Коши», в Виттене, Луи (ред.), Гравитация: введение в текущие исследования , Wiley, стр. 130, ISBN 978-1-114-29166-9
- Бушерт, Томас (2008), «Темная энергия структуры — отчет о состоянии», Общая теория относительности и гравитации , 40 (2–3): 467–527, arXiv : 0707.2153 , Bibcode : 2008GReGr..40..467B , doi : 10.1007/s10714-007-0554-8 , S2CID 17281664
- Бурас, Р.; Рампп, М.; Янка, Х.-Т.; Кифонидис, К. (2003), «Улучшенные модели коллапса звездного ядра и все еще отсутствие взрывов: чего не хватает?», Phys. Преподобный Летт. , 90 (24): 241101, arxiv : Astro-ph/0303171 , Bibcode : 2003phrvl..90x1101b , doi : 10.1103/physrevlett.90.241101 , PMID 12857181 , S2CID 27632148
- Колдуэлл, Роберт Р. (2004), «Темная энергия», Physics World , 17 (5): 37–42, doi : 10.1088/2058-7058/17/5/36
- Карлип, Стивен (2001), «Квантовая гравитация: отчет о прогрессе», Rep. Prog. Физ. , 64 (8): 885–942, arXiv : gr-qc/0108040 , Bibcode : 2001RPPh...64..885C , doi : 10.1088/0034-4885/64/8/301 , S2CID 118923209
- Кэрролл, Брэдли В.; Остли, Дейл А. (1996), Введение в современную астрофизику , Аддисон-Уэсли, ISBN 978-0-201-54730-6
- Кэрролл, Шон М. (2001), «Космологическая константа», « Живые обзоры относительно относительности » , 4 (1): 1, arXiv : astro-ph/0004075 , Bibcode : 2001LRR.....4....1C , doi : 10.12942/lrr-2001-1 , PMC 5256042 , PMID 28179856
- Картер, Брэндон (1979), «Общая теория механических, электромагнитных и термодинамических свойств черных дыр», в Хокинге, SW; Израиль, В. (ред.), Общая теория относительности, обзор столетия Эйнштейна , Cambridge University Press, стр. 294–369 и 860–863, ISBN. 978-0-521-29928-2
- Челотти, Анналиса; Миллер, Джон К.; Скиама, Деннис В. (1999), «Астрофизические доказательства существования черных дыр», Класс. Квантовая гравитация. , 16 (12A): A3–A21, arXiv : astro-ph/9912186 , Bibcode : 1999CQGra..16A...3C , doi : 10.1088/0264-9381/16/12A/301 , S2CID 17677758
- Чандрасекар, Субраманян (1983), Математическая теория черных дыр , Нью-Йорк: Oxford University Press, ISBN 978-0-19-850370-5
- Чандрасекхар, Субрахманьян (1984), «Общая теория относительности - почему« это, вероятно, самая красивая из всех существующих теорий » », Журнал астрофизики и астрономии , 5 (1): 3–11, Bibcode : 1984JApA ... .5....3C , doi : 10.1007/BF02714967 , S2CID 120910934
- Шарбоннель, К.; Примас, Ф. (2005), «Содержание лития в звездах галактического гало», Astronomy & Astrophysicals , 442 (3): 961–992, arXiv : astro-ph/0505247 , Bibcode : 2005A&A...442..961C , doi : 10.1051/0004-6361:20042491 , S2CID 119340132
- Чуфолини, Игнацио; Павлис, Эррикос К. (2004), «Подтверждение общего релятивистского предсказания эффекта Лензе-Тирринга», Nature , 431 (7011): 958–960, Бибкод : 2004Natur.431..958C , doi : 10.1038/nature03007 , PMID 15496915 , S2CID 4423434
- Чуфолини, Игнацио; Павлис, Эррикос К.; Перон, Р. (2006), «Определение перетаскивания кадров с использованием моделей земной гравитации от CHAMP и GRACE», New Astron. , 11 (8): 527–550, Bibcode : 2006NewA...11..527C , doi : 10.1016/j.newast.2006.02.001
- Кок, А.; Ванджиони-Флам, Элизабет; Декувемон, Пьер; Адачур, Абдеррахим; Ангуло, Кармен (2004), «Обновленный нуклеосинтез Большого взрыва в сравнении с наблюдениями WMAP и изобилием легких элементов», Astrophysical Journal , 600 (2): 544–552, arXiv : astro-ph/0309480 , Bibcode : 2004ApJ.. .600..544C , doi : 10.1086/380121 , S2CID 16276658
- Катлер, Курт; Торн, Кип С. (2002), «Обзор источников гравитационных волн», Бишоп, Найджел; Махарадж, Сунил Д. (ред.), Труды 16-й Международной конференции по общей теории относительности и гравитации (GR16) , World Scientific, с. 4090, arXiv : gr-qc/0204090 , Bibcode : 2002gr.qc.....4090C , ISBN 978-981-238-171-2
- Далал, Нил; Хольц, Дэниел Э.; Хьюз, Скотт А.; Джайн, Бхувнеш (2006), «Короткие гамма-всплески и стандартные сирены бинарных черных дыр как зонд темной энергии», Phys. Rev. D , 74 (6): 063006, arXiv : astro-ph/0601275 , Bibcode : 2006PhRvD..74f3006D , doi : 10.1103/PhysRevD.74.063006 , S2CID 10008243
- Данцманн, Карстен; Рюдигер, Альбрехт (2003), «Технология LISA — концепции, статус, перспективы» (PDF) , Класс. Квантовая гравитация. , 20 (10): S1–S9, Bibcode : 2003CQGra..20S...1D , doi : 10.1088/0264-9381/20/10/301 , hdl : 11858/00-001M-0000-0013-5233-E , S2CID 250836327 , заархивировано из оригинала (PDF) 26 сентября 2007 г.
- Донохью, Джон Ф. (1995), «Введение в описание гравитации эффективной теорией поля», в Корне, Фернандо (редактор), «Эффективные теории: материалы высшей школы», Альмунекар, Испания, 26 июня – 1 июля 1995 г. , Сингапур: World Scientific, с. 12024, arXiv : gr-qc/9512024 , Bibcode : 1995gr.qc....12024D , ISBN 978-981-02-2908-5
- Дедиу, Адриан-Хориа; Магдалена, Луис; Мартин-Виде, Карлос, ред. (2015). Теория и практика естественных вычислений: Четвертая международная конференция, TPNC 2015, Мьерес, Испания, 15–16 декабря 2015 г. Труды . Спрингер. ISBN 978-3-319-26841-5 .
- Дафф, Майкл (1996), «М-теория (теория, ранее известная как струны)», Int. Дж. Мод. Физ. A , 11 (32): 5623–5641, arXiv : hep-th/9608117 , Bibcode : 1996IJMPA..11.5623D , doi : 10.1142/S0217751X96002583 , S2CID 17432791
- Элерс, Юрген (1973), «Обзор общей теории относительности», в Израиле, Вернер (редактор), «Относительность, астрофизика и космология» , Д. Рейдель, стр. 1–125, ISBN 978-90-277-0369-9
- Элерс, Юрген; Фалько, Эмилио Э.; Шнайдер, Питер (1992), Гравитационные линзы , Springer, ISBN 978-3-540-66506-9
- Элерс, Юрген; Леммерцаль, Клаус, ред. (2006), Специальная теория относительности: сохранится ли она в ближайшие 101 год? , Спрингер, ISBN 978-3-540-34522-0
- Элерс, Юрген; Риндлер, Вольфганг (1997), «Локальный и глобальный изгиб света в теориях Эйнштейна и других теориях гравитации», Общая теория относительности и гравитации , 29 (4): 519–529, Бибкод : 1997GReGr..29..519E , doi : 10.1023/A :1018843001842 , hdl : 11858/00-001M-0000-0013-5AB5-4 , S2CID 118162303
- Эйнштейн, Альберт (1907), «О принципе относительности и выводах, сделанных из него» , Ежегодник радиоактивности и электроники , 4 : 411. См. также английский перевод в Einstein Papers Project.
- Эйнштейн, Альберт (1915), «Уравнения гравитации поля» , труды Прусской академии наук в Берлине : 844–847. См. Также английский перевод в Einstein Papers Project.
- Эйнштейн, Альберт (1917), «Космологические соображения по общей теории относительности» , труды Прусской академии наук : 142. См. также английский перевод в проекте Einstein Papers Project.
- Эллис, Джордж Франция ; Ван Эльст, Хенк (1999), «Космологические модели», в Лашез-Рей, Марк (ред.), Теоретическая и наблюдательная космология , том. 541, стр. 1–116, arXiv : gr-qc/9812046 , Bibcode : 1999ASIC..541....1E , doi : 10.1007/978-94-011-4455-1_1 , ISBN 978-0-7923-5946-3 , S2CID 122994560
- Энглер, Гидеон (2002), «Эйнштейн и самые красивые теории физики», Международные исследования в области философии науки , 16 (1): 27–37, doi : 10.1080/02698590120118800 , S2CID 120160056
- Эверитт, CWF; Бухман, С.; ДеБра, Д.Б.; Кейзер, генеральный директор (2001), «Гравитационный зонд B: обратный отсчет до запуска», в Лэммерцале, К.; Эверитт, CWF; Хель, Ф.В. (ред.), Гироскопы, часы и интерферометры: проверка релятивистской гравитации в космосе (конспекты лекций по физике 562) , Springer, стр. 52–82, ISBN 978-3-540-41236-6
- Эверитт, CWF; Паркинсон, Брэдфорд; Кан, Боб (2007), Эксперимент «Гравитационный зонд B». Анализ после полета — итоговый отчет (предисловие и краткое изложение) (PDF) , отчет о проекте: НАСА, Стэнфордский университет и Lockheed Martin, заархивировано (PDF) из оригинала 9 июня 2007 г. , получено 5 августа 2007 г.
- Фальке, Хейно; Мелия, Фульвио; Агол, Эрик (2000), «Просмотр тени черной дыры в галактическом центре», Astrophysical Journal , 528 (1): L13–L16, arXiv : astro-ph/9912263 , Bibcode : 2000ApJ...528L.. 13F , doi : 10.1086/312423 , PMID 10587484 , S2CID 119433133
- Фонт, Хосе А. (2003), «Численная гидродинамика в общей теории относительности», Living Reviews in Relativity , 6 (1): 4, Bibcode : 2003LRR.....6....4F , doi : 10.12942/lrr- 2003-4 , ПМЦ 5660627 , ПМИД 29104452
- Фурес-Брюа, Ивонн (1952), «Теорема существования некоторых систем нелинейных уравнений в частных производных», Acta Mathematica , 88 (1): 141–225, Бибкод : 1952AcMa...88..141F , doi : 10.1007/BF02392131
- Фрауэндинер, Йорг (2004), «Конформная бесконечность», Living Reviews in Relativity , 7 (1): 1, Bibcode : 2004LRR.....7....1F , doi : 10.12942/lrr-2004-1 , PMC 5256109 , ПМИД 28179863
- Фридрих, Хельмут (2005), «Является ли общая теория относительности «по существу понятной»?», Annalen der Physik , 15 (1–2): 84–108, arXiv : gr-qc/0508016 , Bibcode : 2006AnP...518.. .84F , doi : 10.1002/andp.200510173 , S2CID 37236624
- Футамасе, Т.; Ито, Ю. (2006), «Постньютоновское приближение для релятивистских компактных двойных систем», Living Reviews in Relativity , 10 (1): 2, Bibcode : 2007LRR....10....2F , doi : 10.12942/ lrr-2007-2 , PMC 5255906 , PMID 28179819
- Гамов, Георгий (1970), Моя мировая линия , Viking Press, ISBN 978-0-670-50376-6
- Гарфинкл, Дэвид (2007), «О сингулярностях и хлебопечении» , Einstein Online , Институт гравитационной физики Макса Планка , заархивировано из оригинала 10 августа 2007 г. , получено 3 августа 2007 г.
- Герох, Роберт (1996). «Уравнения физики в частных производных». Общая теория относительности : 19. arXiv : gr-qc/9602055 . Бибкод : 1996gere.conf...19G .
- Джулини, Доменико (2005), Специальная теория относительности: первая встреча , Oxford University Press, ISBN 978-0-19-856746-2
- Джулини, Доменико (2006), «Алгебраические и геометрические структуры в специальной теории относительности», в Элерсе, Юргене; Лэммерзал, Клаус (ред.), Специальная теория относительности: просуществует ли она в ближайшие 101 год? , Конспект лекций по физике, вып. 702, стр. 45–111, arXiv : math-ph/0602018 , Bibcode : 2006math.ph...2018G , doi : 10.1007/3-540-34523-X_4 , ISBN 978-3-540-34522-0 , S2CID 15948765
- Джулини, Доменико (2007), «Замечания о понятиях общей ковариации и независимости от фона», в Стаматеску, И.О. (ред.), Подходы к фундаментальной физике , Конспекты лекций по физике, том. 721, стр. 105–120, arXiv : gr-qc/0603087 , Bibcode : 2007LNP...721..105G , doi : 10.1007/978-3-540-71117-9_6 , ISBN 978-3-540-71115-5 , S2CID 14772226
- Гнедин, Николай Ю. (2005), «Оцифровка Вселенной», Nature , 435 (7042): 572–573, Bibcode : 2005Natur.435..572G , doi : 10.1038/435572a , PMID 15931201 , S2CID 3023436
- Гённер, Хьюберт Ф.М. (2004), «К истории единых теорий поля», Living Reviews in Relativity , 7 (1): 2, Bibcode : 2004LRR.....7....2G , doi : 10.12942/lrr -2004-2 , ПМК 5256024 , ПМИД 28179864
- Горофф, Марк Х.; Саньотти, Аугусто (1985), «Квантовая гравитация в двух петлях», Phys. Летт. , 160Б (1–3): 81–86, Бибкод : 1985PhLB..160...81G , doi : 10.1016/0370-2693(85)91470-4
- Гургульон, Эрик (2007). «Формализм 3 + 1 и основы числовой относительности». arXiv : gr-qc/0703035 .
- Гауди, Роберт Х. (1971), «Гравитационные волны в закрытых вселенных», Phys. Преподобный Летт. , 27 (12): 826–829, Бибкод : 1971PhRvL..27..826G , doi : 10.1103/PhysRevLett.27.826
- Гауди, Роберт Х. (1974), «Вакуумное пространство-время с двухпараметрическими пространственноподобными группами изометрий и компактными инвариантными гиперповерхностями: топологии и граничные условия», Annals of Physics , 83 (1): 203–241, Bibcode : 1974AnPhy..83. .203G , doi : 10.1016/0003-4916(74)90384-4
- Грин, МБ ; Шварц, Дж. Х. ; Виттен, Э. (1987), Теория суперструн. Том 1: Введение , Издательство Кембриджского университета, ISBN 978-0-521-35752-4
- Гринштейн, Дж.Л.; Ок, Джей Би; Шипман, Х.Л. (1971), «Эффективная температура, радиус и гравитационное красное смещение Сириуса B», Astrophysical Journal , 169 : 563, Бибкод : 1971ApJ...169..563G , doi : 10.1086/151174
- Хамбер, Герберт В. (2009), Хамбер, Герберт В. (ред.), Квантовая гравитация - интегральный подход пути Фейнмана , Springer Publishing, doi : 10.1007/978-3-540-85293-3 , hdl : 11858/00- 001М-0000-0013-471Д-А , ISBN 978-3-540-85292-6
- Гёдель, Курт (1949). «Пример нового типа космологического решения уравнений поля гравитации Эйнштейна» . Преподобный Мод. Физ . 21 (3): 447–450. Бибкод : 1949РвМП...21..447Г . дои : 10.1103/RevModPhys.21.447 .
- Хафеле, JC ; Китинг, Р.Э. (14 июля 1972 г.). «Вокругсветные атомные часы: предсказанный релятивистский выигрыш во времени». Наука . 177 (4044): 166–168. Бибкод : 1972Sci...177..166H . дои : 10.1126/science.177.4044.166 . ПМИД 17779917 . S2CID 10067969 .
- Хафеле, JC ; Китинг, Р.Э. (14 июля 1972 г.). «Вокругсветные атомные часы: наблюдаемый релятивистский выигрыш во времени». Наука . 177 (4044): 168–170. Бибкод : 1972Sci...177..168H . дои : 10.1126/science.177.4044.168 . ПМИД 17779918 . S2CID 37376002 .
- Хавас, П. (1964), «Четырехмерная формулировка ньютоновской механики и их связь со специальной и общей теорией относительности», Rev. Mod. Физ. , 36 (4): 938–965, Бибкод : 1964RvMP...36..938H , doi : 10.1103/RevModPhys.36.938
- Хокинг, Стивен В. (1966), «Возникновение сингулярностей в космологии», Труды Королевского общества , A294 (1439): 511–521, Бибкод : 1966RSPSA.294..511H , doi : 10.1098/rspa.1966.0221 , JSTOR 2415489 , S2CID 120730123
- Хокинг, SW (1975), «Создание частиц черными дырами» , Communications in Mathematical Physics , 43 (3): 199–220, Bibcode : 1975CMaPh..43..199H , doi : 10.1007/BF02345020 , S2CID 55539246
- Хокинг, Стивен В. (1987), «Квантовая космология», Хокинг, Стивен В.; Израиль, Вернер (ред.), 300 лет гравитации , Cambridge University Press, стр. 631–651, ISBN. 978-0-521-37976-2
- Хокинг, Стивен В.; Эллис, Джордж Ф.Р. (1973), Крупномасштабная структура пространства-времени , Cambridge University Press, ISBN 978-0-521-09906-6
- Хекман, ОХЛ; Шюкинг, Э. (1959), «Ньютоновская и эйнштейновская космология», в Флюгге, С. (редактор), Энциклопедия физики , том. 53, с. 489
- Хейслер, Маркус (1998), «Стационарные черные дыры: уникальность и не только», Living Reviews in Relativity , 1 (1): 6, Bibcode : 1998LRR.....1....6H , doi : 10.12942/lrr- 1998-6 , ПМЦ 5567259 , ПМИД 28937184
- Хойслер, Маркус (1996), Теоремы уникальности черной дыры , издательство Кембриджского университета, ISBN 978-0-521-56735-0
- Привет, Тони; Уолтерс, Патрик (2003), Новая квантовая вселенная , Cambridge University Press, Bibcode : 2003nqu..book.....H , ISBN 978-0-521-56457-1
- Хаф, Джим; Роуэн, Шейла (2000), «Обнаружение гравитационных волн с помощью интерферометрии (Земля и космос)», Living Reviews in Relativity , 3 (1): 3, Бибкод : 2000LRR.....3....3R , doi : 10.12942 /lrr-2000-3 , PMC 5255574 , PMID 28179855
- Хаббл, Эдвин (1929), «Связь между расстоянием и лучевой скоростью среди внегалактических туманностей», Proc. Натл. акад. наук. , 15 (3): 168–173, Бибкод : 1929PNAS...15..168H , doi : 10.1073/pnas.15.3.168 , PMC 522427 , PMID 16577160
- Халс, Рассел А .; Тейлор, Джозеф Х. (1975), «Открытие пульсара в двойной системе», Astrophys. J. , 195 : L51–L55, Bibcode : 1975ApJ...195L..51H , doi : 10.1086/181708
- Ибанез, Л.Е. (2000), «Вторая струнная (феноменологическая) революция», Класс. Квантовая гравитация. , 17 (5): 1117–1128, arXiv : hep-ph/9911499 , Bibcode : 2000CQGra..17.1117I , doi : 10.1088/0264-9381/17/5/321 , S2CID 15707877
- Иорио, Л. (2006), «Заметка о доказательствах гравитомагнитного поля Марса», Classical and Quantum Gravity , 23 (17): 5451–5454, arXiv : gr-qc/0606092 , Bibcode : 2006CQGra..23.5451 Я , doi : 10.1088/0264-9381/23/17/N01 , S2CID 118233440
- Иорио, Л. (2009), «Оценка систематической неопределенности в настоящих и будущих испытаниях эффекта линзы-Тирринга с помощью спутниковой лазерной локации», Space Sci. Rev. , 148 (1–4): 363–381, arXiv : 0809.1373 , Bibcode : 2009SSRv..148..363I , doi : 10.1007/s11214-008-9478-1 , S2CID 15698399
- Иорио, Л. (2010), «Об тесте Лензе-Тирринга с Mars Global Surveyor в гравитационном поле Марса», Central European Journal of Physics , 8 (3): 509–513, arXiv : gr-qc/0701146 , Bibcode : 2010CEJPh...8..509I , doi : 10.2478/s11534-009-0117-6 , S2CID 16052420
- Ишам, Кристофер Дж. (1994), «Вопросы на первый взгляд в квантовой гравитации», у Элерса, Юргена; Фридрих, Хельмут (ред.), Каноническая гравитация: от классической к квантовой , Springer, ISBN 978-3-540-58339-4
- Израиль, Вернер (1971), «Горизонты событий и гравитационный коллапс», Общая теория относительности и гравитация , 2 (1): 53–59, Бибкод : 1971GReGr...2...53I , doi : 10.1007/BF02450518 , S2CID 119645546
- Израиль, Вернер (1987), «Темные звезды: эволюция идеи», Хокинг, Стивен В.; Израиль, Вернер (ред.), 300 лет гравитации , Cambridge University Press, стр. 199–276, ISBN. 978-0-521-37976-2
- Янссен, Мишель (2005), «О горшках и дырах: ухабистая дорога Эйнштейна к общей теории относительности» , Annalen der Physik , 14 (S1): 58–85, Бибкод : 2005AnP...517S..58J , doi : 10.1002/andp .200410130 , S2CID 10641693 , заархивировано из оригинала (PDF) 25 августа 2020 г. , получено 28 августа 2010 г.
- Ярановский, Петр; Крулак, Анджей (2005), «Анализ гравитационно-волновых данных. Формализм и примеры приложений: случай Гаусса», Living Reviews in Relativity , 8 (1): 3, Bibcode : 2005LRR.....8....3J , doi : 10.12942/lrr-2005-3 , PMC 5253919 , PMID 28163647
- Кан, Боб (1996–2012), Веб-сайт Gravity Probe B , Стэнфордский университет , получено 20 апреля 2012 г.
- Кан, Боб (14 апреля 2007 г.), Был ли прав Эйнштейн? Ученые впервые публично ознакомились с результатами гравитационного зонда B (пресс-релиз Стэнфордского университета) (PDF) , Служба новостей Стэнфордского университета, заархивировано (PDF) с оригинала 23 апреля 2007 г.
- Камионковски, Марк; Косовский, Артур; Стеббинс, Альберт (1997), «Статистика фоновой поляризации космического микроволнового излучения», Phys. Rev. , D55 (12): 7368–7388, arXiv : astro-ph/9611125 , Bibcode : 1997PhRvD..55.7368K , doi : 10.1103/PhysRevD.55.7368 , S2CID 14018215
- Кеннефик, Дэниел (2005), «Астрономы проверяют общую теорию относительности: изгиб света и красное смещение Солнца», в Ренне, Юрген (ред.), Сто авторов Эйнштейна , Wiley-VCH, стр. 178–181, ISBN 978-3-527-40574-9
- Кеннефик, Дэниел (2007), «Не только из-за теории: Дайсон, Эддингтон и конкурирующие мифы об экспедиции затмения 1919 года», Материалы 7-й конференции по истории общей теории относительности, Тенерифе, 2005 , том. 0709, с. 685, arXiv : 0709.0685 , Bibcode : 2007arXiv0709.0685K , doi : 10.1016/j.shpsa.2012.07.010 , S2CID 119203172
- Кеньон, IR (1990), Общая теория относительности , Oxford University Press, ISBN 978-0-19-851996-6
- Кочанек, CS; Фалько, Э.Э.; Импи, К.; Лехар, Дж. (2007), Веб-сайт исследования CASTLES , Гарвард-Смитсоновский центр астрофизики , получено 21 августа 2007 г.
- Комар, Артур (1959), «Ковариантные законы сохранения в общей теории относительности», Phys. Rev. , 113 (3): 934–936, Bibcode : 1959PhRv..113..934K , doi : 10.1103/PhysRev.113.934
- Крамер, Майкл (2004). «Инструменты фундаментальной физики миллисекундных пульсаров». В Каршенбойме, СГ; Пейк, Э. (ред.). Астрофизика, часы и фундаментальные константы . Конспект лекций по физике. Том. 648. стр. 33–54. arXiv : astro-ph/0405178 . Бибкод : 2004ЛНП...648...33К . дои : 10.1007/978-3-540-40991-5_3 . ISBN 978-3-540-21967-5 .
- Крамер, М.; Лестница, IH; Манчестер, штат РН; Маклафлин, Массачусетс; Лайн, АГ; Фердман, Р.Д.; Бургай, М.; Лоример, доктор медицинских наук; и др. (2006), «Испытания общей теории относительности по времени двойного пульсара», Science , 314 (5796): 97–102, arXiv : astro-ph/0609417 , Bibcode : 2006Sci...314...97K , doi : 10.1126 /science.1132305 , PMID 16973838 , S2CID 6674714
- Краус, Ют (1998), «Отклонение света вблизи нейтронных звезд», Релятивистская астрофизика , Vieweg, стр. 66–81, ISBN 978-3-528-06909-4
- Кухарж, Карел (1973), «Каноническое квантование гравитации», в Израиле, Вернер (редактор), «Относительность, астрофизика и космология» , Д. Рейдель, стр. 237–288, ISBN 978-90-277-0369-9
- Кюнцле, HP (1972), «Структуры Галилея и Лоренца в пространстве-времени: сравнение соответствующей геометрии и физики» , Annales de l'Institut Henri Poincaré A , 17 : 337–362.
- Лахав, Офер; Суто, Ясуши (2004), «Измерение нашей Вселенной на основе исследований красного смещения галактик», Living Reviews in Relativity , 7 (1): 8, arXiv : astro-ph/0310642 , Bibcode : 2004LRR.....7.... 8L , doi : 10.12942/lrr-2004-8 , PMC 5253994 , PMID 28163643
- Ландау, Л.Д.; Лифшиц, Э.М. (1975), Классическая теория полей, т. 2 , Elsevier Science, Ltd., ISBN 978-0-08-018176-9
- Ленер, Луис (2001), «Численная относительность: обзор», Класс. Квантовая гравитация. , 18 (17): R25–R86, arXiv : gr-qc/0106072 , Bibcode : 2001CQGra..18R..25L , doi : 10.1088/0264-9381/18/17/202 , S2CID 9715975
- Ленер, Луис (2002). «Численная теория относительности: состояние и перспективы». У Найджела Т. Бишопа; Сунил Д. Махарадж (ред.). Общая теория относительности и гравитация . Общая теория относительности и гравитация: материалы 16-й Международной конференции, Дурбан, Южная Африка, 15–21 июля 2001 г., с. 210. arXiv : gr-qc/0202055 . Бибкод : 2002grg..conf..210L . дои : 10.1142/9789812776556_0010 . ISBN 978-981-238-171-2 . S2CID 9145148 .
- Линде, Андрей (2005), «Физика элементарных частиц и инфляционная космология», Contemp.concepts Phys , 5 : 1–362, arXiv : hep-th/0503203 , Bibcode : 2005hep.th....3203L , ISBN 978-3-7186-0489-0
- Линде, Андрей (2006), «На пути к инфляции в теории струн», J. Phys. Конф. Сер. , 24 (1): 151–160, arXiv : hep-th/0503195 , Bibcode : 2005JPhCS..24..151L , doi : 10.1088/1742-6596/24/1/018 , S2CID 250677699
- Лолл, Рената (1998), «Дискретные подходы к квантовой гравитации в четырех измерениях», Living Reviews in Relativity , 1 (1): 13, arXiv : gr-qc/9805049 , Bibcode : 1998LRR.....1... 13L , doi : 10.12942/lrr-1998-13 , PMC 5253799 , PMID 28191826
- Лавлок, Дэвид (1972), «Четырехмерность пространства и тензор Эйнштейна», J. Math. Физ. , 13 (6): 874–876, Бибкод : 1972JMP....13..874L , doi : 10.1063/1.1666069
- МакКаллум, М. (2006), «Нахождение и использование точных решений уравнений Эйнштейна», Морнас, Л.; Алонсо, доктор медицинских наук (ред.), Материалы конференции AIP (Век физики относительности: ERE05, XXVIII Испанское собрание по теории относительности), том. 841, стр. 129–143, arXiv : gr-qc/0601102 , Bibcode : 2006AIPC..841..129M , doi : 10.1063/1.2218172 , S2CID 13096531
- Мэддокс, Джон (1998), Что еще предстоит открыть , Macmillan, ISBN 978-0-684-82292-1
- Мангейм, Филип Д. (2006), «Альтернативы темной материи и темной энергии», Prog. Часть. Нукл. Физ. , 56 (2): 340–445, arXiv : astro-ph/0505266 , Bibcode : 2006PrPNP..56..340M , doi : 10.1016/j.ppnp.2005.08.001 , S2CID 14024934
- Мэзер, Джей Си ; Ченг, ES; Коттингем, Д.А.; Эпли, RE; Фикссен, диджей; Хевагама, Т.; Исаакман, РБ; Дженсен, Калифорния; и др. (1994), «Измерение космического микроволнового спектра прибором COBE FIRAS», Astrophysical Journal , 420 : 439–444, Бибкод : 1994ApJ...420..439M , doi : 10.1086/173574
- Мермин, Н. Дэвид (2005), Пришло время. Понимание относительности Эйнштейна , Princeton University Press, ISBN 978-0-691-12201-4
- Мессия, Альберт (1999), Квантовая механика , Dover Publications, ISBN 978-0-486-40924-5
- Миллер, Коул (2002), Звездная структура и эволюция (конспекты лекций по астрономии 606) , Университет Мэриленда , получено 25 июля 2007 г.
- Миснер, Чарльз В .; Торн, Кип. С .; Уиллер, Джон А. (1973), Гравитация , WH Freeman, ISBN 978-0-7167-0344-0
- Нараян, Рамеш (2006), «Черные дыры в астрофизике», New Journal of Physics , 7 (1): 199, arXiv : gr-qc/0506078 , Bibcode : 2005NJPh....7..199N , doi : 10.1088/ 1367-2630/7/1/199 , S2CID 17986323
- Нараян, Рамеш; Бартельманн, Матиас (1997). «Лекции по гравитационному линзированию». arXiv : astro-ph/9606001 .
- Нарликар, Джаянт В. (1993), Введение в космологию , издательство Кембриджского университета, ISBN 978-0-521-41250-6
- Нордстрем, Гуннар (1918), «Об энергии гравитационного поля в теории Эйнштейна», Verhandl. Конинкл. Нед. Акад. Ветеншап. , 26 : 1238–1245, Бибкод : 1918KNAB...20.1238N
- Нордтведт, Кеннет (2003). «Лунная лазерная локация - комплексное исследование постньютоновской гравитации». arXiv : gr-qc/0301024 .
- Нортон, Джон Д. (1985), «В чем заключался принцип эквивалентности Эйнштейна?» (PDF) , Исследования по истории и философии науки , 16 (3): 203–246, Бибкод : 1985SHPSA..16..203N , doi : 10.1016/0039-3681(85)90002-0 , в архиве (PDF) с сайта оригинал 22 сентября 2006 г. , получено 11 июня 2007 г.
- Оганян, Ханс К.; Руффини, Ремо (1994), Гравитация и пространство-время , WW Norton & Company, ISBN 978-0-393-96501-8
- Олив, Калифорния; Скиллман, Е.А. (2004), «Реалистическое определение ошибки относительно содержания первичного гелия», Astrophysical Journal , 617 (1): 29–49, arXiv : astro-ph/0405588 , Bibcode : 2004ApJ...617.. .29O , doi : 10.1086/425170 , S2CID 15187664
- О'Мира, Джон М.; Титлер, Дэвид; Киркман, Дэвид; Сузуки, Нао; Прочаска, Джейсон X.; Любин, Дэн; Вулф, Артур М. (2001), «Отношение содержания дейтерия к водороду на пути к четвертому QSO: HS0105 + 1619», Astrophysical Journal , 552 (2): 718–730, arXiv : astro-ph/0011179 , Bibcode : 2001ApJ. ..552..718O , doi : 10.1086/320579 , S2CID 14164537
- Оппенгеймер, Дж. Роберт ; Снайдер, Х. (1939), «О продолжающемся гравитационном сокращении», Physical Review , 56 (5): 455–459, Бибкод : 1939PhRv...56..455O , doi : 10.1103/PhysRev.56.455
- Овербай, Деннис (1999), Одинокие сердца космоса: история научных поисков тайны Вселенной , Бэк-Бэй, ISBN 978-0-316-64896-7
- Пайс, Авраам (1982), «Тонок Господь…» Наука и жизнь Альберта Эйнштейна , Oxford University Press, ISBN 978-0-19-853907-0
- Пикок, Джон А. (1999), Космологическая физика , издательство Кембриджского университета, ISBN 978-0-521-41072-4
- Пиблз, PJE (1966), «Изобилие первичного гелия и первичный огненный шар II», Astrophysical Journal , 146 : 542–552, Бибкод : 1966ApJ...146..542P , doi : 10.1086/148918
- Пиблс, PJE (1993), Принципы физической космологии , Princeton University Press, ISBN 978-0-691-01933-8
- Пиблс, PJE; Шрамм, Д.Н.; Тернер, Эл.; Крон, Р.Г. (1991), «Доводы в пользу релятивистской космологии горячего Большого взрыва», Nature , 352 (6338): 769–776, Бибкод : 1991Natur.352..769P , doi : 10.1038/352769a0 , S2CID 4337502
- Пенроуз, Роджер (1965), «Гравитационный коллапс и сингулярности пространства-времени», Physical Review Letters , 14 (3): 57–59, Бибкод : 1965PhRvL..14...57P , doi : 10.1103/PhysRevLett.14.57
- Пенроуз, Роджер (1969), «Гравитационный коллапс: роль общей теории относительности», Rivista del Nuovo Cimento , 1 : 252–276, Бибкод : 1969NCimR...1..252P
- Пенроуз, Роджер (2004), Дорога к реальности , А. А. Кнопф, ISBN 978-0-679-45443-4
- Пензиас, АА ; Уилсон, Р.В. (1965), «Измерение избыточной температуры антенны при 4080 Мгц/с», Astrophysical Journal , 142 : 419–421, Бибкод : 1965ApJ...142..419P , doi : 10.1086/148307
- Пескин, Майкл Э .; Шредер, Дэниел В. (1995), Введение в квантовую теорию поля , Аддисон-Уэсли, ISBN 978-0-201-50397-5
- Пескин, Майкл Э. (2007), «Темная материя и физика элементарных частиц», Журнал Физического общества Японии , 76 (11): 111017, arXiv : 0707.1536 , Bibcode : 2007JPSJ...76k1017P , doi : 10.1143/JPSJ. 76.111017 , S2CID 16276112
- Пуанкаре, М.Х. (1905), «О динамике электрона», Еженедельные отчеты сессий Академии наук , 140 : 1504–1508.
- Пуассон, Эрик (27 мая 2004 г.). «Движение точечных частиц в искривленном пространстве-времени» . Живые обзоры в теории относительности . 7 (1). 6. arXiv : gr-qc/0306052 . Бибкод : 2004LRR.....7....6P . дои : 10.12942/lrr-2004-6 . ПМК 5256043 . ПМИД 28179866 .
- Пуассон, Эрик (2004), Инструментарий релятивиста. Математика механики черных дыр , издательство Кембриджского университета, бибкод : 2004rtmb.book.....P , ISBN 978-0-521-83091-1
- Полчински, Джозеф (1998a), Теория струн, том. I: Введение в бозонную струну , издательство Кембриджского университета, ISBN 978-0-521-63303-1
- Полчински, Джозеф (1998b), Теория струн, том. II: Теория суперструн и не только , Издательство Кембриджского университета, ISBN 978-0-521-63304-8
- Паунд, Р.В.; Ребка, Г.А. (1959), «Гравитационное красное смещение в ядерном резонансе», Physical Review Letters , 3 (9): 439–441, Бибкод : 1959PhRvL...3..439P , doi : 10.1103/PhysRevLett.3.439
- Паунд, Р.В.; Ребка Г.А. (1960), "Кажущийся вес фотонов", Физ. Преподобный Летт. , 4 (7): 337–341, Бибкод : 1960PhRvL...4..337P , doi : 10.1103/PhysRevLett.4.337
- Паунд, Р.В.; Снайдер, Дж.Л. (1964), "Влияние гравитации на ядерный резонанс", Phys. Преподобный Летт. , 13 (18): 539–540, Бибкод : 1964PhRvL..13..539P , doi : 10.1103/PhysRevLett.13.539
- Рамон, Пьер (1990), Теория поля: современный учебник , Аддисон-Уэсли, ISBN 978-0-201-54611-8
- Рис, Мартин (1966), «Появление релятивистски расширяющихся радиоисточников», Nature , 211 (5048): 468–470, Бибкод : 1966Natur.211..468R , doi : 10.1038/211468a0 , S2CID 41065207
- Рейсснер, Х. (1916), «О самогравитации электрического поля согласно теории Эйнштейна» , Annals of Physics , 355 (9): 106–120, Бибкод : 1916AnP...355..106R , doi : 10.1002/андп .19163550905
- Ремиллард, Рональд А.; Линь, Даченг; Купер, Рэндалл Л.; Нараян, Рамеш (2006), «Скорость рентгеновских всплесков типа I от переходных процессов, наблюдаемых с помощью RXTE: данные о горизонтах событий черных дыр», Astrophysical Journal , 646 (1): 407–419, arXiv : astro-ph/0509758 , Bibcode : 2006ApJ...646..407R , doi : 10.1086/504862 , S2CID 14949527
- Ренн, Юрген, изд. (2007), Генезис общей теории относительности (4 тома) , Дордрехт: Springer, ISBN 978-1-4020-3999-7
- Ренн, Юрген, изд. (2005), Альберт Эйнштейн - главный инженер Вселенной: жизнь и работа Эйнштейна в контексте , Берлин: Wiley-VCH, ISBN 978-3-527-40571-8
- Реула, Оскар А. (1998), «Гиперболические методы для уравнений Эйнштейна», Living Reviews in Relativity , 1 (1): 3, Bibcode : 1998LRR.....1....3R , doi : 10.12942/lrr- 1998-3 , ПМЦ 5253804 , ПМИД 28191833
- Риндлер, Вольфганг (2001), Относительность. Специальный, общий и космологический , Oxford University Press, ISBN 978-0-19-850836-6
- Риндлер, Вольфганг (1991), Введение в специальную теорию относительности , Clarendon Press, Oxford, ISBN 978-0-19-853952-0
- Робсон, Ян (1996), Активные ядра галактик , Джон Уайли, ISBN 978-0-471-95853-6
- Руле, Э.; Моллерах, С. (1997), «Микролинзирование», Physics Reports , 279 (2): 67–118, arXiv : astro-ph/9603119 , Bibcode : 1997PhR...279...67R , doi : 10.1016/S0370- 1573(96)00020-8 , S2CID 262685723
- Ровелли, Карло, изд. (2015), Общая теория относительности: самая красивая из теорий (Исследования де Грюйтера по математической физике) , Бостон: Walter de Gruyter GmbH, ISBN 978-3-11-034042-6
- Ровелли, Карло (2000). «Заметки к краткой истории квантовой гравитации». arXiv : gr-qc/0006061 .
- Ровелли, Карло (1998), «Петлевая квантовая гравитация», « Живые обзоры относительно относительности » , 1 (1): 1, arXiv : gr-qc/9710008 , Bibcode : 1998LRR.....1....1R , CiteSeerX 10.1 .1.90.7036 , doi : 10.12942/lrr-1998-1 , PMC 5567241 , PMID 28937180
- Шефер, Герхард (2004), «Гравитомагнитные эффекты», Общая теория относительности и гравитации , 36 (10): 2223–2235, arXiv : gr-qc/0407116 , Bibcode : 2004GReGr..36.2223S , doi : 10.1023/B:GERG. 0000046180.97877.32 , S2CID 14255129
- Шедель, Р.; Отт, Т.; Гензель, Р.; Эккарт, А.; Муавад, Н.; Александр, Т. (2003), «Звездная динамика в центральной угловой секунде нашей Галактики», Astrophysical Journal , 596 (2): 1015–1034, arXiv : astro-ph/0306214 , Bibcode : 2003ApJ...596.1015S , doi : 10.1086/378122 , S2CID 17719367
- Шутц, Бернард Ф. (1985), Первый курс общей теории относительности , Cambridge University Press, ISBN 978-0-521-27703-7
- Шутц, Бернард Ф. (2003), Гравитация с нуля , Cambridge University Press, ISBN 978-0-521-45506-0
- Шварц, Джон Х. (2007), «Теория струн: прогресс и проблемы», Приложение Progress of Theoretical Physics , 170 : 214–226, arXiv : hep-th/0702219 , Bibcode : 2007PThPS.170..214S , doi : 10.1143 /PTPS.170.214 , S2CID 16762545
- Шварцшильд, Карл (1916а), «О гравитационном поле массовой точки согласно теории Эйнштейна», отчет о сессии. Пруссия. Акад. Д. Висс. : 189–196, Бибкод : 1916SPAW.......189S
- Шварцшильд, Карл (1916b), «О гравитационном поле сферы из несжимаемой жидкости согласно теории Эйнштейна», отчет о сессии. Пруссия. Акад. Д. Висс. : 424–434, Бибкод : 1916skpa.conf..424S
- Зайдель, Эдвард (1998), «Численная теория относительности: к моделированию трехмерного слияния черных дыр», в Нарликаре, СП; Дадхич Н. (ред.), Гравитация и относительность: на рубеже тысячелетий (Материалы конференции GR-15, состоявшейся в IUCAA, Пуна, Индия, 16–21 декабря 1997 г.) , IUCAA, с. 6088, arXiv : gr-qc/9806088 , Bibcode : 1998gr.qc.....6088S , ISBN 978-81-900378-3-9
- Селяк, Урос; Залдарриага, Матиас (1997), «Признак гравитационных волн в поляризации микроволнового фона», Phys. Преподобный Летт. , 78 (11): 2054–2057, arXiv : astro-ph/9609169 , Bibcode : 1997PhRvL..78.2054S , doi : 10.1103/PhysRevLett.78.2054 , S2CID 30795875
- Шапиро, СС; Дэвис, Дж. Л.; Лебах, Делавэр; Грегори, Дж. С. (2004), «Измерение солнечного гравитационного отклонения радиоволн с использованием геодезических данных интерферометрии со сверхдлинной базой, 1979–1999», Phys. Преподобный Летт. , 92 (12): 121101, Bibcode : 2004PhRvL..92l1101S , doi : 10.1103/PhysRevLett.92.121101 , PMID 15089661
- Шапиро, Ирвин И. (1964), «Четвертый тест общей теории относительности», Phys. Преподобный Летт. , 13 (26): 789–791, Бибкод : 1964PhRvL..13..789S , doi : 10.1103/PhysRevLett.13.789
- Сингх, Саймон (2004), Большой взрыв: Происхождение Вселенной , Четвертая власть, Бибкод : 2004biba.book.....S , ISBN 978-0-00-715251-3
- Соркин, Рафаэль Д. (2005), «Причинные множества: дискретная гравитация», в Гомберофф, Андрес; Марольф, Дональд (ред.), Лекции по квантовой гравитации , Springer, стр. 9009, arXiv : gr-qc/0309009 , Bibcode : 2003gr.qc.....9009S , ISBN 978-0-387-23995-8
- Соркин, Рафаэль Д. (1997), «Развилка на пути к квантовой гравитации», Int. Дж. Теория. Физ. , 36 (12): 2759–2781, arXiv : gr-qc/9706002 , Bibcode : 1997IJTP...36.2759S , doi : 10.1007/BF02435709 , S2CID 4803804
- Спергель, Д.Н.; Верде, Л.; Пейрис, Х.В.; Комацу, Э.; Нолта, MR; Беннетт, CL; Халперн, М.; Хиншоу, Г.; и др. (2003), «Первокурсники наблюдений с помощью микроволнового зонда анизотропии Уилкинсона (WMAP): определение космологических параметров», Astrophys. J. Приложение. Сер. , 148 (1): 175–194, arXiv : astro-ph/0302209 , Bibcode : 2003ApJS..148..175S , doi : 10.1086/377226 , S2CID 10794058
- Спергель, Д.Н.; Бин, Р .; Доре, О.; Нолта, MR; Беннетт, CL; Данкли, Дж.; Хиншоу, Г.; Ярошик, Н.; и др. (2007), «Результаты трехлетнего исследования микроволновой анизотропии Уилкинсона (WMAP): последствия для космологии», Приложение к Astrophysical Journal , 170 (2): 377–408, arXiv : astro-ph/0603449 , Bibcode : 2007ApJS..170.. 377S , doi : 10.1086/513700 , S2CID 1386346
- Спрингель, Волкер; Уайт, Саймон Д.М.; Дженкинс, Адриан; Френк, Карлос С.; Ёсида, Наоки; Гао, Лян; Наварро, Хулио; Такер, Роберт; и др. (2005), «Моделирование формирования, эволюции и кластеризации галактик и квазаров», Nature , 435 (7042): 629–636, arXiv : astro-ph/0504097 , Bibcode : 2005Natur.435..629S , doi : 10.1038 /nature03597 , PMID 15931216 , S2CID 4383030
- Стейрс, Ингрид Х. (2003), «Проверка общей теории относительности с помощью синхронизации пульсаров», Living Reviews in Relativity , 6 (1): 5, arXiv : astro-ph/0307536 , Bibcode : 2003LRR.....6... .5S , doi : 10.12942/lrr-2003-5 , PMC 5253800 , PMID 28163640
- Стефани, Х.; Крамер, Д.; МакКаллум, М.; Хоэнселерс, К.; Херлт, Э. (2003), Точные решения уравнений поля Эйнштейна (2-е изд.), Cambridge University Press, ISBN 978-0-521-46136-8
- Синдж, Дж. Л. (1972), Относительность: специальная теория , Издательство Северной Голландии, ISBN 978-0-7204-0064-9
- Сабадос, Ласло Б. (2004), «Квазилокальная энергия – импульс и угловой момент в ОТО», Living Reviews in Relativity , 7 (1): 4, Bibcode : 2004LRR.....7....4S , doi : 10.12942/lrr-2004-4 , PMC 5255888 , PMID 28179865
- Тейлор, Джозеф Х. (1994), «Двойные пульсары и релятивистская гравитация» , Rev. Mod. Физ. , 66 (3): 711–719, Bibcode : 1994RvMP...66..711T , doi : 10.1103/RevModPhys.66.711 , S2CID 120534048
- Тиманн, Томас (2007), «Петлевая квантовая гравитация: взгляд изнутри», Подходы к фундаментальной физике , Конспекты лекций по физике, том. 721, стр. 185–263, arXiv : hep-th/0608210 , Bibcode : 2007LNP...721..185T , doi : 10.1007/978-3-540-71117-9_10 , ISBN 978-3-540-71115-5 , S2CID 119572847
- Тиманн, Томас (2003). «Лекции по петлевой квантовой гравитации». У Доменико Дж. В. Джулини; Клаус Кифер; Клаус Леммерзал (ред.). Квантовая гравитация: от теории к экспериментальному поиску . Конспект лекций по физике. Том. 631. стр. 41–135. arXiv : gr-qc/0210094 . Бибкод : 2003ЛНП...631...41Т . дои : 10.1007/978-3-540-45230-0_3 . ISBN 978-3-540-40810-9 . S2CID 119151491 .
- 'т Хофт, Джерард ; Вельтман, Мартинус (1974), «Однопетлевые расхождения в теории гравитации», Annales de l'Institut Henri Poincaré A , 20 (1): 69, Бибкод : 1974AIHPA..20...69T
- Торн, Кип С. (1972), «Несферический гравитационный коллапс — краткий обзор», в Клаудер, Дж. (редактор), «Магия без магии» , WH Freeman, стр. 231–258.
- Торн, Кип С. (1994), Черные дыры и деформации времени: возмутительное наследие Эйнштейна , WW Norton & Company, ISBN 978-0-393-31276-8
- Торн, Кип С. (1995), «Гравитационное излучение», Астрофизика частиц и ядерная астрофизика и космология в следующем тысячелетии : 160, arXiv : gr-qc/9506086 , Bibcode : 1995pnac.conf..160T , ISBN 978-0-521-36853-7
- Торн, Кип (2003). «Искажение пространства-времени». В Г.В. Гиббонсе; ЭПС Шеллард; С. Дж. Рэнкин (ред.). Будущее теоретической физики и космологии: к 60-летию Стивена Хокинга . Издательство Кембриджского университета. ISBN 978-0-521-82081-3 .
- Таунсенд, Пол К. (1997). «Черные дыры (Конспект лекций)». arXiv : gr-qc/9707012 .
- Таунсенд, Пол К. (1996). «Четыре лекции по М-теории». Физика высоких энергий и космология . 13 : 385. arXiv : hep-th/9612121 . Бибкод : 1997hepcbconf..385T .
- Тращен, Дженни (2000), Быценко, А.; Уильямс, Ф. (ред.), «Введение в испарение черных дыр», Математические методы физики (Материалы Зимней школы Лондрины 1999 г.) , World Scientific: 180, arXiv : gr-qc/0010055 , Bibcode : 2000mmp.. конф..180T
- Траутман, Анджей (2006), «Теория Эйнштейна-Картана», в Франсуазе, Ж.-П.; Набер, ГЛ; Цоу, С.Т. (ред.), Энциклопедия математической физики, Vol. 2 , Elsevier, стр. 189–195, arXiv : gr-qc/0606062 , Bibcode : 2006gr.qc.....6062T
- Унру, WG (1976), «Заметки об испарении черных дыр», Phys. Rev. D , 14 (4): 870–892, Bibcode : 1976PhRvD..14..870U , doi : 10.1103/PhysRevD.14.870
- Вельтман, Мартинус (1975), «Квантовая теория гравитации», в Балиане, Роджере; Зинн-Жюстин, Жан (ред.), Методы теории поля - Летняя школа по теоретической физике в Ле Уше. , том. 77, Северная Голландия
- Уолд, Роберт М. (1975), «О создании частиц черными дырами» , Commun. Математика. Физ. , 45 (3): 9–34, Bibcode : 1975CMaPh..45....9W , doi : 10.1007/BF01609863 , S2CID 120950657
- Уолд, Роберт М. (1984), Общая теория относительности , Издательство Чикагского университета, ISBN 978-0-226-87033-5
- Уолд, Роберт М. (1994), Квантовая теория поля в искривленном пространстве-времени и термодинамика черных дыр , University of Chicago Press, Bibcode : 1994qftc.book.....W , ISBN 978-0-226-87027-4
- Уолд, Роберт М. (2001), «Термодинамика черных дыр», « Живые обзоры относительно относительности » , 4 (1): 6, arXiv : gr-qc/9912119 , Bibcode : 2001LRR.....4.... 6 Вт , doi : 10.12942/lrr-2001-6 , PMC 5253844 , PMID 28163633
- Уолш, Д.; Карсуэлл, РФ; Вейман, Р.Дж. (1979), «0957 + 561 A, B: двойные квазизвездные объекты или гравитационная линза?», Nature , 279 (5712): 381–4, Бибкод : 1979Natur.279..381W , doi : 10.1038/279381a0 , ПМИД 16068158 , С2КИД 2142707
- Вамбсгансс, Иоахим (1998), «Гравитационное линзирование в астрономии», Living Reviews in Relativity , 1 (1): 12, arXiv : astro-ph/9812021 , Bibcode : 1998LRR.....1...12W , doi : 10.12942/lrr-1998-12 , PMC 5567250 , PMID 28937183
- Вайнберг, Стивен (1972), Гравитация и космология: принципы и приложения общей теории относительности , Джон Уайли, ISBN 978-0-471-92567-5
- Вайнберг, Стивен (1995), Квантовая теория полей I: Основы , издательство Кембриджского университета, ISBN 978-0-521-55001-7
- Вайнберг, Стивен (1996), Квантовая теория полей II: современные приложения , издательство Кембриджского университета, ISBN 978-0-521-55002-4
- Вайнберг, Стивен (2000), Квантовая теория полей III: суперсимметрия , издательство Кембриджского университета, ISBN 978-0-521-66000-6
- Вайсберг, Джоэл М.; Тейлор, Джозеф Х. (2003), «Релятивистский двойной пульсар B1913+16» , в Бэйлсе, М.; Найс, ди-джей; Торсетт, С.Э. (ред.), Труды «Радиопульсаров», Ханья, Крит, август , 2002 , Серия конференций ASP
- Вайс, Ахим (2006), «Элементы прошлого: нуклеосинтез и наблюдение Большого взрыва» , Einstein Online , Институт гравитационной физики Макса Планка , заархивировано из оригинала 8 февраля 2007 г. , получено 24 февраля 2007 г.
- Уиллер, Джон А. (1990), Путешествие в гравитацию и пространство-время , Научно-американская библиотека, Сан-Франциско: WH Freeman, ISBN 978-0-7167-6034-4
- Уилл, Клиффорд М. (1993), Теория и эксперимент в гравитационной физике , Cambridge University Press, ISBN 978-0-521-43973-2
- Уилл, Клиффорд М. (2006), «Противостояние между общей теорией относительности и экспериментом», Living Reviews in Relativity , 9 (1): 3, arXiv : gr-qc/0510072 , Bibcode : 2006LRR.....9.. ..3W , doi : 10.12942/lrr-2006-3 , PMC 5256066 , PMID 28179873
- Цвибах, Бартон (2004), Первый курс теории струн , издательство Кембриджского университета, ISBN 978-0-521-83143-7
Дальнейшее чтение
[ редактировать ]Популярные книги
[ редактировать ]- Эйнштейн, А. (1916), Относительность: специальная и общая теория , Берлин, ISBN 978-3-528-06059-6
{{citation}}
: CS1 maint: отсутствует местоположение издателя ( ссылка ) - Героч, Р. (1981), Общая теория относительности от А до Б , Чикаго: University of Chicago Press, ISBN. 978-0-226-28864-2
- Либер, Лилиан (2008), Теория относительности Эйнштейна: путешествие в четвертое измерение , Филадельфия: Paul Dry Books, Inc., ISBN 978-1-58988-044-3
- Шутц, Бернард Ф. (2001), «Гравитационное излучение», Мурдин, Пол (редактор), Энциклопедия астрономии и астрофизики , Публикация Института физики, ISBN 978-1-56159-268-5
- Торн, Кип ; Хокинг, Стивен (1994). Черные дыры и деформации времени: возмутительное наследие Эйнштейна . Нью-Йорк: WW Нортон. ISBN 0-393-03505-0 .
- Уолд, Роберт М. (1992), Пространство, время и гравитация: теория большого взрыва и черных дыр , Чикаго: University of Chicago Press, ISBN 978-0-226-87029-8
- Уилер, Джон ; Форд, Кеннет (1998), Геоны, черные дыры и квантовая пена: жизнь в физике , Нью-Йорк: WW Norton, ISBN 978-0-393-31991-0
Учебники для начального бакалавриата
[ редактировать ]- Каллахан, Джеймс Дж. (2000), Геометрия пространства-времени: введение в специальную и общую теорию относительности , Нью-Йорк: Springer, ISBN 978-0-387-98641-8
- Тейлор, Эдвин Ф.; Уилер, Джон Арчибальд (2000), Исследование черных дыр: введение в общую теорию относительности , Аддисон Уэсли, ISBN 978-0-201-38423-9
Учебники для продвинутых студентов
[ редактировать ]- Ченг, Та-Пей (2005), Относительность, гравитация и космология: базовое введение , Оксфорд и Нью-Йорк: Oxford University Press, ISBN 978-0-19-852957-6
- Дирак, Поль (1996), Общая теория относительности , Princeton University Press, ISBN 978-0-691-01146-2
- Грон, О.; Хервик, С. (2007), Общая теория относительности Эйнштейна , Springer, ISBN 978-0-387-69199-2
- Хартл, Джеймс Б. (2003), Гравитация: введение в общую теорию относительности Эйнштейна , Сан-Франциско: Аддисон-Уэсли, ISBN 978-0-8053-8662-2
- Хьюстон, LP ; Тод, КП (1991), Введение в общую теорию относительности , Кембридж: Издательство Кембриджского университета, ISBN 978-0-521-33943-8
- д'Инверно, Рэй (1992), Знакомство с теорией относительности Эйнштейна , Оксфорд: Oxford University Press, ISBN 978-0-19-859686-8
- Людик, Гюнтер (2013). Эйнштейн в матричной форме (1-е изд.). Берлин: Шпрингер. ISBN 978-3-642-35797-8 .
- Мёллер, Кристиан (1955) [1952], Теория относительности , Oxford University Press, OCLC 7644624
- Мур, Томас А. (2012), Учебное пособие по общей теории относительности , Университетские научные книги, ISBN 978-1-891389-82-5
- Шутц, Б.Ф. (2009), Первый курс общей теории относительности (второе изд.), Cambridge University Press, ISBN 978-0-521-88705-2
Учебники для аспирантов
[ редактировать ]- Кэрролл, Шон М. (2004), Пространство-время и геометрия: введение в общую теорию относительности , Сан-Франциско: Аддисон-Уэсли, ISBN 978-0-8053-8732-2
- Грон, Эйвинд ; Хервик, Сигбьёрн (2007), Общая теория относительности Эйнштейна , Нью-Йорк: Springer, ISBN 978-0-387-69199-2
- Ландау, Лев Д. ; Лифшиц, Евгений Ф. (1980), Классическая теория полей (4-е изд.) , Лондон: Баттерворт-Хайнеманн, ISBN 978-0-7506-2768-9
- Стефани, Ганс (1990), Общая теория относительности: введение в теорию гравитационного поля , Кембридж: Издательство Кембриджского университета, ISBN 978-0-521-37941-0
- Уилл, Клиффорд ; Пуассон, Эрик (2014). Гравитация: ньютоновская, постньютоновская, релятивистская . Издательство Кембриджского университета. ISBN 978-1-107-03286-6 .
- Чарльз В. Миснер ; Кип С. Торн ; Джон Арчибальд Уиллер (1973), Гравитация , WH Freeman, Princeton University Press, ISBN 0-7167-0344-0
- РК Сакс ; Х. Ву (1977), Общая теория относительности для математиков , Springer-Verlag, ISBN 1461299055
- Уолд, Роберт М. (1984). Общая теория относительности . Чикаго: Издательство Чикагского университета. ISBN 0-226-87032-4 . ОСЛК 10018614 .
Книги специалистов
[ редактировать ]- Хокинг, Стивен ; Эллис, Джордж (1975). Крупномасштабная структура пространства-времени . Издательство Кембриджского университета. ISBN 978-0-521-09906-6 .
- Пуассон, Эрик (2007). Инструментарий релятивиста: математика механики черных дыр . Издательство Кембриджского университета. ISBN 978-0-521-53780-3 .
Журнальные статьи
[ редактировать ]- Эйнштейн, Альберт (1916), «Основы общей теории относительности» , Annals of Physics , 49 (7): 769–822, Бибкод : 1916AnP...354..769E , doi : 10.1002/andp.19163540702 См. также английский перевод в Einstein Papers Project.
- Фланаган, Эанна Э.; Хьюз, Скотт А. (2005), «Основы теории гравитационных волн», New J. Phys. , 7 (1): 204, arXiv : gr-qc/0501041 , Bibcode : 2005NJPh....7..204F , doi : 10.1088/1367-2630/7/1/204
- Ландграф, М.; Гехлер, М.; Кембл, С. (2005), «Разработка миссии для LISA Pathfinder», класс. Квантовая гравитация. , 22 (10): S487–S492, arXiv : gr-qc/0411071 , Bibcode : 2005CQGra..22S.487L , doi : 10.1088/0264-9381/22/10/048 , S2CID 119476595
- Ньето, Майкл Мартин (2006), «В поисках понимания аномалии Пионера» (PDF) , Europhysical News , 37 (6): 30–34, arXiv : gr-qc/0702017 , Bibcode : 2006ENews..37f..30N , doi : 10.1051/epn:2006604 , в архиве (PDF) из оригинала 24 сентября 2015 г.
- Шапиро, II ; Петтенгилл, Гордон; Эш, Майкл; Стоун, Мелвин; Смит, Уильям; Ингаллс, Ричард; Брокельман, Ричард (1968), «Четвертый тест общей теории относительности: предварительные результаты», Phys. Преподобный Летт. , 20 (22): 1265–1269, Бибкод : 1968PhRvL..20.1265S , doi : 10.1103/PhysRevLett.20.1265
- Валтонен, МЮ; Лехто, HJ; Нильссон, К.; Хайдт, Дж.; Такало, Лоу; Силланпяя, А.; Вилфорт, К.; Киджер, М.; и др. (2008), «Массивная двойная система черных дыр в OJ 287 и тест общей теории относительности», Nature , 452 (7189): 851–853, arXiv : 0809.1280 , Bibcode : 2008Natur.452..851V , doi : 10.1038 /nature06896 , PMID 18421348 , S2CID 4412396
Внешние ссылки
[ редактировать ]- Эйнштейн в Интернете. Архивировано 1 июня 2014 г. в Wayback Machine . Статьи по различным аспектам релятивистской физики для широкой аудитории; организован Институтом гравитационной физики Макса Планка.
- Домашняя страница GEO600 , официальный сайт проекта GEO600.
- Лаборатория ЛИГО
- NCSA Spacetime Wrinkles - создано группой численной теории относительности NCSA и содержит элементарное введение в общую теорию относительности.
- Курсы
- Лекции
- Учебники
- Общая теория относительности Эйнштейна на YouTube (лекция Леонарда Зюскинда, записанная 22 сентября 2008 года в Стэнфордском университете ).
- Серия лекций по общей теории относительности, прочитанных в 2006 г. в Институте Анри Пуанкаре (вводный/продвинутый уровень).
- Уроки общей теории относительности Джона Баэза .
- Браун, Кевин. «Размышления об относительности» . Mathpages.com . Архивировано из оригинала 18 декабря 2015 года . Проверено 29 мая 2005 г.
- Кэрролл, Шон М. (1997). «Конспекты лекций по общей теории относительности». arXiv : gr-qc/9712019 .
- Мавр, Рафи. «Понимание общей теории относительности» . Проверено 11 июля 2006 г.
- Ванер, Стефан. «Введение в дифференциальную геометрию и общую теорию относительности» . Проверено 5 апреля 2015 г.
- Фейнмановские лекции по физике Vol. II гл. 42: Искривленное пространство