Jump to content

Искусственный интеллект

Страница полузащищена
(Перенаправлено с Когнитивных систем )

Искусственный интеллект ( ИИ ) в самом широком смысле — это интеллект, демонстрируемый машинами , особенно компьютерными системами . Это область исследований в области информатики , которая разрабатывает и изучает методы и программное обеспечение , которые позволяют машинам воспринимать окружающую среду и использовать обучение и интеллект для принятия мер, которые максимизируют их шансы на достижение определенных целей. [1] Такие машины можно назвать ИИ.

Некоторые известные приложения ИИ включают передовые поисковые системы в Интернете (например, Google Search ); системы рекомендаций (используются YouTube , Amazon и Netflix ); взаимодействие посредством человеческой речи (например, Google Assistant , Siri и Alexa ); автономные транспортные средства (например, Waymo ); генеративные и творческие инструменты (например, ChatGPT , Apple Intelligence и AI art ); и сверхчеловеческая игра и анализ в стратегических играх (например, шахматах и ​​го ). [2] Однако многие приложения ИИ не воспринимаются как ИИ: «Множество передовых ИИ перешло в общие приложения, часто не называемые ИИ, потому что, как только что-то становится достаточно полезным и достаточно распространенным, его больше не называют ИИ ». [3] [4]

Алан Тьюринг был первым человеком, проведшим серьезные исследования в области, которую он назвал машинным интеллектом. [5] Искусственный интеллект был основан как академическая дисциплина в 1956 году. [6] те, кого сейчас считают отцами-основателями ИИ: Джон Маккарти , Марвин Минкси , Натаниэль Рочестер и Клод Шеннон . [7] [8] Эта отрасль прошла через несколько циклов оптимизма. [9] [10] за которыми следовали периоды разочарования и потери финансирования, известные как зима AI . [11] [12] Финансирование и интерес значительно возросли после 2012 года, когда глубокое обучение превзошло все предыдущие методы искусственного интеллекта. [13] а после 2017 года с архитектурой-трансформером . [14] Это привело к буму искусственного интеллекта в начале 2020-х годов, когда компании, университеты и лаборатории, преимущественно расположенные в Соединенных Штатах, стали пионерами значительных достижений в области искусственного интеллекта . [15]

Растущее использование искусственного интеллекта в 21 веке влияет на социальный и экономический сдвиг в сторону большей автоматизации , принятия решений на основе данных и интеграции систем искусственного интеллекта в различные экономические сектора и сферы жизни, влияя на рынки труда , здравоохранение , государственное управление. , промышленность , образование , пропаганда и дезинформация . Это поднимает вопросы о долгосрочных последствиях , этических последствиях и рисках ИИ , что побуждает к дискуссиям о регуляторной политике, обеспечивающей безопасность и преимущества технологии .

Различные области исследований ИИ сосредоточены вокруг конкретных целей и использования определенных инструментов. Традиционные цели исследований ИИ включают рассуждение , представление знаний , планирование , обучение , обработку естественного языка , восприятие и поддержку робототехники . [а] Общий интеллект — способность выполнять любую задачу, которую может выполнить человек, как минимум на равном уровне — входит в число долгосрочных целей этой области. [16]

Для достижения этих целей исследователи ИИ адаптировали и интегрировали широкий спектр методов, включая поисковую и математическую оптимизацию , формальную логику , искусственные нейронные сети и методы, основанные на статистике , исследовании операций и экономике . [б] ИИ также опирается на психологию , лингвистику , философию , нейробиологию и другие области. [17]

Цели

Общая проблема моделирования (или создания) интеллекта разбита на подзадачи. Они состоят из определенных черт или возможностей, которые исследователи ожидают от интеллектуальной системы. Описанные ниже черты получили наибольшее внимание и охватывают сферу исследований ИИ. [а]

Рассуждение и решение проблем

Ранние исследователи разработали алгоритмы, имитирующие пошаговые рассуждения, которые люди используют, когда решают головоломки или делают логические выводы . [18] К концу 1980-х и 1990-м годам были разработаны методы работы с неопределенной или неполной информацией с использованием концепций теории вероятности и экономики . [19]

Многих из этих алгоритмов недостаточно для решения больших задач рассуждения, поскольку они испытывают «комбинаторный взрыв»: по мере роста задач они становятся экспоненциально медленнее. [20] Даже люди редко используют пошаговые выводы, которые могли смоделировать ранние исследования ИИ. Они решают большинство своих проблем, используя быстрые и интуитивные суждения. [21] Точные и эффективные рассуждения — нерешенная проблема.

Представление знаний

Онтология представляет знания как набор концепций внутри предметной области и отношений между этими концепциями.

Представление знаний и инженерия знаний [22] позволить программам искусственного интеллекта разумно отвечать на вопросы и делать выводы на основе реальных фактов. Формальные представления знаний используются при индексировании и поиске на основе контента. [23] интерпретация сцены, [24] поддержка принятия клинических решений, [25] обнаружение знаний (извлечение «интересных» и практических выводов из больших баз данных ), [26] и другие области. [27]

База знаний — это совокупность знаний, представленная в форме, которую может использовать программа. Онтология это набор объектов, отношений, концепций и свойств, используемых в определенной области знаний. [28] Базы знаний должны представлять такие вещи, как объекты, свойства, категории и отношения между объектами; [29] ситуации, события, состояния и время; [30] причины и следствия; [31] знание о знании (то, что мы знаем о том, что знают другие люди); [32] рассуждения по умолчанию (вещи, которые люди предполагают, являются истинными, пока им не скажут иначе, и останутся истинными, даже когда другие факты меняются); [33] и многие другие аспекты и области знаний.

Среди наиболее сложных проблем представления знаний — широта знаний здравого смысла (набор элементарных фактов, известных среднестатистическому человеку, огромен); [34] и субсимволическая форма большинства здравомыслящих знаний (многое из того, что знают люди, не представлено в виде «фактов» или «утверждений», которые они могли бы выразить устно). [21] Существует также сложность приобретения знаний , проблема получения знаний для приложений ИИ. [с]

Планирование и принятие решений

«Агент» — это все, что воспринимает и совершает действия в мире. имеет Рациональный агент цели или предпочтения и предпринимает действия для их достижения. [д] [37] При автоматизированном планировании у агента есть конкретная цель. [38] При автоматизированном принятии решений у агента есть предпочтения: есть ситуации, в которых он предпочел бы оказаться, а некоторых ситуаций он пытается избежать. Агент, принимающий решения, присваивает каждой ситуации число (называемое « полезностью »), которое измеряет, насколько агент предпочитает ее. Для каждого возможного действия он может рассчитать « ожидаемую полезность »: полезность всех возможных результатов действия, взвешенную по вероятности того, что результат произойдет. Затем он может выбрать действие с максимальной ожидаемой полезностью. [39]

При классическом планировании агент точно знает, каким будет эффект любого действия. [40] Однако в большинстве задач реального мира агент может не быть уверен в ситуации, в которой он находится (она «неизвестна» или «ненаблюдаема»), и он может не знать наверняка, что произойдет после каждого возможного действия (это не так). «детерминированный»). Он должен выбрать действие, сделав вероятностное предположение, а затем повторно оценить ситуацию, чтобы увидеть, сработало ли действие. [41]

В некоторых задачах предпочтения агента могут быть неопределенными, особенно если в решении участвуют другие агенты или люди. Их можно изучить (например, с помощью обратного обучения с подкреплением ), или агент может искать информацию для улучшения своих предпочтений. [42] Теорию ценности информации можно использовать для взвешивания ценности исследовательских или экспериментальных действий. [43] Пространство возможных будущих действий и ситуаций обычно непреодолимо велико, поэтому агенты должны предпринимать действия и оценивать ситуации, не зная, каким будет результат.

Марковский процесс принятия решений имеет модель перехода , которая описывает вероятность того, что конкретное действие изменит состояние определенным образом, и функцию вознаграждения , которая определяет полезность каждого состояния и стоимость каждого действия. Политика . связывает решение с каждым возможным состоянием Политика может быть рассчитана (например, путем итерации ), быть эвристической или ее можно изучить. [44]

Теория игр описывает рациональное поведение нескольких взаимодействующих агентов и используется в программах ИИ, которые принимают решения с участием других агентов. [45]

Обучение

Машинное обучение — это исследование программ, которые могут автоматически улучшить свою производительность при выполнении определенной задачи. [46] Он был частью ИИ с самого начала. [и]

Существует несколько видов машинного обучения. Обучение без учителя анализирует поток данных, находит закономерности и делает прогнозы без какого-либо другого руководства. [49] Обучение с учителем требует, чтобы человек сначала помечал входные данные, и оно бывает двух основных разновидностей: классификация (когда программа должна научиться предсказывать, к какой категории принадлежат входные данные) и регрессия (когда программа должна вывести числовую функцию на основе числового ввода). ). [50]

При обучении с подкреплением агент вознаграждается за хорошие ответы и наказывается за плохие. Агент учится выбирать ответы, которые классифицируются как «хорошие». [51] Трансферное обучение – это когда знания, полученные при решении одной проблемы, применяются к новой проблеме. [52] Глубокое обучение — это тип машинного обучения, при котором входные данные обрабатываются через биологически созданные искусственные нейронные сети для всех этих типов обучения. [53]

Теория компьютерного обучения может оценивать учащихся по сложности вычислений , по сложности выборки (сколько данных требуется) или по другим понятиям оптимизации . [54]

Обработка естественного языка

Обработка естественного языка (НЛП) [55] позволяет программам читать, писать и общаться на человеческих языках, таких как английский . Конкретные проблемы включают распознавание речи , синтез речи , машинный перевод , извлечение информации , поиск информации и ответы на вопросы . [56]

Ранние работы, основанные на Ноама Хомского , порождающей грамматике и семантических сетях имели трудности с устранением смысловой неоднозначности слов. [ф] если только они не ограничены небольшими областями, называемыми « микромирами » (из-за проблемы знания здравого смысла). [34] ). Маргарет Мастерман считала, что именно значение, а не грамматика, является ключом к пониманию языков и что тезаурусы основой вычислительной структуры языка должны быть , а не словари.

Современные методы глубокого обучения для НЛП включают встраивание слов (представление слов, обычно в виде векторов, кодирующих их значение), [57] трансформеры (архитектура глубокого обучения с использованием механизма внимания ), [58] и другие. [59] В 2019 году генеративные предварительно обученные языковые модели-трансформеры (или «GPT») начали генерировать связный текст. [60] [61] и к 2023 году эти модели смогут получать оценки человеческого уровня на экзаменах на получение адвокатского статуса , SAT , GRE и многих других реальных приложениях. [62]

Восприятие

Машинное восприятие — это способность использовать данные от датчиков (таких как камеры, микрофоны, беспроводные сигналы, активный лидар , гидролокатор, радар и тактильные датчики ) для определения аспектов мира. Компьютерное зрение — это способность анализировать визуальную информацию. [63]

Область включает в себя распознавание речи , [64] классификация изображений , [65] распознавание лиц , распознавание объектов , [66] отслеживание объектов , [67] и роботизированное восприятие . [68]

Социальный интеллект

Kismet , голова робота, созданная в 1990-х годах; машина, способная распознавать и имитировать эмоции [69]

Аффективные вычисления — это междисциплинарный зонтик, включающий системы, которые распознают, интерпретируют, обрабатывают или моделируют человеческие чувства, эмоции и настроение . [70] Например, некоторые виртуальные помощники запрограммированы разговаривать разговорно или даже шутливо подшучивать; это делает их более чувствительными к эмоциональной динамике человеческого взаимодействия или иным образом облегчает взаимодействие человека с компьютером .

Однако это дает наивным пользователям нереальное представление об интеллекте существующих компьютерных агентов. [71] Умеренные успехи, связанные с аффективными вычислениями, включают текстовый анализ настроений и, в последнее время, мультимодальный анализ настроений , в котором ИИ классифицирует аффекты, отображаемые субъектом, записанным на видео. [72]

Общий интеллект

Машина с общим искусственным интеллектом должна быть способна решать широкий спектр задач с широтой и универсальностью, подобно человеческому интеллекту . [16]

Техники

Исследования ИИ используют широкий спектр методов для достижения вышеуказанных целей. [б]

Поиск и оптимизация

ИИ может решить многие проблемы, разумно перебирая множество возможных решений. [73] В ИИ используются два совершенно разных типа поиска: поиск в пространстве состояний и локальный поиск .

Поиск в пространстве состояний просматривает дерево возможных состояний, чтобы попытаться найти целевое состояние. [74] Например, алгоритмы планирования просматривают деревья целей и подцелей, пытаясь найти путь к целевой цели. Этот процесс называется анализом средств и результатов . [75]

Простой исчерпывающий поиск [76] редко бывают достаточными для большинства реальных задач: пространство поиска (количество мест для поиска) быстро вырастает до астрономических цифр . В результате поиск выполняется слишком медленно или никогда не завершается. [20] « Эвристика » или «эмпирические правила» могут помочь расставить приоритеты в выборе, который с большей вероятностью приведет к достижению цели. [77]

Состязательный поиск используется для игровых программ, таких как шахматы или го. Он просматривает дерево возможных ходов и контрходов в поисках выигрышной позиции. [78]

Иллюстрация градиентного спуска для трех разных отправных точек; два параметра (представленные координатами плана) корректируются так, чтобы минимизировать функцию потерь (высоту)

Локальный поиск использует математическую оптимизацию для поиска решения проблемы. Он начинается с некоторой формы предположения и постепенно совершенствует его. [79]

Градиентный спуск — это тип локального поиска, который оптимизирует набор числовых параметров путем постепенной их корректировки для минимизации функции потерь . Варианты градиентного спуска обычно используются для обучения нейронных сетей. [80]

Другой тип локального поиска — эволюционные вычисления , целью которых является итеративное улучшение набора возможных решений путем «мутации» и «рекомбинации» их, отбирая только наиболее приспособленных для выживания в каждом поколении. [81]

Процессы распределенного поиска могут координироваться с помощью алгоритмов роевого интеллекта . Двумя популярными роевыми алгоритмами, используемыми в поиске, являются оптимизация роя частиц (вдохновленная стайкой птиц ) и оптимизация колонии муравьев (вдохновленная муравьиными следами ). [82]

Логика

Формальная логика используется для рассуждений и представления знаний . [83] Формальная логика существует в двух основных формах: логика высказываний (которая оперирует утверждениями, которые являются истинными или ложными, и использует логические связки, такие как «и», «или», «не» и «подразумевается»). [84] и логика предикатов (которая также работает с объектами, предикатами и отношениями и использует кванторы, такие как « Каждый X есть Y » и «Есть некоторые X , которые являются Y »). [85]

Дедуктивное рассуждение в логике — это процесс доказательства нового утверждения ( вывода ) на основе других утверждений, которые даны и считаются истинными ( посылок ). [86] Доказательства могут быть структурированы как деревья доказательств , в которых узлы помечены предложениями, а дочерние узлы соединены с родительскими узлами правилами вывода .

Учитывая проблему и набор предпосылок, решение проблемы сводится к поиску дерева доказательств, корневой узел которого помечен решением проблемы, а листовые узлы помечены посылками или аксиомами . В случае предложений Хорна поиск решения проблемы может осуществляться путем рассуждений вперед от посылок или назад от проблемы. [87] В более общем случае клаузальной формы первого порядка логики разрешение — это единственное, свободное от аксиом правило вывода, в котором проблема решается путем доказательства противоречия из посылок, которые включают отрицание решаемой проблемы. [88]

Вывод как в логике предложения Хорна, так и в логике первого порядка неразрешим и, следовательно, неразрешим . Однако обратные рассуждения с предложениями Хорна, лежащие в основе вычислений в логического программирования языке Пролог , являются полными по Тьюрингу . Более того, его эффективность не уступает вычислениям на других символьных языках программирования. [89]

Нечеткая логика присваивает «степень истинности» от 0 до 1. Следовательно, она может обрабатывать расплывчатые и частично истинные утверждения. [90]

Немонотонная логика , включая логическое программирование с отрицанием как неудачей , предназначена для обработки рассуждений по умолчанию . [33] Для описания многих сложных областей были разработаны другие специализированные версии логики.

Вероятностные методы для неопределенных рассуждений

Простая байесовская сеть с соответствующими таблицами условной вероятности.

Многие проблемы ИИ (в том числе рассуждения, планирование, обучение, восприятие и робототехника) требуют от агента работы с неполной или неопределенной информацией. Исследователи искусственного интеллекта разработали ряд инструментов для решения этих проблем, используя методы теории вероятностей и экономики. [91] Были разработаны точные математические инструменты, которые анализируют, как агент может делать выбор и планировать, используя теорию принятия решений , анализ решений , [92] и теория ценности информации . [93] Эти инструменты включают в себя такие модели, как процессы принятия решений Маркова , [94] динамических сети решений , [95] Теория игр и проектирование механизмов . [96]

Байесовские сети [97] являются инструментом, который можно использовать для рассуждений (с использованием алгоритма байесовского вывода ), [г] [99] обучение (с использованием алгоритма ожидания-максимизации ), [час] [101] планирование (с использованием сетей принятия решений ) [102] и восприятие (с использованием динамических байесовских сетей ). [95]

Вероятностные алгоритмы также можно использовать для фильтрации, прогнозирования, сглаживания и поиска объяснений потоков данных, тем самым помогая системам восприятия анализировать процессы, происходящие с течением времени (например, скрытые модели Маркова или фильтры Калмана ). [95]

ожиданий и максимизации Кластеризация данных об извержениях Old Faithful начинается со случайного предположения, но затем успешно сходится к точной кластеризации двух физически различных режимов извержения.

Классификаторы и статистические методы обучения

Простейшие ИИ-приложения можно разделить на два типа: классификаторы (например, «если блестит, то ромб»), с одной стороны, и контроллеры (например, «если бриллиант, то поднимите»), с другой стороны. Классификаторы [103] — это функции, которые используют сопоставление с образцом для определения наиболее близкого соответствия. Их можно доработать на основе выбранных примеров с помощью обучения с учителем . Каждый шаблон (также называемый « наблюдением ») помечен определенным предопределенным классом. Все наблюдения в сочетании с их метками классов известны как набор данных . Когда получено новое наблюдение, оно классифицируется на основе предыдущего опыта. [50]

Существует множество видов классификаторов. Дерево решений — это самый простой и наиболее широко используемый алгоритм символьного машинного обучения. [104] Алгоритм K-ближайшего соседа был наиболее широко используемым аналоговым ИИ до середины 1990-х годов, а методы ядра , такие как машина опорных векторов (SVM), вытеснили k-ближайшего соседа в 1990-х годах. [105] Сообщается, что наивный классификатор Байеса является «наиболее широко используемым методом обучения». [106] в Google, отчасти благодаря его масштабируемости. [107] Нейронные сети также используются в качестве классификаторов. [108]

Искусственные нейронные сети

Нейронная сеть — это взаимосвязанная группа узлов, подобная обширной сети нейронов в человеческом мозге.

Искусственная нейронная сеть основана на наборе узлов, также известных как искусственные нейроны , которые в общих чертах моделируют нейроны биологического мозга. Он обучен распознавать закономерности; после обучения он сможет распознавать эти закономерности в свежих данных. Есть вход, как минимум один скрытый слой узлов и выход. Каждый узел применяет функцию, и как только вес пересекает указанный порог, данные передаются на следующий уровень. Сеть обычно называется глубокой нейронной сетью, если она имеет как минимум два скрытых слоя. [108]

Алгоритмы обучения нейронных сетей используют локальный поиск для выбора весов, которые дадут правильный результат для каждого входного сигнала во время обучения. Наиболее распространенным методом обучения является алгоритм обратного распространения ошибки . [109] Нейронные сети учатся моделировать сложные взаимосвязи между входными и выходными данными и находить закономерности в данных. Теоретически нейронная сеть может изучить любую функцию. [110]

В нейронных сетях прямого распространения сигнал проходит только в одном направлении. [111] Рекуррентные нейронные сети передают выходной сигнал обратно на вход, что позволяет кратковременно запоминать предыдущие входные события. Долговременная краткосрочная память является наиболее успешной сетевой архитектурой для рекуррентных сетей. [112] Персептроны [113] использовать только один слой нейронов, глубокое обучение [114] использует несколько слоев. Сверточные нейронные сети усиливают связь между нейронами, находящимися «близко» друг к другу — это особенно важно при обработке изображений , где локальный набор нейронов должен идентифицировать «край», прежде чем сеть сможет идентифицировать объект. [115]

Глубокое обучение

Глубокое обучение [114] использует несколько слоев нейронов между входами и выходами сети. Несколько слоев могут постепенно извлекать функции более высокого уровня из необработанных входных данных. Например, при обработке изображений нижние уровни могут идентифицировать края, а более высокие уровни могут идентифицировать понятия, относящиеся к человеку, такие как цифры, буквы или лица. [116]

Глубокое обучение значительно улучшило производительность программ во многих важных областях искусственного интеллекта, включая компьютерное зрение , распознавание речи , обработку естественного языка , классификацию изображений , [117] и другие. Причина, по которой глубокое обучение так хорошо работает во многих приложениях, по состоянию на 2023 год неизвестна. [118] Внезапный успех глубокого обучения в 2012–2015 годах произошел не из-за какого-то нового открытия или теоретического прорыва (глубокие нейронные сети и обратное распространение ошибки были описаны многими людьми еще в 1950-х годах). [я] но из-за двух факторов: невероятного увеличения мощности компьютера (включая стократное увеличение скорости за счет перехода на графические процессоры ) и доступности огромных объемов обучающих данных, особенно гигантских курируемых наборов данных, используемых для эталонного тестирования, таких как ImageNet . [Дж]

GPT

Генеративные предварительно обученные преобразователи (GPT) — это большие языковые модели , основанные на семантических отношениях между словами в предложениях ( обработка естественного языка ). Текстовые модели GPT предварительно обучаются на большом массиве текста , который может быть взят из Интернета. Предварительное обучение состоит из предсказания следующего токена (токеном обычно является слово, подслово или знак препинания). В ходе этого предварительного обучения модели GPT накапливают знания о мире, а затем могут генерировать текст, похожий на человеческий, многократно предсказывая следующий токен. Как правило, последующий этап обучения делает модель более правдивой, полезной и безвредной, обычно с помощью метода, называемого обучением с подкреплением на основе обратной связи с человеком (RLHF). Текущие модели GPT склонны генерировать ложные сведения, называемые « галлюцинациями », хотя это можно уменьшить с помощью RLHF и качественных данных. Они используются в чат-ботах , которые позволяют людям задавать вопрос или запрашивать задачу простым текстом. [127] [128]

Текущие модели и сервисы включают Gemini (ранее Bard), ChatGPT , Grok , Claude , Copilot и LLaMA . [129] Мультимодальные модели GPT могут обрабатывать различные типы данных ( модальности ), такие как изображения, видео, звук и текст. [130]

Специализированное оборудование и программное обеспечение

В конце 2010-х годов графические процессоры (GPU), которые все чаще проектировались с усовершенствованиями, специфичными для искусственного интеллекта, и использовались со специализированным программным обеспечением TensorFlow, заменили ранее использовавшиеся центральные процессоры (ЦП) в качестве доминирующего средства для крупномасштабных (коммерческих и академических) машин. обучения . обучение моделей [131] Специализированные языки программирования , такие как Пролог, использовались в ранних исследованиях ИИ. [132] но языки программирования общего назначения, такие как Python, стали преобладать. [133]

Приложения

Технологии искусственного интеллекта и машинного обучения используются в большинстве важнейших приложений 2020-х годов, включая: поисковые системы (такие как Google Search ), таргетинг онлайн-рекламы , системы рекомендаций (предлагаемые Netflix , YouTube или Amazon ), привлечение интернет-трафика , таргетированную рекламу. ( AdSense , Facebook ), виртуальные помощники (такие как Siri или Alexa ), автономные транспортные средства (включая дроны , ADAS и беспилотные автомобили ), автоматический языковой перевод ( Microsoft Translator , Google Translate ), распознавание лиц ( Apple ID Face или Microsoft от DeepFace и Google от FaceNet ) и маркировка изображений (используется Facebook от Apple , iPhoto и TikTok ). Развертывание ИИ может контролироваться директором по автоматизации (CAO).

Здоровье и медицина

Применение ИИ в медицине и медицинских исследованиях потенциально может улучшить уход за пациентами и качество их жизни. [134] Через призму клятвы Гиппократа медицинские работники этически обязаны использовать ИИ, если приложения могут более точно диагностировать и лечить пациентов.

Для медицинских исследований ИИ является важным инструментом обработки и интеграции больших данных . Это особенно важно для развития органоидной и тканевой инженерии визуализация используется , где микроскопическая в качестве ключевого метода производства. [135] Было высказано предположение, что ИИ может преодолеть несоответствия в финансировании, выделяемом на разные области исследований. [135] Новые инструменты искусственного интеллекта могут углубить понимание биомедицинских путей. Например, AlphaFold 2 (2021) продемонстрировал способность аппроксимировать трехмерную структуру белка за часы, а не за месяцы . [136] В 2023 году сообщалось, что открытие лекарств под руководством ИИ помогло найти класс антибиотиков, способных убивать два разных типа устойчивых к лекарствам бактерий. [137] В 2024 году исследователи использовали машинное обучение, чтобы ускорить поиск от болезни Паркинсона лекарств . Их целью было идентифицировать соединения, которые блокируют слипание или агрегацию альфа-синуклеина (белка, который характеризует болезнь Паркинсона). Им удалось ускорить процесс первичной проверки в десять раз и снизить стоимость в тысячу раз. [138] [139]

Игры

Игровые программы используются с 1950-х годов для демонстрации и тестирования самых передовых методов искусственного интеллекта. [140] Deep Blue стала первой компьютерной игровой системой, победившей действующего чемпиона мира по шахматам Гарри Каспарова 11 мая 1997 года. [141] В 2011 году в опасности! викторина-шоу показательный матч, , IBM вопросно-ответная система Уотсон , победилдва величайших Jeopardy! чемпионы Брэд Раттер и Кен Дженнингс со значительным отрывом. [142] В марте 2016 года AlphaGo выиграла 4 из 5 игр в го в матче с чемпионом по го Ли Седолем , став первой компьютерной системой игры в го, обыгравшей профессионального игрока в го без гандикапов . Затем в 2017 году он победил Кэ Цзе , который был лучшим игроком в го в мире. [143] Другие программы поддерживают игры с несовершенной информацией , например, в покер программа для игры Pluribus . [144] DeepMind разработала все более общие модели обучения с подкреплением , такие как MuZero , которые можно было обучить играть в шахматы, го или Atari . игры [145] В 2019 году AlphaStar из DeepMind достигла уровня гроссмейстера в StarCraft II , особенно сложной стратегической игре в реальном времени, которая предполагает неполное знание того, что происходит на карте. [146] В 2021 году ИИ-агент принял участие в соревновании PlayStation Gran Turismo , победив четырех лучших в мире водителей Gran Turismo, используя глубокое обучение с подкреплением. [147] В 2024 году Google DeepMind представила SIMA, тип искусственного интеллекта, способный автономно играть в девять ранее невиданных видеоигр с открытым миром , наблюдая за выводом на экран, а также выполнять короткие конкретные задачи в ответ на инструкции на естественном языке. [148]

Финансы

Финансы — один из наиболее быстрорастущих секторов, где используются прикладные инструменты искусственного интеллекта: от розничного онлайн-банкинга до инвестиционных консультаций и страхования, где уже несколько лет используются автоматизированные «роботы-консультанты». [149]

Эксперты World Pensions , такие как Николас Фирзли, настаивают, что, возможно, еще слишком рано видеть появление высокоинновационных финансовых продуктов и услуг на основе искусственного интеллекта: «развертывание инструментов искусственного интеллекта просто приведет к дальнейшей автоматизации процессов: уничтожению десятков тысяч рабочих мест в банковском деле, финансовом планировании и рекомендации по пенсионному обеспечению в процессе, но я не уверен, что это вызовет новую волну [например, сложных] пенсионных инноваций». [150]

Военный

Различные страны внедряют военные приложения ИИ. [151] Основные приложения расширяют возможности управления и контроля , связи, датчиков, интеграции и совместимости. [152] Исследования направлены на сбор и анализ разведывательной информации, логистику, кибероперации, информационные операции, а также полуавтономные и автономные транспортные средства . [151] Технологии искусственного интеллекта обеспечивают координацию датчиков и исполнительных устройств, обнаружение и идентификацию угроз, маркировку позиций противника, захват целей , координацию и устранение конфликтов в распределенных совместных огнях между объединенными в сеть боевыми машинами с участием пилотируемых и беспилотных групп. [152] ИИ был задействован в военных операциях в Ираке и Сирии. [151]

В ноябре 2023 года вице-президент США Камала Харрис обнародовала подписанную 31 страной декларацию, устанавливающую ограничения на использование искусственного интеллекта в военных целях. Обязательства включают в себя проведение юридических проверок для обеспечения соответствия военного ИИ международному праву, а также осторожность и прозрачность при разработке этой технологии. [153]

Генеративный ИИ

Винсент Ван Гог в акварели, созданный с помощью генеративного программного обеспечения искусственного интеллекта

В начале 2020-х годов генеративный искусственный интеллект получил широкое распространение. В марте 2023 года 58% взрослых американцев слышали о ChatGPT и 14% пробовали его. [154] Растущая реалистичность и простота использования генераторов текста в изображения на основе искусственного интеллекта, таких как Midjourney , DALL-E и Stable Diffusion, вызвали тенденцию к созданию вирусных фотографий, созданных с помощью искусственного интеллекта. Широкое внимание привлекли фейковая фотография Папы Франциска в белом пуховике, вымышленный арест Дональда Трампа и мистификация нападения на Пентагон , а также использование в профессиональном творчестве. [155] [156]

Другие отраслевые задачи

Существуют также тысячи успешных приложений ИИ, используемых для решения конкретных проблем в конкретных отраслях или учреждениях. В опросе 2017 года каждая пятая компания сообщила, что включила искусственный интеллект в некоторые предложения или процессы. [157] Несколько примеров — хранение энергии , медицинская диагностика, военная логистика, приложения, предсказывающие результат судебных решений, внешняя политика или управление цепочками поставок.

Приложения искусственного интеллекта для эвакуации и борьбы со стихийными бедствиями растут. Искусственный интеллект использовался для расследования того, эвакуировались ли люди в крупномасштабных и мелкомасштабных эвакуациях, и если да, то каким образом, с использованием исторических данных GPS, видео или социальных сетей. Кроме того, ИИ может предоставлять информацию в реальном времени об условиях эвакуации в реальном времени. [158] [159] [160]

В сельском хозяйстве ИИ помог фермерам определить области, которые нуждаются в ирригации, удобрении, обработке пестицидами или повышении урожайности. Агрономы используют ИИ для проведения исследований и разработок. ИИ использовался для прогнозирования времени созревания таких культур, как томаты, мониторинга влажности почвы, управления сельскохозяйственными роботами, проведения прогнозной аналитики, классификации эмоций, вызываемых домашним скотом, свиней, автоматизации теплиц, обнаружения болезней и вредителей, а также экономии воды.

Искусственный интеллект используется в астрономии для анализа растущих объемов доступных данных и приложений, в основном для «классификации, регрессии, кластеризации, прогнозирования, генерации, открытия и развития новых научных идей», например, для открытия экзопланет, прогнозирования солнечной активности и различие между сигналами и инструментальными эффектами в гравитационно-волновой астрономии. Его также можно использовать для деятельности в космосе, такой как исследование космоса, включая анализ данных космических миссий, научные решения космических кораблей в реальном времени, предотвращение космического мусора и более автономную работу.

Этика

ИИ имеет потенциальные преимущества и потенциальные риски. ИИ может способствовать развитию науки и находить решения серьезных проблем: Демис Хассабис из Deep Mind надеется «разгадать интеллект, а затем использовать его для решения всего остального». [161] Однако по мере того, как использование ИИ стало широко распространенным, было выявлено несколько непредвиденных последствий и рисков. [162] Производственные системы иногда не могут учитывать этику и предвзятость в процессах обучения ИИ, особенно когда алгоритмы ИИ по своей сути необъяснимы при глубоком обучении. [163]

Риски и вред

Алгоритмы машинного обучения требуют больших объемов данных. Методы, используемые для получения этих данных, вызвали обеспокоенность по поводу конфиденциальности , слежки и авторских прав .

Технологические компании собирают широкий спектр данных от своих пользователей, включая онлайн-активность, данные геолокации, видео и аудио. [164] Например, чтобы создать распознавания речи алгоритмы , Amazon записал миллионы частных разговоров и позволил временным работникам прослушивать и расшифровывать некоторые из них. [165] Мнения об этой широко распространенной слежке варьируются от тех, кто считает ее необходимым злом , до тех, для кого она явно неэтична и нарушает право на неприкосновенность частной жизни . [166]

Разработчики ИИ утверждают, что это единственный способ предоставлять ценные приложения. и разработали несколько методов, которые пытаются сохранить конфиденциальность при получении данных, таких как агрегирование данных , деидентификация и дифференциальная конфиденциальность . [167] С 2016 года некоторые эксперты по конфиденциальности, такие как Синтия Дворк , начали рассматривать конфиденциальность с точки зрения справедливости . Брайан Кристиан писал, что эксперты перешли «от вопроса «что они знают» к вопросу «что они с этим делают»». [168]

Генеративный ИИ часто обучается на нелицензированных произведениях, защищенных авторским правом, в том числе в таких областях, как изображения или компьютерный код; выходные данные затем используются на основании « добросовестного использования ». Эксперты расходятся во мнениях относительно того, насколько хорошо и при каких обстоятельствах это обоснование будет иметь силу в судах; соответствующие факторы могут включать «цель и характер использования произведения, защищенного авторским правом» и «влияние на потенциальный рынок произведения, защищенного авторским правом». [169] [170] Владельцы веб-сайтов, которые не хотят, чтобы их контент удалялся, могут указать это в файле robots.txt . [171] В 2023 году ведущие авторы (в том числе Джон Гришэм и Джонатан Франзен ) подали в суд на компании, занимающиеся ИИ, за использование их работ для обучения генеративному ИИ. [172] [173] Другой обсуждаемый подход заключается в создании отдельной sui Generis системы защиты творений, созданных ИИ, чтобы обеспечить справедливое присвоение авторства и компенсацию авторам-людям. [174]

Доминирование технологических гигантов

На коммерческой сцене ИИ доминируют крупные технологические компании, такие как Alphabet Inc. , Amazon , Apple Inc. , Meta Platforms и Microsoft . [175] [176] [177] Некоторые из этих игроков уже владеют подавляющим большинством существующей облачной инфраструктуры и вычислительных мощностей центров обработки данных , что позволяет им еще больше укрепиться на рынке. [178] [179]

Значительные потребности в электроэнергии и другие воздействия на окружающую среду

В январе 2024 года Международное энергетическое агентство (МЭА) опубликовало «Электричество 2024, анализ и прогноз до 2026 года» , в котором прогнозируется потребление электроэнергии. [180] Это первый отчет МЭА, в котором представлены прогнозы относительно центров обработки данных и энергопотребления для искусственного интеллекта и криптовалют. В отчете говорится, что спрос на электроэнергию для этих целей может удвоиться к 2026 году, при этом дополнительное потребление электроэнергии будет равно объему электроэнергии, потребляемой всей японской страной. [181]

Колоссальное энергопотребление ИИ является причиной роста использования ископаемого топлива и может задержать закрытие устаревших угольных энергетических объектов, выделяющих углерод. В США наблюдается лихорадочный рост строительства центров обработки данных, превращающий крупные технологические компании (например, Microsoft, Meta, Google, Amazon) в ненасытных потребителей электроэнергии. Прогнозируемое потребление электроэнергии настолько велико, что есть опасения, что оно будет обеспечено независимо от источника. Поиск ChatGPT требует в 10 раз больше электроэнергии, чем поиск Google. Крупные фирмы торопятся найти источники энергии – от ядерной энергии до геотермальной энергии и термоядерного синтеза. Технологические компании утверждают, что в долгосрочной перспективе ИИ в конечном итоге станет более добрым к окружающей среде, но энергия им нужна сейчас. По мнению технологических компаний, искусственный интеллект сделает энергосистему более эффективной и «интеллектуальной», будет способствовать развитию атомной энергетики и отслеживать общие выбросы углекислого газа. [182]

2024 года Goldman Sachs В исследовательском документе « Центры обработки данных искусственного интеллекта и грядущий всплеск спроса на электроэнергию в США » говорится, что «спрос на электроэнергию в США, вероятно, будет испытывать рост, не наблюдавшийся в течение одного поколения…». и прогнозирует, что к 2030 году центры обработки данных США будут потреблять 8% электроэнергии в США по сравнению с 3% в 2022 году, что предвещает рост электроэнергетической отрасли различными способами. [183] Потребность центров обработки данных во все большем количестве электроэнергии такова, что они могут максимально использовать электрическую сеть. Крупные технологические компании возражают, что искусственный интеллект может использоваться для максимального использования энергосистемы всеми. [184]

В 2024 году газета Wall Street Journal сообщила, что крупные компании, занимающиеся искусственным интеллектом, начали переговоры с поставщиками атомной энергии США о поставке электроэнергии в центры обработки данных. В марте 2024 года Amazon приобрела ядерный центр обработки данных в Пенсильвании за 650 миллионов долларов США. [185]

Дезинформация

YouTube , Facebook и другие используют системы рекомендаций , чтобы направлять пользователей к большему количеству контента. Целью этих программ искусственного интеллекта было максимальное вовлечение пользователей (то есть единственной целью было заставить людей следить за происходящим). ИИ узнал, что пользователи склонны выбирать дезинформацию , теории заговора и крайне предвзятый контент, и, чтобы удержать их на просмотре, ИИ рекомендовал больше такого контента. Пользователи также склонны смотреть больше контента на одну и ту же тему, поэтому ИИ направлял людей в пузыри фильтров , где они получали несколько версий одной и той же дезинформации. [186] Это убедило многих пользователей в правдивости дезинформации и в конечном итоге подорвало доверие к институтам, СМИ и правительству. [187] Программа ИИ правильно научилась максимизировать свою цель, но результат был вреден для общества. После выборов в США в 2016 году крупные технологические компании предприняли шаги по смягчению проблемы. [ нужна ссылка ] .

В 2022 году генеративный ИИ начал создавать изображения, аудио, видео и текст, неотличимые от реальных фотографий, записей, фильмов или написанного человеком текста. Злоумышленники могут использовать эту технологию для создания огромного количества дезинформации или пропаганды. [188] Пионер ИИ Джеффри Хинтон выразил обеспокоенность по поводу того, что ИИ, помимо других рисков, позволяет «авторитарным лидерам манипулировать своим электоратом» в больших масштабах. [189]

Алгоритмическая предвзятость и справедливость

В статистике смещение — это систематическая ошибка или отклонение от правильного значения. Но в контексте справедливости это часто относится к тенденции в пользу или против определенной группы или индивидуальной характеристики, обычно такой, которая считается несправедливой или вредной. Таким образом, статистически объективная система ИИ, которая дает несопоставимые результаты для разных демографических групп, может рассматриваться как предвзятая в этическом смысле. [190]

Область справедливости изучает, как предотвратить вред от алгоритмических предубеждений. Существуют различные противоречивые определения и математические модели справедливости. Эти представления зависят от этических предположений и находятся под влиянием представлений об обществе. Одной из широких категорий является справедливость распределения, которая фокусируется на результатах, часто выявляя группы и стремясь компенсировать статистические различия. Репрезентативная справедливость направлена ​​на то, чтобы системы искусственного интеллекта не укрепляли негативные стереотипы и не делали определенные группы невидимыми. Процедурная справедливость фокусируется на процессе принятия решений, а не на результате. Наиболее важные понятия справедливости могут зависеть от контекста, в частности от типа приложения ИИ и заинтересованных сторон. Субъективность понятий предвзятости и справедливости затрудняет их практическую реализацию компаниями. Многие специалисты по этике ИИ также считают, что доступ к чувствительным атрибутам, таким как раса или пол, необходим для компенсации предубеждений, но это может противоречить антидискриминационные законы . [190]

Приложения машинного обучения будут предвзятыми, если они будут учиться на предвзятых данных. [191] Разработчики могут не знать о существовании предвзятости. [192] Смещение может быть вызвано способом выбора обучающих данных и способом развертывания модели. [193] [191] Если предвзятый алгоритм используется для принятия решений, которые могут серьезно навредить людям (как это может быть в медицине , финансах , найме на работу , жилье или полиции ), тогда этот алгоритм может вызвать дискриминацию . [194]

28 июня 2015 года новая функция маркировки изображений в Google Фото ошибочно определила Джеки Алсина и его друга как «горилл», потому что они были черными. Система была обучена на наборе данных, содержащем очень мало изображений чернокожих людей. [195] проблема под названием «несоответствие размера выборки». [196] Google «исправил» эту проблему, запретив системе помечать что-либо как «гориллу». Восемь лет спустя, в 2023 году, Google Photos все еще не смог идентифицировать гориллу, как и аналогичные продукты Apple, Facebook, Microsoft и Amazon. [197]

COMPAS – коммерческая программа, широко используемая судами США для оценки вероятности того, что обвиняемый станет рецидивистом .В 2016 году Джулия Ангвин из ProPublica обнаружила, что КОМПАС демонстрирует расовую предвзятость, несмотря на то, что программе не была указана расовая принадлежность обвиняемых. Хотя частота ошибок как для белых, так и для чернокожих была калибрована равной ровно 61%, ошибки для каждой расы были разными — система постоянно переоценивала вероятность того, что чернокожий человек совершит повторное правонарушение, и недооценивала вероятность того, что белый человек не совершит правонарушение. повторно обидеть. [198] В 2017 году несколько исследователей [к] показало, что COMPAS математически невозможно учесть все возможные меры справедливости, когда базовые показатели повторных правонарушений различаются для белых и черных в данных. [200]

Программа может принимать предвзятые решения, даже если в данных явно не упоминается проблемный признак (например, «раса» или «пол»). Эта функция будет коррелировать с другими функциями (такими как «адрес», «история покупок» или «имя»), и программа будет принимать те же решения на основе этих функций, что и на основе «расы» или «пола». [201] Мориц Хардт сказал, что «самый убедительный факт в этой области исследований заключается в том, что справедливость через слепоту не работает». [202]

Критика COMPAS подчеркнула, что модели машинного обучения созданы для того, чтобы делать «прогнозы», которые действительны только в том случае, если мы предполагаем, что будущее будет напоминать прошлое. Если они обучаются на данных, которые включают результаты расистских решений в прошлом, модели машинного обучения должны предсказывать, что расистские решения будут приняты в будущем. Если приложение затем использует эти прогнозы в качестве рекомендаций , некоторые из этих «рекомендаций», скорее всего, будут расистскими. [203] Таким образом, машинное обучение не очень подходит для принятия решений в тех областях, где есть надежда, что будущее будет лучше прошлого. Он носит скорее описательный, чем предписывающий характер. [л]

Предвзятость и несправедливость могут остаться незамеченными, поскольку разработчики в подавляющем большинстве белые и мужчины: среди инженеров ИИ около 4% — чернокожие, а 20% — женщины. [196]

На своей конференции по справедливости, подотчетности и прозрачности 2022 года (ACM FAccT 2022) Ассоциация вычислительной техники в Сеуле, Южная Корея, представила и опубликовала результаты, которые рекомендуют, чтобы до тех пор, пока системы искусственного интеллекта и робототехники не будут продемонстрированы, что они свободны от ошибок предвзятости, они небезопасны, и следует ограничить использование самообучающихся нейронных сетей, обученных на огромных нерегулируемых источниках ошибочных интернет-данных. [ сомнительно обсудить ] [205]

Отсутствие прозрачности

Многие системы искусственного интеллекта настолько сложны, что их разработчики не могут объяснить, как они принимают решения. [206] Особенно с глубокими нейронными сетями , в которых существует большое количество нелинейных связей между входными и выходными данными. Но существуют некоторые популярные методы объяснения. [207]

Невозможно быть уверенным в том, что программа работает правильно, если никто не знает, как именно она работает. Было много случаев, когда программа машинного обучения прошла строгие тесты, но, тем не менее, узнала нечто иное, чем предполагали программисты. Например, было обнаружено, что система, которая может идентифицировать кожные заболевания лучше, чем медицинские работники, на самом деле имеет сильную тенденцию классифицировать изображения с линейкой как «раковые», поскольку изображения злокачественных новообразований обычно включают линейку, показывающую масштаб. [208] Другая система машинного обучения, разработанная для эффективного распределения медицинских ресурсов, классифицирует пациентов с астмой как людей с «низким риском» смерти от пневмонии. Наличие астмы на самом деле является серьезным фактором риска, но, поскольку пациенты, страдающие астмой, обычно получают гораздо больше медицинской помощи, согласно данным обучения, их смерть относительно маловероятна. Корреляция между астмой и низким риском смерти от пневмонии была реальной, но вводящей в заблуждение. [209]

Люди, пострадавшие от решения алгоритма, имеют право на объяснение. [210] От врачей, например, ожидается, что они будут четко и полностью объяснять своим коллегам причины любого принимаемого ими решения. Ранние проекты Общего регламента ЕС по защите данных в 2016 году содержали прямое заявление о существовании этого права. [м] Эксперты отрасли отметили, что это нерешенная проблема, решения которой не видно. Регуляторы утверждали, что тем не менее вред реален: если проблема не имеет решения, инструменты не следует использовать. [211]

DARPA учредило программу XAI («Объяснимый искусственный интеллект») в 2014 году, чтобы попытаться решить эти проблемы. [212]

Несколько подходов направлены на решение проблемы прозрачности. SHAP позволяет визуализировать вклад каждой функции в выходные данные. [213] LIME может локально аппроксимировать результаты модели более простой интерпретируемой моделью. [214] Многозадачное обучение обеспечивает большое количество результатов в дополнение к целевой классификации. Эти другие выходные данные могут помочь разработчикам понять, чему научилась сеть. [215] Деконволюция , DeepDream и другие генеративные методы могут позволить разработчикам увидеть, чему научились различные уровни глубокой сети для компьютерного зрения, и получить выходные данные, которые могут подсказать, что изучает сеть. [216] Для генеративных предварительно обученных трансформаторов компания Anthropic разработала метод, основанный на словарном обучении , который связывает паттерны активации нейронов с понятными человеку понятиями. [217]

Плохие актеры и вооруженный ИИ

Искусственный интеллект предоставляет ряд инструментов, полезных злоумышленникам , таким как авторитарные правительства , террористы , преступники или государства-изгои .

Смертоносное автономное оружие — это машина, которая обнаруживает, выбирает и поражает человеческие цели без присмотра человека. [н] Широко доступные инструменты искусственного интеллекта могут быть использованы злоумышленниками для разработки недорогого автономного оружия, и, если они будут производиться в больших масштабах, они потенциально станут оружием массового уничтожения . [219] Даже при использовании в обычной войне маловероятно, что они не смогут надежно выбирать цели и потенциально смогут убить невиновного человека . [219] В 2014 году 30 стран (включая Китай) поддержали запрет на автономное оружие в соответствии с ООН Конвенцией о конкретных видах обычного оружия , однако Соединенные Штаты и другие страны с этим не согласились. [220] Сообщалось, что к 2015 году более пятидесяти стран исследовали боевых роботов. [221]

Инструменты ИИ облегчают авторитарным правительствам эффективный контроль над своими гражданами несколькими способами. лиц и Распознавание голоса позволяет осуществлять повсеместное наблюдение . Машинное обучение , оперируя этими данными, может классифицировать потенциальных врагов государства и не давать им скрываться. Системы рекомендаций могут точно нацелены на пропаганду и дезинформацию для достижения максимального эффекта. Дипфейки и генеративный искусственный интеллект помогают создавать дезинформацию. Передовой ИИ может сделать авторитарные централизованные процессы принятия решений более конкурентоспособными, чем либеральные и децентрализованные системы, такие как рынки . Это снижает стоимость и сложность цифровой войны и современного шпионского ПО . [222] Все эти технологии доступны с 2020 года или раньше — системы распознавания лиц с искусственным интеллектом уже используются для массовой слежки в Китае. [223] [224]

Существует много других способов, с помощью которых ИИ может помочь злодеям, некоторые из которых невозможно предусмотреть. Например, искусственный интеллект с машинным обучением способен создавать десятки тысяч токсичных молекул за считанные часы. [225]

Технологическая безработица

Экономисты часто подчеркивали риски увольнений из ИИ и высказывали предположения о безработице, если не будет адекватной социальной политики для полной занятости. [226]

В прошлом технологии имели тенденцию скорее увеличивать, чем сокращать общую занятость, но экономисты признают, что с ИИ «мы находимся на неизведанной территории». [227] Опрос экономистов показал разногласия по поводу того, приведет ли растущее использование роботов и искусственного интеллекта к существенному увеличению долгосрочной безработицы , но в целом они согласны с тем, что это может принести чистую выгоду, если производительности прирост перераспределить . [228] Оценки риска различаются; например, в 2010-х годах Майкл Осборн и Карл Бенедикт Фрей подсчитали, что 47% рабочих мест в США подвергаются «высокому риску» потенциальной автоматизации, тогда как в отчете ОЭСР только 9% рабочих мест в США классифицируются как «высокие риски». [the] [230] Методологию рассуждений о будущих уровнях занятости подвергали критике за отсутствие доказательной базы и за то, что она подразумевает, что технологии, а не социальная политика, создают безработицу, а не увольнения. [226] В апреле 2023 года сообщалось, что 70% рабочих мест китайских иллюстраторов видеоигр были сокращены из-за генеративного искусственного интеллекта. [231] [232]

В отличие от предыдущих волн автоматизации, многие рабочие места среднего класса могут быть ликвидированы искусственным интеллектом; В 2015 году журнал The Economist заявил, что «беспокойство о том, что ИИ может сделать с рабочими местами белых воротничков то же, что паровая энергия сделала с рабочими во время промышленной революции», «стоит отнестись серьезно». [233] Рабочие места, подвергающиеся крайнему риску, варьируются от помощников юристов до поваров фаст-фуда, в то время как спрос на рабочие места, вероятно, увеличится для профессий, связанных с уходом, от личного здравоохранения до духовенства. [234]

С первых дней развития искусственного интеллекта существовали аргументы, например, выдвинутые Джозефом Вайценбаумом , о том, должны ли на самом деле выполняться ими задачи, которые могут выполняться компьютерами, учитывая разницу между компьютерами и людьми, и между количественными расчетами и качественными, основанными на ценностях суждениями. [235]

Экзистенциальный риск

Утверждалось, что ИИ станет настолько мощным, что человечество может необратимо потерять над ним контроль. Это может, как заявил физик Стивен Хокинг , « означать конец человечества ». [236] Этот сценарий был обычным явлением в научной фантастике, когда компьютер или робот внезапно развивает человеческое «самосознание» (или «чувственность» или «сознание») и становится злонамеренным персонажем. [п] Эти научно-фантастические сценарии вводят в заблуждение по нескольким причинам.

Во-первых, ИИ не требует, чтобы человеческое « сознание » представляло собой экзистенциальный риск. Современные программы искусственного интеллекта ставят перед собой конкретные цели и используют обучение и интеллект для их достижения. Философ Ник Бостром утверждал, что если дать достаточно мощному ИИ практически любую цель, он может решить уничтожить человечество для ее достижения (он использовал пример менеджера фабрики по производству скрепок ). [238] Стюарт Рассел приводит пример домашнего робота, который пытается найти способ убить своего владельца, чтобы предотвратить его отключение от сети, мотивируя это тем, что «вы не сможете принести кофе, если вы мертвы». [239] Чтобы быть безопасным для человечества, сверхразум должен быть искренне связан с моралью и ценностями человечества, чтобы он был «фундаментально на нашей стороне». [240]

Во-вторых, Юваль Ной Харари утверждает, что ИИ не требует тела робота или физического контроля, чтобы представлять экзистенциальный риск. Существенные части цивилизации не являются физическими. Такие вещи, как идеологии , законы , правительство , деньги и экономика , созданы из языка ; они существуют, потому что есть истории, в которые верят миллиарды людей. Нынешняя распространенность дезинформации предполагает, что ИИ может использовать язык, чтобы убедить людей поверить во что угодно, даже совершить разрушительные действия. [241]

Мнения среди экспертов и инсайдеров отрасли неоднозначны: значительная часть их как обеспокоена, так и не обеспокоена риском, исходящим от возможного сверхразумного ИИ. [242] Такие личности, как Стивен Хокинг , Билл Гейтс и Илон Маск , [243] а также пионеры ИИ, такие как Йошуа Бенджио , Стюарт Рассел , Демис Хассабис и Сэм Альтман , выразили обеспокоенность по поводу экзистенциального риска, связанного с ИИ.

В мае 2023 года Джеффри Хинтон объявил о своем уходе из Google, чтобы иметь возможность «свободно говорить о рисках ИИ», «не задумываясь о том, как это повлияет на Google». [244] В частности, он упомянул о рисках поглощения ИИ . [245] и подчеркнул, что во избежание наихудших результатов разработка руководящих принципов безопасности потребует сотрудничества между теми, кто конкурирует в использовании ИИ. [246]

В 2023 году многие ведущие эксперты в области ИИ выступили с совместным заявлением , что «Снижение риска исчезновения ИИ должно стать глобальным приоритетом наряду с другими рисками социального масштаба, такими как пандемии и ядерная война». [247]

Другие исследователи, однако, высказались в пользу менее антиутопической точки зрения. Пионер искусственного интеллекта Юрген Шмидхубер не подписал совместное заявление, подчеркнув, что в 95% всех случаев исследования искусственного интеллекта направлены на то, чтобы сделать «человеческую жизнь дольше, здоровее и проще». [248] Хотя инструменты, которые сейчас используются для улучшения жизни, также могут быть использованы злоумышленниками, «они также могут быть использованы против злоумышленников». [249] [250] Эндрю Нг также заявил, что «было бы ошибкой поддаться шумихе вокруг ИИ, связанной с судным днем, и что регуляторы, которые это сделают, принесут пользу только корыстным интересам». [251] Янн ЛеКун «высмеивает антиутопические сценарии своих сверстников о чрезмерной дезинформации и даже, в конечном итоге, о вымирании человечества». [252] В начале 2010-х годов эксперты утверждали, что риски в будущем слишком отдалены, чтобы требовать проведения исследований, или что люди будут представлять ценность с точки зрения сверхразумной машины. [253] Однако после 2016 года изучение текущих и будущих рисков и возможных решений стало серьезным направлением исследований. [254]

Этические машины и согласованность

Дружественный ИИ — это машины, которые с самого начала были разработаны для минимизации рисков и принятия решений, приносящих пользу людям. Элиэзер Юдковски , придумавший этот термин, утверждает, что разработка дружественного ИИ должна быть более высоким приоритетом исследований: это может потребовать больших инвестиций и должно быть завершено до того, как ИИ станет экзистенциальным риском. [255]

У машин, обладающих интеллектом, есть потенциал использовать свой интеллект для принятия этических решений. Область машинной этики предоставляет машинам этические принципы и процедуры для решения этических дилемм. [256] Область машинной этики также называется вычислительной моралью. [256] и была основана на симпозиуме AAAI в 2005 году. [257]

Другие подходы включают Венделла Уоллаха . «искусственные моральные агенты» [258] и Стюарта Дж. Рассела для три принципа разработки доказуемо полезных машин. [259]

Открытый исходный код

Активные организации в сообществе разработчиков искусственного интеллекта с открытым исходным кодом включают Hugging Face , [260] Google , [261] ЭлеутерИИ и Мета . [262] Различные модели ИИ, такие как Llama 2 , Mistral или Stable Diffusion , были сделаны с открытым весом, [263] [264] это означает, что их архитектура и обученные параметры («веса») общедоступны. Модели открытого веса можно свободно настраивать , что позволяет компаниям специализировать их на основе собственных данных и для собственных сценариев использования. [265] Модели открытого веса полезны для исследований и инноваций, но ими также можно злоупотреблять. Поскольку их можно точно настроить, любые встроенные меры безопасности, такие как противодействие вредоносным запросам, можно отключать до тех пор, пока они не станут неэффективными. Некоторые исследователи предупреждают, что будущие модели ИИ могут обладать опасными возможностями (например, потенциально способствовать значительному развитию биотерроризма ) и что, как только они будут опубликованы в Интернете, их нельзя будет удалить повсюду, если это необходимо. Они рекомендуют предварительные аудиты и анализ затрат и выгод. [266]

Рамки

Этическая допустимость проектов искусственного интеллекта может быть проверена при проектировании, разработке и внедрении системы ИИ. Структура искусственного интеллекта, такая как Care and Act Framework, содержащая значения SUM, разработанная Институтом Алана Тьюринга, тестирует проекты в четырех основных областях: [267] [268]

  • Уважайте достоинство отдельных людей
  • Общайтесь с другими людьми искренне, открыто и инклюзивно.
  • Забота о благополучии каждого
  • Защищать социальные ценности, справедливость и общественные интересы

Другие разработки в области этических норм включают, среди прочего, решения, принятые на конференции Асиломар , Монреальскую декларацию об ответственном ИИ и инициативу IEEE по этике автономных систем; [269] однако эти принципы не обходятся без критики, особенно в отношении людей, избранных в эти рамки. [270]

Содействие благополучию людей и сообществ, на которые влияют эти технологии, требует рассмотрения социальных и этических последствий на всех этапах проектирования, разработки и внедрения системы ИИ, а также сотрудничества между должностными лицами, такими как специалисты по обработке данных, менеджеры по продуктам, инженеры по обработке данных, специалисты по предметной области. специалисты и менеджеры по доставке. [271]

Британский институт безопасности ИИ выпустил в 2024 году набор инструментов для тестирования под названием «Inspect» для оценки безопасности ИИ, доступный по лицензии MIT с открытым исходным кодом, который находится в свободном доступе на GitHub и может быть улучшен с помощью сторонних пакетов. Его можно использовать для оценки моделей ИИ в различных областях, включая базовые знания, способность рассуждать и автономные возможности. [272]

Регулирование

Саммит по безопасности ИИ
В 2023 году состоялся первый глобальный саммит по безопасности ИИ, на котором была принята декларация, призывающая к международному сотрудничеству.

Регулирование искусственного интеллекта — это разработка политики и законов государственного сектора для продвижения и регулирования искусственного интеллекта (ИИ); следовательно, это связано с более широким регулированием алгоритмов. [273] Нормативно-правовая база в области ИИ является новой проблемой в юрисдикциях по всему миру. [274] По данным AI Index в Стэнфорде , ежегодное количество законов, связанных с ИИ, принятых в 127 странах, принявших участие в исследовании, выросло с одного, принятого в 2016 году, до 37, принятых только в 2022 году. [275] [276] В период с 2016 по 2020 год более 30 стран приняли специальные стратегии в области ИИ. [277] Большинство государств-членов ЕС опубликовали национальные стратегии в области искусственного интеллекта, а также Канада, Китай, Индия, Япония, Маврикий, Российская Федерация, Саудовская Аравия, Объединенные Арабские Эмираты, США и Вьетнам. Другие страны, в том числе Бангладеш, Малайзия и Тунис, находились в процессе разработки собственной стратегии ИИ. [277] Глобальное партнерство по искусственному интеллекту было запущено в июне 2020 года, заявив о необходимости разработки ИИ в соответствии с правами человека и демократическими ценностями, чтобы обеспечить доверие общества к этой технологии. [277] Генри Киссинджер , Эрик Шмидт и Дэниел Хуттенлохер опубликовали в ноябре 2021 года совместное заявление с призывом создать правительственную комиссию по регулированию ИИ. [278] В 2023 году лидеры OpenAI опубликовали рекомендации по управлению сверхинтеллектом, что, по их мнению, может произойти менее чем через 10 лет. [279] В 2023 году Организация Объединенных Наций также создала консультативный орган для предоставления рекомендаций по управлению ИИ; В состав этого органа входят руководители технологических компаний, правительственные чиновники и ученые. [280]

Согласно опросу Ipsos 2022 года , отношение к ИИ сильно различалось в зависимости от страны; 78% граждан Китая и только 35% американцев согласились, что «продукты и услуги, использующие ИИ, имеют больше преимуществ, чем недостатков». [275] /Ipsos , проведенный в 2023 году, Опрос Reuters показал, что 61% американцев согласны и 22% не согласны с тем, что ИИ представляет угрозу для человечества. [281] В опросе Fox News 2023 года 35% американцев сочли «очень важным», а еще 41% сочли «несколько важным» регулирование ИИ со стороны федерального правительства, по сравнению с 13%, ответившими «не очень важно» и 8% отвечая «совсем не важно». [282] [283]

первый глобальный саммит по безопасности ИИ в Великобритании прошел В ноябре 2023 года в Блетчли-Парке , на котором обсуждались краткосрочные и долгосрочные риски ИИ, а также возможность создания обязательных и добровольных нормативных рамок. [284] 28 стран, включая США, Китай и Европейский Союз, в начале саммита опубликовали декларацию, призывающую к международному сотрудничеству для решения проблем и рисков, связанных с искусственным интеллектом. [285] [286] В мае 2024 года на Сеульском саммите AI 16 мировых компаний, занимающихся технологиями искусственного интеллекта, согласились взять на себя обязательства по обеспечению безопасности при разработке искусственного интеллекта. [287] [288]

История

Изучение механического или «формального» рассуждения началось с философов и математиков древности. Изучение логики привело непосредственно к Алана Тьюринга , теории вычислений которая предполагала, что машина, перетасовывая такие простые символы, как «0» и «1», может моделировать любую мыслимую форму математического рассуждения. [289] [5] Это, наряду с одновременными открытиями в кибернетике , теории информации и нейробиологии , побудило исследователей рассмотреть возможность создания «электронного мозга». [д] Они разработали несколько областей исследований, которые впоследствии стали частью ИИ. [291] такие как Маккаллуша и Питта «искусственных нейронов» в 1943 году, разработка [292] и влиятельная статья Тьюринга 1950 года « Вычислительная техника и интеллект », в которой был представлен тест Тьюринга и показано, что «машинный интеллект» вполне правдоподобен. [293] [5]

Область исследований искусственного интеллекта была основана на семинаре в Дартмутском колледже в 1956 году. [р] [6] Участники стали лидерами исследований в области искусственного интеллекта в 1960-х годах. [с] Они и их студенты подготовили программы, которые пресса назвала «поразительными»: [т] компьютеры изучали стратегии игры в шашки , решали текстовые задачи по алгебре, доказывали логические теоремы и говорили по-английски. [в] [9] Лаборатории искусственного интеллекта были созданы в ряде университетов Великобритании и США в конце 1950-х — начале 1960-х годов. [5]

Исследователи 1960-х и 1970-х годов были убеждены, что их методы в конечном итоге позволят создать машину с общим интеллектом , и считали это целью своей области. [297] Герберт Саймон предсказал: «Через двадцать лет машины будут способны выполнять любую работу, которую может выполнить человек». [298] Марвин Мински согласился, написав: «Через поколение… проблема создания «искусственного интеллекта» будет существенно решена». [299] Однако они недооценили сложность проблемы. [v] В 1974 году правительства США и Великобритании прекратили исследовательские исследования в ответ на критику сэра Джеймса Лайтхилла. [301] и продолжающееся давление со стороны Конгресса США с целью финансирования более продуктивных проектов . [302] Мински и Паперта Книга « Перцептроны » была воспринята как доказательство того, что искусственные нейронные сети никогда не будут полезны для решения реальных задач, что полностью дискредитировало этот подход. [303] Затем последовала « зима ИИ », период, когда получение финансирования для проектов ИИ было затруднено. [11]

В начале 1980-х годов исследования ИИ возобновились благодаря коммерческому успеху экспертных систем . [304] форма программы искусственного интеллекта, которая моделирует знания и аналитические навыки людей-экспертов. К 1985 году рынок искусственного интеллекта превысил миллиард долларов. В то же время японский компьютерный проект пятого поколения вдохновил правительства США и Великобритании восстановить финансирование академических исследований . [10] Однако, начиная с краха рынка Lisp-машин в 1987 году, ИИ снова потерял репутацию, и началась вторая, более продолжительная зима. [12]

До этого момента большая часть финансирования ИИ направлялась на проекты, в которых использовались символы высокого уровня для представления мысленных объектов, таких как планы, цели, убеждения и известные факты. В 1980-х годах некоторые исследователи начали сомневаться, что такой подход сможет имитировать все процессы человеческого познания, особенно восприятие , робототехнику , обучение и распознавание образов . [305] и начал изучать «субсимволические» подходы. [306] Родни Брукс отверг «представление» в целом и сосредоточился непосредственно на разработке машин, которые движутся и выживают. [В] Джудея Перл , Лофти Заде и другие разработали методы, которые обрабатывали неполную и неопределенную информацию, делая разумные предположения, а не точную логику. [91] [311] Но самым важным событием стало возрождение « коннекционизма », включая исследования нейронных сетей, Джеффри Хинтоном и другими. [312] В 1990 году Ян ЛеКун успешно показал, что сверточные нейронные сети могут распознавать рукописные цифры, что стало первым из многих успешных применений нейронных сетей. [313]

ИИ постепенно восстановил свою репутацию в конце 1990-х и начале 21 века, используя формальные математические методы и находя конкретные решения конкретных проблем. Эта « узкая » и «формальная» направленность позволила исследователям получать поддающиеся проверке результаты и сотрудничать с другими областями (такими как статистика , экономика и математика ). [314] К 2000 году решения, разработанные исследователями искусственного интеллекта, стали широко использоваться, хотя в 1990-е годы их редко называли «искусственным интеллектом». [315] Однако некоторые академические исследователи были обеспокоены тем, что ИИ больше не преследует свою первоначальную цель — создание универсальных, полностью интеллектуальных машин. Примерно начиная с 2002 года они основали подразделение общего искусственного интеллекта (или «AGI»), в котором к 2010-м годам было несколько хорошо финансируемых учреждений. [16]

Глубокое обучение начало доминировать в отрасли в 2012 году и было внедрено во всех сферах. [13] Для многих конкретных задач от других методов отказались. [х] Успех глубокого обучения был основан как на усовершенствовании аппаратного обеспечения ( более быстрые компьютеры , [317] графические процессоры , облачные вычисления [318] ) и доступ к большим объемам данных [319] (включая тщательно подобранные наборы данных, [318] например, ImageNet ). Успех глубокого обучения привел к огромному увеличению интереса и финансирования ИИ. [и] Объем исследований в области машинного обучения (измеряемый общим количеством публикаций) увеличился на 50% в 2015–2019 годах. [277]

В 2016 году вопросы справедливости и неправомерного использования технологий оказались в центре внимания конференций по машинному обучению, количество публикаций значительно увеличилось, появилось финансирование, и многие исследователи переориентировали свою карьеру на эти проблемы. Проблема выравнивания стала серьезной областью академических исследований. [254]

В конце подросткового периода и начале 2020-х годов компании AGI начали предлагать программы, вызвавшие огромный интерес. В 2015 году AlphaGo , разработанная DeepMind , обыграла чемпиона мира по игре в го . Программу обучали только правилам игры и самостоятельно разрабатывали стратегию. GPT-3 — это большая языковая модель , выпущенная OpenAI в 2020 году и способная генерировать высококачественный человеческий текст. [320] Эти и другие программы спровоцировали агрессивный бум искусственного интеллекта , когда крупные компании начали инвестировать миллиарды в исследования в области искусственного интеллекта. По данным AI Impacts, около 2022 года только в США в ИИ ежегодно инвестировалось около 50 миллиардов долларов, и около 20% новых выпускников докторских программ в области компьютерных наук в США специализировались в области ИИ. [321] В 2022 году в США существовало около 800 000 вакансий, связанных с искусственным интеллектом. [322]

Философия

Определение искусственного интеллекта

Алан Тьюринг написал в 1950 году: «Я предлагаю рассмотреть вопрос: могут ли машины думать?» [323] Он посоветовал изменить вопрос с «думает ли машина» на «может ли машина демонстрировать разумное поведение». [323] Он разработал тест Тьюринга, который измеряет способность машины имитировать человеческий разговор. [293] Поскольку мы можем только наблюдать за поведением машины, не имеет значения, «на самом деле» она думает или буквально имеет «разум». Тьюринг отмечает, что мы не можем определить эти вещи в отношении других людей , но «обычно существует вежливая условность, о которой думают все». [324]

Рассел и Норвиг согласны с Тьюрингом в том, что интеллект следует определять с точки зрения внешнего поведения, а не внутренней структуры. [1] Однако им очень важно, что тест требует, чтобы машина имитировала людей. « В текстах по авиационной технике , — писали они, — цель их области деятельности не определяется как создание «машин, которые летают настолько точно, как , что могут обмануть других голубей » . голуби [325] Основатель искусственного интеллекта Джон Маккарти согласился, написав, что «искусственный интеллект по определению не является симуляцией человеческого интеллекта». [326]

Маккарти определяет интеллект как «вычислительную часть способности достигать целей в мире». [327] Другой основатель ИИ, Марвин Мински, также описывает его как «способность решать сложные проблемы». [328] Ведущий учебник по искусственному интеллекту определяет его как исследование агентов, которые воспринимают окружающую среду и предпринимают действия, которые максимизируют их шансы на достижение определенных целей. [1] Эти определения рассматривают интеллект как четко определенные проблемы с четко определенными решениями, где и сложность проблемы, и производительность программы являются прямыми мерами «интеллекта» машины - и никакого другого философского обсуждения не требуется. или может быть даже невозможно.

Другое определение было принято Google: [329] крупный практик в области искусственного интеллекта. Это определение предусматривает способность систем синтезировать информацию как проявление интеллекта, аналогично тому, как это определяется в биологическом интеллекте.

Некоторые авторы на практике предполагают, что определение ИИ расплывчато и его трудно определить, при этом возникают споры относительно того, следует ли классические алгоритмы отнести к категории ИИ. [330] Многие компании во время бума искусственного интеллекта в начале 2020-х годов использовали этот термин как модное маркетинговое словечко , часто даже если они «на самом деле не использовали искусственный интеллект в материальном плане». [331]

Оценка подходов к ИИ

Никакая устоявшаяся объединяющая теория или парадигма не направляла исследования ИИ на протяжении большей части его истории. [С] Беспрецедентный успех статистического машинного обучения в 2010-х годах затмил все другие подходы (настолько, что некоторые источники, особенно в деловом мире, используют термин «искусственный интеллект» для обозначения «машинного обучения с нейронными сетями»). Этот подход в основном субсимволический , мягкий и узкий . Критики утверждают, что будущим поколениям исследователей ИИ, возможно, придется вернуться к этим вопросам.

Символический ИИ и его пределы

Символический ИИ (или « ГОФАИ ») [333] смоделировали сознательные рассуждения высокого уровня, которые люди используют, когда решают головоломки, выражают юридические рассуждения и занимаются математикой. Они очень успешно справлялись с «умными» задачами, такими как алгебра или тесты на IQ. В 1960-х годах Ньюэлл и Саймон предложили гипотезу системы физических символов : «Система физических символов обладает необходимыми и достаточными средствами общего разумного действия». [334]

Однако символический подход не справился со многими задачами, которые люди легко решают, такими как обучение, распознавание объекта или здравое рассуждение. Парадокс Моравца заключается в открытии того, что «интеллектуальные» задачи высокого уровня были легкими для ИИ, а «инстинктивные» задачи низкого уровня были чрезвычайно трудными. [335] Философ Хьюберт Дрейфус с 1960-х годов утверждал , что человеческий опыт зависит от бессознательного инстинкта, а не от сознательного манипулирования символами, и от «чувства» ситуации, а не от явного символического знания. [336] Хотя его аргументы были высмеяны и проигнорированы, когда они были впервые представлены, в конечном итоге исследования ИИ пришли к его мнению. [аа] [21]

Проблема не решена: субсимволические рассуждения могут совершать многие из тех же непостижимых ошибок, что и человеческая интуиция, например алгоритмическая предвзятость . Критики, такие как Ноам Хомский, утверждают, что продолжение исследований символического ИИ по-прежнему будет необходимо для достижения общего интеллекта. [338] [339] отчасти потому, что субсимволический ИИ — это отход от объяснимого ИИ : может быть трудно или невозможно понять, почему современная статистическая программа ИИ приняла то или иное решение. Развивающаяся область нейросимволического искусственного интеллекта пытается соединить два подхода.

Аккуратный против неряшливого

«Чистые» надеются, что разумное поведение описывается с использованием простых и элегантных принципов (таких как логика , оптимизация или нейронные сети ). «Неряшливы» ожидают, что это обязательно потребует решения большого количества несвязанных между собой задач. Чистоплотные защищают свои программы с теоретической строгостью, неряшливые полагаются главным образом на постепенное тестирование, чтобы увидеть, работают ли они. Этот вопрос активно обсуждался в 1970-е и 1980-е годы. [340] но в конечном итоге было сочтено неуместным. Современный ИИ имеет элементы и того, и другого.

Мягкие и жесткие вычисления

найти доказуемо правильное или оптимальное решение сложно . Для многих важных задач [20] Мягкие вычисления — это набор методов, включая генетические алгоритмы , нечеткую логику и нейронные сети, которые терпимы к неточностям, неопределенности, частичной истинности и приближению. Мягкие вычисления были представлены в конце 1980-х годов, и наиболее успешные программы искусственного интеллекта в 21 веке являются примерами мягких вычислений с нейронными сетями.

Узкий и общий ИИ

Исследователи ИИ разделились во мнениях относительно того, следует ли напрямую преследовать цели искусственного общего интеллекта и сверхинтеллекта или решать как можно больше конкретных проблем (узкий ИИ) в надежде, что эти решения косвенно приведут к долгосрочным целям в этой области. [341] [342] Общий интеллект сложно определить и измерить, а современный ИИ добился более проверяемых успехов, сосредоточив внимание на конкретных проблемах и конкретных решениях. Экспериментальное подразделение общего искусственного интеллекта изучает исключительно эту область.

Машинное сознание, разум и разум

Философия разума не знает, может ли машина обладать разумом , сознанием и психическими состояниями в том же смысле, что и люди. В этом вопросе учитывается внутренний опыт машины, а не ее внешнее поведение. Основные исследования в области искусственного интеллекта считают этот вопрос неактуальным, поскольку он не влияет на цели этой области: создание машин, которые могут решать проблемы с помощью интеллекта. Рассел и Норвиг добавляют, что «дополнительный проект по созданию машины, обладающей таким же сознанием, как и люди, — это не тот проект, за который мы готовы взяться». [343] Однако этот вопрос стал центральным в философии сознания. Это также, как правило, центральный вопрос, обсуждаемый в области искусственного интеллекта в художественной литературе .

Сознание

Дэвид Чалмерс выделил две проблемы в понимании разума, которые он назвал «сложными» и «легкими» проблемами сознания. [344] Самая простая задача — понять, как мозг обрабатывает сигналы, строит планы и контролирует поведение. Сложная проблема состоит в том, чтобы объяснить, как это ощущается или почему это вообще должно ощущаться как-то, предполагая, что мы правы, думая, что это действительно что-то ощущается (иллюзоризм сознания Деннета говорит, что это иллюзия). человеком Обработку информации легко объяснить, но субъективный опыт человека объяснить сложно. Например, легко представить человека, страдающего дальтонизмом, который научился определять, какие объекты в его поле зрения являются красными, но неясно, что потребуется, чтобы человек знал, как выглядит красный цвет . [345]

Компьютерализм и функционализм

Компьютерализм — это позиция в философии разума , согласно которой человеческий разум — это система обработки информации, а мышление — это форма вычислений. Компьютерализм утверждает, что отношения между разумом и телом аналогичны или идентичны отношениям между программным обеспечением и оборудованием и, таким образом, могут быть решением проблемы разума и тела . Эта философская позиция была вдохновлена ​​работами исследователей искусственного интеллекта и ученых-когнитивистов в 1960-х годах и первоначально была предложена философами Джерри Фодором и Хилари Патнэм . [346]

Философ Джон Сирл охарактеризовал эту позицию как « сильный ИИ »: «Правильно запрограммированный компьютер с правильными входами и выходами, таким образом, будет обладать разумом точно в том же смысле, в котором разум есть у людей». [аб] Серл опровергает это утверждение своим аргументом о китайской комнате, который пытается показать, что, даже если машина идеально имитирует человеческое поведение, все равно нет оснований предполагать, что она также обладает разумом. [350]

Благосостояние и права ИИ

Трудно или невозможно достоверно оценить, разумен ли продвинутый ИИ (способен чувствовать), и если да, то в какой степени. [351] Но если существует значительная вероятность того, что данная машина может чувствовать и страдать, тогда она может иметь право на определенные права или меры защиты благосостояния, как и животные. [352] [353] Разумность (набор способностей, связанных с высоким интеллектом, таких как проницательность или самосознание ) может обеспечить еще одну моральную основу для прав ИИ. [352] Права роботов также иногда предлагаются как практический способ интеграции автономных агентов в общество. [354]

В 2017 году Европейский Союз рассмотрел возможность предоставления «электронной личности» некоторым наиболее способным системам искусственного интеллекта. Подобно правовому статусу компаний, он наделял бы права, но также и обязанности. [355] В 2018 году критики утверждали, что предоставление прав на системы искусственного интеллекта преуменьшит важность прав человека и что законодательство должно быть сосредоточено на потребностях пользователей, а не на спекулятивных футуристических сценариях. Они также отметили, что роботам не хватает автономии, чтобы самостоятельно участвовать в жизни общества. [356] [357]

Прогресс в области искусственного интеллекта повысил интерес к этой теме. Сторонники благополучия и прав ИИ часто утверждают, что разумность ИИ, если она появится, будет особенно легко отрицать. Они предупреждают, что это может быть моральное «слепое пятно», аналогичное рабству или промышленному сельскому хозяйству , которое может привести к широкомасштабным страданиям , если разумный ИИ будет создан и небрежно будет эксплуатироваться. [353] [352]

Будущее

Сверхинтеллект и сингулярность

Сверхинтеллект — это гипотетический агент, который будет обладать интеллектом , намного превосходящим интеллект самого яркого и одаренного человеческого разума. [342]

Если бы исследования в области общего искусственного интеллекта позволили создать достаточно интеллектуальное программное обеспечение, оно могло бы перепрограммировать и улучшить себя . Усовершенствованное программное обеспечение будет еще лучше самосовершенствоваться, что приведет к тому, что И.Дж. Гуд назвал « интеллектуальным взрывом », а Вернор Виндж — « сингулярностью ». [358]

Однако технологии не могут совершенствоваться экспоненциально бесконечно и обычно следуют S-образной кривой , замедляясь, когда достигают физических пределов возможностей технологии. [359]

Трансгуманизм

Конструктор роботов Ганс Моравец , кибернетик Кевин Уорвик и изобретатель Рэй Курцвейл предсказали, что люди и машины в будущем сольются в киборгов , которые будут более способными и могущественными, чем оба. Эта идея, названная трансгуманизмом, имеет корни у Олдоса Хаксли и Роберта Эттингера . [360]

Эдвард Фредкин утверждает, что «искусственный интеллект — это следующий этап эволюции», идея, впервые предложенная Сэмюэлем Батлером в книге « Дарвин среди машин » еще в 1863 году и развитая Джорджем Дайсоном в его книге 1998 года «Дарвин среди машин». : Эволюция глобального интеллекта . [361]

В художественной литературе

Само слово «робот» было придумано Карелом Чапеком в его пьесе «РУР» 1921 года , название означает «Универсальные роботы Россум».

Искусственные существа, способные мыслить, использовались как средства повествования еще в древности. [362] и были постоянной темой в научной фантастике . [363]

Общий образ в этих произведениях начался с Мэри Шелли » «Франкенштейна , где человеческое творение становится угрозой для своих хозяев. Сюда входят такие работы, как « Артура Кларка и Стэнли Кубрика Космическая одиссея 2001 года: Космическая одиссея» (обе 1968 года) с HAL 9000 , смертоносным компьютером, управляющим космическим кораблем Discovery One , а также «Терминатор» (1984 год) и «Матрица» (1999 год ). ). Напротив, редкие верные роботы, такие как Горт из «Дня, когда Земля остановилась» (1951) и Бишоп из «Чужих» (1986), менее заметны в популярной культуре. [364]

Айзек Азимов представил Три закона робототехники во многих рассказах, в первую очередь в « Мультивак сверхинтеллектуальном компьютере ». Законы Азимова часто поднимаются во время непрофессиональных дискуссий по этике машин; [365] хотя почти все исследователи искусственного интеллекта знакомы с законами Азимова через массовую культуру, они обычно считают эти законы бесполезными по многим причинам, одной из которых является их двусмысленность. [366]

В нескольких работах ИИ используется, чтобы заставить нас ответить на фундаментальный вопрос о том, что делает нас людьми, показывая нам искусственные существа, обладающие способностью чувствовать и, следовательно, страдать. Это появляется в фильме Карела Чапека « RUR» , фильмах «Искусственный интеллект» и «Из машины» , а также в романе « Мечтают ли андроиды об электроовцах?» , Филип К. Дик . Дик рассматривает идею о том, что наше понимание человеческой субъективности меняется благодаря технологиям, созданным с помощью искусственного интеллекта. [367]

См. также

Пояснительные примечания

  1. ^ Перейти обратно: а б Этот список интеллектуальных качеств основан на темах, охватываемых основными учебниками по искусственному интеллекту, в том числе: Рассел и Норвиг (2021) , Люгер и Стабблфилд (2004) , Пул, Макворт и Гебель (1998) и Нильссон (1998).
  2. ^ Перейти обратно: а б Этот список инструментов основан на темах, охватываемых основными учебниками по искусственному интеллекту, в том числе: Russell & Norvig (2021) , Luger & Stubblefield (2004) , Poole, Mackworth & Goebel (1998) и Nilsson (1998).
  3. ^ Это одна из причин того, что экспертные системы оказались неэффективными для сбора знаний. [35] [36]
  4. ^ «Рациональный агент» — общий термин, используемый в экономике , философии и теоретическом искусственном интеллекте. Он может относиться ко всему, что направляет его поведение для достижения целей, например, к человеку, животному, корпорации, нации или, в случае ИИ, к компьютерной программе.
  5. ^ Алан Тьюринг обсуждал центральную роль обучения еще в 1950 году в своей классической статье « Вычислительная техника и интеллект ». [47] В 1956 году на первой летней конференции по искусственному интеллекту в Дартмуте Рэй Соломонов написал доклад о вероятностном машинном обучении без присмотра: «Машина индуктивного вывода». [48]
  6. ^ См. AI Winter § Машинный перевод и отчет ALPAC за 1966 год.
  7. ^ По сравнению с символической логикой формальный байесовский вывод требует больших вычислительных затрат. Чтобы вывод был осуществимым, большинство наблюдений должны быть условно независимыми друг от друга. AdSense использует байесовскую сеть с более чем 300 миллионами ребер, чтобы определить, какую рекламу показывать. [98]
  8. ^ Ожидание-максимизация, один из самых популярных алгоритмов в машинном обучении, позволяет выполнять кластеризацию при наличии неизвестных скрытых переменных . [100]
  9. ^ Некоторые формы глубоких нейронных сетей (без специального алгоритма обучения) были описаны: Алан Тьюринг (1948); [119] Фрэнк Розенблатт (1957); [119] Карл Стейнбух и Роджер Дэвид Джозеф (1961). [120] Глубокие или рекуррентные сети, которые обучались (или использовали градиентный спуск), были разработаны: Эрнст Изинг и Вильгельм Ленц (1925); [121] Оливер Селфридж (1959); [120] Алексей Ивахненко и Валентин Лапа (1965); [121] Каору Накано (1977); [122] Сюн-Ичи Амари (1972); [122] Джон Джозеф Хопфилд (1982). [122] Обратное распространение ошибки было независимо обнаружено: Генри Дж. Келли (1960); [119] Артур Э. Брайсон (1962); [119] Стюарт Дрейфус (1962); [119] Артур Э. Брайсон и Ю-Чи Хо (1969); [119] Сеппо Линнаинмаа (1970); [123] Пол Вербос (1974). [119] Фактически, обратное распространение ошибки и градиентный спуск являются прямым применением Готфрида Лейбница в цепного правила исчислении (1676 г.): [124] и по существу идентичен (для одного слоя) методу наименьших квадратов , разработанному независимо Иоганном Карлом Фридрихом Гауссом (1795 г.) и Адриеном-Мари Лежандром (1805 г.). [125] Вероятно, существует множество других, которые еще предстоит открыть историкам науки.
  10. Джеффри Хинтон сказал о своей работе над нейронными сетями в 1990-х годах: «Наши размеченные наборы данных были в тысячи раз слишком малы. [И] наши компьютеры были в миллионы раз слишком медленными» [126]
  11. ^ Включая Джона Кляйнберга ( Корнелльский университет ), Сэндила Муллайнатана ( Чикагский университет ), Синтии Чулдеховой ( Карнеги-Меллон ) и Сэма Корбетта-Дэвиса ( Стэнфорд ) [199]
  12. ^ Мориц Хардт (директор Института интеллектуальных систем Макса Планка ) утверждает, что машинное обучение «в корне неправильный инструмент для многих областей, где вы пытаетесь разработать меры и механизмы, которые изменят мир». [204]
  13. ^ Когда закон был принят в 2018 году, он все еще содержал форму этого положения.
  14. ^ Это определение Организации Объединенных Наций , которое включает в себя такие вещи, как наземные мины . также [218]
  15. ^ См. таблицу 4; 9% — это средний показатель по ОЭСР и США. [229]
  16. ^ Иногда называют « робопокалипсисом ». [237]
  17. ^ «Электронный мозг» — термин, использовавшийся в прессе примерно в то время. [289] [290]
  18. ^ Дэниел Кревье писал: «Конференция общепризнана официальной датой рождения новой науки». [294] Рассел и Норвиг назвали конференцию «зарождением искусственного интеллекта». [292]
  19. Рассел и Норвиг писали: «В течение следующих 20 лет в этой области будут доминировать эти люди и их ученики». [295]
  20. Рассел и Норвиг писали: «Это было удивительно, когда компьютер делал что-то умное». [296]
  21. ^ Описанные программы - это Артура Сэмюэля программа шашек IBM 701 , Дэниела Боброу STUDENT и , Ньюэлла и Саймона Theorist Logic для Терри Винограда SHRDLU .
  22. ^ Рассел и Норвиг пишут: «Почти во всех случаях эти ранние системы терпели неудачу при решении более сложных задач» [300]
  23. ^ Воплощенные подходы к ИИ [307] были поддержаны Гансом Моравецом [308] и Родни Брукс [309] и имел много названий: Nouvelle AI . [309] Развивающая робототехника . [310]
  24. Маттео Вонг писал в The Atlantic : «В то время как на протяжении десятилетий в таких областях компьютерных наук, как обработка естественного языка, компьютерное зрение и робототехника, использовались совершенно разные методы, теперь все они используют метод программирования, называемый «глубоким обучением». , их код и подходы стали более похожими, а их модели легче интегрировать друг в друга». [316]
  25. Джек Кларк написал в Bloomberg : «После пятидесяти лет тихих прорывов в области искусственного интеллекта 2015 год стал знаковым. Компьютеры стали умнее и обучаются быстрее, чем когда-либо», и отметил, что количество программных проектов, использующих машинное обучение, Число Google увеличилось с «спорадического использования» в 2012 году до более чем 2700 проектов в 2015 году. [318]
  26. Нильс Нильссон писал в 1983 году: «Проще говоря, в этой области существуют широкие разногласия по поводу того, что такое ИИ». [332]
  27. ^ Дэниел Кревье писал, что «время доказало точность и проницательность некоторых комментариев Дрейфуса. Если бы он сформулировал их менее агрессивно, предлагаемые ими конструктивные действия могли бы быть предприняты гораздо раньше». [337]
  28. ^ Сирл представил это определение «сильного ИИ» в 1999 году. [347] Первоначальная формулировка Сирла заключалась в следующем: «Правильно запрограммированный компьютер на самом деле является разумом в том смысле, что можно буквально сказать, что компьютеры с правильными программами понимают и имеют другие когнитивные состояния». [348] Сильный ИИ определяется Расселом и Норвигом аналогично : «Сильный ИИ – утверждение, что машины, которые это делают, на самом деле думают (а не моделируют мышление)». [349]

Ссылки

  1. ^ Перейти обратно: а б с Рассел и Норвиг (2021) , стр. 1–4.
  2. ^ Google (2016) .
  3. Искусственный интеллект превысит мощность человеческого мозга. Архивировано 19 февраля 2008 г. на Wayback Machine CNN.com (26 июля 2006 г.).
  4. ^ Каплан, Андреас; Хэнляйн, Майкл (2019). «Сири, Сири, в моей руке: кто самый справедливый на земле? Об интерпретациях, иллюстрациях и значении искусственного интеллекта». Горизонты бизнеса . 62 : 15–25. дои : 10.1016/j.bushor.2018.08.004 . ISSN   0007-6813 . S2CID   158433736 .
  5. ^ Перейти обратно: а б с д Коупленд, Дж., изд. (2004). Сущность Тьюринга: идеи, породившие компьютерную эпоху . Оксфорд, Англия: Clarendon Press. ISBN  0-19-825079-7 .
  6. ^ Перейти обратно: а б Дартмутская мастерская : Предложение:
  7. ^ Каплан, Андреас (2022). Искусственный интеллект, бизнес и цивилизация: наша судьба, созданная машинами . Routledge фокусируется на бизнесе и менеджменте. Нью-Йорк, штат Нью-Йорк: Рутледж. ISBN  978-1-000-56333-7 .
  8. ^ Маркиз, Пьер; Папини, Одиллия; Прад, Анри, ред. (2020). Экскурсия по исследованиям искусственного интеллекта: Том III: Интерфейсы и приложения искусственного интеллекта . Чам: Международное издательство Springer. стр. XIII. дои : 10.1007/978-3-030-06170-8 . ISBN  978-3-030-06169-2 .
  9. ^ Перейти обратно: а б Успешные программы 1960-х годов:
  10. ^ Перейти обратно: а б Инициативы по финансированию в начале 1980-х годов: Проект «Пятое поколение» (Япония), Алви (Великобритания), Корпорация микроэлектроники и компьютерных технологий (США), Инициатива стратегических вычислений (США):
  11. ^ Перейти обратно: а б Первая зима AI , отчет Лайтхилла , поправка Мэнсфилда
  12. ^ Перейти обратно: а б Вторая зима ИИ :
  13. ^ Перейти обратно: а б глубокого обучения Революция , AlexNet :
  14. ^ Тэйвс (2023) .
  15. ^ Фрэнк (2023) .
  16. ^ Перейти обратно: а б с Общий искусственный интеллект : Предложение по современной версии: Предупреждения о чрезмерной специализации в области ИИ от ведущих исследователей:
  17. ^ Рассел и Норвиг (2021 , §1.2).
  18. ^ Решение задач, решение головоломок, игры и дедукция:
  19. ^ Неопределенное рассуждение:
  20. ^ Перейти обратно: а б с Неразрешимость, эффективность и комбинаторный взрыв :
  21. ^ Перейти обратно: а б с Психологические доказательства преобладания субсимволических рассуждений и знаний:
  22. ^ Представление знаний и инженерия знаний :
  23. ^ Смоляр и Чжан (1994) .
  24. ^ Нойманн и Мёллер (2008) .
  25. ^ Куперман, Райхли и Бейли (2006) .
  26. ^ МакГарри (2005) .
  27. ^ Бертини, Дель Бимбо и Торниай (2006) .
  28. ^ Рассел и Норвиг (2021) , стр. 272.
  29. ^ Представление категорий и отношений: Семантические сети , логика описания , наследование (включая фреймы и скрипты ):
  30. ^ Представление событий и времени: исчисление ситуаций , исчисление событий , беглое исчисление (включая решение проблемы фрейма ):
  31. ^ Причинное исчисление :
  32. ^ Представление знаний о знаниях: исчисление убеждений, модальная логика :
  33. ^ Перейти обратно: а б Рассуждение по умолчанию , проблема фрейма , логика по умолчанию , немонотонная логика , ограничение , предположение о закрытом мире , похищение : (Пул и др. относят похищение к «рассуждению по умолчанию». Люгер и др. относят это к «неопределенному обоснованию»).
  34. ^ Перейти обратно: а б Широта здравых знаний:
  35. ^ Ньюквист (1994) , с. 296.
  36. ^ Кревье (1993) , стр. 204–208.
  37. ^ Рассел и Норвиг (2021) , с. 528.
  38. ^ Автоматизированное планирование :
  39. ^ Автоматизированное принятие решений , Теория принятия решений :
  40. ^ Классическое планирование :
  41. ^ Безсенсорное или «согласованное» планирование, контингентное планирование, перепланирование (он же онлайн-планирование):
  42. ^ Неопределенные предпочтения: Обучение с обратным подкреплением :
  43. ^ Теория ценности информации :
  44. ^ Марковский процесс принятия решения :
  45. ^ Теория игр и теория многоагентных решений:
  46. ^ Обучение :
  47. ^ Тьюринг (1950) .
  48. ^ Соломонов (1956) .
  49. ^ Обучение без присмотра :
  50. ^ Перейти обратно: а б Контролируемое обучение :
  51. ^ Обучение с подкреплением :
  52. ^ Передача обучения :
  53. ^ «Искусственный интеллект (ИИ): что такое ИИ и как он работает? | Встроенный» . встроенный.com . Проверено 30 октября 2023 г.
  54. ^ Теория вычислительного обучения :
  55. ^ Обработка естественного языка (НЛП):
  56. ^ Подзадачи НЛП :
  57. ^ Рассел и Норвиг (2021) , стр. 856–858.
  58. ^ Диксон (2022) .
  59. ^ Современные статистические подходы и подходы к глубокому обучению в НЛП :
  60. ^ Винсент (2019) .
  61. ^ Рассел и Норвиг (2021) , стр. 875–878.
  62. ^ Бушвик (2023) .
  63. ^ Компьютерное зрение :
  64. ^ Рассел и Норвиг (2021) , стр. 849–850.
  65. ^ Рассел и Норвиг (2021) , стр. 895–899.
  66. ^ Рассел и Норвиг (2021) , стр. 899–901.
  67. ^ Чалла и др. (2011) .
  68. ^ Рассел и Норвиг (2021) , стр. 931–938.
  69. ^ С АИЛ (2014) .
  70. ^ Аффективные вычисления :
  71. ^ Уодделл (2018) .
  72. ^ Пория и др. (2017) .
  73. ^ Алгоритмы поиска :
  74. ^ Поиск в пространстве состояний :
  75. ^ Рассел и Норвиг (2021) , §11.2.
  76. ^ Неинформированный поиск ( поиск в ширину , поиск в глубину и поиск в пространстве общего состояния ):
  77. ^ Эвристический или информированный поиск (например, жадный «сначала лучший» и A* ):
  78. ^ Состязательный поиск :
  79. ^ Локальный поиск или поиск по « оптимизации »:
  80. ^ Сингх Чаухан, Нагеш (18 декабря 2020 г.). «Алгоритмы оптимизации в нейронных сетях» . КДнаггетс . Проверено 13 января 2024 г.
  81. ^ Эволюционные вычисления :
  82. ^ Меркл и Миддендорф (2013) .
  83. ^ Логика :
  84. ^ Пропозициональная логика :
  85. ^ Логика первого порядка и такие функции, как равенство :
  86. ^ Логический вывод :
  87. ^ логический вывод в виде поиска:
  88. ^ Разрешение и унификация :
  89. ^ Уоррен, Д.Х.; Перейра, LM; Перейра, Ф. (1977). «Пролог-язык и его реализация в сравнении с Лиспом». Уведомления ACM SIGPLAN . 12 (8): 109–115. дои : 10.1145/872734.806939 .
  90. ^ Нечеткая логика:
  91. ^ Перейти обратно: а б Стохастические методы для неопределенных рассуждений:
  92. ^ теория принятия решений и анализ решений :
  93. ^ Теория ценности информации :
  94. ^ Марковские процессы принятия решений и динамические сети принятия решений :
  95. ^ Перейти обратно: а б с Стохастические временные модели: Скрытая марковская модель : Фильтры Калмана : Динамические байесовские сети :
  96. ^ Теория игр и проектирование механизмов :
  97. ^ Байесовские сети :
  98. ^ Домингос (2015) , глава 6.
  99. ^ байесовского вывода Алгоритм :
  100. ^ Домингос (2015) , с. 210.
  101. ^ Байесовское обучение и алгоритм максимизации ожидания :
  102. ^ Байесовская теория принятия решений и байесовские сети принятия решений :
  103. ^ Статистические методы обучения и классификаторы :
  104. ^ Деревья решений :
  105. ^ Непараметрические модели обучения, такие как K-ближайший сосед и машины опорных векторов :
  106. ^ Домингос (2015) , с. 152.
  107. ^ Наивный байесовский классификатор :
  108. ^ Перейти обратно: а б Нейронные сети:
  109. ^ Вычисление градиента в вычислительных графах, обратное распространение ошибки , автоматическое дифференцирование :
  110. ^ Теорема об универсальной аппроксимации : Теорема:
  111. ^ Нейронные сети прямого распространения :
  112. ^ Рекуррентные нейронные сети :
  113. ^ Перцептроны :
  114. ^ Перейти обратно: а б Глубокое обучение :
  115. ^ Сверточные нейронные сети :
  116. ^ Дэн и Ю (2014) , стр. 199–200.
  117. ^ Чиресан, Мейер и Шмидхубер (2012) .
  118. ^ Рассел и Норвиг (2021) , с. 751.
  119. ^ Перейти обратно: а б с д и ж г Рассел и Норвиг (2021) , с. 785.
  120. ^ Перейти обратно: а б Шмидхубер (2022) , §5.
  121. ^ Перейти обратно: а б Шмидхубер (2022) , §6.
  122. ^ Перейти обратно: а б с Шмидхубер (2022) , §7.
  123. ^ Шмидхубер (2022) , §8.
  124. ^ Шмидхубер (2022) , §2.
  125. ^ Шмидхубер (2022) , §3.
  126. ^ Цитируется по Кристиану (2020 , стр. 22).
  127. ^ Смит (2023) .
  128. ^ «Объяснение: Генеративный ИИ» . 9 ноября 2023 г.
  129. ^ «Инструменты для написания искусственного интеллекта и создания контента» . Технологии преподавания и обучения Массачусетского технологического института Слоана . Проверено 25 декабря 2023 г.
  130. ^ Мармуйе (2023) .
  131. ^ Кобелус (2019) .
  132. ^ Томасон, Джеймс (21 мая 2024 г.). «Восстание Mojo: возрождение языков программирования, ориентированных на искусственный интеллект» . ВенчурБит . Проверено 26 мая 2024 г.
  133. ^ Водецки, Бен (5 мая 2023 г.). «7 языков программирования искусственного интеллекта, которые вам нужно знать» . ИИ-бизнес .
  134. ^ Давенпорт, Т; Калакота, Р. (июнь 2019 г.). «Потенциал искусственного интеллекта в здравоохранении» . Будущее Здоровьеc Дж . 6 (2): 94–98. doi : 10.7861/futurehosp.6-2-94 . ПМК   6616181 . ПМИД   31363513 .
  135. ^ Перейти обратно: а б Бакс, Моник; Торп, Джордан; Романов, Валентин (декабрь 2023 г.). «Будущее персонализированной сердечно-сосудистой медицины требует 3D- и 4D-печати, стволовых клеток и искусственного интеллекта» . Границы в сенсорах . 4 . дои : 10.3389/fsens.2023.1294721 . ISSN   2673-5067 .
  136. ^ Джампер, Дж; Эванс, Р; Притцель, А (2021). «Высокоточное предсказание структуры белка с помощью AlphaFold» . Природа . 596 (7873): 583–589. Бибкод : 2021Natur.596..583J . дои : 10.1038/s41586-021-03819-2 . ПМЦ   8371605 . PMID   34265844 .
  137. ^ «ИИ открывает новый класс антибиотиков для уничтожения устойчивых к лекарствам бактерий» . 20 декабря 2023 г.
  138. ^ «ИИ ускоряет разработку лекарств от болезни Паркинсона в десять раз» . Кембриджский университет. 17 апреля 2024 г.
  139. ^ Хорн, Роберт И.; Анджеевска, Ева А.; Алам, Парвез; Бротзакис, З. Фейдон; Шривастава, Анкит; Обер, Алиса; Новинска, Магдалена; Грегори, Ребекка С.; Стаатс, Роксина; Поссенти, Андреа; Чиа, Шон; Сорманни, Пьетро; Гетти, Бернардино; Коги, Байрон; Ноулз, Туомас П.Дж.; Вендруколо, Микеле (17 апреля 2024 г.). «Открытие мощных ингибиторов агрегации α-синуклеина с использованием структурного итеративного обучения» . Химическая биология природы . 20 (5). Природа: 634–645. дои : 10.1038/s41589-024-01580-x . ПМЦ   11062903 . ПМИД   38632492 .
  140. ^ Грант, Юджин Ф.; Ларднер, Рекс (25 июля 1952 г.). «Городской разговор - Это» . Житель Нью-Йорка . ISSN   0028-792X . Проверено 28 января 2024 г.
  141. ^ Андерсон, Марк Роберт (11 мая 2017 г.). «Двадцать лет спустя после матча Deep Blue против Каспарова: как шахматный матч положил начало революции больших данных» . Разговор . Проверено 28 января 2024 г.
  142. ^ Маркофф, Джон (16 февраля 2011 г.). «Компьютер побеждает в игре «Jeopardy!»: это не тривиально» . Нью-Йорк Таймс . ISSN   0362-4331 . Проверено 28 января 2024 г.
  143. ^ Байфорд, Сэм (27 мая 2017 г.). «AlphaGo уходит из соревновательного го после победы над номером один в мире со счетом 3–0» . Грань . Проверено 28 января 2024 г.
  144. ^ Браун, Ноам; Сандхольм, Туомас (30 августа 2019 г.). «Сверхчеловеческий ИИ для многопользовательского покера» . Наука . 365 (6456): 885–890. Бибкод : 2019Sci...365..885B . дои : 10.1126/science.aay2400 . ISSN   0036-8075 . ПМИД   31296650 .
  145. ^ «MuZero: Освоение го, шахмат, сёги и Atari без правил» . Гугл ДипМайнд . 23 декабря 2020 г. Проверено 28 января 2024 г.
  146. ^ Сэмпл, Ян (30 октября 2019 г.). «ИИ становится гроссмейстером в «чертовски сложном» StarCraft II» . Хранитель . ISSN   0261-3077 . Проверено 28 января 2024 г.
  147. ^ Вурман, PR; Барретт, С.; Кавамото, К. (2022). «Обгоняйте водителей-чемпионов Gran Turismo с помощью глубокого обучения с подкреплением». Природа . 602 (7896): 223–228. Бибкод : 2022Natur.602..223W . дои : 10.1038/s41586-021-04357-7 . ПМИД   35140384 .
  148. ^ Уилкинс, Алекс (13 марта 2024 г.). «ИИ Google учится играть в видеоигры с открытым миром, наблюдая за ними» . Новый учёный . Проверено 21 июля 2024 г.
  149. ^ Мэтью Финио и Аманда Дауни: Учебник IBM Think 2024, «Что такое искусственный интеллект (ИИ) в финансах?» 8 декабря 2023 г.
  150. ^ М. Николас Дж. Фирзли: журнал Pensions Age/European Pensions, «Искусственный интеллект: спросите отрасль», май, июнь 2024 г., https://videovoice.org/ai-in-finance-innovation-entrepreneurship-vs-over-regulation- с-искусственным-интеллектуальным-искусственным-исследованием-не будет-работать-как-задумано/
  151. ^ Перейти обратно: а б с Исследовательская служба Конгресса (2019). Искусственный интеллект и национальная безопасность (PDF) . Вашингтон, округ Колумбия: Исследовательская служба Конгресса. PD-уведомление
  152. ^ Перейти обратно: а б Слюсарь, Вадим (2019). «Искусственный интеллект как основа будущих сетей управления» . Исследовательские ворота . дои : 10.13140/RG.2.2.30247.50087 .
  153. ^ Найт, Уилл. «США и 30 других стран договорились установить барьеры для военного ИИ» . Проводной . ISSN   1059-1028 . Проверено 24 января 2024 г.
  154. ^ Марселин, Марко (27 мая 2023 г.). «ChatGPT: большинство американцев знают об этом, но мало кто на самом деле использует чат-бота с искусственным интеллектом» . PCMag . Проверено 28 января 2024 г.
  155. ^ Лу, Донна (31 марта 2023 г.). «Дезинформация, ошибки и Папа в пуховике: что может – и не может – сделать быстро развивающийся ИИ» . Хранитель . ISSN   0261-3077 . Проверено 28 января 2024 г.
  156. ^ Херст, Люк (23 мая 2023 г.). «Как фейковое изображение взрыва в Пентагоне, опубликованное в Твиттере, вызвало настоящий спад на Уолл-стрит» . Евроньюс . Проверено 28 января 2024 г.
  157. ^ Рэнсботам, Сэм; Кирон, Дэвид; Герберт, Филипп; Ривз, Мартин (6 сентября 2017 г.). «Изменение бизнеса с помощью искусственного интеллекта» . Обзор менеджмента Слоана MIT . Архивировано из оригинала 13 февраля 2024 года.
  158. ^ Сунь, Юран; Чжао, Силэй; Ловреглио, Руджеро; Кулиговски, Эрика (1 января 2024 г.), Насер, М.З. (редактор), «8 - ИИ для крупномасштабного моделирования эвакуации: обещания и проблемы» , Интерпретируемое машинное обучение для анализа, проектирования, оценки и принятия обоснованных решений в гражданских целях. Инфраструктура , Серия публикаций Woodhead Publishing по гражданскому и строительному проектированию, Woodhead Publishing, стр. 185–204, ISBN  978-0-12-824073-1 , получено 28 июня 2024 г.
  159. ^ Гомаа, Ислам; Адельзаде, Масуд; Гвинн, Стивен; Спенсер, Брюс; Ко, Юн; Бенишу, Нуреддин; Ма, Чуньюн; Эльсаган, Нур; Дуонг, Дана; Залок, Эхав; Кинатедер, Макс (1 ноября 2021 г.). «Система интеллектуальной системы обнаружения пожара и эвакуации» . Огненная техника . 57 (6): 3179–3185. дои : 10.1007/s10694-021-01157-3 . ISSN   1572-8099 .
  160. ^ Чжао, Силэй; Ловреглио, Руджеро; Нильссон, Дэниел (1 мая 2020 г.). «Моделирование и интерпретация принятия решений перед эвакуацией с использованием машинного обучения» . Автоматизация в строительстве . 113 : 103140. doi : 10.1016/j.autcon.2020.103140 . ISSN   0926-5805 .
  161. ^ Симонит (2016) .
  162. ^ Рассел и Норвиг (2021) , с. 987.
  163. ^ Ласковский (2023) .
  164. ^ ГАО (2022) .
  165. ^ Валинский (2019) .
  166. ^ Рассел и Норвиг (2021) , с. 991.
  167. ^ Рассел и Норвиг (2021) , стр. 991–992.
  168. ^ Кристиан (2020) , с. 63.
  169. ^ Винсент (2022) .
  170. ^ Копел, Мэтью. «Услуги по авторским правам: добросовестное использование» . Библиотека Корнеллского университета . Проверено 26 апреля 2024 г.
  171. ^ Берджесс, Мэтт. «Как предотвратить использование ваших данных для обучения ИИ» . Проводной . ISSN   1059-1028 . Проверено 26 апреля 2024 г.
  172. ^ Райснер (2023) .
  173. ^ Альтер и Харрис (2023) .
  174. ^ «Подготовка инновационной экосистемы к использованию ИИ. Инструментарий политики в области интеллектуальной собственности» (PDF) . ВОИС .
  175. ^ Хаммонд, Джордж (27 декабря 2023 г.). «Крупные технологические компании тратят на стартапы в области искусственного интеллекта больше, чем венчурные компании» . Арс Техника . Архивировано из оригинала 10 января 2024 года.
  176. ^ Вонг, Маттео (24 октября 2023 г.). «Будущее искусственного интеллекта — это ГОМА» . Атлантика . Архивировано из оригинала 5 января 2024 года.
  177. ^ «Большие технологии и стремление к доминированию ИИ» . Экономист . 26 марта 2023 г. Архивировано из оригинала 29 декабря 2023 г.
  178. ^ Фунг, Брайан (19 декабря 2023 г.). «Где можно выиграть битву за доминирование ИИ» . CNN Бизнес . Архивировано из оригинала 13 января 2024 года.
  179. ^ Мец, Кейд (5 июля 2023 г.). «В эпоху искусственного интеллекта маленьким ребятам из сферы технологий нужны большие друзья» . Нью-Йорк Таймс .
  180. ^ «Электричество 2024 – Анализ» . МЭА . 24 января 2024 г. Проверено 13 июля 2024 г.
  181. ^ Калверт, Брайан (28 марта 2024 г.). «ИИ уже использует столько же энергии, сколько небольшая страна. Это только начало» . Вокс . Нью-Йорк, штат Нью-Йорк.
  182. ^ Халпер, Эван; О'Донован, Кэролайн (21 июня 2024 г.). «ИИ истощает энергосистему. Технологические компании ищут чудо-решение» . Вашингтон Пост .
  183. ^ Давенпорт, Карли. «Центры обработки данных искусственного интеллекта и грядущий всплеск спроса на электроэнергию YS» (PDF) . Голдман Сакс .
  184. ^ Райан, Кэрол (12 апреля 2024 г.). «Энергопотребляющий искусственный интеллект — это также будущее энергосбережения» . Уолл Стрит Джорнал . Доу Джонс.
  185. ^ Хиллер, Дженнифер (1 июля 2024 г.). «Технологическая индустрия хочет заблокировать ядерную энергетику для искусственного интеллекта» . Уолл Стрит Джорнал . Доу Джонс.
  186. ^ Никас (2018) .
  187. ^ Рейни, Ли; Китер, Скотт; Перрен, Эндрю (22 июля 2019 г.). «Доверие и недоверие в Америке» . Исследовательский центр Пью . Архивировано из оригинала 22 февраля 2024 года.
  188. ^ Уильямс (2023) .
  189. ^ Тейлор и Херн (2023) .
  190. ^ Перейти обратно: а б Самуэль, Сигал (19 апреля 2022 г.). «Почему так чертовски сложно сделать ИИ справедливым и беспристрастным» . Вокс . Проверено 24 июля 2024 г.
  191. ^ Перейти обратно: а б Роза (2023) .
  192. ^ CNA (2019) .
  193. ^ Гоффри (2008) , с. 17.
  194. ^ Бердал и др. (2023 г.) ; Гоффри (2008 , стр. 17); Роуз (2023) ; Рассел и Норвиг (2021 , стр. 995)
  195. ^ Кристиан (2020) , с. 25.
  196. ^ Перейти обратно: а б Рассел и Норвиг (2021) , с. 995.
  197. ^ Грант и Хилл (2023) .
  198. ^ Ларсон и Ангвин (2016) .
  199. ^ Кристиан (2020) , с. 67–70.
  200. ^ Кристиан (2020 , стр. 67–70); Рассел и Норвиг (2021 , стр. 993–994)
  201. ^ Рассел и Норвиг (2021 , стр. 995); Липартито (2011 , стр. 36); Гудман и Флаксман (2017 , стр. 6); Кристиан (2020 , стр. 39–40, 65)
  202. ^ Цитируется по Christian (2020 , стр. 65).
  203. ^ Рассел и Норвиг (2021 , стр. 994); Кристиан (2020 , стр. 40, 80–81)
  204. ^ Цитируется по Christian (2020 , стр. 80).
  205. ^ Докрилл (2022) .
  206. ^ Образец (2017) .
  207. ^ «Черный ящик ИИ» . 16 июня 2023 г.
  208. ^ Кристиан (2020) , с. 110.
  209. ^ Кристиан (2020) , стр. 88–91.
  210. ^ Кристиан (2020 , стр. 83); Рассел и Норвиг (2021 , стр. 997)
  211. ^ Кристиан (2020) , с. 91.
  212. ^ Кристиан (2020) , с. 83.
  213. ^ Верма (2021) .
  214. ^ Ротман (2020) .
  215. ^ Кристиан (2020) , стр. 105–108.
  216. ^ Кристиан (2020) , стр. 108–112.
  217. ^ Ропек, Лукас (21 мая 2024 г.). «Новые антропные исследования проливают свет на «черный ящик» ИИ » . Гизмодо . Проверено 23 мая 2024 г.
  218. ^ Рассел и Норвиг (2021) , с. 989.
  219. ^ Перейти обратно: а б Рассел и Норвиг (2021) , стр. 987–990.
  220. ^ Рассел и Норвиг (2021) , с. 988.
  221. ^ Робицки (2018) ; Сайнато (2015)
  222. ^ Харари (2018) .
  223. ^ Бакли, Крис; Мозур, Пол (22 мая 2019 г.). «Как Китай использует высокотехнологичную слежку для подчинения меньшинств» . Нью-Йорк Таймс .
  224. ^ «Нарушение безопасности выявило китайскую систему наблюдения за умным городом» . 3 мая 2019 г. Архивировано из оригинала 7 марта 2021 г. Проверено 14 сентября 2020 г.
  225. ^ Урбина и др. (2022) .
  226. ^ Перейти обратно: а б Э. Макгоги, «Смогут ли роботы автоматизировать вашу работу?» Полная занятость, базовый доход и экономическая демократия »(2022) 51 (3) Журнал промышленного права 511–559. Архивировано 27 мая 2023 г. в Wayback Machine.
  227. ^ Форд и Колвин (2015) ; Макгоги (2022)
  228. ^ IGM Чикаго (2017) .
  229. ^ Арнц, Грегори и Зиран (2016) , с. 33.
  230. ^ Лор (2017) ; Фрей и Осборн (2017) ; Арнц, Грегори и Зиран (2016 , стр. 33)
  231. ^ Чжоу, Виола (11 апреля 2023 г.). «ИИ уже занимает работу иллюстраторов видеоигр в Китае» . Остальной мир . Проверено 17 августа 2023 г.
  232. ^ Картер, Джастин (11 апреля 2023 г.). «Сообщается, что китайская индустрия игрового искусства уничтожена растущим использованием искусственного интеллекта» . Разработчик игры . Проверено 17 августа 2023 г.
  233. ^ Моргенштерн (2015) .
  234. ^ Махдави (2017) ; Томпсон (2014)
  235. ^ Тарнов, Бен (4 августа 2023 г.). «Уроки Элизы». Еженедельник Гардиан . стр. 34–39.
  236. ^ Селлан-Джонс (2014) .
  237. ^ Рассел и Норвиг 2021 , с. 1001.
  238. ^ Бостром (2014) .
  239. ^ Рассел (2019) .
  240. ^ Бостром (2014) ; Мюллер и Бостром (2014) ; Бостром (2015) .
  241. ^ Харари (2023) .
  242. ^ Мюллер и Бостром (2014) .
  243. ^ Обеспокоенность лидеров по поводу экзистенциальных рисков ИИ в 2015 году:
  244. ^ « Крестный отец искусственного интеллекта» рассказывает о влиянии и потенциале нового ИИ» . Новости CBS . 25 марта 2023 года. Архивировано из оригинала 28 марта 2023 года . Проверено 28 марта 2023 г.
  245. ^ Питтис, Дон (4 мая 2023 г.). «Канадский лидер в области искусственного интеллекта Джеффри Хинтон накапливает опасения по поводу захвата компьютеров» . ЦБК .
  246. ^ « Шансы 50 на 50», что ИИ перехитрит человечество, говорит Джеффри Хинтон — BNN Bloomberg» . Блумберг БНН . 14 июня 2024 г. Проверено 6 июля 2024 г.
  247. ^ Вэлэнс (2023) .
  248. ^ Тейлор, Джош (7 мая 2023 г.). «Рост искусственного интеллекта неизбежен, но его не следует бояться», — говорит «отец ИИ» . Хранитель . Проверено 26 мая 2023 г.
  249. ^ Колтон, Эмма (7 мая 2023 г.). « Отец ИИ» говорит, что опасения, связанные с технологиями, неуместны: «Вы не можете остановить это» » . Фокс Ньюс . Проверено 26 мая 2023 г.
  250. ^ Джонс, Хесси (23 мая 2023 г.). «Юрген Шмидхубер, известный «отец современного искусственного интеллекта», говорит, что работа всей его жизни не приведет к антиутопии» . Форбс . Проверено 26 мая 2023 г.
  251. ^ МакМорроу, Райан (19 декабря 2023 г.). «Эндрю Нг: «Считаем ли мы, что мир будет лучше, если у него будет больше или меньше интеллекта?» " . Файнэншл Таймс . Проверено 30 декабря 2023 г.
  252. ^ Леви, Стивен (22 декабря 2023 г.). «Как не быть глупым насчет искусственного интеллекта, с Яном Лекуном» . Проводной . Проверено 30 декабря 2023 г.
  253. ^ Аргументы в пользу того, что ИИ не представляет собой неминуемый риск:
  254. ^ Перейти обратно: а б Кристиан (2020) , стр. 67, 73.
  255. ^ Юдковский (2008) .
  256. ^ Перейти обратно: а б Андерсон и Андерсон (2011) .
  257. ^ АААИ (2014) .
  258. ^ Уоллах (2010) .
  259. ^ Рассел (2019) , с. 173.
  260. ^ Стюарт, Эшли; Мелтон, Моника. «Генеральный директор Hugging Face говорит, что он сосредоточен на создании «устойчивой модели» для стартапа с открытым исходным кодом в области искусственного интеллекта стоимостью 4,5 миллиарда долларов» . Бизнес-инсайдер . Проверено 14 апреля 2024 г.
  261. ^ Виггерс, Кайл (9 апреля 2024 г.). «Инструменты Google с открытым исходным кодом для поддержки разработки моделей ИИ» . ТехКранч . Проверено 14 апреля 2024 г.
  262. ^ Небеса, Уилл Дуглас (12 мая 2023 г.). «Бум искусственного интеллекта с открытым исходным кодом основан на подачках крупных технологических компаний. Как долго он продлится?» . Обзор технологий Массачусетского технологического института . Проверено 14 апреля 2024 г.
  263. ^ Бродский, Саша (19 декабря 2023 г.). «Новая языковая модель Mistral AI нацелена на превосходство открытого исходного кода» . ИИ-бизнес .
  264. ^ Эдвардс, Бендж (22 февраля 2024 г.). «Stability анонсирует Stable Diffusion 3, генератор изображений нового поколения с использованием искусственного интеллекта» . Арс Техника . Проверено 14 апреля 2024 г.
  265. ^ Маршалл, Мэтт (29 января 2024 г.). «Как предприятия используют LLM с открытым исходным кодом: 16 примеров» . ВенчурБит .
  266. ^ Пайпер, Келси (2 февраля 2024 г.). «Должны ли мы сделать наши самые мощные модели искусственного интеллекта открытыми для всех?» . Вокс . Проверено 14 апреля 2024 г.
  267. ^ Институт Алана Тьюринга (2019). «Понимание этики и безопасности искусственного интеллекта» (PDF) .
  268. ^ Институт Алана Тьюринга (2023 г.). «Этика и управление ИИ на практике» (PDF) .
  269. ^ Флориди, Лучано; Коулс, Джош (23 июня 2019 г.). «Единая структура пяти принципов использования ИИ в обществе» . Гарвардский обзор науки о данных . 1 (1). дои : 10.1162/99608f92.8cd550d1 . S2CID   198775713 .
  270. ^ Бурук, Бану; Экмекчи, Перихан Элиф; Арда, Берна (1 сентября 2020 г.). «Критический взгляд на руководящие принципы ответственного и заслуживающего доверия искусственного интеллекта» . Медицина, здравоохранение и философия . 23 (3): 387–399. дои : 10.1007/s11019-020-09948-1 . ISSN   1572-8633 . ПМИД   32236794 . S2CID   214766800 .
  271. ^ Камила, Манодж Кумар; Джасротия, Сахил Сингх (1 января 2023 г.). «Этические проблемы развития искусственного интеллекта: признание рисков» . Международный журнал этики и систем . перед печатью (перед печатью). дои : 10.1108/IJOES-05-2023-0107 . ISSN   2514-9369 . S2CID   259614124 .
  272. ^ «Институт безопасности ИИ выпускает новую платформу оценки безопасности ИИ» . Правительство Великобритании. 10 мая 2024 г. Проверено 14 мая 2024 г.
  273. ^ Регулирование ИИ для снижения рисков:
  274. ^ Перейти обратно: а б Винсент (2023) .
  275. ^ Стэнфордский университет (2023) .
  276. ^ Перейти обратно: а б с д ЮНЕСКО (2021 г.) .
  277. ^ Киссинджер (2021) .
  278. ^ Альтман, Брокман и Суцкевер (2023) .
  279. ^ Новости «Голоса Америки» (25 октября 2023 г.). «ООН объявляет о создании консультативного органа по искусственному интеллекту» .
  280. ^ Эдвардс (2023) .
  281. ^ Касперович (2023) .
  282. ^ Фокс Ньюс (2023) .
  283. ^ Милмо, Дэн (3 ноября 2023 г.). «Надежда или ужас? Великие дебаты об искусственном интеллекте, разделившие его пионеров». Еженедельник Гардиан . стр. 10–12.
  284. ^ «Декларация Блетчли стран, принявших участие в Саммите по безопасности ИИ, 1–2 ноября 2023 г.» . GOV.UK. ​1 ноября 2023 года. Архивировано из оригинала 1 ноября 2023 года . Проверено 2 ноября 2023 г.
  285. ^ «Страны соглашаются на безопасное и ответственное развитие передового ИИ в знаковой Декларации Блетчли» . GOV.UK (пресс-релиз). Архивировано из оригинала 1 ноября 2023 года . Проверено 1 ноября 2023 г.
  286. ^ «Второй глобальный саммит по искусственному интеллекту обеспечивает обязательства компаний по обеспечению безопасности» . Рейтер. 21 мая 2024 г. Проверено 23 мая 2024 г.
  287. ^ «Обязательства по обеспечению безопасности ИИ, Саммит AI в Сеуле 2024» . gov.uk. 21 мая 2024 года. Архивировано из оригинала 23 мая 2024 года . Проверено 23 мая 2024 г.
  288. ^ Перейти обратно: а б Рассел и Норвиг 2021 , с. 9.
  289. ^ «Google книги ngram» .
  290. ^ Непосредственные предшественники ИИ:
  291. ^ Перейти обратно: а б Рассел и Норвиг (2021) , с. 17.
  292. ^ Перейти обратно: а б Оригинальная публикация Тьюринга теста Тьюринга в « Вычислительной технике и интеллекте »: Историческое влияние и философские последствия:
  293. ^ Кревье (1993) , стр. 47–49.
  294. ^ Рассел и Норвиг (2003) , с. 17.
  295. ^ Рассел и Норвиг (2003) , с. 18.
  296. ^ Ньюквист (1994) , стр. 86–86.
  297. ^ Саймон (1965 , стр. 96), цитируется по Crevier (1993 , стр. 109).
  298. ^ Минский (1967 , стр. 2), цитируется по Crevier (1993 , стр. 109).
  299. ^ Рассел и Норвиг (2021) , с. 21.
  300. ^ Лайтхилл (1973) .
  301. ^ NRC 1999 , стр. 212–213.
  302. ^ Рассел и Норвиг (2021) , с. 22.
  303. ^ Экспертные системы :
  304. ^ Рассел и Норвиг (2021) , с. 24.
  305. ^ Нильссон (1998) , стр. 7.
  306. ^ МакКордак (2004) , стр. 454–462.
  307. ^ Моравец (1988) .
  308. ^ Перейти обратно: а б Брукс (1990) .
  309. ^ Развивающая робототехника :
  310. ^ Рассел и Норвиг (2021) , с. 25.
  311. ^
  312. ^ Рассел и Норвиг (2021) , с. 26.
  313. ^ Формальные и узкие методы, принятые в 1990-е годы:
  314. ^ ИИ широко использовался в конце 1990-х годов:
  315. ^ Люди (2023) .
  316. ^ Закон Мура и ИИ:
  317. ^ Перейти обратно: а б с Кларк (2015b) .
  318. ^ Большие данные :
  319. ^ Сагар, Рам (3 июня 2020 г.). «OpenAI выпускает GPT-3, самую большую модель на данный момент» . Журнал Analytics India . Архивировано из оригинала 4 августа 2020 года . Проверено 15 марта 2023 г.
  320. ^ ДиФелициантонио (2023) .
  321. ^ Госвами (2023) .
  322. ^ Перейти обратно: а б Тьюринг (1950) , с. 1.
  323. ^ Тьюринг (1950) , В разделе «Аргумент от сознания».
  324. ^ Рассел и Норвиг (2021) , с. 3.
  325. ^ Создатель (2006) .
  326. ^ Маккарти (1999) .
  327. ^ Минский (1986) .
  328. ^ «Что такое искусственный интеллект (ИИ)?» . Облачная платформа Google . Архивировано из оригинала 31 июля 2023 года . Проверено 16 октября 2023 г.
  329. ^ «Одна из самых больших проблем в регулировании ИИ – это согласование определения» . Carnegieendowment.org . Проверено 31 июля 2024 г.
  330. ^ «ИИ или чушь? Как определить, действительно ли маркетинговый инструмент использует искусственный интеллект» . Барабан . Проверено 31 июля 2024 г.
  331. ^ Нильссон (1983) , стр. 10.
  332. ^ Хаугеланд (1985) , стр. 112–117.
  333. ^ Гипотеза системы физических символов: Историческое значение:
  334. ^ Парадокс Моравеца :
  335. ^ Критика ИИ Дрейфусом : Историческое значение и философские последствия:
  336. ^ Кревье (1993) , с. 125.
  337. ^ Лэнгли (2011) .
  338. ^ Кац (2012) .
  339. ^ Аккуратность против неряшливости , исторические дебаты: Классический пример «неряшливого» подхода к разведке: Современный пример аккуратного ИИ и его стремлений в 21 веке:
  340. ^ Пенначин и Герцель (2007) .
  341. ^ Перейти обратно: а б Робертс (2016) .
  342. ^ Рассел и Норвиг (2021) , с. 986.
  343. ^ Чалмерс (1995) .
  344. ^ Деннетт (1991) .
  345. ^ Хорст (2005) .
  346. ^ Сирл (1999) .
  347. ^ Сирл (1980) , с. 1.
  348. ^ Рассел и Норвиг (2021) , с. 9817.
  349. ^ Аргумент Сирла в китайской комнате : Обсуждение:
  350. ^ Лейт, Сэм (7 июля 2022 г.). «Ник Бостром: Как мы можем быть уверены, что машина не находится в сознании?» . Зритель . Проверено 23 февраля 2024 г.
  351. ^ Перейти обратно: а б с Томсон, Джонни (31 октября 2022 г.). «Почему у роботов нет прав?» . Большое Думай . Проверено 23 февраля 2024 г.
  352. ^ Перейти обратно: а б Кейтман, Брайан (24 июля 2023 г.). «ИИ должен бояться людей» . Время . Проверено 23 февраля 2024 г.
  353. ^ Вонг, Джефф (10 июля 2023 г.). «Что лидерам нужно знать о правах роботов» . Компания Фаст .
  354. ^ Херн, Алекс (12 января 2017 г.). «Придайте роботам статус личности, - утверждает комитет ЕС» . Хранитель . ISSN   0261-3077 . Проверено 23 февраля 2024 г.
  355. ^ Дови, Дана (14 апреля 2018 г.). «Эксперты не считают, что у роботов должны быть права» . Newsweek . Проверено 23 февраля 2024 г.
  356. ^ Кадди, Элис (13 апреля 2018 г.). «Права роботов нарушают права человека, предупреждают эксперты ЕС» . Евроньюс . Проверено 23 февраля 2024 г.
  357. ^ Интеллектуальный взрыв и технологическая сингулярность : Эй Джей Гуда «Интеллектуальный взрыв» Вернора Винджа «Необычность»
  358. ^ Рассел и Норвиг (2021) , с. 1005.
  359. ^ Трансгуманизм :
  360. ^ ИИ как эволюция:
  361. ^ ИИ в мифе:
  362. ^ МакКордак (2004) , стр. 340–400.
  363. ^ Бутаццо (2001) .
  364. ^ Андерсон (2008) .
  365. ^ МакКоли (2007) .
  366. ^ Гальван (1997) .

Учебники по искусственному интеллекту

Два наиболее широко используемых учебника в 2023 году (см. Открытую программу ):

Это были четыре наиболее широко используемых учебника по ИИ в 2008 году:

Более поздние издания:

История ИИ

Другие источники

Дальнейшее чтение

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: d5ae452e3d3365a96a43d8e3ecf9ba67__1722660780
URL1:https://arc.ask3.ru/arc/aa/d5/67/d5ae452e3d3365a96a43d8e3ecf9ba67.html
Заголовок, (Title) документа по адресу, URL1:
Artificial intelligence - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)