Jump to content

Генетическое расстройство

Генетическое расстройство
Диаграмма с примерами заболевания, расположенной на каждой хромосоме
Специальность Медицинская генетика

Генетическое заболевание - это проблема со здоровьем, вызванную одной или несколькими нарушениями в геноме . Это может быть вызвано мутацией в одном гене (моногенном) или нескольких генах (полигенных) или с помощью аномалии хромосомы . Хотя полигенные расстройства являются наиболее распространенными, термин в основном используется при обсуждении расстройств с одной генетической причиной, либо в гене, либо в хромосоме . [ 1 ] [ 2 ] Ответственная мутация может возникнуть спонтанно перед эмбриональным развитием ( мутация de novo ), или она может быть унаследована от двух родителей, которые являются носителями неисправного гена ( аутосомно -рецессивное наследование) или от родителя с расстройством ( аутосомное доминирующее наследование). Когда генетическое заболевание унаследовано от одного или обоих родителей, оно также классифицируется как наследственное заболевание . Некоторые расстройства вызваны мутацией на Х-хромосоме и имеют x-связанное наследование. Очень немногие расстройства наследуются на Y -хромосоме или митохондриальной ДНК (из -за их размера). [ 3 ]

There are well over 6,000 known genetic disorders,[4] and new genetic disorders are constantly being described in medical literature.[5] More than 600 genetic disorders are treatable.[6] Around 1 in 50 people are affected by a known single-gene disorder, while around 1 in 263 are affected by a chromosomal disorder.[7] Around 65% of people have some kind of health problem as a result of congenital genetic mutations.[7] Due to the significantly large number of genetic disorders, approximately 1 in 21 people are affected by a genetic disorder classified as "rare" (usually defined as affecting less than 1 in 2,000 people). Most genetic disorders are rare in themselves.[5][8]

Genetic disorders are present before birth, and some genetic disorders produce birth defects, but birth defects can also be developmental rather than hereditary. The opposite of a hereditary disease is an acquired disease. Most cancers, although they involve genetic mutations to a small proportion of cells in the body, are acquired diseases. Some cancer syndromes, however, such as BRCA mutations, are hereditary genetic disorders.[9]

Single-gene

[edit]
Prevalence of some single-gene disorders[10]
Disorder prevalence (approximate)
Autosomal dominant
Familial hypercholesterolemia 1 in 500[11]
Myotonic dystrophy type 1 1 in 2,100[12]
Neurofibromatosis type I 1 in 2,500[13]
Hereditary spherocytosis 1 in 5,000
Marfan syndrome 1 in 4,000[14]
Huntington's disease 1 in 15,000[15]
Autosomal recessive
Sickle cell anaemia 1 in 625[16]
Cystic fibrosis 1 in 2,000
Tay–Sachs disease 1 in 3,000
Phenylketonuria 1 in 12,000
Autosomal recessive polycystic kidney disease 1 in 20,000[17]
Mucopolysaccharidoses 1 in 25,000
Lysosomal acid lipase deficiency 1 in 40,000
Glycogen storage diseases 1 in 50,000
Galactosemia 1 in 57,000
X-linked
Duchenne muscular dystrophy 1 in 5,000
Hemophilia 1 in 10,000
Values are for liveborn infants

A single-gene disorder (or monogenic disorder) is the result of a single mutated gene. Single-gene disorders can be passed on to subsequent generations in several ways. Genomic imprinting and uniparental disomy, however, may affect inheritance patterns. The divisions between recessive and dominant types are not "hard and fast", although the divisions between autosomal and X-linked types are (since the latter types are distinguished purely based on the chromosomal location of the gene). For example, the common form of dwarfism, achondroplasia, is typically considered a dominant disorder, but children with two genes for achondroplasia have a severe and usually lethal skeletal disorder, one that achondroplasics could be considered carriers for. Sickle cell anemia is also considered a recessive condition, but heterozygous carriers have increased resistance to malaria in early childhood, which could be described as a related dominant condition.[18] When a couple where one partner or both are affected or carriers of a single-gene disorder wish to have a child, they can do so through in vitro fertilization, which enables preimplantation genetic diagnosis to occur to check whether the embryo has the genetic disorder.[19]

Most congenital metabolic disorders known as inborn errors of metabolism result from single-gene defects. Many such single-gene defects can decrease the fitness of affected people and are therefore present in the population in lower frequencies compared to what would be expected based on simple probabilistic calculations.[20]

Autosomal dominant

[edit]

Only one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent.[21]: 57  The chance a child will inherit the mutated gene is 50%. Autosomal dominant conditions sometimes have reduced penetrance, which means although only one mutated copy is needed, not all individuals who inherit that mutation go on to develop the disease. Examples of this type of disorder are Huntington's disease,[21]: 58  neurofibromatosis type 1, neurofibromatosis type 2, Marfan syndrome, hereditary nonpolyposis colorectal cancer, hereditary multiple exostoses (a highly penetrant autosomal dominant disorder), tuberous sclerosis, Von Willebrand disease, and acute intermittent porphyria. Birth defects are also called congenital anomalies.[22]

Autosomal recessive

[edit]

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene and are referred to as genetic carriers. Each parent with a defective gene normally do not have symptoms.[23] Two unaffected people who each carry one copy of the mutated gene have a 25% risk with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are albinism, medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle cell disease, Tay–Sachs disease, Niemann–Pick disease, spinal muscular atrophy, and Roberts syndrome. Certain other phenotypes, such as wet versus dry earwax, are also determined in an autosomal recessive fashion.[24][25] Some autosomal recessive disorders are common because, in the past, carrying one of the faulty genes led to a slight protection against an infectious disease or toxin such as tuberculosis or malaria.[26] Such disorders include cystic fibrosis,[27] sickle cell disease,[28] phenylketonuria[29] and thalassaemia.[30]

X-linked dominant

[edit]
Schematic karyogram showing an overview of the human genome. It shows annotated bands and sub-bands as used in the nomenclature of genetic disorders. It shows 22 homologous chromosomes, both the female (XX) and male (XY) versions of the sex chromosome (bottom right), as well as the mitochondrial genome (to scale at bottom left).[citation needed]

X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritance pattern, with a prime example being X-linked hypophosphatemic rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some X-linked dominant conditions, such as Rett syndrome, incontinentia pigmenti type 2, and Aicardi syndrome, are usually fatal in males either in utero or shortly after birth, and are therefore predominantly seen in females. Exceptions to this finding are extremely rare cases in which boys with Klinefelter syndrome (44+xxy) also inherit an X-linked dominant condition and exhibit symptoms more similar to those of a female in terms of disease severity. The chance of passing on an X-linked dominant disorder differs between men and women. The sons of a man with an X-linked dominant disorder will all be unaffected (since they receive their father's Y chromosome), but his daughters will all inherit the condition. A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus with each pregnancy, although in cases such as incontinentia pigmenti, only female offspring are generally viable.

X-linked recessive

[edit]

X-linked recessive conditions are also caused by mutations in genes on the X chromosome. Males are much more frequently affected than females, because they only have the one X chromosome necessary for the condition to present. The chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected (since they receive their father's Y chromosome), but his daughters will be carriers of one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who are carriers of one copy of the mutated gene. X-linked recessive conditions include the serious diseases hemophilia A, Duchenne muscular dystrophy, and Lesch–Nyhan syndrome, as well as common and less serious conditions such as male pattern baldness and red–green color blindness. X-linked recessive conditions can sometimes manifest in females due to skewed X-inactivation or monosomy X (Turner syndrome).[citation needed]

Y-linked

[edit]

Y-linked disorders are caused by mutations on the Y chromosome. These conditions may only be transmitted from the heterogametic sex (e.g. male humans) to offspring of the same sex. More simply, this means that Y-linked disorders in humans can only be passed from men to their sons; females can never be affected because they do not possess Y-allosomes.[citation needed]

Y-linked disorders are exceedingly rare but the most well-known examples typically cause infertility. Reproduction in such conditions is only possible through the circumvention of infertility by medical intervention.

Mitochondrial

[edit]

This type of inheritance, also known as maternal inheritance, is the rarest and applies to the 13 genes encoded by mitochondrial DNA. Because only egg cells contribute mitochondria to the developing embryo, only mothers (who are affected) can pass on mitochondrial DNA conditions to their children. An example of this type of disorder is Leber's hereditary optic neuropathy.[31]

It is important to stress that the vast majority of mitochondrial diseases (particularly when symptoms develop in early life) are actually caused by a nuclear gene defect, as the mitochondria are mostly developed by non-mitochondrial DNA. These diseases most often follow autosomal recessive inheritance.[32]

Multifactorial disorder

[edit]

Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person's risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat because the specific factors that cause most of these disorders have not yet been identified. Studies that aim to identify the cause of complex disorders can use several methodological approaches to determine genotypephenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.[citation needed]

On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. This does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).

Other such cases include:

Chromosomal disorder

[edit]
Chromosomes in Down syndrome, the most common human condition due to aneuploidy. There are three chromosomes 21 (in the last row).

A chromosomal disorder is a missing, extra, or irregular portion of chromosomal DNA.[33] It can be from an atypical number of chromosomes or a structural abnormality in one or more chromosomes. An example of these disorders is Trisomy 21 (the most common form of Down syndrome), in which there is an extra copy of chromosome 21 in all cells.[34]

Diagnosis

[edit]

Due to the wide range of genetic disorders that are known, diagnosis is widely varied and dependent of the disorder. Most genetic disorders are diagnosed pre-birth, at birth, or during early childhood however some, such as Huntington's disease, can escape detection until the patient begins exhibiting symptoms well into adulthood.[35]

The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination.[36] Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.[37]

Prognosis

[edit]

Not all genetic disorders directly result in death; however, there are no known cures for genetic disorders. Many genetic disorders affect stages of development, such as Down syndrome, while others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease, show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy and pain management.

Treatment

[edit]
From personal genomics to gene therapy

The treatment of genetic disorders is an ongoing battle, with over 1,800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide.[38] Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.

Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of the disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. Researchers have investigated how they can introduce a gene into the potentially trillions of cells that carry the defective copy. Finding an answer to this has been a roadblock between understanding the genetic disorder and correcting the genetic disorder.[39]

Epidemiology

[edit]

Around 1 in 50 people are affected by a known single-gene disorder, while around 1 in 263 are affected by a chromosomal disorder.[7] Around 65% of people have some kind of health problem as a result of congenital genetic mutations.[7] Due to the significantly large number of genetic disorders, approximately 1 in 21 people are affected by a genetic disorder classified as "rare" (usually defined as affecting less than 1 in 2,000 people). Most genetic disorders are rare in themselves.[5][8] There are well over 6,000 known genetic disorders,[4] and new genetic disorders are constantly being described in medical literature.[5]

History

[edit]

The earliest known genetic condition in a hominid was in the fossil species Paranthropus robustus, with over a third of individuals displaying amelogenesis imperfecta.[40]

See also

[edit]

References

[edit]
  1. ^ "Genetic Disorders". Learn.Genetics. University of Utah. Archived from the original on 2022-07-15.
  2. ^ Lvovs D, Favorova OO, Favorov AV (July 2012). "A Polygenic Approach to the Study of Polygenic Diseases". Acta Naturae. 4 (3): 59–71. doi:10.32607/20758251-2012-4-3-59-71. PMC 3491892. PMID 23150804.
  3. ^ "What are the different ways in which a genetic condition can be inherited?". Genetics Home Reference. Archived from the original on 2020-09-27. Retrieved 2020-01-14.
  4. ^ Jump up to: a b "OMIM Gene Map Statistics". OMIM. Archived from the original on 2020-01-28. Retrieved 2020-01-14.
  5. ^ Jump up to: a b c d "About rare diseases". Orphanet. Archived from the original on 2019-12-17. Retrieved 2020-01-14.
  6. ^ Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH (March 2021). "An online compendium of treatable genetic disorders". American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 187 (1): 48–54. doi:10.1002/ajmg.c.31874. PMC 7986124. PMID 33350578.
  7. ^ Jump up to: a b c d Kumar P, Radhakrishnan J, Chowdhary MA, Giampietro PF (August 2001). "Prevalence and patterns of presentation of genetic disorders in a pediatric emergency department". Mayo Clinic Proceedings. 76 (8): 777–783. doi:10.4065/76.8.777. PMID 11499815.
  8. ^ Jump up to: a b Jackson M, Marks L, May GH, Wilson JB (December 2018). "The genetic basis of disease". Essays in Biochemistry. 62 (5): 643–723. doi:10.1042/EBC20170053. PMC 6279436. PMID 30509934. (calculated from "1 in 17" rare disorders and "80%" of rare disorders being genetic)
  9. ^ Hunt JD. "An Introduction to Cancer". Genetics and Louisiana Families. lsuhsc.edu. Archived from the original on 16 January 2020.
  10. ^ "Prevalence and incidence of rare diseases" (PDF). Archived (PDF) from the original on 2008-11-18.
  11. ^ "OMIM Entry #144010 – HYPERCHOLESTEROLEMIA, FAMILIAL, 2; FCHL2". omim.org. Archived from the original on 2021-03-09. Retrieved 2019-07-01.
  12. ^ Johnson NE, Butterfield RJ, Mayne K, Newcomb T, Imburgia C, Dunn D, et al. (February 2021). "Population-Based Prevalence of Myotonic Dystrophy Type 1 Using Genetic Analysis of Statewide Blood Screening Program". Neurology. 96 (7): e1045–e1053. doi:10.1212/WNL.0000000000011425. PMC 8055332. PMID 33472919.
  13. ^ «Вход OMIM #162200 - нейрофиброматоз, тип I; NF1» . Omim.org . Архивировано из оригинала 2021-03-08 . Получено 2019-07-01 .
  14. ^ Keane MG, Pyeritz Re (май 2008 г.). «Медицинское управление синдромом Марфана». Циркуляция . 117 (21): 2802–2813. doi : 10.1161/circulationaha.107.693523 . PMID   18506019 .
  15. ^ Уокер Ф. Ф. (январь 2007 г.). «Болезнь Хантингтона». Лансет . 369 (9557): 218–228. doi : 10.1016/s0140-6736 (07) 60111-1 . PMID   17240289 . S2CID   46151626 .
  16. ^ «Омим № 603903 - серповидно -клеточная анемия» . Omim.org . Архивировано из оригинала 2021-04-26 . Получено 2019-07-01 .
  17. ^ Свансон К (ноябрь 2021 г.). «Аутосомно -рецессивная поликистозная болезнь почек» . Американский журнал акушерства и гинекологии . 225 (5). Elsevier BV: B7 - B8. doi : 10.1016/j.ajog.2021.06.038 . PMID   34507795 . S2CID   237480065 .
  18. ^ Уильямс Т.Н., Обаро С.К. (июль 2011 г.). «Серповидно -клеточная болезнь и заболеваемость малярии: сказка с двумя хвостами». Тенденции в паразитологии . 27 (7): 315–320. doi : 10.1016/j.pt.2011.02.004 . PMID   21429801 .
  19. ^ Кулиев А., Верлинский Y (апрель 2005 г.). «Диагностика преимплантации: реалистичный вариант для вспомогательного размножения и генетической практики». Текущее мнение об акушерстве и гинекологии . 17 (2): 179–183. doi : 10.1097/01.gco.0000162189.76349.c5 . PMID   15758612 . S2CID   9382420 .
  20. ^ Шимчикова Д, Хенеберг П (декабрь 2019 г.). «Уточнение прогнозов эволюционной медицины, основанных на клинических данных о проявлениях заболеваний менделей» . Научные отчеты . 9 (1): 18577. Bibcode : 2019natsr ... 918577S . doi : 10.1038/s41598-019-54976-4 . PMC   6901466 . PMID   31819097 .
  21. ^ Подпрыгнуть до: а беременный Griffiths AJ, Wessler SR, Carroll SB, Doebley J (2012). «2: наследство с одним геном». Введение в генетический анализ (10 -е изд.). Нью -Йорк: WH Freeman and Company. ISBN  978-1-4292-2943-2 .
  22. ^ Malherbe HL, Modell B, Blencowe H, Strong KL, Aldous C (июнь 2023 г.). «Обзор ключевой терминологии и определений, используемых для врожденных дефектов во всем мире» . Журнал генетики сообщества . 14 (3): 241–262. doi : 10.1007/s12687-023-00642-2 . PMC   10272040 . PMID   37093545 .
  23. ^ «Паттерны наследования для расстройств отдельных генов» . Learn.genetics.utah.edu . Архивировано из оригинала 2019-07-01 . Получено 2019-07-01 .
  24. ^ Уэйд N (29 января 2006 г.). «Японские ученые идентифицируют ген ушного воска» . New York Times . Архивировано из оригинала 21 марта 2023 года . Получено 20 февраля 2023 года .
  25. ^ Йошира К., Киношита А., Ишида Т., Ниноката А., Ишикава Т., Канаме Т. и др. (Март 2006 г.). «SNP в гене ABCC11 является определяющим фактором, определяющим человеческий тип Warwax». Природа генетика . 38 (3): 324–330. doi : 10.1038/ng1733 . PMID   16444273 . S2CID   3201966 .
  26. ^ Миттон Дж. Б. (2002). «Гетерозиготное преимущество». эл . doi : 10.1038/npg.els.0001760 . ISBN  978-0-470-01617-6 .
  27. ^ Poolman EM, Galvani AP (февраль 2007 г.). «Оценка кандидатов агентов селективного давления при муковисцидозе» . Журнал Королевского общества, интерфейс . 4 (12): 91–98. doi : 10.1098/rsif.2006.0154 . PMC   2358959 . PMID   17015291 .
  28. ^ Эллисон А.С. (октябрь 2009 г.). «Генетический контроль устойчивости к малярии человека». Текущее мнение в иммунологии . 21 (5): 499–505. doi : 10.1016/j.coi.2009.04.001 . PMID   19442502 .
  29. ^ Вульф Ли (май 1986). «Гетерозиготное преимущество в фенилкетонурии» . Американский журнал человеческой генетики . 38 (5): 773–775. PMC   1684820 . PMID   3717163 .
  30. ^ Weatherall DJ (2015). «Талассемии: расстройства синтеза глобального» . Гематология Уильямса (9E ed.). McGraw Hill Professional. п. 725. ISBN  978-0-07-183301-1 Полем Архивировано из оригинала 2023-02-20 . Получено 2023-02-20 .
  31. ^ Шемеш А., Суд Г., Марголин Э. «Наследственная оптическая невропатия (Лхон)» . Statpearls [Интернет] . Остров сокровищ (Флорида): Statpearls Publishing.
  32. ^ Nussbaum R, McInnes R, Willard H (2007). Thompson & Thompson Genetics in Medicine . Филадельфия П.А.: Сондерс. с. 144, 145, 146. ISBN  978-1-4160-3080-5 .
  33. ^ «Генетические расстройства: какие они, типы, симптомы и причины» . Клиника Кливленда . Архивировано из оригинала 2023-11-01 . Получено 2023-11-01 .
  34. ^ CDC (2023-10-10). «Факты о синдроме Дауна | CDC» . Центры для контроля и профилактики заболеваний . Архивировано из оригинала 2017-07-28 . Получено 2023-11-01 .
  35. ^ Уайант К.Дж., Риддер А.Дж., Дайалу П (апрель 2017 г.). «Ускорение болезни Хантингтона при лечении». Текущая неврология и неврологические отчеты . 17 (4): 33. DOI : 10.1007/S11910-017-0739-9 . PMID   28324302 .
  36. ^ Милунский А., Милунский Дж. М. (2021). «Генетическое консультирование: предварительное восприятие, пренатальное и перинатальное». Генетические расстройства и плод . С. 1–101. doi : 10.1002/9781119676980.CH1 . ISBN  978-1-119-67698-0 .
  37. ^ «Диагностические тесты - амниоцентез» . Гарвардская медицинская школа. Архивировано с оригинала на 2008-05-16 . Получено 2008-07-15 .
  38. ^ Джинн С.Л., Александр И.Е., Эдельштейн М.Л., Абеди М.Р., Виксон Дж (февраль 2013 г.). «Клинические испытания генной терапии по всему миру до 2012 года - обновление». Журнал генной медицины . 15 (2): 65–77. doi : 10.1002/jgm.2698 . PMID   23355455 . S2CID   37123019 .
  39. ^ Верма Им (август 2013 г.). «Медицина. Генная терапия, которая работает». Наука . 341 (6148): 853–855. Bibcode : 2013sci ... 341..853v . doi : 10.1126/science.1242551 . PMID   23970689 . S2CID   206550787 .
  40. ^ Towle I, Irish JD (апрель 2019 г.). «Вероятное генетическое происхождение для разжигания гипоплазии эмали на молярах Paranthropus robustus» (PDF) . Журнал человеческой эволюции . 129 : 54–61. doi : 10.1016/j.jhevol.2019.01.002 . PMID   30904040 . S2CID   85502058 . Архивировано (PDF) из оригинала на 2023-06-04 . Получено 2023-02-20 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 141c727e4bc8822ed82d8d034283cacc__1724270400
URL1:https://arc.ask3.ru/arc/aa/14/cc/141c727e4bc8822ed82d8d034283cacc.html
Заголовок, (Title) документа по адресу, URL1:
Genetic disorder - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)