Декстроамфетамин
Декстроамфетамин (МНН:дексамфетамин) является мощным центральной нервной системы (ЦНС) стимулятором и энантиомером. [ примечание 1 ] амфетамина , который назначают для лечения синдрома дефицита внимания и гиперактивности (СДВГ) и нарколепсии . [ 11 ] [ 28 ] Он также используется в качестве стимулятора спортивных результатов и когнитивных функций , а также в качестве афродизиака и эйфорианта в рекреационных целях . Декстроамфетамин обычно считается прототипом стимулятора .
Молекула амфетамина существует в виде двух энантиомеров: [ примечание 1 ] левоамфетамин и декстроамфетамин. Декстроамфетамин является правовращающим или «правосторонним» энантиомером и оказывает более выраженное воздействие на центральную нервную систему, чем левоамфетамин. Фармацевтический сульфат декстроамфетамина доступен как в виде фирменного препарата, так и в виде дженерика в различных лекарственных формах . Декстроамфетамин иногда назначают в виде неактивного пролекарства лиздексамфетамина димезилата , который после абсорбции превращается в декстроамфетамин.
Dextroamphetamine, like other amphetamines, elicits its stimulating effects via several distinct actions: it inhibits or reverses the transporter proteins for the monoamine neurotransmitters (namely the serotonin, norepinephrine and dopamine transporters) either via trace amine-associated receptor 1 (TAAR1) or in a TAAR1 independent fashion when there are high cytosolic concentrations of the monoamine neurotransmitters[30] and it releases these neurotransmitters from synaptic vesicles via vesicular monoamine transporter 2.[31] It also shares many chemical and pharmacological properties with human trace amines, particularly phenethylamine and N-methylphenethylamine, the latter being an isomer of amphetamine produced within the human body. It is available as a generic medication.[32] In 2021, it was the 17th most commonly prescribed medication in the United States, with more than 30.3 million prescriptions.[33][34]
Uses
[edit]Medical
[edit]
Dextroamphetamine is used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy (a sleep disorder),[11] and is sometimes prescribed off-label for depression and obesity.[28]
ADHD
[edit]Long-term amphetamine exposure at sufficiently high doses in some animal species is known to produce abnormal dopamine system development or nerve damage,[35][36] but, in humans with ADHD, long-term use of pharmaceutical amphetamines at therapeutic doses appears to improve brain development and nerve growth.[37][38][39] Reviews of magnetic resonance imaging (MRI) studies suggest that long-term treatment with amphetamine decreases abnormalities in brain structure and function found in subjects with ADHD, and improves function in several parts of the brain, such as the right caudate nucleus of the basal ganglia.[37][38][39]
Reviews of clinical stimulant research have established the safety and effectiveness of long-term continuous amphetamine use for the treatment of ADHD.[40][41][42] Randomized controlled trials of continuous stimulant therapy for the treatment of ADHD spanning 2 years have demonstrated treatment effectiveness and safety.[40][41] Two reviews have indicated that long-term continuous stimulant therapy for ADHD is effective for reducing the core symptoms of ADHD (i.e., hyperactivity, inattention, and impulsivity), enhancing quality of life and academic achievement, and producing improvements in a large number of functional outcomes[note 2] across 9 categories of outcomes related to academics, antisocial behavior, driving, non-medicinal drug use, obesity, occupation, self-esteem, service use (i.e., academic, occupational, health, financial, and legal services), and social function.[40][42] One review highlighted a nine-month randomized controlled trial of amphetamine treatment for ADHD in children that found an average increase of 4.5 IQ points, continued increases in attention, and continued decreases in disruptive behaviors and hyperactivity.[41] Another review indicated that, based upon the longest follow-up studies conducted to date, lifetime stimulant therapy that begins during childhood is continuously effective for controlling ADHD symptoms and reduces the risk of developing a substance use disorder as an adult.[40]
Current models of ADHD suggest that it is associated with functional impairments in some of the brain's neurotransmitter systems;[43] these functional impairments involve impaired dopamine neurotransmission in the mesocorticolimbic projection and norepinephrine neurotransmission in the noradrenergic projections from the locus coeruleus to the prefrontal cortex.[43] Psychostimulants like methylphenidate and amphetamine are effective in treating ADHD because they increase neurotransmitter activity in these systems.[44][43][45] Approximately 80% of those who use these stimulants see improvements in ADHD symptoms.[46] Children with ADHD who use stimulant medications generally have better relationships with peers and family members, perform better in school, are less distractible and impulsive, and have longer attention spans.[47][48] The Cochrane reviews[note 3] on the treatment of ADHD in children, adolescents, and adults with pharmaceutical amphetamines stated that short-term studies have demonstrated that these drugs decrease the severity of symptoms, but they have higher discontinuation rates than non-stimulant medications due to their adverse side effects.[50][51] A Cochrane review on the treatment of ADHD in children with tic disorders such as Tourette syndrome indicated that stimulants in general do not make tics worse, but high doses of dextroamphetamine could exacerbate tics in some individuals.[52]
Narcolepsy
[edit]Narcolepsy is a chronic sleep-wake disorder that is associated with excessive daytime sleepiness, cataplexy, and sleep paralysis.[53] Patients with narcolepsy are diagnosed as either type 1 or type 2, with only the former presenting cataplexy symptoms.[54] Type 1 narcolepsy results from the loss of approximately 70,000 orexin-releasing neurons in the lateral hypothalamus, leading to significantly reduced cerebrospinal orexin levels;[55][56] this reduction is a diagnostic biomarker for type 1 narcolepsy.[54] Lateral hypothalamic orexin neurons innervate every component of the ascending reticular activating system (ARAS), which includes noradrenergic, dopaminergic, histaminergic, and serotonergic nuclei that promote wakefulness.[56][57]
Amphetamine’s therapeutic mode of action in narcolepsy primarily involves increasing monoamine neurotransmitter activity in the ARAS.[55][58][59] This includes noradrenergic neurons in the locus coeruleus, dopaminergic neurons in the ventral tegmental area, histaminergic neurons in the tuberomammillary nucleus, and serotonergic neurons in the dorsal raphe nucleus.[57][59] Dextroamphetamine, the more dopaminergic enantiomer of amphetamine, is particularly effective at promoting wakefulness because dopamine release has the greatest influence on cortical activation and cognitive arousal, relative to other monoamines.[55] In contrast, levoamphetamine may have a greater effect on cataplexy, a symptom more sensitive to the effects of norepinephrine and serotonin.[55] Noradrenergic and serotonergic nuclei in the ARAS are involved in the regulation of the REM sleep cycle and function as "REM-off" cells, with amphetamine's effect on norepinephrine and serotonin contributing to the suppression of REM sleep and a possible reduction of cataplexy at high doses.[55][54][57]
The American Academy of Sleep Medicine (AASM) 2021 clinical practice guideline conditionally recommends dextroamphetamine for the treatment of both type 1 and type 2 narcolepsy.[60] Treatment with pharmaceutical amphetamines is generally less preferred relative to other psychostimulants (e.g., modafinil) and is considered a third-line treatment option.[61][62][63] Medical reviews indicate that amphetamine is safe and effective for the treatment of narcolepsy.[55][61][60] Amphetamine appears to be most effective at improving symptoms associated with hypersomnolence, with three reviews finding clinically significant reductions in daytime sleepiness in patients with narcolepsy.[55][61][60] Additionally, these reviews suggest that amphetamine may dose-dependently improve cataplexy symptoms.[55][61][60] However, the quality of evidence for these findings is low and is consequently reflected in the AASM's conditional recommendation for dextroamphetamine as a treatment option for narcolepsy.[60]
Enhancing performance
[edit]Cognitive performance
[edit]In 2015, a systematic review and a meta-analysis of high quality clinical trials found that, when used at low (therapeutic) doses, amphetamine produces modest yet unambiguous improvements in cognition, including working memory, long-term episodic memory, inhibitory control, and some aspects of attention, in normal healthy adults;[64][65] these cognition-enhancing effects of amphetamine are known to be partially mediated through the indirect activation of both dopamine receptor D1 and adrenoceptor α2 in the prefrontal cortex.[44][64] A systematic review from 2014 found that low doses of amphetamine also improve memory consolidation, in turn leading to improved recall of information.[66] Therapeutic doses of amphetamine also enhance cortical network efficiency, an effect which mediates improvements in working memory in all individuals.[44][67] Amphetamine and other ADHD stimulants also improve task saliency (motivation to perform a task) and increase arousal (wakefulness), in turn promoting goal-directed behavior.[44][68][69] Stimulants such as amphetamine can improve performance on difficult and boring tasks and are used by some students as a study and test-taking aid.[44][69][70] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[71][72][73] However, high amphetamine doses that are above the therapeutic range can interfere with working memory and other aspects of cognitive control.[44][69]
Physical performance
[edit]Amphetamine is used by some athletes for its psychological and athletic performance-enhancing effects, such as increased endurance and alertness;[74][75] however, non-medical amphetamine use is prohibited at sporting events that are regulated by collegiate, national, and international anti-doping agencies.[76][77] In healthy people at oral therapeutic doses, amphetamine has been shown to increase muscle strength, acceleration, athletic performance in anaerobic conditions, and endurance (i.e., it delays the onset of fatigue), while improving reaction time.[74][78][79] Amphetamine improves endurance and reaction time primarily through reuptake inhibition and release of dopamine in the central nervous system.[78][79][80] Amphetamine and other dopaminergic drugs also increase power output at fixed levels of perceived exertion by overriding a "safety switch", allowing the core temperature limit to increase in order to access a reserve capacity that is normally off-limits.[79][81][82] At therapeutic doses, the adverse effects of amphetamine do not impede athletic performance;[74][78] however, at much higher doses, amphetamine can induce effects that severely impair performance, such as rapid muscle breakdown and elevated body temperature.[83][78]
Recreational
[edit]Dextroamphetamine is also used recreationally as a euphoriant and aphrodisiac, and like other amphetamines is used as a club drug for its energetic and euphoric high. Dextroamphetamine is considered to have a high potential for misuse in a recreational manner since individuals typically report feeling euphoric, more alert, and more energetic after taking the drug.[84][85][86] Dextroamphetamine's dopaminergic (rewarding) properties affect the mesocorticolimbic circuit; a group of neural structures responsible for incentive salience (i.e., "wanting"; desire or craving for a reward and motivation), positive reinforcement and positively-valenced emotions, particularly ones involving pleasure.[87] Large recreational doses of dextroamphetamine may produce symptoms of dextroamphetamine overdose.[86] Recreational users sometimes open dexedrine capsules and crush the contents in order to insufflate (snort) it or subsequently dissolve it in water and inject it.[86] Immediate-release formulations have higher potential for abuse via insufflation (snorting) or intravenous injection due to a more favorable pharmacokinetic profile and easy crushability (especially tablets).[88][89]
The reason for using crushed spansules for insufflation and injection methods is evidently due to the "instant-release" forms of the drug seen in tablet preparations often containing a sizable amount of inactive binders and fillers alongside the active d-amphetamine, such as dextrose.[90] Injection into the bloodstream can be dangerous because insoluble fillers within the tablets can block small blood vessels.[86] Chronic overuse of dextroamphetamine can lead to severe drug dependence, resulting in withdrawal symptoms when drug use stops.[86]
Contraindications
[edit]According to the International Programme on Chemical Safety (IPCS) and the United States Food and Drug Administration (USFDA),[note 4] amphetamine is contraindicated in people with a history of drug abuse,[note 5] cardiovascular disease, severe agitation, or severe anxiety.[92][83][93] It is also contraindicated in individuals with advanced arteriosclerosis (hardening of the arteries), glaucoma (increased eye pressure), hyperthyroidism (excessive production of thyroid hormone), or moderate to severe hypertension.[92][83][93] These agencies indicate that people who have experienced allergic reactions to other stimulants or who are taking monoamine oxidase inhibitors (MAOIs) should not take amphetamine,[92][83][93] although safe concurrent use of amphetamine and monoamine oxidase inhibitors has been documented.[94][95] These agencies also state that anyone with anorexia nervosa, bipolar disorder, depression, hypertension, liver or kidney problems, mania, psychosis, Raynaud's phenomenon, seizures, thyroid problems, tics, or Tourette syndrome should monitor their symptoms while taking amphetamine.[83][93] Evidence from human studies indicates that therapeutic amphetamine use does not cause developmental abnormalities in the fetus or newborns (i.e., it is not a human teratogen), but amphetamine abuse does pose risks to the fetus.[93] Amphetamine has also been shown to pass into breast milk, so the IPCS and the USFDA advise mothers to avoid breastfeeding when using it.[83][93] Due to the potential for reversible growth impairments,[note 6] the USFDA advises monitoring the height and weight of children and adolescents prescribed an amphetamine pharmaceutical.[83]
Adverse effects
[edit]Physical
[edit]Cardiovascular side effects can include hypertension or hypotension from a vasovagal response, Raynaud's phenomenon (reduced blood flow to the hands and feet), and tachycardia (increased heart rate).[83][75][96] Sexual side effects in males may include erectile dysfunction, frequent erections, or prolonged erections.[83] Gastrointestinal side effects may include abdominal pain, constipation, diarrhea, and nausea.[5][83][97] Other potential physical side effects include appetite loss, blurred vision, dry mouth, excessive grinding of the teeth, nosebleed, profuse sweating, rhinitis medicamentosa (drug-induced nasal congestion), reduced seizure threshold, tics (a type of movement disorder), and weight loss.[sources 1] Dangerous physical side effects are rare at typical pharmaceutical doses.[75]
Amphetamine stimulates the medullary respiratory centers, producing faster and deeper breaths.[75] In a normal person at therapeutic doses, this effect is usually not noticeable, but when respiration is already compromised, it may be evident.[75] Amphetamine also induces contraction in the urinary bladder sphincter, the muscle which controls urination, which can result in difficulty urinating.[75] This effect can be useful in treating bed wetting and loss of bladder control.[75] The effects of amphetamine on the gastrointestinal tract are unpredictable.[75] If intestinal activity is high, amphetamine may reduce gastrointestinal motility (the rate at which content moves through the digestive system);[75] however, amphetamine may increase motility when the smooth muscle of the tract is relaxed.[75] Amphetamine also has a slight analgesic effect and can enhance the pain relieving effects of opioids.[5][75]
USFDA-commissioned studies from 2011 indicate that in children, young adults, and adults there is no association between serious adverse cardiovascular events (sudden death, heart attack, and stroke) and the medical use of amphetamine or other ADHD stimulants.[sources 2] However, amphetamine pharmaceuticals are contraindicated in individuals with cardiovascular disease.[sources 3]
Psychological
[edit]At normal therapeutic doses, the most common psychological side effects of amphetamine include increased alertness, apprehension, concentration, initiative, self-confidence and sociability, mood swings (elated mood followed by mildly depressed mood), insomnia or wakefulness, and decreased sense of fatigue.[83][75] Less common side effects include anxiety, change in libido, grandiosity, irritability, repetitive or obsessive behaviors, and restlessness;[sources 4] these effects depend on the user's personality and current mental state.[75] Amphetamine psychosis (e.g., delusions and paranoia) can occur in heavy users.[83][105][106] Although very rare, this psychosis can also occur at therapeutic doses during long-term therapy.[83][106][107] According to the USFDA, "there is no systematic evidence" that stimulants produce aggressive behavior or hostility.[83]
Amphetamine has also been shown to produce a conditioned place preference in humans taking therapeutic doses,[50][108] meaning that individuals acquire a preference for spending time in places where they have previously used amphetamine.[108][109]
Reinforcement disorders
[edit]Addiction
[edit]Addiction and dependence glossary[109][110][111] |
---|
Transcription factor glossary |
---|
![]() |
Addiction is a serious risk with heavy recreational amphetamine use, but is unlikely to occur from long-term medical use at therapeutic doses;[119][120][61] in fact, lifetime stimulant therapy for ADHD that begins during childhood reduces the risk of developing substance use disorders as an adult.[40] Pathological overactivation of the mesolimbic pathway, a dopamine pathway that connects the ventral tegmental area to the nucleus accumbens, plays a central role in amphetamine addiction.[121][122] Individuals who frequently self-administer high doses of amphetamine have a high risk of developing an amphetamine addiction, since chronic use at high doses gradually increases the level of accumbal ΔFosB, a "molecular switch" and "master control protein" for addiction.[110][123][124] Once nucleus accumbens ΔFosB is sufficiently overexpressed, it begins to increase the severity of addictive behavior (i.e., compulsive drug-seeking) with further increases in its expression.[123][125] While there are currently no effective drugs for treating amphetamine addiction, regularly engaging in sustained aerobic exercise appears to reduce the risk of developing such an addiction.[126][127] Exercise therapy improves clinical treatment outcomes and may be used as an adjunct therapy with behavioral therapies for addiction.[126][128][sources 5]
Biomolecular mechanisms
[edit]Chronic use of amphetamine at excessive doses causes alterations in gene expression in the mesocorticolimbic projection, which arise through transcriptional and epigenetic mechanisms.[124][129][130] The most important transcription factors[note 7] that produce these alterations are Delta FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB), cAMP response element binding protein (CREB), and nuclear factor-kappa B (NF-κB).[124] ΔFosB is the most significant biomolecular mechanism in addiction because ΔFosB overexpression (i.e., an abnormally high level of gene expression which produces a pronounced gene-related phenotype) in the D1-type medium spiny neurons in the nucleus accumbens is necessary and sufficient[note 8] for many of the neural adaptations and regulates multiple behavioral effects (e.g., reward sensitization and escalating drug self-administration) involved in addiction.[110][123][124] Once ΔFosB is sufficiently overexpressed, it induces an addictive state that becomes increasingly more severe with further increases in ΔFosB expression.[110][123] It has been implicated in addictions to alcohol, cannabinoids, cocaine, methylphenidate, nicotine, opioids, phencyclidine, propofol, and substituted amphetamines, among others.[sources 6]
ΔJunD, a transcription factor, and G9a, a histone methyltransferase enzyme, both oppose the function of ΔFosB and inhibit increases in its expression.[110][124][134] Sufficiently overexpressing ΔJunD in the nucleus accumbens with viral vectors can completely block many of the neural and behavioral alterations seen in chronic drug abuse (i.e., the alterations mediated by ΔFosB).[124] Similarly, accumbal G9a hyperexpression results in markedly increased histone 3 lysine residue 9 dimethylation (H3K9me2) and blocks the induction of ΔFosB-mediated neural and behavioral plasticity by chronic drug use,[sources 7] which occurs via H3K9me2-mediated repression of transcription factors for ΔFosB and H3K9me2-mediated repression of various ΔFosB transcriptional targets (e.g., CDK5).[124][134][135] ΔFosB also plays an important role in regulating behavioral responses to natural rewards, such as palatable food, sex, and exercise.[125][124][138] Since both natural rewards and addictive drugs induce the expression of ΔFosB (i.e., they cause the brain to produce more of it), chronic acquisition of these rewards can result in a similar pathological state of addiction.[125][124] Consequently, ΔFosB is the most significant factor involved in both amphetamine addiction and amphetamine-induced sexual addictions, which are compulsive sexual behaviors that result from excessive sexual activity and amphetamine use.[125][139][140] These sexual addictions are associated with a dopamine dysregulation syndrome which occurs in some patients taking dopaminergic drugs.[125][138]
The effects of amphetamine on gene regulation are both dose- and route-dependent.[130] Most of the research on gene regulation and addiction is based upon animal studies with intravenous amphetamine administration at very high doses.[130] The few studies that have used equivalent (weight-adjusted) human therapeutic doses and oral administration show that these changes, if they occur, are relatively minor.[130] This suggests that medical use of amphetamine does not significantly affect gene regulation.[130]
Pharmacological treatments
[edit]As of December 2019,[update] there is no effective pharmacotherapy for amphetamine addiction.[141][142][143] Reviews from 2015 and 2016 indicated that TAAR1-selective agonists have significant therapeutic potential as a treatment for psychostimulant addictions;[144][145] however, as of February 2016,[update] the only compounds which are known to function as TAAR1-selective agonists are experimental drugs.[144][145] Amphetamine addiction is largely mediated through increased activation of dopamine receptors and co-localized NMDA receptors[note 9] in the nucleus accumbens;[122] magnesium ions inhibit NMDA receptors by blocking the receptor calcium channel.[122][146] One review suggested that, based upon animal testing, pathological (addiction-inducing) psychostimulant use significantly reduces the level of intracellular magnesium throughout the brain.[122] Supplemental magnesium[note 10] treatment has been shown to reduce amphetamine self-administration (i.e., doses given to oneself) in humans, but it is not an effective monotherapy for amphetamine addiction.[122]
A systematic review and meta-analysis from 2019 assessed the efficacy of 17 different pharmacotherapies used in randomized controlled trials (RCTs) for amphetamine and methamphetamine addiction;[142] it found only low-strength evidence that methylphenidate might reduce amphetamine or methamphetamine self-administration.[142] There was low- to moderate-strength evidence of no benefit for most of the other medications used in RCTs, which included antidepressants (bupropion, mirtazapine, sertraline), antipsychotics (aripiprazole), anticonvulsants (topiramate, baclofen, gabapentin), naltrexone, varenicline, citicoline, ondansetron, prometa, riluzole, atomoxetine, dextroamphetamine, and modafinil.[142]
Behavioral treatments
[edit]A 2018 systematic review and network meta-analysis of 50 trials involving 12 different psychosocial interventions for amphetamine, methamphetamine, or cocaine addiction found that combination therapy with both contingency management and community reinforcement approach had the highest efficacy (i.e., abstinence rate) and acceptability (i.e., lowest dropout rate).[147] Other treatment modalities examined in the analysis included monotherapy with contingency management or community reinforcement approach, cognitive behavioral therapy, 12-step programs, non-contingent reward-based therapies, psychodynamic therapy, and other combination therapies involving these.[147]
Additionally, research on the neurobiological effects of physical exercise suggests that daily aerobic exercise, especially endurance exercise (e.g., marathon running), prevents the development of drug addiction and is an effective adjunct therapy (i.e., a supplemental treatment) for amphetamine addiction.[sources 5] Exercise leads to better treatment outcomes when used as an adjunct treatment, particularly for psychostimulant addictions.[126][128][148] In particular, aerobic exercise decreases psychostimulant self-administration, reduces the reinstatement (i.e., relapse) of drug-seeking, and induces increased dopamine receptor D2 (DRD2) density in the striatum.[125][148] This is the opposite of pathological stimulant use, which induces decreased striatal DRD2 density.[125] One review noted that exercise may also prevent the development of a drug addiction by altering ΔFosB or c-Fos immunoreactivity in the striatum or other parts of the reward system.[127]
Form of neuroplasticity or behavioral plasticity |
Type of reinforcer | Sources | |||||
---|---|---|---|---|---|---|---|
Opiates | Psychostimulants | High fat or sugar food | Sexual intercourse | Physical exercise (aerobic) |
Environmental enrichment | ||
ΔFosB expression in nucleus accumbens D1-type MSNs |
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | [125] |
Behavioral plasticity | |||||||
Escalation of intake | Yes | Yes | Yes | [125] | |||
Psychostimulant cross-sensitization |
Yes | Not applicable | Yes | Yes | Attenuated | Attenuated | [125] |
Psychostimulant self-administration |
↑ | ↑ | ↓ | ↓ | ↓ | [125] | |
Psychostimulant conditioned place preference |
↑ | ↑ | ↓ | ↑ | ↓ | ↑ | [125] |
Reinstatement of drug-seeking behavior | ↑ | ↑ | ↓ | ↓ | [125] | ||
Neurochemical plasticity | |||||||
CREB phosphorylation in the nucleus accumbens |
↓ | ↓ | ↓ | ↓ | ↓ | [125] | |
Sensitized dopamine response in the nucleus accumbens |
No | Yes | No | Yes | [125] | ||
Altered striatal dopamine signaling | ↓DRD2, ↑DRD3 | ↑DRD1, ↓DRD2, ↑DRD3 | ↑DRD1, ↓DRD2, ↑DRD3 | ↑DRD2 | ↑DRD2 | [125] | |
Altered striatal opioid signaling | No change or ↑μ-opioid receptors |
↑μ-opioid receptors ↑κ-opioid receptors |
↑μ-opioid receptors | ↑μ-opioid receptors | No change | No change | [125] |
Changes in striatal opioid peptides | ↑dynorphin No change: enkephalin |
↑dynorphin | ↓enkephalin | ↑dynorphin | ↑dynorphin | [125] | |
Mesocorticolimbic synaptic plasticity | |||||||
Number of dendrites in the nucleus accumbens | ↓ | ↑ | ↑ | [125] | |||
Dendritic spine density in the nucleus accumbens |
↓ | ↑ | ↑ | [125] |
Dependence and withdrawal
[edit]Drug tolerance develops rapidly in amphetamine abuse (i.e., recreational amphetamine use), so periods of extended abuse require increasingly larger doses of the drug in order to achieve the same effect.[149][150] According to a Cochrane review on withdrawal in individuals who compulsively use amphetamine and methamphetamine, "when chronic heavy users abruptly discontinue amphetamine use, many report a time-limited withdrawal syndrome that occurs within 24 hours of their last dose."[151] This review noted that withdrawal symptoms in chronic, high-dose users are frequent, occurring in roughly 88% of cases, and persist for 3–4 weeks with a marked "crash" phase occurring during the first week.[151] Amphetamine withdrawal symptoms can include anxiety, drug craving, depressed mood, fatigue, increased appetite, increased movement or decreased movement, lack of motivation, sleeplessness or sleepiness, and lucid dreams.[151] The review indicated that the severity of withdrawal symptoms is positively correlated with the age of the individual and the extent of their dependence.[151] Mild withdrawal symptoms from the discontinuation of amphetamine treatment at therapeutic doses can be avoided by tapering the dose.[5]
Overdose
[edit]An amphetamine overdose can lead to many different symptoms, but is rarely fatal with appropriate care.[5][93][152] The severity of overdose symptoms increases with dosage and decreases with drug tolerance to amphetamine.[75][93] Tolerant individuals have been known to take as much as 5 grams of amphetamine in a day, which is roughly 100 times the maximum daily therapeutic dose.[93] Symptoms of a moderate and extremely large overdose are listed below; fatal amphetamine poisoning usually also involves convulsions and coma.[83][75] In 2013, overdose on amphetamine, methamphetamine, and other compounds implicated in an "amphetamine use disorder" resulted in an estimated 3,788 deaths worldwide (3,425–4,145 deaths, 95% confidence).[note 11][153]
System | Minor or moderate overdose[83][75][93] | Severe overdose[sources 8] |
---|---|---|
Cardiovascular |
| |
Central nervous system |
|
|
Musculoskeletal |
| |
Respiratory |
|
|
Urinary |
|
|
Other |
|
|
Toxicity
[edit]In rodents and primates, sufficiently high doses of amphetamine cause dopaminergic neurotoxicity, or damage to dopamine neurons, which is characterized by dopamine terminal degeneration and reduced transporter and receptor function.[156][157] There is no evidence that amphetamine is directly neurotoxic in humans.[158][159] However, large doses of amphetamine may indirectly cause dopaminergic neurotoxicity as a result of hyperpyrexia, the excessive formation of reactive oxygen species, and increased autoxidation of dopamine.[sources 9] Animal models of neurotoxicity from high-dose amphetamine exposure indicate that the occurrence of hyperpyrexia (i.e., core body temperature ≥ 40 °C) is necessary for the development of amphetamine-induced neurotoxicity.[157] Prolonged elevations of brain temperature above 40 °C likely promote the development of amphetamine-induced neurotoxicity in laboratory animals by facilitating the production of reactive oxygen species, disrupting cellular protein function, and transiently increasing blood–brain barrier permeability.[157]
Psychosis
[edit]An amphetamine overdose can result in a stimulant psychosis that may involve a variety of symptoms, such as delusions and paranoia.[105][106] A Cochrane review on treatment for amphetamine, dextroamphetamine, and methamphetamine psychosis states that about 5–15% of users fail to recover completely.[105][162] According to the same review, there is at least one trial that shows antipsychotic medications effectively resolve the symptoms of acute amphetamine psychosis.[105] Psychosis rarely arises from therapeutic use.[83][106][107]
Interactions
[edit]Many types of substances are known to interact with amphetamine, resulting in altered drug action or metabolism of amphetamine, the interacting substance, or both.[20][163][164] Inhibitors of the enzymes that metabolize amphetamine (e.g., CYP2D6 and FMO3) will prolong its elimination half-life, meaning that its effects will last longer.[27][163][164] Amphetamine also interacts with MAOIs, particularly monoamine oxidase A inhibitors, since both MAOIs and amphetamine increase plasma catecholamines (i.e., norepinephrine and dopamine);[163][164] therefore, concurrent use of both is dangerous.[163][164] Amphetamine modulates the activity of most psychoactive drugs. In particular, amphetamine may decrease the effects of sedatives and depressants and increase the effects of stimulants and antidepressants.[163][164] Amphetamine may also decrease the effects of antihypertensives and antipsychotics due to its effects on blood pressure and dopamine respectively.[163][164] Zinc supplementation may reduce the minimum effective dose of amphetamine when it is used for the treatment of ADHD.[note 12][168]
Pharmacology
[edit]Pharmacodynamics
[edit]Pharmacodynamics of amphetamine in a dopamine neuron
![]() |
Amphetamine and its enantiomers have been identified as potent full agonists of trace amine-associated receptor 1 (TAAR1), a GPCR, discovered in 2001, that is important for regulation of monoaminergic systems in the brain.[174][175] Activation of TAAR1 increases cAMP production via adenylyl cyclase activation and inhibits the function of the dopamine transporter, norepinephrine transporter, and serotonin transporter, as well as inducing the release of these monoamine neurotransmitters (effluxion).[30][174][176] Amphetamine enantiomers are also substrates for a specific neuronal synaptic vesicle uptake transporter called VMAT2.[31] When amphetamine is taken up by VMAT2, the vesicle releases (effluxes) dopamine, norepinephrine, and serotonin, among other monoamines, into the cytosol in exchange.[31]
Dextroamphetamine (the dextrorotary enantiomer) and levoamphetamine (the levorotary enantiomer) have identical pharmacodynamics, but their binding affinities to their biomolecular targets vary.[175][177] Dextroamphetamine is a more potent agonist of TAAR1 than levoamphetamine.[175] Consequently, dextroamphetamine produces roughly three to four times more central nervous system (CNS) stimulation than levoamphetamine;[175][177] however, levoamphetamine has slightly greater cardiovascular and peripheral effects.[177]
Related endogenous compounds
[edit]Amphetamine has a very similar structure and function to the endogenous trace amines, which are naturally occurring neuromodulator molecules produced in the human body and brain.[30][178][179] Among this group, the most closely related compounds are phenethylamine, the parent compound of amphetamine, and N-methylphenethylamine, a structural isomer of amphetamine (i.e., it has an identical molecular formula).[30][178][180] In humans, phenethylamine is produced directly from L-phenylalanine by the aromatic amino acid decarboxylase (AADC) enzyme, which converts L-DOPA into dopamine as well.[178][180] In turn, N-methylphenethylamine is metabolized from phenethylamine by phenylethanolamine N-methyltransferase, the same enzyme that metabolizes norepinephrine into epinephrine.[178][180] Like amphetamine, both phenethylamine and N-methylphenethylamine regulate monoamine neurotransmission via TAAR1;[30][179][180] unlike amphetamine, both of these substances are broken down by monoamine oxidase B, and therefore have a shorter half-life than amphetamine.[178][180]
Pharmacokinetics
[edit]The oral bioavailability of amphetamine varies with gastrointestinal pH;[83] it is well absorbed from the gut, and bioavailability is typically 90%.[14] Amphetamine is a weak base with a pKa of 9.9;[20] consequently, when the pH is basic, more of the drug is in its lipid soluble free base form, and more is absorbed through the lipid-rich cell membranes of the gut epithelium.[20][83] Conversely, an acidic pH means the drug is predominantly in a water-soluble cationic (salt) form, and less is absorbed.[20] Approximately 20% of amphetamine circulating in the bloodstream is bound to plasma proteins.[15] Following absorption, amphetamine readily distributes into most tissues in the body, with high concentrations occurring in cerebrospinal fluid and brain tissue.[22]
The half-lives of amphetamine enantiomers differ and vary with urine pH.[20] At normal urine pH, the half-lives of dextroamphetamine and levoamphetamine are 9–11 hours and 11–14 hours, respectively.[20] Highly acidic urine will reduce the enantiomer half-lives to 7 hours;[22] highly alkaline urine will increase the half-lives up to 34 hours.[22] The immediate-release and extended release variants of salts of both isomers reach peak plasma concentrations at 3 hours and 7 hours post-dose respectively.[20] Amphetamine is eliminated via the kidneys, with 30–40% of the drug being excreted unchanged at normal urinary pH.[20] When the urinary pH is basic, amphetamine is in its free base form, so less is excreted.[20] When urine pH is abnormal, the urinary recovery of amphetamine may range from a low of 1% to a high of 75%, depending mostly upon whether urine is too basic or acidic, respectively.[20] Following oral administration, amphetamine appears in urine within 3 hours.[22] Roughly 90% of ingested amphetamine is eliminated 3 days after the last oral dose.[22]
CYP2D6, dopamine β-hydroxylase (DBH), flavin-containing monooxygenase 3 (FMO3), butyrate-CoA ligase (XM-ligase), and glycine N-acyltransferase (GLYAT) are the enzymes known to metabolize amphetamine or its metabolites in humans.[sources 10] Amphetamine has a variety of excreted metabolic products, including 4-hydroxyamphetamine, 4-hydroxynorephedrine, 4-hydroxyphenylacetone, benzoic acid, hippuric acid, norephedrine, and phenylacetone.[20][181] Among these metabolites, the active sympathomimetics are 4-hydroxyamphetamine,[182] 4-hydroxynorephedrine,[183] and norephedrine.[184] The main metabolic pathways involve aromatic para-hydroxylation, aliphatic alpha- and beta-hydroxylation, N-oxidation, N-dealkylation, and deamination.[20][185] The known metabolic pathways, detectable metabolites, and metabolizing enzymes in humans include the following:
Metabolic pathways of amphetamine in humans[sources 10]
![]() |
History, society, and culture
[edit]Racemic amphetamine was first synthesized under the chemical name "phenylisopropylamine" in Berlin, 1887 by the Romanian chemist Lazăr Edeleanu. It was not widely marketed until 1932, when the pharmaceutical company Smith, Kline & French (now known as GlaxoSmithKline) introduced it in the form of the Benzedrine inhaler for use as a bronchodilator. Notably, the amphetamine contained in the Benzedrine inhaler was the liquid free-base,[note 14] not a chloride or sulfate salt.
Three years later, in 1935, the medical community became aware of the stimulant properties of amphetamine, specifically the dextroamphetamine isomer, and in 1937 Smith, Kline, and French introduced tablets under the brand name Dexedrine.[194] In the United States, Dexedrine was approved to treat narcolepsy and attention disorders.[11] In Canada indications once included epilepsy and parkinsonism.[195] Dextroamphetamine was marketed in various other forms in the following decades, primarily by Smith, Kline, and French, such as several combination medications including a mixture of dextroamphetamine and amobarbital (a barbiturate) sold under the tradename Dexamyl and, in the 1950s, an extended release capsule (the "Spansule").[196] Preparations containing dextroamphetamine were also used in World War II as a treatment against fatigue.[197]
It quickly became apparent that dextroamphetamine and other amphetamines had a high potential for misuse, although they were not heavily controlled until 1970, when the Comprehensive Drug Abuse Prevention and Control Act was passed by the United States Congress. Dextroamphetamine, along with other sympathomimetics, was eventually classified as Schedule II, the most restrictive category possible for a drug with a government-sanctioned, recognized medical use.[198] На международном уровне он доступен под названиями AmfeDyn (Италия), Curban (США), Obetrol (Швейцария), Simpamina (Италия), Dexedrine/GSK (США и Канада), Dexedrine/UCB (Великобритания), Dextropa (Португалия). и Стилд (Испания). [ 199 ] It became popular on the mod scene in England in the early 1960s, and carried through to the Northern Soul scene in the north of England to the end of the 1970s.
В октябре 2010 года компания GlaxoSmithKline продала права на декседрин спансул компании Amedra Pharmaceuticals (дочерней компании CorePharma). [ 200 ]
ВВС США используют декстроамфетамин в качестве одной из «таблеток для быстрого старта», которые дают пилотам во время длительных полетов, чтобы помочь им сохранять концентрацию и бдительность. И наоборот, «запретные таблетки» используются после завершения миссии для борьбы с последствиями миссии и «запретные таблетки». [ 201 ] [ 202 ] [ 203 ] Сообщения СМИ связали инцидент на ферме Тарнак с применением этого препарата у пилотов, длительное время утомленных. Военные не приняли это объяснение, сославшись на отсутствие подобных инцидентов. новые стимулирующие препараты или средства, способствующие бодрствованию, с различными профилями побочных эффектов, такие как модафинил . По этой причине исследуются и иногда выпускаются [ 202 ]
Составы
[ редактировать ]Бренд имя |
Соединенные Штаты Принятое имя |
(Д:Л) соотношение | Дозировка форма |
Маркетинг Дата начала |
Источники |
---|---|---|---|---|---|
Аддералл | Смешанные соли амфетамина | 3:1 (соли) | планшет | 1996 | [ 28 ] [ 212 ] |
Аддералл XR | Смешанные соли амфетамина | 3:1 (соли) | капсула | 2001 | [ 28 ] [ 212 ] |
Мидаис | Смешанные соли амфетамина | 3:1 (соли) | капсула | 2017 | [ 213 ] |
Адзенис XR-ODT | амфетамин | 3:1 (базовый) | ОДТ | 2016 | [ 214 ] [ 215 ] |
Дианавел XR | амфетамин | 3,2:1 (базовый) | приостановка | 2015 | [ 97 ] [ 216 ] |
Епископ | сульфат амфетамина | 1:1 (соли) | планшет | 2012 | [ 92 ] [ 217 ] |
Декседрин | декстроамфетамина сульфат | 1:0 (соли) | капсула | 1976 | [ 28 ] [ 212 ] |
Зензеди | декстроамфетамина сульфат | 1:0 (соли) | планшет | 2013 | [ 212 ] |
Vyvanse | лиздексамфетамина димезилат | 1:0 (prodrug) | капсула | 2007 | [ 28 ] [ 218 ] |
планшет | |||||
Ксельстрим | декстроамфетамин | 1:0 (база) | пластырь | 2022 | [ 12 ] |
Трансдермальные пластыри с декстроамфетамином
[ редактировать ]Декстроамфетамин доступен в виде трансдермального пластыря , содержащего основу декстроамфетамина, под торговой маркой Кселстрим. [ 12 ]
Декстроамфетамина сульфат
[ редактировать ]В Соединенных Штатах декстроамфетамина с немедленным высвобождением (IR) формы сульфата доступны в виде таблеток по 5 мг и 10 мг и продаются компаниями Barr ( Teva Pharmaceutical Industries ), Mallinckrodt Pharmaceuticals , Wilshire Pharmaceuticals, Aurobindo Pharmaceutical USA и CorePharma. Предыдущие таблетки IR, продаваемые под торговыми марками Dexedrine и Dextrostat, были сняты с производства, но в 2015 году таблетки IR стали доступны под торговой маркой Zenzedi в дозировках 2,5 мг, 5 мг, 7,5 мг, 10 мг, 15 мг, 20 мг и 30 мг. таблетки. [ 219 ] Сульфат декстроамфетамина также доступен в виде капсул с контролируемым высвобождением (CR) дозировкой 5, 10 и 15 мг под торговой маркой Dexedrine Spansule, а генерические версии продаются Barr и Mallinckrodt. Раствор для перорального применения со вкусом жевательной резинки доступен под торговой маркой ProCentra, производимый FSC Pediatrics, и предназначен для облегчения приема детьми, которым трудно глотать таблетки: каждые 5 мл содержат 5 мг декстроамфетамина. [ 220 ] Коэффициент конверсии сульфата декстроамфетамина в свободное основание амфетамина составляет 0,728. [ 221 ]
В Австралии дексамфетамин доступен во флаконах по 100 таблеток мгновенного высвобождения по 5 мг в качестве непатентованного препарата. [ 222 ] или препараты декстроамфетамина с медленным высвобождением могут быть приготовлены отдельными химиками. [ 223 ] В Соединенном Королевстве он доступен в виде сульфатных таблеток с мгновенным высвобождением по 5 мг под общим названием сульфат дексамфетамина, а также в таблетках по 10 и 20 мг под торговой маркой Amfexa. Он также доступен в виде непатентованного перорального сиропа без сахара дексамфетамина сульфата 5 мг/мл. [ 224 ] Торговая марка Dexedrine была доступна в Соединенном Королевстве до того, как UCB Pharma перевела инвестиции в продукт в пользу другой фармацевтической компании ( Auden Mckenzie ). [ 225 ]
Лисдексамфетамин
[ редактировать ]Декстроамфетамин является активным метаболитом пролекарства лиздексамфетамина (L-лизин-декстроамфетамин), доступного под торговой маркой Vyvanse (Elvanse на европейском рынке) (Venvanse на рынке Бразилии) (lisdexamfetamine di mesylate ). Декстроамфетамин высвобождается из лиздексамфетамина ферментативным путем после контакта с эритроцитами. Скорость превращения ограничена ферментом, который предотвращает высокие концентрации декстроамфетамина в крови и снижает склонность к наркотикам лиздексамфетамина и возможность злоупотребления им в клинических дозах. [ 226 ] [ 227 ] Vyvanse продается для приема один раз в день, поскольку он обеспечивает медленное высвобождение декстроамфетамина в организм. Vyvanse доступен в виде капсул и жевательных таблеток семи дозировок; 10 мг, 20 мг, 30 мг, 40 мг, 50 мг, 60 мг и 70 мг. Коэффициент конверсии димезилата лиздексамфетамина (Vyvanse) в основание декстроамфетамина составляет 29,5%. [ 228 ] [ 229 ] [ 230 ]
Аддералл
[ редактировать ]
Другой фармацевтический препарат, содержащий декстроамфетамин, широко известен под торговой маркой Adderall. [ 163 ] [ 164 ] Он доступен в виде таблеток с немедленным высвобождением (IR) и капсул пролонгированного высвобождения (XR). [ 163 ] [ 164 ] Аддералл содержит равные количества четырех солей амфетамина: [ 163 ] [ 164 ]
- Четверть рацемического (d,l-)амфетамина аспартата моногидрата
- Четверть сахарата декстроамфетамина
- Четверть сульфата декстроамфетамина
- Четверть рацемического (d,l-)сульфата амфетамина
Аддералл имеет общий эквивалент амфетаминового основания 63%. [ 163 ] [ 164 ] Хотя соотношение энантиомеров солей декстроамфетамина к солям левоамфетамина составляет 3:1, содержание основания амфетамина составляет 75,9% декстроамфетамина, 24,1% левоамфетамина. [ примечание 16 ]
лекарство | формула | молярная масса [ примечание 17 ] |
основа амфетамина [ примечание 18 ] |
основа амфетамина в равных дозах |
дозы с равная база содержание [ примечание 19 ] | |||||
---|---|---|---|---|---|---|---|---|---|---|
(g/mol) | (в процентах) | (доза 30 мг) | ||||||||
общий | база | общий | верно | левый- | верно | левый- | ||||
декстроамфетамина сульфат [ 232 ] [ 233 ] | (C 9 H 13 N) 2 •H 2 SO 4 | 368.49
|
270.41
|
73.38%
|
73.38%
|
—
|
22,0 мг
|
—
|
30,0 мг
| |
амфетамина сульфат [ 234 ] | (C 9 H 13 N) 2 •H 2 SO 4 | 368.49
|
270.41
|
73.38%
|
36.69%
|
36.69%
|
11,0 мг
|
11,0 мг
|
30,0 мг
| |
Аддералл | 62.57%
|
47.49%
|
15.08%
|
14,2 мг
|
4,5 мг
|
35,2 мг
| ||||
25% | декстроамфетамина сульфат [ 232 ] [ 233 ] | (C 9 H 13 N) 2 •H 2 SO 4 | 368.49
|
270.41
|
73.38%
|
73.38%
|
—
|
|||
25% | сульфат амфетамина [ 234 ] | (C 9 H 13 N) 2 •H 2 SO 4 | 368.49
|
270.41
|
73.38%
|
36.69%
|
36.69%
|
|||
25% | сахарат декстроамфетамина [ 235 ] | (С 9 Н 13 Н) 2 ·С 6 Н 10 О 8 | 480.55
|
270.41
|
56.27%
|
56.27%
|
—
|
|||
25% | моногидрат аспартата амфетамина [ 236 ] | (C 9 H 13 N) C 4 H 7 NO 4 H 2 O | 286.32
|
135.21
|
47.22%
|
23.61%
|
23.61%
|
|||
лиздексамфетамина димезилат [ 218 ] | С 15 Н 25 Н 3 О•(СН 4 О 3 S) 2 | 455.49
|
135.21
|
29.68%
|
29.68%
|
—
|
8,9 мг
|
—
|
74,2 мг
| |
амфетамина суспензия на основе [ 97 ] | С 9 Ч 13 Н | 135.21
|
135.21
|
100%
|
76.19%
|
23.81%
|
22,9 мг
|
7,1 мг
|
22,0 мг
|
Примечания
[ редактировать ]- ^ Jump up to: а б Энантиомеры — это молекулы, которые являются зеркальными отражениями друг друга; они структурно идентичны, но противоположной ориентации. [ 29 ]
- ^ Области результатов, связанных с СДВГ, с наибольшей долей значительно улучшенных результатов от долгосрочной непрерывной стимулирующей терапии, включают учебу (улучшились ≈55% академических результатов), вождение (улучшились 100% результатов вождения), употребление наркотиков в немедицинских целях ( улучшились 47% результатов, связанных с зависимостью), ожирение (улучшилось ≈65% результатов, связанных с ожирением), самооценка (улучшилось 50% результатов самооценки) и социальные функции (улучшились 67% результатов социальных функций). [ 42 ]
Наибольшие размеры эффекта улучшения результатов от долгосрочной стимулирующей терапии наблюдаются в областях, связанных с учебой (например, средний балл , результаты тестов успеваемости, стаж обучения и уровень образования), самооценкой (например, оценки самооценки по опроснику). , количество попыток самоубийства и уровень самоубийств) и социальные функции (например, баллы по номинациям среди сверстников, социальные навыки и качество отношений со сверстниками, в семье и романтических отношениях). [ 42 ]
Долгосрочная комбинированная терапия СДВГ (т.е. лечение как стимуляторами, так и поведенческой терапией) дает еще больший эффект для улучшения результатов и улучшает большую долю результатов в каждой области по сравнению с долгосрочной терапией стимуляторами. [ 42 ] - ^ Кокрейновские обзоры — это высококачественные метааналитические систематические обзоры рандомизированных контролируемых исследований. [ 49 ]
- ^ Заявления, поддержанные USFDA, основаны на информации о рецептах, которая является интеллектуальной собственностью производителя, защищенной авторским правом и одобрена USFDA. Противопоказания USFDA не обязательно предназначены для ограничения медицинской практики, но ограничивают претензии фармацевтических компаний. [ 91 ]
- ^ Согласно одному обзору, амфетамин можно назначать лицам, злоупотреблявшим в анамнезе, при условии, что применяются соответствующие меры контроля за приемом лекарств, например, требование ежедневного получения лекарства у врача, назначившего его. [ 28 ]
- ^ У людей, у которых наблюдается субнормальный прирост роста и веса, ожидается возвращение к нормальному уровню, если ненадолго прервать терапию стимуляторами. [ 40 ] [ 41 ] [ 96 ] Среднее снижение конечного роста взрослого человека за 3 года непрерывной терапии стимуляторами составляет 2 см. [ 96 ]
- ^ Факторы транскрипции — это белки, которые увеличивают или уменьшают экспрессию определенных генов. [ 131 ]
- ^ Проще говоря, эта необходимая и достаточная взаимосвязь означает, что сверхэкспрессия ΔFosB в прилежащем ядре и связанные с зависимостью поведенческие и нервные адаптации всегда происходят вместе и никогда не происходят по отдельности.
- ^ NMDA-рецепторы представляют собой потенциал-зависимые лиганд-управляемые ионные каналы , которые требуют одновременного связывания глутамата и коагониста ( D -серина или глицина ), чтобы открыть ионный канал. [ 146 ]
- ^ Обзор показал, что магния L-аспартат и хлорид магния вызывают значительные изменения в аддиктивном поведении; [ 122 ] другие формы магния не упоминались.
- ^ 95% доверительный интервал указывает на то, что существует 95% вероятность того, что истинное число смертей находится между 3425 и 4145.
- ^ Человеческий переносчик дофамина содержит высокоаффинный цинка внеклеточный сайт связывания , который при связывании цинка ингибирует обратный захват дофамина и усиливает индуцированный амфетамином отток дофамина in vitro . [ 165 ] [ 166 ] [ 167 ] человека Транспортер серотонина и транспортер норадреналина не содержат сайтов связывания цинка. [ 167 ]
- ^ 4-гидроксиамфетамин Было показано, что метаболизируется в 4-гидроксинорэфедрин под действием дофамин-бета-гидроксилазы (DBH) in vitro , и предполагается, что он метаболизируется аналогичным образом in vivo . [ 186 ] [ 189 ] Данные исследований, в которых измерялось влияние концентраций DBH в сыворотке крови на метаболизм 4-гидроксиамфетамина у людей, позволяют предположить, что другой фермент может опосредовать превращение 4-гидроксиамфетамина в 4-гидроксинорэфедрин ; [ 189 ] [ 191 ] однако другие данные исследований на животных позволяют предположить, что эта реакция катализируется DBH в синаптических везикулах норадренергических нейронов головного мозга. [ 192 ] [ 193 ]
- ^ Амфетамин в форме свободного основания представляет собой летучее масло, отсюда эффективность ингаляторов.
- ^ Здесь представлены текущие бренды в США, за исключением таблеток мгновенного высвобождения декседрина. Таблетки декседрина, представленные в 1937 году, сняты с производства, но доступны в форме Зензеди и в виде дженерика; [ 204 ] [ 205 ] Перечисленный здесь декседрин представляет собой капсулу пролонгированного действия «Spansule», одобренную в 1976 году. [ 206 ] [ 207 ] Таблетки сульфата амфетамина, которые теперь продаются как Evekeo (торговая марка), первоначально продавались как сульфат бензедрина (торговая марка) в 1935 году. [ 208 ] [ 209 ] и прекращено где-то после 1982 года. [ 210 ] [ 211 ]
- ^ Рассчитано по проценту основания декстроамфетамина / общему проценту основания амфетамина = 47,49/62,57 = 75,90% из таблицы: Основание амфетамина в продаваемых препаратах амфетамина. Остальное — левоамфетамин.
- ^ Для единообразия молярные массы были рассчитаны с помощью калькулятора молекулярной массы Lenntech. [ 231 ] и находились в пределах 0,01 г/моль от опубликованных фармацевтических значений.
- ^ молекулярная масса Процент основания амфетамина = базовая молекулярная масса / общая . Базовый процент амфетамина для Аддералла = сумма процентов компонентов / 4.
- ^ доза = (1 / процент основания амфетамина) × коэффициент масштабирования = ( общая молекулярной массы молекулярная масса / основа ) × коэффициент масштабирования. Значения в этом столбце были масштабированы для дозы 30 мг сульфата декстроамфетамина. Из-за фармакологических различий между этими препаратами (например, различий в высвобождении, абсорбции, превращении, концентрации, различном эффекте энантиомеров, периоде полувыведения и т. д.) указанные значения не следует считать эквивалентными дозами.
- Легенда изображения
- ^ (Цвет текста) Факторы транскрипции
Справочные примечания
[ редактировать ]- ^ [ 5 ] [ 83 ] [ 75 ] [ 96 ] [ 97 ] [ 98 ]
- ^ [ 99 ] [ 100 ] [ 101 ] [ 102 ]
- ^ [ 83 ] [ 93 ] [ 99 ] [ 101 ]
- ^ [ 103 ] [ 83 ] [ 75 ] [ 104 ]
- ^ Jump up to: а б [ 125 ] [ 126 ] [ 127 ] [ 128 ] [ 148 ]
- ^ [ 123 ] [ 125 ] [ 124 ] [ 132 ] [ 133 ]
- ^ [ 124 ] [ 135 ] [ 136 ] [ 137 ]
- ^ [ 154 ] [ 83 ] [ 75 ] [ 152 ] [ 155 ]
- ^ [ 35 ] [ 157 ] [ 160 ] [ 161 ]
- ^ Jump up to: а б [ 20 ] [ 186 ] [ 187 ] [ 27 ] [ 188 ] [ 181 ] [ 189 ] [ 190 ]
Ссылки
[ редактировать ]- ^ Jump up to: а б Витиелло Б. (апрель 2008 г.). «Понимание риска использования лекарств для лечения синдрома дефицита внимания и гиперактивности в отношении физического роста и сердечно-сосудистой функции» . Детские и подростковые психиатрические клиники Северной Америки . 17 (2): 459–74, xi. дои : 10.1016/j.chc.2007.11.010 . ПМК 2408826 . ПМИД 18295156 .
- ^ Jump up to: а б Грэм Дж., Банашевски Т., Буителаар Дж., Когхилл Д., Данкартс М., Диттманн Р.В. и др. (январь 2011 г.). «Европейские рекомендации по управлению побочными эффектами лекарств при СДВГ» . Европейская детская и подростковая психиатрия . 20 (1): 17–37. дои : 10.1007/s00787-010-0140-6 . eISSN 1435-165X . ПМК 3012210 . ПМИД 21042924 .
- ^ Jump up to: а б Коцианчич Т., Рид, доктор медицинских наук, Финдлинг Р.Л. (март 2004 г.). «Оценка рисков, связанных с краткосрочной и долгосрочной психостимулирующей терапией для лечения СДВГ у детей». Экспертное заключение о безопасности лекарственных средств . 3 (2): 93–100. дои : 10.1517/14740338.3.2.93 . eISSN 1744-764X . ПМИД 15006715 . S2CID 31114829 .
- ^ Jump up to: а б Клемоу Д.Б., Уокер DJ (сентябрь 2014 г.). «Возможность неправильного использования и злоупотребления лекарствами при СДВГ: обзор». Последипломное образование по медицине . 126 (5): 64–81. дои : 10.3810/pgm.2014.09.2801 . eISSN 1941-9260 . ПМИД 25295651 . S2CID 207580823 .
- ^ Jump up to: а б с д и ж г Шталь СМ (март 2017 г.). «Амфетамин (Д,Л)» . Руководство для врача: Основная психофармакология Шталя (6-е изд.). Кембридж, Соединенное Королевство: Издательство Кембриджского университета. стр. 45–51. ISBN 9781108228749 . Проверено 5 августа 2017 г.
- ^ «Список всех лекарств с предупреждениями о черном ящике, полученный FDA (используйте ссылки «Загрузить полные результаты» и «Просмотреть запрос»).» . nctr-crs.fda.gov . FDA . Проверено 22 октября 2023 г.
- ^ «Терапевтические товары (Стандарт по ядам — февраль 2023 г.), Инструмент 2022» . Федеральный реестр законодательства правительства Австралии . 26 сентября 2022 г. Проверено 9 января 2023 г.
- ^ Фуллер К. (20 февраля 2022 г.). «Правила и органы власти по назначению стимуляторов СДВГ в Австралии и Новой Зеландии» . ААДПА . Проверено 9 января 2023 г.
- ^ Анвиса (31 марта 2023 г.). «ПДК № 784 – Перечни наркотических средств, психотропных веществ, прекурсоров и других веществ, находящихся под особым контролем» [Постановление Коллегии Коллегии № 784 784 - Списки наркотических средств, психотропных веществ, прекурсоров и других веществ, находящихся под особым контролем] (на бразильском португальском языке). Официальный вестник Союза (опубликован 4 апреля 2023 г.). Архивировано из оригинала 3 августа 2023 года . Проверено 16 августа 2023 г.
- ^ «Обновления о безопасности бренда в монографии о продукции» . Здоровье Канады . 6 июня 2024 г. Проверено 8 июня 2024 г.
- ^ Jump up to: а б с д «Декседрин капсула – капсула сульфата декстроамфетамина пролонгированного действия» . ДейлиМед . 10 января 2022 г. Проверено 28 марта 2022 г.
- ^ Jump up to: а б с «Кселстрим-декстроамфетаминовый пластырь пролонгированного действия» . ДейлиМед . 6 января 2023 г. Проверено 21 января 2023 г.
- ^ «Список разрешенных на национальном уровне лекарственных средств: Активное вещество(а): дексамфетамин: Процедура № PSUSA/00000986/202109» (PDF) . Ema.europa.eu . Проверено 5 июня 2022 г.
- ^ Jump up to: а б Патель В.Б., Preedy VR, ред. (2022). Справочник по злоупотреблению психоактивными веществами и зависимостям . Чам: Международное издательство Springer. п. 2006. doi : 10.1007/978-3-030-92392-1 . ISBN 978-3-030-92391-4 .
Амфетамин обычно употребляют ингаляционно или перорально, либо в форме рацемической смеси (левоамфетамин и декстроамфетамин), либо в виде отдельного декстроамфетамина (Childress et al. 2019). В целом все амфетамины обладают высокой биодоступностью при пероральном употреблении, а в конкретном случае амфетамина 90% принятой дозы всасывается в желудочно-кишечном тракте, без существенных различий в скорости и степени всасывания между двумя энантиомерами (Карвалью и др. 2012; Начало действия происходит примерно через 30–45 минут после употребления, в зависимости от принятой дозы и степени чистоты или одновременного употребления определенных продуктов питания (Европейский центр мониторинга наркотиков и наркозависимости, 2021a; Steingard et al., 2019). Описано, что вещества, способствующие закислению желудочно-кишечного тракта, вызывают снижение всасывания амфетамина, тогда как подщелачивание желудочно-кишечного тракта может быть связано с увеличением всасывания соединения (Марковиц и Патрик, 2017).
- ^ Jump up to: а б Вишарт Д.С. , Джомбоу Феунанг И., Го А.С., Ло Э.Дж., Марку А., Грант Дж.Р. и др. «Амфетамин | DrugBank Online» . Наркобанк . 5.0.
- ^ Грин-Эрнандес С., Синглтон Дж.К., Аронзон Д.З. (1 января 2001 г.). Первичная педиатрия . Липпинкотт Уильямс и Уилкинс. п. 243. ИСБН 978-0-7817-2008-3 . |quote = Таблица 21.2. Лекарства от СДВГ... D-амфетамин... Начало: 30 мин.
- ^ «Дозирование декседрина, Процентры (декстроамфетамина), показания, взаимодействие, побочные эффекты и многое другое» . ссылка.medscape.com . Проверено 4 октября 2015 г.
Начало действия: 1–1,5 часа.
- ^ Jump up to: а б с Милличап Дж.Г. (2010). «Глава 9: Лекарства от СДВГ». В Милличапе Дж.Г. (ред.). Справочник по синдрому дефицита внимания и гиперактивности: Руководство для врачей по СДВГ (2-е изд.). Нью-Йорк, США: Спрингер. п. 112. ИСБН 978-1-4419-1396-8 .
Таблица 9.2 Формы стимуляторов с декстроамфетамином
Декседрин [Пик: 2–3 часа] [Продолжительность: 5–6 часов] ...
Аддералл [Пик: 2–3 часа] [Продолжительность: 5–7 часов]
Декседриновые капсулы [Пик: 7–8 часов] [Продолжительность: 12 часов] ...
Adderall XR [Пик: 7–8 часов] [Продолжительность: 12 часов]
Выванс [Пик: 3–4 часа] [Продолжительность: 12 часов] - ^ Брамс М., Мао А.Р., Дойл Р.Л. (сентябрь 2008 г.). «Начало эффективности психостимуляторов длительного действия при синдроме дефицита внимания и гиперактивности у детей». Аспирантура. Мед . 120 (3): 69–88. дои : 10.3810/pgm.2008.09.1909 . ПМИД 18824827 . S2CID 31791162 .
Начало эффективности было самым ранним для d-MPH-ER через 0,5 часа, за ним следовали d, l-MPH-LA через 1–2 часа, MCD через 1,5 часа, d, l-MPH-OR через 1–2 часа, MAS- XR через 1,5–2 часа, MTS через 2 часа и LDX примерно через 2 часа. ... MAS-XR и LDX обладают длительным действием через 12 часов после приема дозы.
- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д «Информация о назначении Adderall XR» (PDF) . Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США . Shire US Inc., декабрь 2013 г., стр. 12–13 . Проверено 30 декабря 2013 г.
- ^ «Аддералл — сахарат декстроамфетамина, аспартат амфетамина, сульфат декстроамфетамина и таблетка сульфата амфетамина» . ДейлиМед . 27 февраля 2022 г. Проверено 21 января 2023 г.
- ^ Jump up to: а б с д и ж «Метаболизм/Фармакокинетика». Амфетамин . Банк данных об опасных веществах. Национальная медицинская библиотека США – Сеть токсикологических данных. Архивировано из оригинала 2 октября 2017 года . Проверено 2 октября 2017 г.
Продолжительность эффекта варьируется в зависимости от препарата и pH мочи. Выведение усиливается при более кислой моче. Период полувыведения составляет от 7 до 34 часов и частично зависит от pH мочи (период полувыведения увеличивается при щелочной реакции мочи). ... Амфетамины распределяются в большинстве тканей организма, при этом высокие концентрации наблюдаются в мозге и спинномозговой жидкости. Амфетамин появляется в моче примерно через 3 часа после перорального приема. ... Через три дня после приема дозы (+ или -)-амфетамина у людей 91% (14)C выводился с мочой.
- ^ Jump up to: а б Миньо Э.Ж. (октябрь 2012 г.). «Практическое руководство по терапии синдромов нарколепсии и гиперсомнии» . Нейротерапия . 9 (4): 739–752. дои : 10.1007/s13311-012-0150-9 . ПМЦ 3480574 . ПМИД 23065655 .
- ^ Шталь СМ (март 2017 г.). «Амфетамин (Д)» . Руководство для врача: Основная психофармакология Шталя (6-е изд.). Кембридж, Соединенное Королевство: Издательство Кембриджского университета. стр. 39–44. ISBN 978-1-108-22874-9 . Проверено 8 августа 2017 г.
- ^ «Таблетка декстростата (сульфат декстроамфетамина) [Shire US Inc.]» . ДейлиМед . Уэйн, Пенсильвания: Shire US Inc., август 2006 г .. Проверено 8 ноября 2013 г.
- ^ Лемке Т.Л., Уильямс Д.А., Рош В.Ф., Зито В. (2013). Принципы медицинской химии Фоя (7-е изд.). Филадельфия: Wolters Kluwer Health/Lippincott Williams & Wilkins. п. 648. ИСБН 978-1-60913-345-0 .
Альтернативно, прямое окисление амфетамина DA-β-гидроксилазой может дать норэфедрин.
- ^ Jump up to: а б с Крюгер С.К., Уильямс Д.Э. (июнь 2005 г.). «Флавинсодержащие монооксигеназы млекопитающих: структура/функция, генетический полиморфизм и роль в метаболизме лекарств» . Фармакология и терапия . 106 (3): 357–387. doi : 10.1016/j.pharmthera.2005.01.001 . ПМК 1828602 . ПМИД 15922018 .
Таблица 5: N-содержащие препараты и ксенобиотики, оксигенированные FMO - ^ Jump up to: а б с д и ж г Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Дж. Психофармакол . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
- ^ ИЮПАК , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Исправленная онлайн-версия: (2006–) « энантиомер ». doi : 10.1351/goldbook.E02069
- ^ Jump up to: а б с д и ж г час я дж Миллер GM (январь 2011 г.). «Новая роль рецептора 1, связанного с следами аминов, в функциональной регуляции переносчиков моноаминов и дофаминергической активности» . Журнал нейрохимии . 116 (2): 164–176. дои : 10.1111/j.1471-4159.2010.07109.x . ПМК 3005101 . ПМИД 21073468 .
- ^ Jump up to: а б с д и Эйден Л.Е., Вэйхэ Э. (январь 2011 г.). «VMAT2: динамический регулятор функции моноаминергических нейронов мозга, взаимодействующий с наркотиками» . Анналы Нью-Йоркской академии наук . 1216 (1): 86–98. Бибкод : 2011NYASA1216...86E . дои : 10.1111/j.1749-6632.2010.05906.x . ПМЦ 4183197 . ПМИД 21272013 .
- ^ «Декстроамфетамин Монография для профессионалов» . Наркотики.com . Американское общество фармацевтов системы здравоохранения. Архивировано из оригинала 3 февраля 2019 года . Проверено 2 февраля 2019 г.
- ^ «Топ-300 2021 года» . КлинКальк . Архивировано из оригинала 15 января 2024 года . Проверено 14 января 2024 г.
- ^ «Декстроамфетамин; сахарат декстроамфетамина; амфетамин; аспартат амфетамина - статистика употребления наркотиков» . КлинКальк . Проверено 14 января 2024 г.
- ^ Jump up to: а б Карвалью М., Карму Х., Коста В.М., Капела Х.П., Понтес Х., Ремиан Ф. и др. (август 2012 г.). «Токсичность амфетаминов: обновленная информация». Архив токсикологии . 86 (8): 1167–1231. дои : 10.1007/s00204-012-0815-5 . ПМИД 22392347 . S2CID 2873101 .
- ^ Берман С., О'Нил Дж., Фиерс С., Барцокис Г., Лондонский Эд-Д. (октябрь 2008 г.). «Злоупотребление амфетаминами и структурные аномалии головного мозга» . Анналы Нью-Йоркской академии наук . 1141 (1): 195–220. дои : 10.1196/анналы.1441.031 . ПМЦ 2769923 . ПМИД 18991959 .
- ^ Jump up to: а б Харт Х., Радуа Дж., Накао Т., Матэ-Колс Д., Рубиа К. (февраль 2013 г.). «Метаанализ исследований функциональной магнитно-резонансной томографии торможения и внимания при синдроме дефицита внимания / гиперактивности: изучение специфических задач, стимулирующих препаратов и возрастных эффектов» . JAMA Психиатрия . 70 (2): 185–198. дои : 10.1001/jamapsychiatry.2013.277 . ПМИД 23247506 .
- ^ Jump up to: а б Спенсер Т.Дж., Браун А., Зейдман Л.Дж., Валера Э.М., Макрис Н., Ломедико А. и др. (сентябрь 2013 г.). «Влияние психостимуляторов на структуру и функции мозга при СДВГ: качественный обзор литературы по исследованиям нейровизуализации на основе магнитно-резонансной томографии» . Журнал клинической психиатрии . 74 (9): 902–917. дои : 10.4088/JCP.12r08287 . ПМК 3801446 . ПМИД 24107764 .
- ^ Jump up to: а б Фродл Т., Скокаускас Н. (февраль 2012 г.). «Метаанализ структурных МРТ-исследований у детей и взрослых с синдромом дефицита внимания и гиперактивности указывает на эффективность лечения» . Acta Psychiatrica Scandinavica . 125 (2): 114–126. дои : 10.1111/j.1600-0447.2011.01786.x . ПМИД 22118249 . S2CID 25954331 .
У детей с СДВГ структурно поражаются такие области базальных ганглиев, как правый бледный шар, правая скорлупа и хвостатое ядро. Эти изменения и изменения в лимбических областях, таких как АКК и миндалевидное тело, более выражены в нелеченых популяциях и, по-видимому, уменьшаются с течением времени от ребенка к взрослому возрасту. Лечение, по-видимому, оказывает положительное влияние на структуру мозга.
- ^ Jump up to: а б с д и ж Хуан Ю.С., Цай М.Х. (июль 2011 г.). «Долгосрочные результаты применения лекарств от синдрома дефицита внимания и гиперактивности: современный статус знаний». Препараты ЦНС . 25 (7): 539–554. дои : 10.2165/11589380-000000000-00000 . ПМИД 21699268 . S2CID 3449435 .
Несколько других исследований, [97-101] включая метааналитический обзор [98] и ретроспективное исследование, [97] предположили, что стимулирующая терапия в детстве связана со снижением риска последующего употребления психоактивных веществ, курения сигарет и расстройств, связанных с употреблением алкоголя. ... Недавние исследования показали, что стимуляторы, наряду с атомоксетином, не являющимся стимуляторами, и гуанфацином пролонгированного действия, непрерывно эффективны в течение более чем двухлетних периодов лечения с небольшими и переносимыми побочными эффектами. Эффективность долгосрочной терапии включает не только основные симптомы СДВГ, но также улучшение качества жизни и академических достижений. Наиболее тревожные краткосрочные побочные эффекты стимуляторов, такие как повышенное кровяное давление и частота сердечных сокращений, уменьшились в долгосрочных последующих исследованиях. ... Текущие данные не подтверждают потенциальное влияние стимуляторов на ухудшение или развитие тиков или злоупотребления психоактивными веществами во взрослом возрасте. В самом длительном исследовании (более 10 лет) пожизненное лечение стимуляторами СДВГ было эффективным и защищало от развития неблагоприятных психических расстройств.
- ^ Jump up to: а б с д Милличап Дж.Г. (2010). «Глава 9: Лекарства от СДВГ». В Милличапе Дж.Г. (ред.). Справочник по синдрому дефицита внимания и гиперактивности: Руководство для врачей по СДВГ (2-е изд.). Нью-Йорк, США: Спрингер. стр. 121–123, 125–127. ISBN 9781441913968 .
Продолжающиеся исследования дали ответы на многие вопросы родителей и подтвердили эффективность и безопасность длительного применения лекарств.
- ^ Jump up to: а б с д и Арнольд Л.Е., Ходжкинс П., Качи Х., Кале Дж., Янг С. (февраль 2015 г.). «Влияние метода лечения на долгосрочные результаты при синдроме дефицита внимания и гиперактивности: систематический обзор» . ПЛОС ОДИН . 10 (2): e0116407. дои : 10.1371/journal.pone.0116407 . ПМК 4340791 . ПМИД 25714373 .
Самая высокая доля улучшенных результатов была зарегистрирована при комбинированном лечении (83% результатов). Среди значительно улучшенных результатов наибольший эффект был обнаружен при комбинированном лечении. Наибольшие улучшения были связаны с академическими показателями, самооценкой или социальными функциями.
Рисунок 3. Польза от лечения в зависимости от типа лечения и группы результатов. - ^ Jump up to: а б с Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 6: Широко распространенные системы: моноамины, ацетилхолин и орексин». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. стр. 154–157. ISBN 9780071481274 .
- ^ Jump up to: а б с д и ж Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 13: Высшие когнитивные функции и поведенческий контроль». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. стр. 318, 321. ISBN. 9780071481274 .
Терапевтические (относительно низкие) дозы психостимуляторов, таких как метилфенидат и амфетамин, улучшают производительность при выполнении задач рабочей памяти как у нормальных субъектов, так и у людей с СДВГ. ... стимуляторы действуют не только на функцию рабочей памяти, но и на общий уровень возбуждения и, в прилежащем ядре, повышают значимость задач. Таким образом, стимуляторы улучшают производительность при выполнении сложных, но утомительных задач... за счет непрямой стимуляции рецепторов дофамина и норадреналина. ...
Помимо этих общих разрешающих эффектов, дофамин (действующий через рецепторы D1) и норадреналин (действующий на несколько рецепторов) могут на оптимальных уровнях улучшать рабочую память и аспекты внимания. - ^ Бидвелл Л.С., Макклернон Ф.Дж., Коллинз С.Х. (август 2011 г.). «Когнитивные усилители для лечения СДВГ» . Фармакология Биохимия и поведение . 99 (2): 262–274. дои : 10.1016/j.pbb.2011.05.002 . ПМК 3353150 . ПМИД 21596055 .
- ^ Паркер Дж., Уэльс Дж., Чалхуб Н., Харпин В. (сентябрь 2013 г.). «Отдаленные результаты вмешательств по лечению синдрома дефицита внимания и гиперактивности у детей и подростков: систематический обзор рандомизированных контролируемых исследований» . Психологические исследования и управление поведением . 6 : 87–99. дои : 10.2147/PRBM.S49114 . ПМЦ 3785407 . ПМИД 24082796 .
Только одна бумага 53 изучение результатов через 36 месяцев соответствовало критериям обзора. ... Имеются доказательства высокого уровня, свидетельствующие о том, что фармакологическое лечение может оказать существенное положительное влияние на основные симптомы СДВГ (гиперактивность, невнимательность и импульсивность) примерно в 80% случаев по сравнению с контролем плацебо в краткосрочной перспективе.
- ^ Милличап Дж.Г. (2010). «Глава 9: Лекарства от СДВГ». В Милличапе Дж.Г. (ред.). Справочник по синдрому дефицита внимания и гиперактивности: Руководство для врачей по СДВГ (2-е изд.). Нью-Йорк, США: Спрингер. стр. 111–113. ISBN 9781441913968 .
- ^ «Стимуляторы при синдроме дефицита внимания и гиперактивности» . ВебМД . С точки зрения здоровья. 12 апреля 2010 года . Проверено 12 ноября 2013 г.
- ^ Схолтен Р.Дж., Кларк М., Хетерингтон Дж. (август 2005 г.). «Кокрейновское сотрудничество» . Европейский журнал клинического питания . 59 (Приложение 1): S147–S149, обсуждение S195–S196. дои : 10.1038/sj.ejcn.1602188 . ПМИД 16052183 . S2CID 29410060 .
- ^ Jump up to: а б Кастельс Х, Бланко-Сильвенте Л, Кунил Р (август 2018 г.). «Амфетамины при синдроме дефицита внимания и гиперактивности (СДВГ) у взрослых» . Кокрейновская база данных систематических обзоров . 2018 (8): CD007813. дои : 10.1002/14651858.CD007813.pub3 . ПМК 6513464 . ПМИД 30091808 .
- ^ Пунджа С., Шамсир Л., Хартлинг Л., Уричук Л., Вандермеер Б., Никлес Дж. и др. (февраль 2016 г.). «Амфетамины при синдроме дефицита внимания и гиперактивности (СДВГ) у детей и подростков» . Кокрейновская база данных систематических обзоров . 2016 (2): CD009996. дои : 10.1002/14651858.CD009996.pub2 . ПМЦ 10329868 . ПМИД 26844979 .
- ^ Осланд С.Т., Стивс Т.Д., Прингсхайм Т. (июнь 2018 г.). «Фармакологическое лечение синдрома дефицита внимания и гиперактивности (СДВГ) у детей с коморбидными тиковыми расстройствами» . Кокрейновская база данных систематических обзоров . 2018 (6): CD007990. дои : 10.1002/14651858.CD007990.pub3 . ПМК 6513283 . ПМИД 29944175 .
- ^ Малиос Дж., Де ла Эрран-Арита А.К., Миньо Э. (октябрь 2013 г.). «Аутоиммунная основа нарколепсии » Современное мнение в нейробиологии . 23 (5): 767–773. дои : 10.1016/j.conb.2013.04.013 . ПМЦ 3848424 . ПМИД 23725858 .
- ^ Jump up to: а б с Барато Л., Пицца Ф., Плацци Дж., Довильерс Ю. (август 2022 г.). «Нарколепсия». Журнал исследований сна . 31 (4): e13631. дои : 10.1111/jsr.13631 . ПМИД 35624073 .
До 2014 года нарколепсия 1-го типа называлась «нарколепсия с катаплексией» (AASM, 2005), но в третьей и последней международной классификации расстройств сна была переименована в NT1 (AASM, 2014). ... Низкий уровень Hcrt-1 в спинномозговой жидкости очень чувствителен и специфичен для диагностики NT1. ...
Все пациенты с низким уровнем Hcrt-1 в СМЖ считаются пациентами NT1, даже если они не сообщают о катаплексии (примерно в 10–20% случаев), а все пациенты с нормальными уровнями Hcrt-1 в СМЖ (или без катаплексии при люмбальной пункции) не проводится), как и у пациентов с NT2 (Baumann et al., 2014). ...
У пациентов с NT1 отсутствие Hcrt приводит к ингибированию областей, подавляющих быстрый сон, что позволяет активировать нисходящие пути, ингибирующие мотонейроны, что приводит к катаплексии. - ^ Jump up to: а б с д и ж г час Миньо Э.Ж. (октябрь 2012 г.). «Практическое руководство по терапии синдромов нарколепсии и гиперсомнии» . Нейротерапия . 9 (4): 739–752. дои : 10.1007/s13311-012-0150-9 . ПМЦ 3480574 . ПМИД 23065655 .
На патофизиологическом уровне сейчас ясно, что большинство случаев нарколепсии с катаплексией и меньшинство случаев (5–30 %) без катаплексии или с атипичными катаплексическими симптомами вызваны недостатком гипокретина (орексина), вероятно, аутоиммунное происхождение. В этих случаях после установления заболевания большая часть из 70 000 клеток, продуцирующих гипокретин, уничтожается, и заболевание становится необратимым. ...
Амфетамины исключительно способствуют пробуждению, а в высоких дозах также уменьшают катаплексию у пациентов с нарколепсией, эффект, который лучше всего объясняется его действием на адренергические и серотонинергические синапсы. ...
D-изомер более специфичен для передачи DA и является лучшим стимулятором. Некоторые эффекты катаплексии (особенно L-изомера), вторичные по отношению к адренергическим эффектам, возникают при более высоких дозах. ...
Многочисленные исследования показали, что повышенное высвобождение дофамина является основным свойством, объясняющим стимуляцию бодрствования, хотя эффект норадреналина также вносит свою лепту. - ^ Jump up to: а б Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 10: Нейронный и нейроэндокринный контроль внутренней среды». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). Нью-Йорк: McGraw-Hill Medical. стр. 456–457. ISBN 9780071827706 .
Совсем недавно было обнаружено, что латеральный гипоталамус также играет центральную роль в возбуждении. Нейроны в этой области содержат клеточные тела, которые производят пептиды орексина (также называемого гипокретином) (глава 6). Эти нейроны широко разбросаны по всему мозгу и участвуют в процессах сна, пробуждения, питания, вознаграждения, аспектов эмоций и обучения. Фактически, считается, что орексин способствует кормлению, прежде всего, путем стимулирования возбуждения. Мутации рецепторов орексина ответственны за нарколепсию на моделях собак, нокаут гена орексина вызывает нарколепсию у мышей, а у людей с нарколепсией наблюдаются низкие уровни пептидов орексина или их отсутствие в спинномозговой жидкости (глава 13). Нейроны латерального гипоталамуса имеют реципрокные связи с нейронами, продуцирующими моноаминовые нейротрансмиттеры (глава 6).
- ^ Jump up to: а б с Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 13: Сон и возбуждение». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). МакГроу-Хилл Медикал. п. 521. ИСБН 9780071827706 .
ARAS состоит из нескольких различных цепей, включая четыре основных моноаминергических пути, обсуждаемых в главе 6. Норадреналиновый путь берет свое начало в LC и связанных с ними ядрах ствола мозга; серотонинергические нейроны также происходят из РН ствола мозга; дофаминергические нейроны берут начало в вентральной покрышке (ВТА); а гистаминэргический путь начинается от нейронов туберомаммиллярного ядра (ТЯН) заднего гипоталамуса. Как обсуждалось в главе 6, эти нейроны широко разрастаются по всему мозгу из ограниченного набора тел клеток. Норадреналин, серотонин, дофамин и гистамин выполняют сложные модулирующие функции и в целом способствуют бодрствованию. ПТ ствола мозга также является важным компонентом ARAS. Как отмечалось ранее, активность PT-холинергических нейронов (клеток быстрого сна) способствует быстрому сну. Во время бодрствования клетки, активные для быстрого сна, ингибируются подмножеством нейронов норадреналина и серотонина ARAS, называемых клетками, выключенными для быстрого сна.
- ^ Шнеерсон Дж. М. (2009). Медицина сна: руководство по сну и его нарушениям (2-е изд.). Джон Уайли и сыновья. п. 81. ИСБН 9781405178518 .
Все амфетамины усиливают активность дофамина, норадреналина и синапсов 5НТ. Они вызывают пресинаптическое высвобождение предварительно сформированных медиаторов, а также ингибируют обратный захват дофамина и норадреналина. Эти действия наиболее выражены в восходящей ретикулярной активирующей системе ствола мозга и коре головного мозга.
- ^ Jump up to: а б Шварц-младший, Рот Т. (2008). «Нейрофизиология сна и бодрствования: фундаментальная наука и клиническое значение» . Современная нейрофармакология . 6 (4): 367–378. дои : 10.2174/157015908787386050 . ПМК 2701283 . ПМИД 19587857 .
Настороженность и связанное с ней возбуждение переднего мозга и коры опосредованы несколькими восходящими путями с отдельными нейронными компонентами, которые отходят от верхнего ствола мозга вблизи места соединения моста и среднего мозга. ...
Ключевые популяции клеток восходящего пути возбуждения включают холинергические, норадренергические, серотонинергические, дофаминергические и гистаминергические нейроны, расположенные в педункулопонтинном и латеродорсальном тегментальном ядре (PPT/LDT), голубом пятне, дорсальном и срединном ядрах шва и туберомаммилярном ядре (TMN). соответственно. ...
Механизм действия симпатомиметических препаратов (например, декстро- и метамфетамина, метилфенидата) заключается в прямой или непрямой стимуляции дофаминергических и норадренергических ядер, что, в свою очередь, повышает эффективность вентральной периакведуктальной серой зоны и голубого пятна, обоих компонентов вторичного ветвь восходящей системы возбуждения. ...
Симпатомиметики уже давно используются для лечения нарколепсии. - ^ Jump up to: а б с д и Маски К., Тротти Л.М., Котагал С., Роберт Огер Р., Роули Дж.А., Хашми С.Д. и др. (сентябрь 2021 г.). «Лечение центральных нарушений гиперсомнолентности: руководство по клинической практике Американской академии медицины сна» . Журнал клинической медицины сна . 17 (9): 1881–1893. дои : 10.5664/jcsm.9328 . ПМЦ 8636351 . ПМИД 34743789 .
В ходе TF было выявлено 1 двойное слепое РКИ, 1 одинарное слепое РКИ и 1 ретроспективная наблюдательная долгосрочная серия случаев, о которых сообщали сами люди, оценивающие эффективность декстроамфетамина у пациентов с нарколепсией 1-го типа и нарколепсией 2-го типа. Эти исследования продемонстрировали клинически значимые улучшения в чрезмерная дневная сонливость и катаплексия.
- ^ Jump up to: а б с д и Барато Л., Лопес Р., Даувилье Ю. (октябрь 2016 г.). «Управление нарколепсией». Современные варианты лечения в неврологии . 18 (10): 43. дои : 10.1007/s11940-016-0429-y . ПМИД 27549768 .
Полезность амфетаминов ограничена потенциальным риском злоупотребления и их побочными эффектами на сердечно-сосудистую систему (таблица 1). Вот почему, хотя они дешевле других препаратов и эффективны, они остаются терапией третьей линии при нарколепсии. Три исследования класса II показали улучшение СЭД при этом заболевании. ...
Несмотря на возможность злоупотребления наркотиками или развития толерантности к использованию стимуляторов, у пациентов с нарколепсией редко возникает зависимость от принимаемых ими лекарств. ...
Некоторые стимуляторы, такие как мазиндол, амфетамины и питолизант, также могут оказывать антикатаплектическое действие. - ^ Даувилье Ю., Барато Л. (август 2017 г.). «Нарколепсия и другие центральные гиперсомнии». Континуум . 23 (4, Неврология сна): 989–1004. дои : 10.1212/CON.0000000000000492 . ПМИД 28777172 .
Недавние клинические испытания и практические рекомендации подтвердили, что такие стимуляторы, как модафинил, армодафинил или оксибат натрия (в качестве первой линии); метилфенидат и питолизант (в качестве второй линии [питолизант в настоящее время доступен только в Европе]); и амфетамины (в качестве третьего ряда) являются подходящими лекарствами от чрезмерной дневной сонливости.
- ^ Торпи М.Дж., Боган Р.К. (апрель 2020 г.). «Обновленная информация о фармакологическом лечении нарколепсии: механизмы действия и клинические последствия». Медицина сна . 68 : 97–109. дои : 10.1016/j.sleep.2019.09.001 . ПМИД 32032921 .
Первые препараты, используемые для лечения СЭД (например, амфетамины, метилфенидат), теперь считаются вариантами второй или третьей линии, поскольку были разработаны новые лекарства с улучшенной переносимостью и меньшим потенциалом злоупотребления (например, модафинил/армодафинил, солриамфетол, питолизант).
- ^ Jump up to: а б Спенсер RC, Девилбисс DM, Берридж CW (июнь 2015 г.). «Эффект психостимуляторов, улучшающий когнитивные функции, включает прямое воздействие на префронтальную кору» . Биологическая психиатрия . 77 (11): 940–950. doi : 10.1016/j.biopsych.2014.09.013 . ПМК 4377121 . ПМИД 25499957 .
Прокогнитивное действие психостимуляторов связано только с низкими дозами. Удивительно, но, несмотря на почти 80 лет клинического применения, нейробиология прокогнитивного действия психостимуляторов стала систематически изучаться лишь недавно. Результаты этого исследования однозначно демонстрируют, что эффекты психостимуляторов, улучшающие когнитивные функции, включают преимущественное повышение катехоламинов в ПФК и последующую активацию рецепторов норадреналина α2 и дофамина D1. ... Эта дифференциальная модуляция PFC-зависимых процессов в зависимости от дозы, по-видимому, связана с дифференциальным вовлечением норадренергических α2- и α1-рецепторов. В совокупности эти данные указывают на то, что в низких, клинически значимых дозах психостимуляторы лишены поведенческих и нейрохимических действий, характерных для этого класса препаратов, а вместо этого действуют в основном как усилители когнитивных функций (улучшая ПФК-зависимую функцию). ... В частности, как у животных, так и у людей более низкие дозы максимально улучшают показатели в тестах на рабочую память и торможение реакции, тогда как максимальное подавление явного поведения и облегчение процессов внимания происходит при более высоких дозах.
- ^ Илиева И.П., Хук С.Дж., Фара М.Дж. (июнь 2015 г.). «Влияние рецептурных стимуляторов на здоровый тормозной контроль, рабочую память и эпизодическую память: метаанализ» . Журнал когнитивной нейронауки . 27 (6): 1069–1089. дои : 10.1162/jocn_a_00776 . ПМИД 25591060 . S2CID 15788121 .
В частности, в серии экспериментов, ограниченных высококачественными дизайнами, мы обнаружили значительное улучшение некоторых когнитивных способностей. ... Результаты этого метаанализа... действительно подтверждают реальность эффектов улучшения когнитивных функций у нормальных здоровых взрослых в целом, а также указывают на то, что эти эффекты скромны по размеру.
- ^ Багот К.С., Каминер Ю. (апрель 2014 г.). «Эффективность стимуляторов для улучшения когнитивных функций у молодежи с синдромом дефицита внимания и гиперактивности: систематический обзор» . Зависимость . 109 (4): 547–557. дои : 10.1111/add.12460 . ПМЦ 4471173 . ПМИД 24749160 .
Было показано, что амфетамин улучшает консолидацию информации (0,02 ≥ P ≤ 0,05), что приводит к улучшению запоминания.
- ^ Devous MD, Trivedi MH, Rush AJ (апрель 2001 г.). «Реакция регионального мозгового кровотока на пероральный прием амфетамина у здоровых добровольцев». Журнал ядерной медицины . 42 (4): 535–542. ПМИД 11337538 .
- ^ Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 10: Нейронный и нейроэндокринный контроль внутренней среды». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. п. 266. ИСБН 9780071481274 .
Дофамин действует в прилежащем ядре, придавая мотивационное значение стимулам, связанным с вознаграждением.
- ^ Jump up to: а б с Вуд С., Сейдж-младший, Шуман Т., Анагностарас С.Г. (январь 2014 г.). «Психостимуляторы и познание: континуум поведенческой и когнитивной активации» . Фармакологические обзоры . 66 (1): 193–221. дои : 10.1124/пр.112.007054 . ПМЦ 3880463 . ПМИД 24344115 .
- ^ Туи М. (26 марта 2006 г.). «Таблетки становятся помощником в учебе, вызывающим привыкание» . JS онлайн . Архивировано из оригинала 15 августа 2007 года . Проверено 2 декабря 2007 г.
- ^ Тетер С.Дж., Маккейб С.Э., Лагранж К., Крэнфорд Дж.А., Бойд С.Дж. (октябрь 2006 г.). «Незаконное использование конкретных стимуляторов, отпускаемых по рецепту, среди студентов колледжей: распространенность, мотивы и способы применения» . Фармакотерапия . 26 (10): 1501–1510. дои : 10.1592/phco.26.10.1501 . ПМЦ 1794223 . ПМИД 16999660 .
- ^ Вейандт Л.Л., Остер Д.Р., Марраччини М.Е., Гудмундсдоттир Б.Г., Манро Б.А., Заврас Б.М. и др. (сентябрь 2014 г.). «Фармакологические вмешательства для подростков и взрослых с СДВГ: стимулирующие и нестимулирующие препараты и злоупотребление стимуляторами, отпускаемыми по рецепту» . Психологические исследования и управление поведением . 7 : 223–249. дои : 10.2147/PRBM.S47013 . ПМЦ 4164338 . ПМИД 25228824 .
злоупотребление стимуляторами, отпускаемыми по рецепту, стало серьезной проблемой в университетских кампусах по всей территории США, а недавно это было зарегистрировано и в других странах. ... Действительно, большое количество студентов утверждают, что участвовали в немедицинском использовании стимуляторов, отпускаемых по рецепту, что отражается в том, что уровень распространенности злоупотребления стимуляторами, отпускаемыми по рецепту, в течение жизни варьируется от 5% до почти 34% студентов.
- ^ Клемоу Д.Б., Уокер DJ (сентябрь 2014 г.). «Возможность неправильного использования и злоупотребления лекарствами при СДВГ: обзор». Последипломное образование по медицине . 126 (5): 64–81. дои : 10.3810/pgm.2014.09.2801 . ПМИД 25295651 . S2CID 207580823 .
В целом, данные свидетельствуют о том, что злоупотребление лекарствами от СДВГ и их утечка являются распространенной проблемой здравоохранения, связанной с приемом стимуляторов, при этом распространенность, как полагают, составляет примерно от 5% до 10% среди старшеклассников и от 5% до 35% среди студентов колледжей, в зависимости от исследования. .
- ^ Jump up to: а б с Лиддл Д.Г., Коннор DJ (июнь 2013 г.). «Пищевые добавки и эргогенный СПИД». Первичная медико-санитарная помощь: клиники в офисной практике . 40 (2): 487–505. дои : 10.1016/j.pop.2013.02.009 . ПМИД 23668655 .
Амфетамины и кофеин являются стимуляторами, которые повышают бдительность, улучшают концентрацию, уменьшают время реакции и задерживают утомление, что позволяет увеличить интенсивность и продолжительность тренировок...
Физиологические и функциональные эффекты
• Амфетамины увеличивают высвобождение дофамина/норадреналина и подавляют их обратный захват, что приводит к стимуляции центральной нервной системы (ЦНС).
• Амфетамины, по-видимому, улучшают спортивные результаты в анаэробных условиях 39 40
• Улучшено время реакции.
• Увеличение мышечной силы и отсроченная мышечная утомляемость.
• Повышенное ускорение
• Повышенная бдительность и внимание к задаче. - ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с Westfall DP, Westfall TC (2010). «Разные симпатомиметические агонисты». В Брантоне Л.Л., Чабнере Б.А., Ноллманне Б.К. (ред.). Фармакологические основы терапии Гудмана и Гилмана (12-е изд.). Нью-Йорк, США: МакГроу-Хилл. ISBN 9780071624428 .
- ^ Брекен, Нью-Мексико (январь 2012 г.). «Национальное исследование тенденций употребления психоактивных веществ среди студентов-спортсменов колледжей NCAA» (PDF) . Публикации NCAA . Национальная университетская спортивная ассоциация. Архивировано (PDF) из оригинала 9 октября 2022 года . Проверено 8 октября 2013 г.
- ^ Дочерти-младший (июнь 2008 г.). «Фармакология стимуляторов, запрещенных Всемирным антидопинговым агентством (ВАДА)» . Британский журнал фармакологии . 154 (3): 606–622. дои : 10.1038/bjp.2008.124 . ПМЦ 2439527 . ПМИД 18500382 .
- ^ Jump up to: а б с д Парр Дж.В. (июль 2011 г.). «Синдром дефицита внимания с гиперактивностью и спортсмен: новые достижения и понимание». Клиники спортивной медицины . 30 (3): 591–610. дои : 10.1016/j.csm.2011.03.007 . ПМИД 21658550 .
В 1980 году Чендлер и Блэр 47 показали значительное увеличение силы разгибания колена, ускорения, анаэробной способности, времени до утомления во время тренировки, предтренировочной и максимальной частоты сердечных сокращений, а также времени до утомления во время тестирования максимального потребления кислорода (VO2 max) после приема 15 мг декстроамфетамина по сравнению с плацебо. Большая часть информации для ответа на этот вопрос была получена за последнее десятилетие в результате исследований усталости, а не попыток систематического изучения влияния препаратов от СДВГ на физические упражнения.
- ^ Jump up to: а б с Руландс Б., де Конинг Дж., Фостер С., Хеттинга Ф., Меусен Р. (май 2013 г.). «Нейрофизиологические детерминанты теоретических концепций и механизмов, участвующих в кардиостимуляции». Спортивная медицина . 43 (5): 301–311. дои : 10.1007/s40279-013-0030-4 . ПМИД 23456493 . S2CID 30392999 .
При высоких температурах окружающей среды дофаминергические манипуляции явно улучшают производительность. Распределение выходной мощности показывает, что после ингибирования обратного захвата дофамина испытуемые способны поддерживать более высокую выходную мощность по сравнению с плацебо. ... Дофаминергические препараты, по-видимому, отключают предохранительный переключатель и позволяют спортсменам использовать резервные возможности, которые в нормальной (плацебо) ситуации «запрещены».
- ^ Паркер К.Л., Ламичхан Д., Каэтано М.С., Нараянан Н.С. (октябрь 2013 г.). «Исполнительная дисфункция при болезни Паркинсона и дефицит времени» . Границы интегративной нейронауки . 7 : 75. дои : 10.3389/fnint.2013.00075 . ПМЦ 3813949 . ПМИД 24198770 .
Манипуляции дофаминергической передачей сигналов глубоко влияют на время интервалов, что приводит к гипотезе о том, что дофамин влияет на активность внутреннего кардиостимулятора или «часов». Например, амфетамин, который увеличивает концентрацию дофамина в синаптической щели, ускоряет начало реакции во время интервального времени, тогда как антагонисты дофаминовых рецепторов типа D2 обычно замедляют время;... Истощение дофамина у здоровых добровольцев ухудшает время, в то время как амфетамин высвобождает синаптические дофамина и ускоряет время.
- ^ Рэттрей Б., Аргус С., Мартин К., Норти Дж., Дриллер М. (март 2015 г.). «Не пора ли обратить наше внимание на центральные механизмы стратегии и производительности восстановления после нагрузки?» . Границы в физиологии . 6 : 79. дои : 10.3389/fphys.2015.00079 . ПМЦ 4362407 . ПМИД 25852568 .
Помимо учета снижения производительности умственно утомленных участников, эта модель рационализирует снижение RPE и, следовательно, улучшение результатов в гонках на время у спортсменов, использующих жидкость для полоскания рта с глюкозой (Chambers et al., 2009), а также большую выходную мощность во время соответствующего времени езды на велосипеде RPE. испытание после приема амфетамина (Swart, 2009). ... Известно, что препараты, стимулирующие дофамин, улучшают физические упражнения (Roelands et al., 2008).
- ^ Руландс Б., Де Пау К., Меусен Р. (июнь 2015 г.). «Нейрофизиологические эффекты физических упражнений в жару» . Скандинавский журнал медицины и науки в спорте . 25 (Приложение 1): 65–78. дои : 10.1111/sms.12350 . ПМИД 25943657 . S2CID 22782401 .
Это указывает на то, что испытуемые не чувствовали, что производят больше энергии и, следовательно, больше тепла. Авторы пришли к выводу, что «предохранительный переключатель» или механизмы, существующие в организме для предотвращения вредных последствий, игнорируются приемом лекарств (Roelands et al., 2008b). В совокупности эти данные указывают на сильные эргогенные эффекты повышенной концентрации DA в мозге без каких-либо изменений в восприятии усилия.
- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v В «Аддералл XR - сульфат декстроамфетамина, сахарат декстроамфетамина, сульфат амфетамина и капсула аспартата амфетамина, пролонгированного действия» . ДейлиМед . Shire US Inc., 17 июля 2019 г. Проверено 22 декабря 2019 г.
- ^ «Таблица рецептурных препаратов, которыми чаще всего злоупотребляют» . Национальный институт по борьбе со злоупотреблением наркотиками . Проверено 7 мая 2012 г.
- ^ «Стимулирующие лекарства от СДВГ – метилфенидат и амфетамины» . Национальный институт по борьбе со злоупотреблением наркотиками. Архивировано из оригинала 2 мая 2012 года . Проверено 7 мая 2012 г.
- ^ Jump up to: а б с д и «Национальный институт по борьбе со злоупотреблением наркотиками. 2009. Стимуляторы СДВГ – метилфенидат и амфетамины» . Национальный институт по борьбе со злоупотреблением наркотиками . Проверено 27 февраля 2013 г.
- ^ Шульц В. (2015). «Нейронное вознаграждение и сигналы решения: от теорий к данным» . Физиологические обзоры . 95 (3): 853–951. doi : 10.1152/physrev.00023.2014 . ПМЦ 4491543 . ПМИД 26109341 .
Награды в оперантном обусловливании являются положительным подкреплением. ... Оперантное поведение дает хорошее определение вознаграждения. Все, что заставляет человека возвращаться и требовать большего, является положительным подкреплением и, следовательно, наградой. Хотя положительное подкрепление дает хорошее определение, оно является лишь одной из нескольких функций вознаграждения. ... Награды привлекательны. Они мотивируют и заставляют нас прилагать усилия. ... Награды вызывают поведение приближения, также называемое аппетитным или подготовительным поведением, сексуальным поведением и конверсионным поведением. ... Таким образом, любой стимул, объект, событие, деятельность или ситуация, которая потенциально может заставить нас приблизиться и поглотить его, по определению является наградой. ... Поощрительные стимулы, объекты, события, ситуации и действия состоят из нескольких основных компонентов. Во-первых, награды имеют основные сенсорные компоненты (зрительные, слуховые, соматосенсорные, вкусовые и обонятельные). Во-вторых, награды заметны и, таким образом, вызывают внимание, которое проявляется в виде ориентировочных реакций. Выраженность вознаграждений обусловлена тремя основными факторами, а именно их физической интенсивностью и воздействием (физическая значимость), их новизной и неожиданностью (заметность новизны/сюрприза) и их общим мотивационным воздействием, разделяемым с карателями (мотивационная значимость). Отдельная форма, не включенная в эту схему, — побудительная значимость — касается в первую очередь дофаминовой функции при аддикции и относится только к подходу к поведению (в отличие от обучения). не содержится в сенсорных компонентах и компонентах внимания и не объясняется ими. Этот компонент отражает поведенческие предпочтения и поэтому является субъективным и лишь частично определяется физическими параметрами. Только этот компонент и представляет собой то, что мы понимаем под наградой. Он опосредует специфическое поведенческое подкрепление, создание подходов и эмоциональные эффекты вознаграждений, которые имеют решающее значение для выживания и воспроизводства организма, тогда как все остальные компоненты лишь поддерживают эти функции. ... Награды также могут быть неотъемлемой частью поведения. Они контрастируют с внешними вознаграждениями, которые обеспечивают мотивацию поведения и составляют суть оперантного поведения в лабораторных тестах. Внутренние вознаграждения — это действия, которые доставляют удовольствие сами по себе и предпринимаются ради самих себя, не являясь средством получения внешних вознаграждений. ... Внутренние награды сами по себе являются настоящими наградами, поскольку они побуждают к обучению, подходу и удовольствию, например, к совершенствованию, игре на фортепиано и получению удовольствия. Хотя они могут служить условием вознаграждения более высокого порядка, они не являются обусловленными вознаграждениями более высокого порядка, поскольку для достижения их свойств вознаграждения не требуется соединение с безусловным вознаграждением. ... Эти эмоции также называются симпатией (к удовольствию) и желанием (к желанию) в исследованиях зависимостей и решительно поддерживают функции вознаграждения, генерирующие обучение и подход.
- ^ Канадские практические рекомендации по СДВГ (PDF) (Четвертое изд.). Канадский альянс ресурсов по СДВГ. 2018. с. 67. Архивировано из оригинала (PDF) 2 мая 2023 года . Проверено 2 мая 2023 г.
- ^ Брайт-ГМ (май 2008 г.). «Злоупотребление лекарствами, используемыми для лечения СДВГ: результаты крупномасштабного опроса населения» . Медицинский журнал Medscape . 10 (5):111. ПМК 2438483 . ПМИД 18596945 .
- ^ Чайлдс Э., де Вит Х (ноябрь 2013 г.). «Контекстуальное кондиционирование усиливает психостимулирующие и стимулирующие свойства d-амфетамина у людей» . Биология наркомании . 18 (6): 985–992. дои : 10.1111/j.1369-1600.2011.00416.x . ПМК 4242554 . ПМИД 22129527 .
- ^ Кесслер С. (январь 1996 г.). «Медикаментозная терапия при синдроме дефицита внимания с гиперактивностью». Южный медицинский журнал . 89 (1): 33–38. дои : 10.1097/00007611-199601000-00005 . ПМИД 8545689 . S2CID 12798818 .
Заявления на вкладышах в упаковке не предназначены для ограничения медицинской практики. Скорее они предназначены для ограничения претензий фармацевтических компаний. ... FDA прямо утверждает, а суды поддержали, что клинические решения должны приниматься врачами и пациентами в индивидуальных ситуациях.
- ^ Jump up to: а б с д «Эвекео-амфетамина сульфат таблетка» . ДейлиМед . Арбор Фармасьютикалс, ООО. 14 августа 2019 года . Проверено 22 декабря 2019 г.
- ^ Jump up to: а б с д и ж г час я дж к Хидес Г., Айлакис Дж. «Амфетамин (PIM 934)» . ИНЧЕМ . Международная программа по химической безопасности . Проверено 24 июня 2014 г.
- ^ Файнберг СС (ноябрь 2004 г.). «Сочетание стимуляторов с ингибиторами моноаминоксидазы: обзор применения и одно возможное дополнительное показание». Журнал клинической психиатрии . 65 (11): 1520–1524. дои : 10.4088/jcp.v65n1113 . ПМИД 15554766 .
- ^ Стюарт Дж.В., Делианнидес Д.А., МакГрат П.Дж. (июнь 2014 г.). «Насколько излечима рефрактерная депрессия?». Журнал аффективных расстройств . 167 : 148–152. дои : 10.1016/j.jad.2014.05.047 . ПМИД 24972362 .
- ^ Jump up to: а б с д Витиелло Б. (апрель 2008 г.). «Понимание риска использования лекарств для лечения синдрома дефицита внимания и гиперактивности в отношении физического роста и сердечно-сосудистой функции» . Детские и подростковые психиатрические клиники Северной Америки . 17 (2): 459–474. дои : 10.1016/j.chc.2007.11.010 . ПМК 2408826 . ПМИД 18295156 .
- ^ Рэми Дж.Т., Бейлен Э., Локки РФ (2006). «Медикаментозный ринит» (PDF) . Журнал исследовательской аллергологии и клинической иммунологии . 16 (3): 148–155. ПМИД 16784007 . Проверено 29 апреля 2015 г.
Таблица 2. Противоотечные средства, вызывающие медикаментозный ринит
– Назальные деконгестанты:
– Симпатомиметики:
• Амфетамин - ^ Jump up to: а б «Сообщение FDA о безопасности лекарств: Обновление обзора безопасности лекарств, используемых для лечения синдрома дефицита внимания / гиперактивности (СДВГ) у детей и молодых людей» . Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США . 1 ноября 2011 г. Архивировано из оригинала 25 августа 2019 г. . Проверено 24 декабря 2019 г.
- ^ Купер В.О., Хабель Л.А., Сокс СМ, Чан К.А., Арбогаст П.Г., Читам Т.С. и др. (ноябрь 2011 г.). «Лекарства от СДВГ и серьезные сердечно-сосудистые заболевания у детей и молодых людей» . Медицинский журнал Новой Англии . 365 (20): 1896–1904. дои : 10.1056/NEJMoa1110212 . ПМЦ 4943074 . ПМИД 22043968 .
- ^ Jump up to: а б «Сообщение FDA о безопасности лекарств: Обновление обзора безопасности лекарств, используемых для лечения синдрома дефицита внимания / гиперактивности (СДВГ) у взрослых» . Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США . 12 декабря 2011 г. Архивировано из оригинала 14 декабря 2019 г. . Проверено 24 декабря 2013 г.
- ^ Хабель Л.А., Купер В.О., Сокс СМ, Чан К.А., Пожарный Б.Х., Арбогаст П.Г. и др. (декабрь 2011 г.). «Лекарства от СДВГ и риск серьезных сердечно-сосудистых событий у людей молодого и среднего возраста» . ДЖАМА . 306 (24): 2673–2683. дои : 10.1001/jama.2011.1830 . ПМК 3350308 . ПМИД 22161946 .
- ^ Монтгомери, К.А. (июнь 2008 г.). «Расстройства полового влечения» . Психиатрия . 5 (6): 50–55. ПМЦ 2695750 . ПМИД 19727285 .
- ^ О'Коннор П.Г. (февраль 2012 г.). «Амфетамины» . Руководство Merck для медицинских работников . Мерк . Проверено 8 мая 2012 г.
- ^ Jump up to: а б с д Шоптоу С.Дж., Као У, Линг В. (январь 2009 г.). Шоптоу С.Дж., Али Р. (ред.). «Лечение амфетаминового психоза» . Кокрейновская база данных систематических обзоров . 2009 (1): CD003026. дои : 10.1002/14651858.CD003026.pub3 . ПМК 7004251 . ПМИД 19160215 .
У меньшинства людей, употребляющих амфетамины, развивается полномасштабный психоз, требующий помощи в отделениях неотложной помощи или психиатрических больницах. В таких случаях симптомы амфетаминового психоза обычно включают параноидальный бред и бред преследования, а также слуховые и зрительные галлюцинации на фоне сильного возбуждения. Чаще всего (около 18%) частые потребители амфетаминов сообщают о психотических симптомах, которые носят субклинический характер и не требуют высокоинтенсивного вмешательства...
Около 5–15% потребителей, у которых развивается амфетаминовый психоз, не могут полностью выздороветь (Hofmann 1983).
Результаты одного исследования показывают, что использование антипсихотических препаратов эффективно устраняет симптомы острого амфетаминового психоза.
психотические симптомы у людей с амфетаминовым психозом могут быть связаны исключительно с интенсивным употреблением наркотика, или интенсивное употребление наркотика может усугубить скрытую уязвимость к шизофрении. - ^ Jump up to: а б с д Брамнесс Дж.Г., Гундерсен О.Х., Гутерстам Дж., Рогнли Э.Б., Констениус М., Лёберг Э.М. и др. (декабрь 2012 г.). «Амфетамин-индуцированный психоз — отдельная диагностическая единица или первичный психоз, возникающий у уязвимых?» . БМК Психиатрия . 12 : 221. дои : 10.1186/1471-244X-12-221 . ПМЦ 3554477 . ПМИД 23216941 .
В этих исследованиях амфетамин назначался в последовательно более высоких дозах до тех пор, пока не развился психоз, часто после приема 100–300 мг амфетамина... Во-вторых, психоз рассматривался как нежелательное явление, хотя и редко, у детей с СДВГ, которых лечили амфетамином. амфетамин
- ^ Jump up to: а б Грейданус Д. «Злоупотребление стимуляторами: стратегии решения растущей проблемы» (PDF) . Американская ассоциация здравоохранения колледжей (обзорная статья). Программа профессионального развития ACHA. п. 20. Архивировано из оригинала (PDF) 3 ноября 2013 года . Проверено 2 ноября 2013 г.
- ^ Jump up to: а б Чайлдс Э, де Вит Х (май 2009 г.). «Предпочтение места у людей, вызванное амфетамином» . Биологическая психиатрия . 65 (10): 900–904. doi : 10.1016/j.biopsych.2008.11.016 . ПМК 2693956 . ПМИД 19111278 .
Это исследование показывает, что люди, как и нелюди, предпочитают места, связанные с приемом амфетамина. Эти данные подтверждают идею о том, что субъективные реакции на препарат способствуют его способности вызывать кондиционирование места.
- ^ Jump up to: а б Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 15: Подкрепление и аддиктивные расстройства». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк: McGraw-Hill Medical. стр. 364–375. ISBN 9780071481274 .
- ^ Jump up to: а б с д и Нестлер Э.Дж. (декабрь 2013 г.). «Клеточная основа памяти при наркомании» . Диалоги в клинической неврологии . 15 (4): 431–443. ПМЦ 3898681 . ПМИД 24459410 .
Несмотря на важность многочисленных психосоциальных факторов, по своей сути наркомания включает в себя биологический процесс: способность многократного воздействия злоупотребляемого наркотика вызывать изменения в уязвимом мозге, которые приводят к компульсивному поиску и приему наркотиков и потере контроля. над употреблением наркотиков, которые определяют состояние наркомании. ... Большой объем литературы продемонстрировал, что такая индукция ΔFosB в нейронах [прилежащего ядра] типа D1 увеличивает чувствительность животного к лекарственному средству, а также к естественным вознаграждениям и способствует самостоятельному приему лекарственного средства, предположительно посредством процесса положительного подкрепления. Еще одной мишенью ΔFosB является cFos: поскольку ΔFosB накапливается при повторном воздействии препарата, он подавляет c-Fos и способствует молекулярному переключению, посредством которого ΔFosB избирательно индуцируется в состоянии хронического лечения препаратом. 41 . ... Более того, появляется все больше свидетельств того, что, несмотря на целый ряд генетических рисков развития зависимости среди населения, воздействие достаточно высоких доз наркотика в течение длительного периода времени может превратить человека с относительно низкой генетической нагрузкой в наркомана.
- ^ Волков Н.Д., Кооб Г.Ф., Маклеллан А.Т. (январь 2016 г.). «Нейробиологические достижения модели зависимости от заболеваний головного мозга» . Медицинский журнал Новой Англии . 374 (4): 363–371. дои : 10.1056/NEJMra1511480 . ПМК 6135257 . ПМИД 26816013 .
Расстройство, связанное с употреблением психоактивных веществ: диагностический термин в пятом издании «Руководства по диагностике и статистике психических расстройств» (DSM-5), относящийся к повторяющемуся употреблению алкоголя или других наркотиков, которое вызывает клинически и функционально значимые нарушения, такие как проблемы со здоровьем, инвалидность, и неспособность выполнять основные обязанности на работе, в школе или дома. В зависимости от степени тяжести это расстройство классифицируется как легкое, среднее или тяжелое.
Наркомания: термин, используемый для обозначения наиболее тяжелой, хронической стадии расстройства, связанного с употреблением психоактивных веществ, при которой происходит значительная потеря самоконтроля, о чем свидетельствует компульсивный прием наркотиков, несмотря на желание прекратить их прием. В DSM-5 термин «зависимость» является синонимом классификации тяжелого расстройства, связанного с употреблением психоактивных веществ. - ^ Jump up to: а б с Рентал В., Нестлер Э.Дж. (сентябрь 2009 г.). «Регуляция хроматина при наркомании и депрессии» . Диалоги в клинической неврологии . 11 (3): 257–268. doi : 10.31887/DCNS.2009.11.3/wrenthal . ПМЦ 2834246 . ПМИД 19877494 .
[Психостимуляторы] повышают уровень цАМФ в полосатом теле, что активирует протеинкиназу А (ПКА) и приводит к фосфорилированию ее мишеней. Сюда входит белок, связывающий элемент ответа цАМФ (CREB), фосфорилирование которого индуцирует его ассоциацию с ацетилтрансферазой гистонов, связывающий белок CREB (CBP) для ацетилирования гистонов и облегчения активации генов. Известно, что это происходит со многими генами, включая fosB и c-fos, в ответ на воздействие психостимуляторов. ΔFosB также активируется хроническим лечением психостимуляторами и, как известно, активирует определенные гены (например, cdk5) и подавляет другие (например, c-fos ), где он рекрутирует HDAC1 в качестве корепрессора. ... Хроническое воздействие психостимуляторов усиливает глутаматергическую [передачу сигналов] от префронтальной коры к NAc. Глутаматергическая передача сигналов повышает уровни Ca2+ в постсинаптических элементах NAc, где он активирует передачу сигналов CaMK (кальций/кальмодулиновые протеинкиназы), которые, помимо фосфорилирования CREB, также фосфорилируют HDAC5.
Рисунок 2: Сигнальные события, вызванные психостимуляторами - ^ Бруссар Дж.И. (январь 2012 г.). «Совместная передача дофамина и глутамата» . Журнал общей физиологии . 139 (1): 93–96. дои : 10.1085/jgp.201110659 . ПМК 3250102 . ПМИД 22200950 .
Совпадающие и конвергентные входные сигналы часто вызывают пластичность постсинаптического нейрона. NAc объединяет обработанную информацию об окружающей среде из базолатеральной миндалины, гиппокампа и префронтальной коры (ПФК), а также проекции дофаминовых нейронов среднего мозга. Предыдущие исследования продемонстрировали, как дофамин модулирует этот интегративный процесс. Например, высокочастотная стимуляция усиливает воздействие гиппокампа на NAc и одновременно угнетает синапсы PFC (Goto and Grace, 2005). Обратное также оказалось верным; стимуляция PFC потенцирует синапсы PFC-NAc, но угнетает синапсы гиппокамп-NAc. В свете новых функциональных доказательств совместной передачи дофамина и глутамата в средний мозг (ссылки выше) новые эксперименты с функцией NAc должны будут проверить, смещают ли глутаматергические входные сигналы среднего мозга или фильтруют лимбические или корковые входные сигналы для управления целенаправленным поведением.
- ^ Kanehisa Laboratories (10 октября 2014 г.). «Амфетамин – Homo sapiens (человек)» . Путь КЕГГ . Проверено 31 октября 2014 г.
Большинство наркотиков, вызывающих привыкание, повышают внеклеточную концентрацию дофамина (DA) в прилежащем ядре (NAc) и медиальной префронтальной коре (mPFC), проекционных областях мезокортиколимбических DA-нейронов и ключевых компонентах «цепи вознаграждения мозга». Амфетамин достигает такого повышения внеклеточных уровней DA, способствуя оттоку из синаптических окончаний. ... Хроническое воздействие амфетамина индуцирует уникальный фактор транскрипции дельта FosB, который играет важную роль в долгосрочных адаптивных изменениях в мозге.
- ^ Кадет Дж.Л., Браннок С., Джаянти С., Краснова И.Н. (2015). «Транкрипционные и эпигенетические субстраты зависимости и абстиненции от метамфетамина: данные модели самостоятельного введения с длительным доступом у крыс» . Молекулярная нейробиология . 51 (2): 696–717 ( рис. 1 ). дои : 10.1007/s12035-014-8776-8 . ПМЦ 4359351 . ПМИД 24939695 .
- ^ Jump up to: а б с Робисон А.Дж., Нестлер Э.Дж. (ноябрь 2011 г.). «Транскрипционные и эпигенетические механизмы зависимости» . Обзоры природы Неврология . 12 (11): 623–637. дои : 10.1038/nrn3111 . ПМЦ 3272277 . ПМИД 21989194 .
ΔFosB служит одним из главных белков-контролеров, управляющих этой структурной пластичностью. ... ΔFosB также подавляет экспрессию G9a, что приводит к снижению репрессивного метилирования гистонов в гене cdk5. Конечным результатом является активация генов и увеличение экспрессии CDK5. ... Напротив, ΔFosB связывается с геном c-fos и рекрутирует несколько ко-репрессоров, включая HDAC1 (деацетилаза гистонов 1) и SIRT 1 (сиртуин 1). ... Конечным результатом является репрессия гена c-fos .
Рисунок 4: Эпигенетические основы лекарственной регуляции экспрессии генов. - ^ Jump up to: а б с Нестлер Э.Дж. (декабрь 2012 г.). «Транскрипционные механизмы наркомании» . Клиническая психофармакология и неврология . 10 (3): 136–143. дои : 10.9758/cpn.2012.10.3.136 . ПМК 3569166 . ПМИД 23430970 .
Изоформы ΔFosB массой 35–37 кДа накапливаются при хроническом воздействии лекарств из-за их чрезвычайно длительного периода полураспада. ... Благодаря своей стабильности белок ΔFosB сохраняется в нейронах в течение как минимум нескольких недель после прекращения воздействия препарата. ... Сверхэкспрессия ΔFosB в прилежащем ядре индуцирует NFκB ... Напротив, способность ΔFosB подавлять ген c-Fos происходит одновременно с рекрутированием гистондеацетилазы и, предположительно, нескольких других репрессивных белков, таких как репрессивная гистон-метилтрансфераза.
- ^ Нестлер Э.Дж. (октябрь 2008 г.). «Транскрипционные механизмы зависимости: роль ΔFosB» . Философские труды Королевского общества B: Биологические науки . 363 (1507): 3245–3255. дои : 10.1098/rstb.2008.0067 . ПМК 2607320 . ПМИД 18640924 .
Недавние данные показали, что ΔFosB также репрессирует ген c-fos , который помогает создать молекулярный переключатель - от индукции нескольких короткоживущих белков семейства Fos после острого воздействия лекарства до преимущественного накопления ΔFosB после хронического воздействия лекарства.
- ^ Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 16: Подкрепление и аддиктивные расстройства». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). Нью-Йорк: McGraw-Hill Medical. ISBN 9780071827706 .
Такие агенты также имеют важное терапевтическое применение; кокаин, например, используется в качестве местного анестетика (глава 2), а амфетамины и метилфенидат используются в низких дозах для лечения синдрома дефицита внимания и гиперактивности и в более высоких дозах для лечения нарколепсии (глава 12). Несмотря на клиническое применение, эти препараты обладают сильным подкрепляющим действием, а их длительное применение в высоких дозах связано с потенциальной зависимостью, особенно при быстром введении или при назначении высокоэффективных форм.
- ^ Коллинз С.Х. (май 2008 г.). «Качественный обзор проблем, возникающих при использовании психостимулирующих препаратов у пациентов с СДВГ и сопутствующими расстройствами, связанными с употреблением психоактивных веществ». Текущие медицинские исследования и мнения . 24 (5): 1345–1357. дои : 10.1185/030079908X280707 . ПМИД 18384709 . S2CID 71267668 .
Когда пероральные формы психостимуляторов используются в рекомендуемых дозах и с частотой, они вряд ли дадут эффект, соответствующий потенциалу злоупотребления у пациентов с СДВГ.
- ^ Каннские лаборатории (10 октября 2014 г.). «Амфетамин – Homo sapiens (человек) » Путь КЕГГ . Получено 31 октября.
- ^ Jump up to: а б с д и ж Нечифор М (март 2008 г.). «Магний при наркотической зависимости» . Исследования магния . 21 (1): 5–15. doi : 10.1684/mrh.2008.0124 (неактивен 31 января 2024 г.). ПМИД 18557129 .
{{cite journal}}
: CS1 maint: DOI неактивен по состоянию на январь 2024 г. ( ссылка ) - ^ Jump up to: а б с д и Раффл Дж.К. (ноябрь 2014 г.). «Молекулярная нейробиология зависимости: о чем вообще (Δ)FosB?». Американский журнал о злоупотреблении наркотиками и алкоголем . 40 (6): 428–437. дои : 10.3109/00952990.2014.933840 . ПМИД 25083822 . S2CID 19157711 .
ΔFosB является важным фактором транскрипции, участвующим в молекулярных и поведенческих путях развития зависимости после неоднократного воздействия наркотиков.
- ^ Jump up to: а б с д и ж г час я дж к Робисон А.Дж., Нестлер Э.Дж. (ноябрь 2011 г.). «Транскрипционные и эпигенетические механизмы зависимости» . Обзоры природы Неврология . 12 (11): 623–637. дои : 10.1038/nrn3111 . ПМЦ 3272277 . ПМИД 21989194 .
ΔFosB напрямую связан с некоторыми видами поведения, связанными с зависимостью... Важно отметить, что генетическая или вирусная сверхэкспрессия ΔJunD, доминантно-негативного мутанта JunD, который противодействует ΔFosB- и другой AP-1-опосредованной транскрипционной активности, в NAc или OFC блокирует эту Ключевые последствия воздействия наркотиков 14,22–24 . Это указывает на то, что ΔFosB одновременно необходим и достаточен для многих изменений, вызываемых в мозге хроническим воздействием наркотиков. ΔFosB также индуцируется в NAc MSN D1-типа при хроническом потреблении нескольких натуральных вознаграждений, включая сахарозу, пищу с высоким содержанием жиров, секс, бег на колесах, где он способствует этому потреблению. 14,26–30 . Это предполагает участие ΔFosB в регуляции естественного вознаграждения в нормальных условиях и, возможно, во время патологических состояний, подобных привыканию. ... ΔFosB служит одним из главных контролирующих белков, управляющих этой структурной пластичностью.
- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v Олсен CM (декабрь 2011 г.). «Естественные награды, нейропластичность и ненаркотическая зависимость» . Нейрофармакология . 61 (7): 1109–1122. doi : 10.1016/j.neuropharm.2011.03.010 . ПМК 3139704 . ПМИД 21459101 .
Исследования показали, что, как и в случае с обогащением окружающей среды, физические упражнения снижают риск самостоятельного приема наркотиков и рецидивов злоупотребления наркотиками (Cosgrove et al., 2002; Zlebnik et al., 2010). Есть также некоторые свидетельства того, что эти доклинические результаты применимы к человеческому населению, поскольку физические упражнения уменьшают симптомы абстиненции и рецидивы у воздерживающихся от курения (Daniel et al., 2006; Prochaska et al., 2008), а одна программа восстановления после наркозависимости добилась успеха у участников. которые тренируются и участвуют в марафоне в рамках программы (Батлер, 2005). ... У людей роль передачи сигналов дофамина в процессах стимулирующей сенсибилизации недавно была подчеркнута наблюдением синдрома нарушения регуляции дофамина у некоторых пациентов, принимающих дофаминергические препараты. Этот синдром характеризуется вызванным приемом лекарств увеличением (или компульсивным) вовлечением в ненаркотические вознаграждения, такие как азартные игры, покупки или секс (Evans et al., 2006; Aiken, 2007; Lader, 2008).
- ^ Jump up to: а б с д Линч В.Дж., Петерсон А.Б., Санчес В., Абель Дж., Смит М.А. (сентябрь 2013 г.). «Упражнения как новый метод лечения наркозависимости: нейробиологическая и стадийно-зависимая гипотеза» . Неврологические и биоповеденческие обзоры . 37 (8): 1622–1644. doi : 10.1016/j.neubiorev.2013.06.011 . ПМЦ 3788047 . ПМИД 23806439 .
Эти данные позволяют предположить, что физические упражнения могут в зависимости от «величины» предотвратить развитие фенотипа зависимости, возможно, путем блокирования/обращения вспять поведенческих и нейроадаптивных изменений, которые развиваются во время и после расширенного доступа к наркотику. ... Физические упражнения были предложены в качестве лечения наркозависимости, которое может уменьшить тягу к наркотикам и риск рецидива. Хотя мало клинических исследований изучали эффективность физических упражнений для предотвращения рецидивов, те немногие исследования, которые были проведены, обычно сообщают о снижении тяги к наркотикам и лучших результатах лечения. особенно при рецидиве приема психостимуляторов, может быть опосредовано ремоделированием хроматина и, возможно, привести к лучшим результатам лечения.
- ^ Jump up to: а б с Чжоу Ю, Чжао М, Чжоу С, Ли Р (июль 2015 г.). «Половые различия в наркозависимости и реакция на физические упражнения: от исследований на людях до животных» . Границы нейроэндокринологии . 40 : 24–41. doi : 10.1016/j.yfrne.2015.07.001 . ПМЦ 4712120 . ПМИД 26182835 .
В совокупности эти результаты показывают, что физические упражнения могут служить заменой или конкуренцией злоупотреблению наркотиками путем изменения иммунореактивности ΔFosB или cFos в системе вознаграждения для защиты от последующего или предыдущего употребления наркотиков. ... Постулат о том, что физические упражнения служат идеальным средством лечения наркозависимости, получил широкое признание и используется в реабилитации людей и животных.
- ^ Jump up to: а б с Линке С.Е., Ашер М. (январь 2015 г.). «Лечение расстройств, вызванных употреблением психоактивных веществ, с помощью упражнений: доказательства, теория и практика» . Американский журнал о злоупотреблении наркотиками и алкоголем . 41 (1): 7–15. дои : 10.3109/00952990.2014.976708 . ПМК 4831948 . ПМИД 25397661 .
Проведенные ограниченные исследования показывают, что физические упражнения могут быть эффективным дополнительным лечением SUD. В отличие от скудных на сегодняшний день интервенционных исследований, опубликовано сравнительно много литературы по теоретическим и практическим причинам, поддерживающим исследование этой темы. ... многочисленные теоретические и практические причины поддерживают лечение SUD на основе упражнений, включая психологические, поведенческие, нейробиологические, почти универсальный профиль безопасности и общее положительное воздействие на здоровье.
- ^ Хайман С.Е., Маленка Р.К., Нестлер Э.Дж. (июль 2006 г.). «Нейральные механизмы зависимости: роль обучения и памяти, связанных с вознаграждением» (PDF) . Ежегодный обзор неврологии . 29 : 565–598. дои : 10.1146/annurev.neuro.29.051605.113009 . ПМИД 16776597 . S2CID 15139406 . Архивировано из оригинала (PDF) 19 сентября 2018 года.
- ^ Jump up to: а б с д и Штайнер Х., Ван Ваес В. (январь 2013 г.). «Регуляция генов, связанных с зависимостью: риски воздействия усилителей когнитивных функций по сравнению с другими психостимуляторами» . Прогресс нейробиологии . 100 : 60–80. дои : 10.1016/j.pneurobio.2012.10.001 . ПМЦ 3525776 . ПМИД 23085425 .
- ^ Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 4: Передача сигналов в мозге». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. п. 94. ИСБН 9780071481274 .
- ^ Kanehisa Laboratories (29 октября 2014 г.). «Алкоголизм – Homo sapiens (человек)» . Путь КЕГГ . Проверено 31 октября 2014 г.
- ^ Ким Ю, Тейлан М.А., Барон М., Сэндс А., Нэрн А.С., Грингард П. (февраль 2009 г.). «Индуцированное метилфенидатом образование дендритных шипов и экспрессия DeltaFosB в прилежащем ядре» . Труды Национальной академии наук . 106 (8): 2915–2920. Бибкод : 2009PNAS..106.2915K . дои : 10.1073/pnas.0813179106 . ПМК 2650365 . ПМИД 19202072 .
- ^ Jump up to: а б Нестлер Э.Дж. (январь 2014 г.). «Эпигенетические механизмы наркомании» . Нейрофармакология . 76 (Часть Б): 259–268. doi : 10.1016/j.neuropharm.2013.04.004 . ПМЦ 3766384 . ПМИД 23643695 .
- ^ Jump up to: а б Билински П., Войтыла А., Капка-Скшипчак Л., Хведорович Р., Циранка М., Студзински Т. (2012). «Эпигенетическая регуляция при наркомании» . Анналы сельскохозяйственной и экологической медицины . 19 (3): 491–496. ПМИД 23020045 .
- ^ Кеннеди П.Дж., Фенг Дж., Робисон А.Дж., Мейз И., Бадимон А., Музон Э. и др. (апрель 2013 г.). «Ингибирование HDAC класса I блокирует пластичность, вызванную кокаином, путем целенаправленных изменений в метилировании гистонов» . Природная неврология . 16 (4): 434–440. дои : 10.1038/nn.3354 . ПМК 3609040 . ПМИД 23475113 .
- ^ Уолли К. (декабрь 2014 г.). «Психические расстройства: подвиг эпигенетической инженерии» . Обзоры природы. Нейронаука . 15 (12): 768–769. дои : 10.1038/nrn3869 . ПМИД 25409693 . S2CID 11513288 .
- ^ Jump up to: а б Блюм К., Вернер Т., Карнес С., Карнес П., Боуиррат А., Джордано Дж. и др. (март 2012 г.). «Секс, наркотики и рок-н-ролл: гипотеза об общей мезолимбической активации как функции полиморфизма гена вознаграждения» . Журнал психоактивных препаратов . 44 (1): 38–55. дои : 10.1080/02791072.2012.662112 . ПМК 4040958 . ПМИД 22641964 .
Было обнаружено, что ген deltaFosB в NAc имеет решающее значение для усиления эффекта сексуального вознаграждения. Питчерс и его коллеги (2010) сообщили, что сексуальный опыт вызывает накопление DeltaFosB в нескольких лимбических областях мозга, включая NAc, медиальную префронтальную кору, VTA, хвостатое ядро и скорлупу, но не в медиальном преоптическом ядре. ... эти результаты подтверждают критическую роль экспрессии DeltaFosB в NAc в усилении эффектов сексуального поведения и облегчении сексуальной деятельности, вызванном сексуальным опытом. ...как наркомания, так и сексуальная зависимость представляют собой патологические формы нейропластичности наряду с возникновением аберрантного поведения, включающего каскад нейрохимических изменений, главным образом в схемах вознаграждения мозга.
- ^ Питчерс К.К., Виалу В., Нестлер Э.Дж., Лавиолетт С.Р., Леман М.Н., Кулен Л.М. (февраль 2013 г.). «Естественные и лекарственные вознаграждения действуют на общие механизмы нейронной пластичности, при этом ΔFosB является ключевым медиатором» . Журнал неврологии . 33 (8): 3434–3442. doi : 10.1523/JNEUROSCI.4881-12.2013 . ПМЦ 3865508 . ПМИД 23426671 .
- ^ Белоате Л.Н., Уимс П.В., Кейси Г.Р., Уэбб И.К., Кулен Л.М. (февраль 2016 г.). «Активация рецептора NMDA прилежащего ядра регулирует перекрестную сенсибилизацию к амфетамину и экспрессию deltaFosB после сексуального опыта у самцов крыс». Нейрофармакология . 101 : 154–164. doi : 10.1016/j.neuropharm.2015.09.023 . ПМИД 26391065 . S2CID 25317397 .
- ^ Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 16: Подкрепление и аддиктивные расстройства». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). Нью-Йорк: McGraw-Hill Medical. ISBN 9780071827706 .
Фармакологическое лечение зависимости от психостимуляторов, как правило, неудовлетворительно. Как обсуждалось ранее, прекращение употребления кокаина и других психостимуляторов у зависимых лиц не вызывает физического абстинентного синдрома, но может вызвать дисфорию, ангедонию и сильное желание возобновить употребление наркотиков.
- ^ Jump up to: а б с д Чан Б., Фриман М., Кондо К., Айерс С., Монтгомери Дж., Пейнтер Р. и др. (декабрь 2019 г.). «Фармакотерапия расстройств, связанных с употреблением метамфетамина / амфетамина - систематический обзор и метаанализ». Зависимость . 114 (12): 2122–2136. дои : 10.1111/доп.14755 . PMID 31328345 . S2CID 198136436 .
- ^ Ступс WW, Rush CR (май 2014 г.). «Комбинированная фармакотерапия расстройств, вызванных употреблением стимуляторов: обзор клинических данных и рекомендации для будущих исследований» . Экспертное обозрение клинической фармакологии . 7 (3): 363–374. дои : 10.1586/17512433.2014.909283 . ПМК 4017926 . ПМИД 24716825 .
Несмотря на согласованные усилия по поиску фармакотерапии для лечения расстройств, связанных с употреблением стимуляторов, не было одобрено ни одного широко эффективного лекарства.
- ^ Jump up to: а б Гранди Д.К., Миллер ГМ, Ли Дж.С. (февраль 2016 г.). « TAARgeting наркомания» - Аламо является свидетелем еще одной революции: обзор пленарного симпозиума Конференции по поведению, биологии и химии 2015 года» . Наркотическая и алкогольная зависимость . 159 : 9–16. doi : 10.1016/j.drugalcdep.2015.11.014 . ПМЦ 4724540 . ПМИД 26644139 .
При рассмотрении вместе с быстро растущей литературой в этой области возникают убедительные аргументы в пользу разработки селективных агонистов TAAR1 в качестве лекарств для предотвращения рецидива злоупотребления психостимуляторами.
- ^ Jump up to: а б Цзин Л., Ли JX (август 2015 г.). «Рецептор 1, связанный с следами аминов: многообещающая мишень для лечения зависимости от психостимуляторов» . Европейский журнал фармакологии . 761 : 345–352. дои : 10.1016/j.ejphar.2015.06.019 . ПМЦ 4532615 . ПМИД 26092759 .
Существующие данные предоставили надежные доклинические данные, подтверждающие разработку агонистов TAAR1 в качестве потенциального лечения злоупотребления психостимуляторами и зависимости.
- ^ Jump up to: а б Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 5: Возбуждающие и ингибирующие аминокислоты». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. стр. 124–125. ISBN 9780071481274 .
- ^ Jump up to: а б с Кэрролл М.Э., Сметеллс-младший (февраль 2016 г.). «Половые различия в поведенческом дисконтроле: роль в наркозависимости и новых методах лечения» . Границы в психиатрии . 6 : 175. doi : 10.3389/fpsyt.2015.00175 . ПМЦ 4745113 . ПМИД 26903885 .
Физические упражнения
Появляется все больше свидетельств того, что физические упражнения являются полезным средством профилактики и снижения наркотической зависимости... У некоторых людей упражнения имеют свои собственные полезные эффекты, и может возникнуть поведенческое экономическое взаимодействие, при котором физическое и социальное вознаграждение от физических упражнений может заменить собой полезные последствия злоупотребления наркотиками. ... Ценность этой формы лечения наркозависимости у лабораторных животных и людей заключается в том, что физические упражнения, если они могут заменить полезный эффект от наркотиков, могут поддерживаться самостоятельно в течение длительного периода времени. Исследования, проведенные на [лабораторных животных и людях] в отношении физических упражнений в качестве лечения наркозависимости, подтверждают эту гипотезу. ... Исследования на животных и людях по использованию физических упражнений в качестве лечения зависимости от стимуляторов показывают, что это один из самых многообещающих методов лечения на горизонте. - ^ Перес-Мана К, Кастельс Х, Торренс М, Капелла Д, Фарре М (сентябрь 2013 г.). «Эффективность психостимуляторов при злоупотреблении амфетамином или зависимости». Кокрейновская база данных систематических обзоров . 9 (9): CD009695. дои : 10.1002/14651858.CD009695.pub2 . ПМИД 23996457 .
- ^ «Амфетамины: употребление наркотиков и злоупотребление ими» . Руководство Merck, домашняя версия . Мерк. Февраль 2003 г. Архивировано из оригинала 17 февраля 2007 г. Проверено 28 февраля 2007 г.
- ^ Jump up to: а б с д Шопто С.Дж., Као У, Хейнзерлинг К., Линг В. (апрель 2009 г.). Шоптоу С.Дж. (ред.). «Лечение синдрома отмены амфетамина» . Кокрейновская база данных систематических обзоров . 2009 (2): CD003021. дои : 10.1002/14651858.CD003021.pub2 . ПМК 7138250 . ПМИД 19370579 .
Распространенность этого синдрома отмены чрезвычайно распространена (Cantwell 1998; Gossop 1982): 87,6% из 647 человек с амфетаминовой зависимостью сообщают о шести или более признаках отмены амфетамина, перечисленных в DSM, когда препарат недоступен (Schuckit 1999)... Тяжесть абстинентного синдрома выше у пожилых людей, страдающих зависимостью от амфетамина и имеющих более обширные расстройства, связанные с употреблением амфетаминов (McGregor 2005). Симптомы отмены обычно проявляются в течение 24 часов после последнего употребления амфетамина, при этом синдром отмены включает две основные фазы, которые могут длиться 3 недели и более. Первой фазой этого синдрома является первоначальный «крах», который проходит примерно через неделю (Gossop 1982; McGregor 2005).
- ^ Jump up to: а б Спиллер Х.А., Хейс Х.Л., Алегуас А. (июнь 2013 г.). «Передозировка лекарств при синдроме дефицита внимания с гиперактивностью: клиническая картина, механизмы токсичности и лечение» . Препараты ЦНС . 27 (7): 531–543. дои : 10.1007/s40263-013-0084-8 . ПМИД 23757186 . S2CID 40931380 .
Амфетамин, декстроамфетамин и метилфенидат действуют как субстраты для клеточного переносчика моноаминов, особенно переносчика дофамина (DAT) и в меньшей степени переносчика норадреналина (NET) и серотонина. Механизм токсичности в первую очередь связан с избытком внеклеточного дофамина, норадреналина и серотонина.
- ^ Соавторы (2015). «Глобальная, региональная и национальная смертность от всех причин и по конкретным причинам в разбивке по возрасту и по конкретным причинам по 240 причинам смерти, 1990–2013 гг.: систематический анализ для исследования глобального бремени болезней, 2013 г.» . Ланцет . 385 (9963): 117–171. дои : 10.1016/S0140-6736(14)61682-2 . hdl : 11655/15525 . ПМК 4340604 . ПМИД 25530442 .
Расстройства, связанные с употреблением амфетаминов ... 3788 (3425–4145)
- ^ Грин С.Л., Керр Ф., Брайтберг Г. (октябрь 2008 г.). «Обзорная статья: амфетамины и родственные им наркотики, вызывающие злоупотребление». Неотложная медицинская помощь в Австралии . 20 (5): 391–402. дои : 10.1111/j.1742-6723.2008.01114.x . ПМИД 18973636 . S2CID 20755466 .
- ^ Альбертсон Т.Е. (2011). «Амфетамины». В Олсон К.Р., Андерсон И.Б., Беновиц Н.Л., Блан П.Д., Кирни Т.Е., Ким-Кац С.Ю., Ву А.Х. (ред.). Отравление и передозировка наркотиков (6-е изд.). Нью-Йорк: McGraw-Hill Medical. стр. 77–79. ISBN 9780071668330 .
- ^ Адвокат С (июль 2007 г.). «Новая информация о нейротоксичности амфетамина и ее значимости для лечения СДВГ». Журнал расстройств внимания . 11 (1): 8–16. дои : 10.1177/1087054706295605 . ПМИД 17606768 . S2CID 7582744 .
- ^ Jump up to: а б с д Бойер Дж. Ф., Ханиг Дж. П. (ноябрь 2014 г.). «Гипертермия, вызванная амфетамином и метамфетамином: влияние эффектов, оказываемых на сосуды головного мозга и периферические органы, на нейротоксичность переднего мозга» . Температура . 1 (3): 172–182. дои : 10.4161/23328940.2014.982049 . ПМК 5008711 . ПМИД 27626044 .
Гипертермия сама по себе не вызывает нейротоксичности, подобной амфетамину, однако воздействие АМФ и МЕТН, не вызывающее гипертермию (≥40 °C), минимально нейротоксично. Гипертермия, вероятно, усиливает нейротоксичность АМФ и МЕТН непосредственно за счет нарушения функции белка, ионных каналов и усиления продукции АФК. ... Гипертермия и гипертония, вызванные высокими дозами амфетаминов, являются основной причиной временных нарушений гематоэнцефалического барьера (ГЭБ), приводящих к сопутствующей региональной нейродегенерации и нейровоспалению у лабораторных животных. ... На животных моделях, оценивающих нейротоксичность АМФ и МЕТА, совершенно ясно, что гипертермия является одним из важнейших компонентов, необходимых для возникновения гистологических признаков терминального повреждения дофамина и нейродегенерации в коре головного мозга, полосатом теле, таламусе и гиппокампе.
- ^ «Амфетамин» . Национальная медицинская библиотека США – Сеть токсикологических данных . Банк данных об опасных веществах. Архивировано из оригинала 2 октября 2017 года . Проверено 2 октября 2017 г.
Прямое токсическое повреждение сосудов представляется маловероятным из-за разведения, которое происходит до того, как препарат достигнет мозгового кровообращения.
- ^ Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 15: Подкрепление и аддиктивные расстройства». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. п. 370. ИСБН 9780071481274 .
В отличие от кокаина и амфетамина, метамфетамин непосредственно токсичен для дофаминовых нейронов среднего мозга.
- ^ Зульцер Д., Зекка Л. (февраль 2000 г.). «Внутринейронный синтез дофамин-хинона: обзор». Исследования нейротоксичности . 1 (3): 181–195. дои : 10.1007/BF03033289 . ПМИД 12835101 . S2CID 21892355 .
- ^ Миядзаки I, Асанума М (июнь 2008 г.). «Окислительный стресс, специфичный для дофаминергических нейронов, вызванный самим дофамином» (PDF) . Акта Медика Окаяма . 62 (3): 141–150. дои : 10.18926/AMO/30942 . ПМИД 18596830 .
- ^ Хофманн Ф.Г. (1983). Справочник по злоупотреблению наркотиками и алкоголем: биомедицинские аспекты (2-е изд.). Нью-Йорк, США: Издательство Оксфордского университета. п. 329 . ISBN 9780195030570 .
- ^ Jump up to: а б с д и ж г час я дж «Аддералл — сахарат декстроамфетамина, аспартат амфетамина, сульфат декстроамфетамина и таблетка сульфата амфетамина» . ДейлиМед . 27 февраля 2022 г. Проверено 28 марта 2022 г.
- ^ Jump up to: а б с д и ж г час я дж «Аддералл XR - сульфат декстроамфетамина, сахарат декстроамфетамина, сульфат амфетамина и капсула аспартата амфетамина, пролонгированного действия» . ДейлиМед . 3 марта 2022 г. Проверено 28 марта 2022 г.
- ^ Краузе Дж. (апрель 2008 г.). «ОФЭКТ и ПЭТ переносчика дофамина при синдроме дефицита внимания и гиперактивности». Эксперт преподобный Нейротер . 8 (4): 611–625. дои : 10.1586/14737175.8.4.611 . ПМИД 18416663 . S2CID 24589993 .
Цинк связывается с... внеклеточными сайтами DAT [103], выступая в качестве ингибитора DAT. В этом контексте представляют интерес контролируемые двойные слепые исследования на детях, которые показали положительное влияние добавок цинка на симптомы СДВГ [105,106]. Следует отметить, что в настоящее время [добавки] цинка не включены ни в один алгоритм лечения СДВГ.
- ^ Зульцер Д. (февраль 2011 г.). «Как наркотики, вызывающие привыкание, нарушают пресинаптическую дофаминовую нейротрансмиссию» . Нейрон . 69 (4): 628–649. дои : 10.1016/j.neuron.2011.02.010 . ПМК 3065181 . ПМИД 21338876 .
Они не подтвердили предсказанную прямую взаимосвязь между поглощением и высвобождением, а скорее подтвердили то, что некоторые соединения, включая AMPH, были лучшими высвобождающими факторами, чем субстратами для поглощения. Более того, цинк стимулирует отток внутриклеточного [3H]DA, несмотря на сопутствующее ингибирование его захвата (Scholze et al., 2002).
- ^ Jump up to: а б Шольце П., Норрегаард Л., Сингер Э.А., Фрейссмут М., Гетер Ю., Ситте Х.Х. (июнь 2002 г.). «Роль ионов цинка в обратном транспорте, опосредованном переносчиками моноаминов» . Ж. Биол. Хим . 277 (24): 21505–21513. дои : 10.1074/jbc.M112265200 . ПМИД 11940571 .
- ^ Скасселлати С, Бонвичини С, Фараоне С.В., Дженнарелли М (октябрь 2012 г.). «Биомаркеры и синдром дефицита внимания/гиперактивности: систематический обзор и метаанализ». Дж. Ам. акад. Ребенок Подросток. Психиатрия . 51 (10): 1003–1019.e20. дои : 10.1016/j.jaac.2012.08.015 . ПМИД 23021477 .
- ^ Зульцер Д., Крэгг С.Дж., Райс М.Э. (август 2016 г.). «Нейротрансмиссия стриарного дофамина: регуляция высвобождения и поглощения» . Базальные ганглии . 6 (3): 123–148. дои : 10.1016/j.baga.2016.02.001 . ПМК 4850498 . ПМИД 27141430 .
Несмотря на трудности определения pH синаптических везикул, градиент протонов через мембрану везикул имеет фундаментальное значение для ее функции. Воздействие протонофоров на изолированные везикулы катехоламинов разрушает градиент pH и быстро перераспределяет медиатор изнутри пузырька наружу. ... Амфетамин и его производные, такие как метамфетамин, представляют собой слабоосновные соединения и являются единственным широко используемым классом наркотиков, которые, как известно, вызывают высвобождение медиатора по неэкзоцитическому механизму. В качестве субстратов как для DAT, так и для VMAT амфетамины могут переноситься в цитозоль, а затем изолироваться в везикулах, где они действуют, разрушая везикулярный градиент pH.
- ^ Ледонн А., Берретта Н., Даволи А., Риццо Г.Р., Бернарди Дж., Меркури Н.Б. (июль 2011 г.). «Электрофизиологические эффекты следовых аминов на мезэнцефальные дофаминергические нейроны» . Передний. Сист. Нейроски . 5 : 56. дои : 10.3389/fnsys.2011.00056 . ПМК 3131148 . ПМИД 21772817 .
Недавно появились три важных новых аспекта действия ТА: (а) ингибирование возбуждения из-за повышенного высвобождения дофамина; (б) снижение тормозных реакций, опосредованных рецепторами D2 и GABAB (возбуждающие эффекты вследствие растормаживания); и (c) прямая активация GIRK-каналов, опосредованная рецептором TA1, которая вызывает гиперполяризацию клеточной мембраны.
- ^ «ТААР1» . ГенАтлас . Парижский университет. 28 января 2012 года . Проверено 29 мая 2014 г.
• тонически активирует внутренние выпрямляющие K(+) каналы, что снижает базальную частоту импульсов дофаминовых (DA) нейронов вентральной покрышки (VTA)
- ^ Андерхилл С.М., Уилер Д.С., Ли М., Уоттс С.Д., Ингрэм С.Л., Амара С.Г. (июль 2014 г.). «Амфетамин модулирует возбуждающую нейротрансмиссию посредством эндоцитоза транспортера глутамата EAAT3 в дофаминовых нейронах» . Нейрон . 83 (2): 404–416. дои : 10.1016/j.neuron.2014.05.043 . ПМК 4159050 . ПМИД 25033183 .
AMPH также увеличивает внутриклеточный кальций (Gnegy et al., 2004), что связано с активацией кальмодулина/CamKII (Wei et al., 2007), а также модуляцией и транспортировкой DAT (Fog et al., 2006; Sakrikar et al., 2012). ). ... Например, AMPH увеличивает внеклеточный глутамат в различных областях мозга, включая полосатое тело, VTA и NAc (Del Arco et al., 1999; Kim et al., 1981; Mora and Porras, 1993; Xue et al., 1996). , но не установлено, можно ли объяснить это изменение увеличением синаптического высвобождения или снижением клиренса глутамата. ... DHK-чувствительное поглощение EAAT2 не изменялось под действием AMPH (рис. 1А). Оставшийся транспорт глутамата в этих культурах среднего мозга, вероятно, опосредован EAAT3, и этот компонент был значительно уменьшен AMPH.
- ^ Воган Р.А., Фостер Дж.Д. (сентябрь 2013 г.). «Механизмы регуляции транспортера дофамина в норме и при заболеваниях» . Тренды Фармакол. Наука . 34 (9): 489–496. дои : 10.1016/j.tips.2013.07.005 . ПМЦ 3831354 . ПМИД 23968642 .
АМФГ и МЕТН также стимулируют отток ДА, который считается решающим элементом их вызывающих привыкание свойств [80], хотя механизмы, по-видимому, не идентичны для каждого препарата [81]. Эти процессы являются PKCβ- и CaMK-зависимыми [72, 82], а у мышей с нокаутом PKCβ наблюдается снижение индуцированного AMPH оттока, что коррелирует со снижением индуцированной AMPH локомоции [72].
- ^ Jump up to: а б Бунцов Дж.Р., Сондерс М.С., Арттамангкул С., Харрисон Л.М., Чжан Г., Куигли Д.И. и др. (декабрь 2001 г.). «Амфетамин, 3,4-метилендиоксиметамфетамин, диэтиламид лизергиновой кислоты и метаболиты нейротрансмиттеров катехоламинов являются агонистами аминных рецепторов крысы». Молекулярная фармакология . 60 (6): 1181–1188. дои : 10.1124/моль.60.6.1181 . ПМИД 11723224 . S2CID 14140873 .
- ^ Jump up to: а б с д Левин А.Х., Миллер ГМ, Гилмор Б. (декабрь 2011 г.). «Рецептор 1, связанный с следовым амином, представляет собой стереоселективный сайт связывания соединений класса амфетаминов» . Биоорг. Мед. Хим . 19 (23): 7044–7048. дои : 10.1016/j.bmc.2011.10.007 . ПМК 3236098 . ПМИД 22037049 .
- ^ Боровский Б., Адхам Н., Джонс К.А., Раддац Р., Артымишин Р., Огозалек К.Л. и др. (июль 2001 г.). «Следовые амины: идентификация семейства рецепторов млекопитающих, связанных с G-белком» . Труды Национальной академии наук Соединенных Штатов Америки . 98 (16): 8966–8971. Бибкод : 2001PNAS...98.8966B . дои : 10.1073/pnas.151105198 . ПМЦ 55357 . ПМИД 11459929 .
- ^ Jump up to: а б с Westfall DP, Westfall TC (2010). «Разные симпатомиметические агонисты» . В Брантоне Л.Л., Чабнере Б.А., Ноллманне Б.К. (ред.). Фармакологические основы терапии Гудмана и Гилмана (12-е изд.). Нью-Йорк: МакГроу-Хилл. ISBN 978-0-07-162442-8 .
- ^ Jump up to: а б с д и Бродли К.Дж. (март 2010 г.). «Сосудистые эффекты следовых аминов и амфетаминов». Фармакология и терапия . 125 (3): 363–375. doi : 10.1016/j.pharmthera.2009.11.005 . ПМИД 19948186 .
- ^ Jump up to: а б Хан М.З., Наваз В. (октябрь 2016 г.). «Новая роль следовых аминов человека и рецепторов, связанных с следовыми аминами человека (hTAAR), в центральной нервной системе». Биомедицина и фармакотерапия . 83 : 439–449. дои : 10.1016/j.biopha.2016.07.002 . ПМИД 27424325 .
- ^ Jump up to: а б с д и Линдеманн Л., Хонер MC (май 2005 г.). «Ренессанс следовых аминов, вдохновленный новым семейством GPCR». Тенденции в фармакологических науках . 26 (5): 274–281. дои : 10.1016/j.tips.2005.03.007 . ПМИД 15860375 .
- ^ Jump up to: а б с Сантагати Н.А., Феррара Г., Марраццо А., Ронсисвалле Г. (сентябрь 2002 г.). «Одновременное определение амфетамина и одного из его метаболитов методом ВЭЖХ с электрохимическим обнаружением». Журнал фармацевтического и биомедицинского анализа . 30 (2): 247–255. дои : 10.1016/S0731-7085(02)00330-8 . ПМИД 12191709 .
- ^ «Комплексное резюме» . п-Гидроксиамфетамин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Комплексное резюме» . п-Гидроксинорефедрин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Комплексное резюме» . Фенилпропаноламин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Фармакология и биохимия» . Амфетамин. База данных соединений Pubchem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 12 октября 2013 г.
- ^ Jump up to: а б Гленнон Р.А. (2013). «Стимуляторы фенилизопропиламина: агенты, связанные с амфетамином» . В Лемке Т.Л., Уильямс Д.А., Рош В.Ф., Зито В. (ред.). Принципы медицинской химии Фоя (7-е изд.). Филадельфия, США: Wolters Kluwer Health/Lippincott Williams & Wilkins. стр. 646–648. ISBN 9781609133450 .
Простейший незамещенный фенилизопропиламин, 1-фенил-2-аминопропан или амфетамин, служит общей структурной матрицей для галлюциногенов и психостимуляторов. Амфетамин оказывает центральное стимулирующее, аноректическое и симпатомиметическое действие и является прототипом этого класса (39). ... Фаза 1 метаболизма аналогов амфетамина катализируется двумя системами: цитохромом P450 и флавинмонооксигеназой. ... Амфетамин также может подвергаться ароматическому гидроксилированию до п -гидроксиамфетамина. ... Последующее окисление в бензильном положении DA-β-гидроксилазой дает п- гидроксинорэфедрин. Альтернативно, прямое окисление амфетамина DA-β-гидроксилазой может дать норэфедрин.
- ^ Тейлор КБ (январь 1974 г.). «Дофамин-бета-гидроксилаза. Стереохимический ход реакции» (PDF) . Журнал биологической химии . 249 (2): 454–458. дои : 10.1016/S0021-9258(19)43051-2 . ПМИД 4809526 . Проверено 6 ноября 2014 г.
Дофамин-β-гидроксилаза катализирует удаление атома водорода про- R и образование 1-норэфедрина, (2S , 1R ) -2-амино-1-гидроксил-1-фенилпропана из d -амфетамина.
- ^ Кэшман-младший, Сюн Ю.Н., Сюй Л., Яновский А. (март 1999 г.). «N-оксигенация амфетамина и метамфетамина человеческой флавинсодержащей монооксигеназой (форма 3): роль в биоактивации и детоксикации». Журнал фармакологии и экспериментальной терапии . 288 (3): 1251–1260. ПМИД 10027866 .
- ^ Jump up to: а б с Сьердсма А., фон Штудниц В. (апрель 1963 г.). «Активность дофамин-бета-оксидазы у человека при использовании гидроксиамфетамина в качестве субстрата» . Британский журнал фармакологии и химиотерапии . 20 (2): 278–284. дои : 10.1111/j.1476-5381.1963.tb01467.x . ПМК 1703637 . ПМИД 13977820 .
Гидроксиамфетамин вводили перорально пяти людям... Поскольку превращение гидроксиамфетамина в гидроксинорэфедрин происходит in vitro под действием дофамин-β-оксидазы, предложен простой метод измерения активности этого фермента и действия его ингибиторов на человека. . ... Отсутствие эффекта от введения неомицина одному пациенту свидетельствует о том, что гидроксилирование происходит в тканях организма. ... основная часть β-гидроксилирования гидроксиамфетамина происходит в тканях, не относящихся к надпочечникам. К сожалению, в настоящее время нельзя быть полностью уверенным в том, что гидроксилирование гидроксиамфетамина in vivo осуществляется тем же ферментом, который превращает дофамин в норадреналин.
- ^ Jump up to: а б Баденхорст К.П., ван дер Слюс Р., Эразмус Э., ван Дейк А.А. (сентябрь 2013 г.). «Глициновая конъюгация: значение в метаболизме, роль глицин-N-ацилтрансферазы и факторы, влияющие на межиндивидуальные вариации». Экспертное заключение по метаболизму и токсикологии лекарственных средств . 9 (9): 1139–1153. дои : 10.1517/17425255.2013.796929 . ПМИД 23650932 . S2CID 23738007 .
Рисунок 1. Глициновая конъюгация бензойной кислоты. Путь конъюгации глицина состоит из двух этапов. Сначала бензоат лигируется с CoASH с образованием высокоэнергетического тиоэфира бензоил-КоА. Эта реакция катализируется лигазами среднецепочечная кислота HXM-A и HXM-B:CoA и требует энергии в виде АТФ. ... Бензоил-КоА затем конъюгируется с глицином с помощью GLYAT с образованием гиппуровой кислоты, высвобождая CoASH. В дополнение к факторам, перечисленным в рамках, уровни АТФ, КоАСГ и глицина могут влиять на общую скорость пути конъюгации глицина.
- ^ Хорвиц Д., Александр Р.В., Ловенберг В., Кайзер Х.Р. (май 1973 г.). «Дофамин-β-гидроксилаза сыворотки человека. Связь с гипертонией и симпатической активностью». Исследование кровообращения . 32 (5): 594–599. дои : 10.1161/01.RES.32.5.594 . ПМИД 4713201 . S2CID 28641000 .
Биологическое значение различных уровней активности DβH в сыворотке изучали двумя способами. Во-первых, способность in vivo β-гидроксилировать синтетический субстрат гидроксиамфетамин сравнивали у двух субъектов с низкой активностью DβH в сыворотке и у двух субъектов со средней активностью. ... В одном исследовании гидроксиамфетамин (паредрин), синтетический субстрат DβH, вводили субъектам с низким или средним уровнем активности DβH в сыворотке. Процент препарата, гидроксилированного до гидроксинорэфедрина, был сопоставим у всех испытуемых (6,5–9,62) (табл. 3).
- ^ Фриман Джей Джей, Сульсер Ф (декабрь 1974 г.). «Образование п-гидроксинорэфедрина в головном мозге после внутрижелудочкового введения п-гидроксиамфетамина». Нейрофармакология . 13 (12): 1187–1190. дои : 10.1016/0028-3908(74)90069-0 . ПМИД 4457764 .
У видов, у которых основным путем метаболизма является ароматическое гидроксилирование амфетамина, п- гидроксиамфетамин (POH) и п- гидроксинорэфедрин (PHN) могут вносить вклад в фармакологический профиль исходного препарата. ... Расположение реакций p- гидроксилирования и β-гидроксилирования важно для видов, у которых ароматическое гидроксилирование амфетамина является преобладающим путем метаболизма. После системного введения амфетамина крысам ПОН был обнаружен в моче и плазме.
Наблюдаемое отсутствие значительного накопления PHN в головном мозге после внутрижелудочкового введения (+)-амфетамина и образование заметных количеств PHN из (+)-POH в ткани головного мозга in vivo подтверждает точку зрения, что ароматическое гидроксилирование амфетамина после его системное введение происходит преимущественно на периферии, и затем POH транспортируется через гематоэнцефалический барьер, поглощаясь норадренергическими нейронами головного мозга, где (+)-POH преобразуется в везикулах-хранилищах под действием дофамин-β-гидроксилазы в PHN. - ^ Мацуда Л.А., Хэнсон Г.Р., Гибб Дж.В. (декабрь 1989 г.). «Нейрохимические эффекты метаболитов амфетамина на центральные дофаминергические и серотонинергические системы». Журнал фармакологии и экспериментальной терапии . 251 (3): 901–908. ПМИД 2600821 .
Метаболизм p -OHA в p -OHNor хорошо известен, и дофамин-β-гидроксилаза, присутствующая в норадренергических нейронах, может легко превращать p -OHA в p -OHNor после внутрижелудочкового введения.
- ^ «Декседрин» . Медик8 . Архивировано из оригинала 19 декабря 2009 года . Проверено 27 ноября 2013 г.
- ^ «Декстроамфетамин [монография]» . Интернет-психическое здоровье . Архивировано из оригинала 27 апреля 2006 года . Проверено 6 сентября 2015 г.
- ^ «Информация о декседрине: краткий обзор | Weitz & Luxenberg» . Weitzlux.com. 31 августа 2013 года . Проверено 5 января 2017 г.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее — фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–96. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
- ^ Кинг Д.Г. (4 января 2017 г.). «Подделка рецептов» . Международная служба рукописного ввода . Архивировано из оригинала 5 июля 2008 года.
- ^ Ситтиг М (ред.). Энциклопедия фармацевтического производства . Том. 1 (2-е изд.). Публикации Нойеса. ISBN 978-0-8155-1144-1 .
- ^ «Часто задаваемые вопросы по декседрину» . Архивировано из оригинала 17 июня 2011 года.
- ^ Бонне Дж (9 января 2003 г.). « Таблетки Go»: война с наркотиками?» . Новости Эн-Би-Си . Проверено 5 января 2017 г.
- ^ Jump up to: а б Вудринг Дж.К. «Учёные ВВС борются с усталостью лётчиков» . Архивировано из оригинала 14 октября 2012 года . Проверено 5 января 2017 г.
- ^ Эмонсон Д.Л., Вандербек Р.Д. (1995). «Использование амфетаминов в тактических операциях ВВС США во время Щита пустыни и Бури». Авиационная, космическая и экологическая медицина . 66 (3): 260–3. ПМИД 7661838 .
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Смит, Клайн и Френч синтезировали оба изомера и в 1937 году начали продавать d-амфетамин, который был более активным из двух изомеров, под торговым названием декседрин.
- ^ «Лекарства@FDA: Декседрин» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 28 марта 2022 г.
- ^ «Лекарства@FDA: Декседрин» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 28 марта 2022 г.
- ^ «Drugs@FDA: Декседрин: история этикетки и одобрения» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Архивировано из оригинала 28 августа 2021 года . Проверено 30 декабря 2015 г.
02.08.1976... Утверждение
- ^ Член парламента Штроля (март 2011 г.). «Исследования бензедрина Брэдли на детях с поведенческими расстройствами» . Йельский журнал биологии и медицины . 84 (1): 27–33. ПМК 3064242 . ПМИД 21451781 .
Брэдли экспериментировал с сульфатом бензедрина, препаратом, который компания Smith, Kline & French (SKF) продавала врачам в период с 1935 по 1937 год.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Смит, Клайн и Френч представили бензедрин на рынке в 1935 году для лечения нарколепсии (для которой он используется до сих пор), легкой депрессии, постэнцефалитического паркинсонизма и множества других расстройств.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Использование бензедрина для лечения СДВГ резко сократилось после того, как Гросс (1976) сообщил, что рацемат был значительно менее клинически эффективен, чем декседрин. В настоящее время единственное применение l-амфетамина в лекарствах от СДВГ – это смешанные соли/смешанные энантиомеры амфетамина...
- ^ «Лекарственные препараты, одобренные FDA: история маркировки и одобрения (бензедрин)» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 11 марта 2016 г.
Дата принятия решения 11 мая 1982 г., номер дополнения 007, тип одобрения по химическому составу.
- ^ Jump up to: а б с д «Результаты поиска амфетамина по Национальному кодексу лекарств» . Национальный справочник кодов лекарственных средств . США Управление по контролю за продуктами и лекарствами (FDA). Архивировано из оригинала 16 декабря 2013 года . Проверено 16 декабря 2013 г.
- ^ «Mydayis - сульфат декстроамфетамина, сахарат декстроамфетамина, моногидрат аспартата амфетамина и капсула сульфата амфетамина пролонгированного действия» . ДейлиМед . 28 октября 2022 г. Проверено 21 января 2023 г.
- ^ «Adzenys XR-ODT-таблетка амфетамина, распадающаяся при пероральном приеме» . ДейлиМед . 10 марта 2022 г. Проверено 21 января 2023 г.
- ^ «Пакет одобрения лекарств: Adzenys XR-ODT (амфетамин)» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . 27 января 2016 года . Проверено 21 января 2023 г.
- ^ «Эвекео» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 11 августа 2015 г.
- ^ Jump up to: а б «Информация о рецептах Vyvanse» (PDF) . Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США . Shire US Inc., май 2017 г., стр. 17–21 . Проверено 10 июля 2017 г.
- ^ «Зензеди (сульфат декстроамфетамина, USP)» . Zenzedi.com . Проверено 5 января 2017 г.
- ^ «ПроЦентра (сульфат декстроамфетамина 5 мг/5 мл раствор для перорального применения)» . Лаборатории ФСК . Архивировано из оригинала 5 октября 2010 года.
- ^ США 7655630 , Микл Т., Кришнан С., Бишоп Б., Лаудербек С., Монкриф Дж.С., Оберлендер Р., Пиккариелло Т., Пол Б.Дж., Вербицкий CD, «Пролекарства амфетамина, устойчивые к злоупотреблению», выпущены в 2010 г., переданы Takeda Pharmaceutical Co Ltd.
- ^ Хейзелл П. (1995). «Стимулирующее лечение синдрома дефицита внимания и гиперактивности». Австралийский врач . 18 (3): 60–63. дои : 10.18773/austprescr.1995.064 .
- ^ «Фармацевтические услуги» . .health.nsw.gov.au. Архивировано из оригинала 5 мая 2013 года . Проверено 5 января 2017 г.
- ^ «Дексамфетамина сульфат – Лекарственные формы» . Британский национальный формуляр . BMJ Group и Pharmaceutical Press (Королевское фармацевтическое общество) . Проверено 9 ноября 2019 г.
- ^ «Дексамфетамин – назначают генерически» (PDF) . Красные/Янтарные новости (22). Специализированные лекарства Interface Pharmacist Network (IPNSM): 2 ноября 2010 г. Архивировано из оригинала (PDF) 18 мая 2013 г. . Проверено 20 апреля 2012 г.
- ^ Хатсон П.Х., Пенник М., Секер Р. (декабрь 2014 г.). «Доклиническая фармакокинетика, фармакология и токсикология лиздексамфетамина: новое пролекарство d-амфетамина». Нейрофармакология . 87 : 41–50. doi : 10.1016/j.neuropharm.2014.02.014 . ПМИД 24594478 . S2CID 37893582 .
- ^ Элаян I (2006). «NRP-104 (димезилат лиздексамфетамина)» (PDF) . Фармакологический/токсикологический обзор и оценка . Управление по контролю за продуктами и лекарствами США. стр. 18–19.
- ^ Мохаммади М., Ахондзаде С. (сентябрь 2011 г.). «Достижения и соображения в области фармакотерапии синдрома дефицита внимания и гиперактивности» . Акта Медика Ираника . 49 (8): 487–498. ПМИД 22009816 . Проверено 12 марта 2014 г.
- ^ Heal DJ, Buckley NW, Gosden J, Slater N, France CP, Hackett D (октябрь 2013 г.). «Доклиническая оценка дискриминационных и усиливающих свойств лиздексамфетамина по сравнению с D-амфетамином, метилфенидатом и модафинилом». Нейрофармакология . 73 : 348–358. doi : 10.1016/j.neuropharm.2013.05.021 . ПМИД 23748096 . S2CID 25343254 .
- ^ Роули Х.Л., Кулкарни Р., Госден Дж., Браммер Р., Хакетт Д., Хил DJ (ноябрь 2012 г.). «Лисдексамфетамин и d-амфетамин немедленного высвобождения - различия в фармакокинетических/фармакодинамических отношениях, выявленные с помощью микродиализа полосатого тела у свободно передвигающихся крыс с одновременным определением концентрации препарата в плазме и двигательной активности». Нейрофармакология . 63 (6): 1064–1074. doi : 10.1016/j.neuropharm.2012.07.008 . ПМИД 22796358 . S2CID 29702399 .
- ^ «Калькулятор молекулярной массы» . Леннтех . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «Декстроамфетамина сульфат USP» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «D-амфетамина сульфат» . Токрис. 2015 . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «Сульфат амфетамина USP» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ «Декстроамфетамина сахарат» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ «Амфетамина Аспартат» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
Внешние ссылки
[ редактировать ]
- «PIM 178: Сульфат дексамфетамина)». Информационная монография о ядах . Международная программа по химической безопасности (IPCS). Информация о химической безопасности от межправительственных организаций (INCHEM).
- Амфетамин
- Аноректики
- Афродизиаки
- Антигипотензивные средства
- Препараты, действующие на нервную систему
- Энантиочистые препараты
- Эргогенные средства
- Эйфорианты
- Ингибиторы обратного захвата возбуждающих аминокислот
- Усилители моноаминергической активности
- Ноотропы
- Агенты, высвобождающие норэпинефрин-дофамин
- Фенэтиламины
- Стимуляторы
- Замещенные амфетамины
- Агонисты TAAR1
- Лечение синдрома дефицита внимания с гиперактивностью
- Ингибиторы VMAT
- Запрещенные вещества Всемирного антидопингового агентства