Декстроамфетамин
Декстроамфетамин (МНН:дексамфетамин) является мощным центральной нервной системы (ЦНС) стимулятором и энантиомером. [ примечание 1 ] амфетамина , который назначают для лечения синдрома дефицита внимания и гиперактивности (СДВГ) и нарколепсии . [ 11 ] [ 28 ] Он также используется в качестве стимулятора спортивных результатов и когнитивных функций , а также в качестве афродизиака и эйфорианта в рекреационных целях . Декстроамфетамин обычно считается прототипом стимулятора .
Молекула амфетамина существует в виде двух энантиомеров: [ примечание 1 ] левоамфетамин и декстроамфетамин. Декстроамфетамин является правовращающим или «правосторонним» энантиомером и оказывает более выраженное воздействие на центральную нервную систему, чем левоамфетамин. Фармацевтический сульфат декстроамфетамина доступен как в виде фирменного препарата, так и в виде дженерика в различных лекарственных формах . Декстроамфетамин иногда назначают в виде неактивного пролекарства лиздексамфетамина димезилата , который после абсорбции превращается в декстроамфетамин.
Декстроамфетамин, как и другие амфетамины, оказывает стимулирующее действие посредством нескольких различных действий: он ингибирует или обращает вспять белки-переносчики нейротрансмиттеров моноаминовых (а именно переносчиков серотонина , норадреналина и дофамина ) либо через следовые количества аминоассоциированного рецептора 1 (TAAR1), либо через TAAR1-независимый способ при высоких цитозольных концентрациях моноаминовых нейротрансмиттеров. [ 30 ] и он высвобождает эти нейротрансмиттеры из синаптических везикул через везикулярный переносчик моноаминов 2 . [ 31 ] Он также имеет много общих химических и фармакологических свойств с человеческими следовыми аминами , особенно с фенэтиламином и N -метилфенэтиламином , последний является изомером амфетамина, вырабатываемого в организме человека. Он доступен в виде непатентованного лекарства . [ 32 ] В 2021 году это было 17-е место среди наиболее часто назначаемых лекарств в США: на него было выписано более 30,3 миллиона рецептов. [ 33 ] [ 34 ]
Использование
[ редактировать ]Медицинский
[ редактировать ]
Декстроамфетамин используется для лечения синдрома дефицита внимания и гиперактивности (СДВГ) и нарколепсии (расстройства сна). [ 11 ] и иногда его назначают не по назначению при депрессии и ожирении . [ 28 ]
СДВГ
[ редактировать ]Известно, что длительное воздействие амфетамина в достаточно высоких дозах у некоторых видов животных приводит к аномальному развитию дофаминовой системы или повреждению нервов. [ 35 ] [ 36 ] но у людей с СДВГ длительное применение фармацевтических амфетаминов в терапевтических дозах, по-видимому, улучшает развитие мозга и рост нервов. [ 37 ] [ 38 ] [ 39 ] Обзоры исследований магнитно-резонансной томографии (МРТ) показывают, что длительное лечение амфетамином уменьшает нарушения структуры и функций мозга, обнаруженные у пациентов с СДВГ, и улучшает функции некоторых частей мозга, таких как правое хвостатое ядро базальных ганглиев. . [ 37 ] [ 38 ] [ 39 ]
Обзоры клинических исследований стимуляторов установили безопасность и эффективность длительного непрерывного употребления амфетамина для лечения СДВГ. [ 40 ] [ 41 ] [ 42 ] Рандомизированные контролируемые исследования непрерывной стимулирующей терапии для лечения СДВГ, продолжавшиеся 2 года, продемонстрировали эффективность и безопасность лечения. [ 40 ] [ 41 ] Два обзора показали, что длительная непрерывная стимулирующая терапия СДВГ эффективна для уменьшения основных симптомов СДВГ (т. е. гиперактивности, невнимательности и импульсивности), улучшения качества жизни и академической успеваемости, а также улучшения многих функциональных показателей. результаты [ примечание 2 ] по 9 категориям результатов, связанных с учебой, антисоциальным поведением, вождением автомобиля, употреблением немедицинских наркотиков, ожирением, профессией, самооценкой, использованием услуг (т. е. академических, профессиональных, медицинских, финансовых и юридических услуг) и социальной функцией. [ 40 ] [ 42 ] В одном обзоре освещалось девятимесячное рандомизированное контролируемое исследование лечения СДВГ у детей амфетамином, в ходе которого было обнаружено среднее увеличение IQ на 4,5 балла, продолжающееся повышение внимания и продолжающееся снижение деструктивного поведения и гиперактивности. [ 41 ] Другой обзор показал, что, основываясь на самых длительных исследованиях, проведенных на сегодняшний день, стимулирующая терапия на протяжении всей жизни, начинающаяся в детстве, постоянно эффективна для контроля симптомов СДВГ и снижает риск развития расстройств, связанных с употреблением психоактивных веществ , во взрослом возрасте. [ 40 ]
мозга Современные модели СДВГ предполагают, что он связан с функциональными нарушениями в некоторых нейромедиаторных системах ; [ 43 ] Эти функциональные нарушения включают нарушение дофамина нейротрансмиссии в мезокортиколимбической проекции и нейротрансмиссии норадреналина в норадренергических проекциях от голубого пятна к префронтальной коре . [ 43 ] Психостимуляторы, такие как метилфенидат и амфетамин, эффективны при лечении СДВГ, поскольку они повышают активность нейромедиаторов в этих системах. [ 44 ] [ 43 ] [ 45 ] Примерно 80% тех, кто использует эти стимуляторы, отмечают улучшение симптомов СДВГ. [ 46 ] Дети с СДВГ, которые принимают стимулирующие препараты, обычно имеют лучшие отношения со сверстниками и членами семьи, лучше учатся в школе, менее отвлекаются и импульсивны, а также имеют более длительную концентрацию внимания. [ 47 ] [ 48 ] Кокрейновские обзоры [ примечание 3 ] о лечении СДВГ у детей, подростков и взрослых с помощью фармацевтических амфетаминов заявили, что краткосрочные исследования показали, что эти препараты уменьшают тяжесть симптомов, но у них более высокие показатели прекращения приема, чем у нестимулирующих препаратов, из-за их неблагоприятных побочных эффектов . [ 50 ] [ 51 ] Кокрейновский обзор лечения СДВГ у детей с тиковыми расстройствами , такими как синдром Туретта, показал, что стимуляторы в целом не ухудшают тики , но высокие дозы декстроамфетамина могут усугублять тики у некоторых людей. [ 52 ]
Нарколепсия
[ редактировать ]Нарколепсия — хроническое расстройство сна и бодрствования, которое связано с чрезмерной сонливостью в дневное время, катаплексией и снным параличом . [ 53 ] Пациентам с нарколепсией диагностируют либо тип 1, либо тип 2, причем только у первого наблюдаются симптомы катаплексии. [ 54 ] Нарколепсия типа 1 возникает в результате потери примерно 70 000 орексин -высвобождающих нейронов в латеральном гипоталамусе , что приводит к значительному снижению в спинномозговом канале ; уровней орексина [ 55 ] [ 56 ] это снижение является диагностическим биомаркером нарколепсии 1 типа. [ 54 ] Латеральные нейроны орексина гипоталамуса иннервируют все компоненты восходящей ретикулярной активирующей системы (ARAS), которая включает норадренергические , дофаминергические , гистаминэргические и серотонинергические ядра, которые способствуют бодрствованию . [ 56 ] [ 57 ]
Терапевтический механизм действия амфетамина при нарколепсии в первую очередь включает повышение активности моноаминовых нейротрансмиттеров в ARAS. [ 55 ] [ 58 ] [ 59 ] Сюда входят норадренергические нейроны голубого пятна , дофаминергические нейроны вентральной покрышки , гистаминергические нейроны туберомаммилярного ядра и серотонинергические нейроны ядра дорсального шва . [ 57 ] [ 59 ] Декстроамфетамин, более дофаминергический энантиомер амфетамина, особенно эффективен для обеспечения бодрствования, поскольку высвобождение дофамина оказывает наибольшее влияние на активацию коры и когнитивное возбуждение по сравнению с другими моноаминами. [ 55 ] Напротив, левоамфетамин может оказывать больший эффект на катаплексию, симптом, более чувствительный к воздействию норадреналина и серотонина. [ 55 ] Норадренергические и серотонинергические ядра в ARAS участвуют в регуляции цикла быстрого сна и функционируют как клетки с выключенным быстрым сном, при этом влияние амфетамина на норадреналин и серотонин способствует подавлению быстрого сна и возможному уменьшению катаплексии при высоких дозах. . [ 55 ] [ 54 ] [ 57 ]
Руководство по клинической практике Американской академии медицины сна (AASM) 2021 года условно рекомендует декстроамфетамин для лечения нарколепсии как 1-го, так и 2-го типа. [ 60 ] Лечение фармацевтическими амфетаминами обычно менее предпочтительно по сравнению с другими психостимуляторами (например, модафинилом ) и считается вариантом лечения третьей линии . [ 61 ] [ 62 ] [ 63 ] Медицинские обзоры показывают, что амфетамин безопасен и эффективен для лечения нарколепсии. [ 55 ] [ 61 ] [ 60 ] Амфетамин, по-видимому, наиболее эффективен для облегчения симптомов, связанных с гиперсомнолентностью : в трех обзорах обнаружено клинически значимое снижение дневной сонливости у пациентов с нарколепсией. [ 55 ] [ 61 ] [ 60 ] Кроме того, эти обзоры предполагают, что амфетамин может в зависимости от дозы улучшать симптомы катаплексии. [ 55 ] [ 61 ] [ 60 ] Однако качество доказательств этих результатов низкое и, следовательно, отражено в условной рекомендации AASM по использованию декстроамфетамина в качестве варианта лечения нарколепсии. [ 60 ]
Повышение производительности
[ редактировать ]Когнитивная деятельность
[ редактировать ]В 2015 году систематический обзор и метаанализ высококачественных клинических исследований показал, что при использовании в низких (терапевтических) дозах амфетамин вызывает скромные, но однозначные улучшения когнитивных функций, включая рабочую память , долговременную эпизодическую память , тормозной контроль , и некоторые аспекты внимания у нормальных здоровых взрослых; [ 64 ] [ 65 ] Известно, что эти эффекты амфетамина, улучшающие когнитивные функции, частично опосредованы косвенной активацией как дофаминового рецептора D 1, так и адренорецептора α 2 в префронтальной коре головного мозга . [ 44 ] [ 64 ] Систематический обзор 2014 года показал, что низкие дозы амфетамина также улучшают консолидацию памяти , что, в свою очередь, приводит к улучшению запоминания информации . [ 66 ] Терапевтические дозы амфетамина также повышают эффективность кортикальной сети, и этот эффект способствует улучшению рабочей памяти у всех людей. [ 44 ] [ 67 ] Амфетамин и другие стимуляторы СДВГ также улучшают значимость задачи (мотивацию к выполнению задачи) и повышают возбуждение (бодрствование), что, в свою очередь, способствует целенаправленному поведению. [ 44 ] [ 68 ] [ 69 ] Стимуляторы, такие как амфетамин, могут улучшить успеваемость при выполнении сложных и скучных задач и используются некоторыми учащимися в качестве вспомогательного средства для учебы и сдачи тестов. [ 44 ] [ 69 ] [ 70 ] По данным исследований по самоотчетам об употреблении запрещенных стимуляторов, 5–35% студентов колледжей употребляют отвлекаемые стимуляторы СДВГ, которые в основном используются для улучшения успеваемости, а не в качестве рекреационных наркотиков. [ 71 ] [ 72 ] [ 73 ] Однако высокие дозы амфетамина, превышающие терапевтический диапазон, могут влиять на рабочую память и другие аспекты когнитивного контроля. [ 44 ] [ 69 ]
Физическая работоспособность
[ редактировать ]Некоторые спортсмены используют амфетамин из-за его эффектов, улучшающих психологические и спортивные результаты , таких как повышение выносливости и бдительности; [ 74 ] [ 75 ] однако немедицинское употребление амфетамина запрещено на спортивных мероприятиях, которые регулируются коллегиальными, национальными и международными антидопинговыми агентствами. [ 76 ] [ 77 ] Было показано, что у здоровых людей при пероральном приеме терапевтических доз амфетамин увеличивает мышечную силу , ускорение, спортивные результаты в анаэробных условиях и выносливость (т. е. он задерживает наступление усталости ), одновременно улучшая время реакции . [ 74 ] [ 78 ] [ 79 ] Амфетамин улучшает выносливость и время реакции, главным образом, за счет ингибирования обратного захвата и высвобождения дофамина в центральной нервной системе. [ 78 ] [ 79 ] [ 80 ] Амфетамин и другие дофаминергические препараты также увеличивают выходную мощность при фиксированных уровнях воспринимаемой нагрузки , отключая «предохранительный выключатель», позволяя увеличить предел внутренней температуры , чтобы получить доступ к резервной мощности, которая обычно запрещена. [ 79 ] [ 81 ] [ 82 ] В терапевтических дозах побочные эффекты амфетамина не ухудшают спортивные результаты; [ 74 ] [ 78 ] однако в гораздо более высоких дозах амфетамин может вызывать эффекты, которые серьезно ухудшают работоспособность, такие как быстрое разрушение мышц и повышение температуры тела . [ 83 ] [ 78 ]
Рекреационный
[ редактировать ]Декстроамфетамин также используется в рекреационных целях как эйфориант и афродизиак и, как и другие амфетамины, используется в качестве клубного наркотика из-за его энергичного и эйфорического эффекта. Считается, что декстроамфетамин имеет высокий потенциал злоупотребления в рекреационных целях, поскольку люди обычно сообщают о чувстве эйфории , большей бодрости и большей энергии после приема препарата. [ 84 ] [ 85 ] [ 86 ] декстроамфетамина Дофаминергические (полезные) свойства влияют на мезокортиколимбический контур ; группа нейронных структур, ответственных за значимость стимула (т. е. «желание»; желание или жажда вознаграждения и мотивации), положительное подкрепление и положительно валентные эмоции, особенно те, которые связаны с удовольствием . [ 87 ] Большие рекреационные дозы декстроамфетамина могут вызвать симптомы передозировки декстроамфетамина . [ 86 ] Любители развлечений иногда открывают капсулы декседрина и раздавливают их содержимое, чтобы вдуть (внюхать) его или впоследствии растворить в воде и ввести. [ 86 ] Составы с немедленным высвобождением имеют более высокий потенциал злоупотребления при инсуффляции (вдыхании) или внутривенной инъекции из-за более благоприятного фармакокинетического профиля и легкости дробления (особенно таблеток). [ 88 ] [ 89 ]
Причина использования измельченных капсул для инсуффляции и инъекций , очевидно, связана с формами препарата с «мгновенным высвобождением», наблюдаемыми в таблетированных препаратах, которые часто содержат значительное количество неактивных связующих веществ и наполнителей наряду с активным d-амфетамином, таким как декстроза . [ 90 ] Инъекция в кровоток может быть опасной, поскольку нерастворимые наполнители в таблетках могут блокировать мелкие кровеносные сосуды. [ 86 ] Хроническое злоупотребление декстроамфетамином может привести к тяжелой лекарственной зависимости , приводящей к синдрому отмены после прекращения употребления наркотиков. [ 86 ]
Противопоказания
[ редактировать ]По данным Международной программы по химической безопасности (IPCS) и Управления по контролю за продуктами и лекарствами США (USFDA), [ примечание 4 ] амфетамин противопоказан людям, злоупотребляющим наркотиками . [ примечание 5 ] сердечно-сосудистые заболевания , сильное возбуждение или сильная тревога. [ 92 ] [ 83 ] [ 93 ] Он также противопоказан лицам с выраженным атеросклерозом (затвердением артерий), глаукомой (повышенным глазным давлением), гипертиреозом (чрезмерной выработкой гормонов щитовидной железы) или умеренной и тяжелой гипертензией . [ 92 ] [ 83 ] [ 93 ] Эти агентства указывают, что люди, которые испытали аллергические реакции на другие стимуляторы или принимают ингибиторы моноаминоксидазы (ИМАО), не должны принимать амфетамин. [ 92 ] [ 83 ] [ 93 ] хотя было зарегистрировано безопасное одновременное применение амфетамина и ингибиторов моноаминоксидазы. [ 94 ] [ 95 ] Эти агентства также заявляют, что любой человек, страдающий нервной анорексией , биполярным расстройством , депрессией, гипертонией, проблемами печени или почек, манией , психозом , феноменом Рейно , судорогами , щитовидной железы проблемами , тиками или синдромом Туретта , должен следить за своими симптомами во время приема амфетамина. [ 83 ] [ 93 ] Данные исследований на людях показывают, что терапевтическое употребление амфетамина не вызывает аномалий развития у плода или новорожденных (т.е. он не является тератогеном для человека ), однако злоупотребление амфетамином действительно представляет риск для плода. [ 93 ] Также было доказано, что амфетамин проникает в грудное молоко, поэтому IPCS и USFDA советуют матерям избегать грудного вскармливания при его использовании. [ 83 ] [ 93 ] Из-за возможности обратимых нарушений роста, [ примечание 6 ] USFDA советует следить за ростом и весом детей и подростков, которым назначен препарат амфетамина. [ 83 ]
Побочные эффекты
[ редактировать ]Физический
[ редактировать ]Сердечно-сосудистые побочные эффекты могут включать гипертонию или гипотонию из-за вазовагальной реакции , феномен Рейно (снижение притока крови к рукам и ногам) и тахикардию (учащение пульса). [ 83 ] [ 75 ] [ 96 ] Сексуальные побочные эффекты у мужчин могут включать эректильную дисфункцию , частые или длительные эрекции . [ 83 ] Желудочно-кишечные побочные эффекты могут включать боль в животе , запор , диарею и тошноту . [ 5 ] [ 83 ] [ 97 ] Другие потенциальные физические побочные эффекты включают потерю аппетита , помутнение зрения , сухость во рту , чрезмерное скрежетание зубами , кровотечение из носа, обильное потоотделение, медикаментозный ринит (заложенность носа, вызванная приемом лекарств), снижение судорожного порога , тики (тип двигательного расстройства) и потеря веса . [ источники 1 ] Опасные физические побочные эффекты при обычных фармацевтических дозах редки. [ 75 ]
Амфетамин стимулирует медуллярные дыхательные центры , вызывая более быстрое и глубокое дыхание. [ 75 ] У нормального человека при приеме терапевтических доз этот эффект обычно не заметен, но при уже нарушенном дыхании он может быть заметен. [ 75 ] Амфетамин также вызывает сокращение мочевого сфинктера пузыря — мышцы, контролирующей мочеиспускание, что может привести к затруднению мочеиспускания. [ 75 ] Этот эффект может быть полезен при лечении ночного недержания мочи и потери контроля над мочевым пузырем . [ 75 ] Воздействие амфетамина на желудочно-кишечный тракт непредсказуемо. [ 75 ] Если активность кишечника высока, амфетамин может снизить перистальтику желудочно-кишечного тракта (скорость, с которой содержимое проходит через пищеварительную систему); [ 75 ] однако амфетамин может усиливать моторику при расслаблении гладких мышц тракта. [ 75 ] Амфетамин также обладает легким обезболивающим эффектом и может усиливать обезболивающее действие опиоидов . [ 5 ] [ 75 ]
Исследования, проведенные по заказу USFDA в 2011 году, показывают, что у детей, молодых людей и взрослых нет связи между серьезными неблагоприятными сердечно-сосудистыми событиями ( внезапная смерть , сердечный приступ и инсульт ) и медицинским использованием амфетамина или других стимуляторов СДВГ. [ источники 2 ] Однако фармацевтические препараты амфетамина противопоказаны лицам с сердечно-сосудистыми заболеваниями . [ источники 3 ]
Психологический
[ редактировать ]В обычных терапевтических дозах наиболее распространенные психологические побочные эффекты амфетамина включают повышенную бдительность , тревожность, концентрацию , инициативность, уверенность в себе и общительность, перепады настроения ( приподнятое настроение сменяется легким депрессивным настроением ), бессонницу или бодрствование , а также снижение чувства усталости. . [ 83 ] [ 75 ] Менее распространенные побочные эффекты включают тревогу , изменение либидо , грандиозность , раздражительность , повторяющееся или навязчивое поведение и беспокойство; [ источники 4 ] эти эффекты зависят от личности пользователя и текущего психического состояния. [ 75 ] Амфетаминовый психоз (например, бред и паранойя ) может возникнуть у заядлых потребителей. [ 83 ] [ 105 ] [ 106 ] Хотя этот психоз встречается очень редко, он также может возникать при приеме терапевтических доз во время длительной терапии. [ 83 ] [ 106 ] [ 107 ] По данным USFDA, «нет систематических доказательств» того, что стимуляторы вызывают агрессивное поведение или враждебность. [ 83 ]
Также было показано, что амфетамин вызывает обусловленное предпочтение места у людей, принимающих терапевтические дозы. [ 50 ] [ 108 ] Это означает, что люди приобретают предпочтение проводить время в местах, где они ранее употребляли амфетамин. [ 108 ] [ 109 ]
Нарушения подкрепления
[ редактировать ]Зависимость
[ редактировать ]Словарь наркомании и зависимости [ 109 ] [ 110 ] [ 111 ] |
---|
Глоссарий факторов транскрипции |
---|
![]() |
Зависимость представляет собой серьезный риск при интенсивном рекреационном употреблении амфетамина, но маловероятно, что она возникнет при длительном медицинском применении в терапевтических дозах; [ 119 ] [ 120 ] [ 61 ] Фактически, пожизненная стимулирующая терапия СДВГ, начинающаяся в детстве, снижает риск развития расстройств, связанных с употреблением психоактивных веществ , во взрослом возрасте. [ 40 ] Патологическая гиперактивация мезолимбического пути , дофаминового пути , который соединяет вентральную область покрышки с прилежащим ядром , играет центральную роль в амфетаминовой зависимости. [ 121 ] [ 122 ] Лица, которые часто самостоятельно принимают высокие дозы амфетамина, имеют высокий риск развития амфетаминовой зависимости, поскольку хроническое употребление высоких доз постепенно увеличивает уровень прилежащего ΔFosB , «молекулярного переключателя» и «главного контролирующего белка» зависимости. [ 110 ] [ 123 ] [ 124 ] Как только прилежащее ядро ΔFosB достаточно сверхэкспрессируется, оно начинает увеличивать тяжесть аддиктивного поведения (т.е. компульсивного поиска наркотиков) с дальнейшим увеличением его экспрессии. [ 123 ] [ 125 ] Хотя в настоящее время не существует эффективных лекарств для лечения амфетаминовой зависимости, регулярные занятия аэробными упражнениями, по-видимому, снижают риск развития такой зависимости. [ 126 ] [ 127 ] Лечебная физкультура улучшает результаты клинического лечения и может использоваться в качестве дополнительной терапии к поведенческой терапии зависимости. [ 126 ] [ 128 ] [ источники 5 ]
Биомолекулярные механизмы
[ редактировать ]Хроническое употребление амфетамина в чрезмерных дозах вызывает изменения в экспрессии генов в мезокортиколимбической проекции , которые возникают посредством транскрипционных и эпигенетических механизмов. [ 124 ] [ 129 ] [ 130 ] Наиболее важные факторы транскрипции [ примечание 7 ] Эти изменения вызывают гомолог B вирусного онкогена мышиной остеосаркомы Delta FBJ ( ΔFosB ), цАМФ белок, связывающий элемент ответа ( CREB ) и ядерный фактор-каппа B ( NF-κB ). [ 124 ] ΔFosB является наиболее значимым биомолекулярным механизмом при зависимости, поскольку сверхэкспрессия ΔFosB (т.е. аномально высокий уровень экспрессии генов, который приводит к выраженному фенотипу , связанному с геном ) в D1-типа средних шиповатых нейронах в прилежащем ядре необходима и достаточна. [ примечание 8 ] для многих нейронных адаптаций и регулирует многочисленные поведенческие эффекты (например, повышение чувствительности к вознаграждению и эскалацию самостоятельного приема наркотиков ), связанные с зависимостью. [ 110 ] [ 123 ] [ 124 ] Как только ΔFosB достаточно сверхэкспрессируется, это вызывает состояние зависимости, которое становится все более тяжелым по мере дальнейшего увеличения экспрессии ΔFosB. [ 110 ] [ 123 ] Это связано, среди прочего, с зависимостью от алкоголя , каннабиноидов , кокаина , метилфенидата , никотина , опиоидов , фенциклидина , пропофола и замещенных амфетаминов . [ источники 6 ]
ΔJunD , фактор транскрипции, и G9a , фермент гистон-метилтрансферазы , оба противодействуют функции ΔFosB и ингибируют увеличение его экспрессии. [ 110 ] [ 124 ] [ 134 ] Достаточно сверхэкспрессия ΔJunD в прилежащем ядре с помощью вирусных векторов может полностью блокировать многие нервные и поведенческие изменения, наблюдаемые при хроническом злоупотреблении наркотиками (т.е. изменения, опосредованные ΔFosB). [ 124 ] Аналогичным образом, аккумбальная гиперэкспрессия G9a приводит к заметному увеличению гистона 9 лизина остатка 3 диметилирования ( H3K9me2 ) и блокирует индукцию ΔFosB-опосредованной нейронной и поведенческой пластичности при хроническом употреблении наркотиков. [ источники 7 ] который происходит посредством H3K9me2 -опосредованной репрессии транскрипционных факторов для ΔFosB и H3K9me2-опосредованной репрессии различных ΔFosB-мишеней транскрипции (например, CDK5 ). [ 124 ] [ 134 ] [ 135 ] ΔFosB также играет важную роль в регулировании поведенческих реакций на естественные вознаграждения , такие как вкусная еда, секс и физические упражнения. [ 125 ] [ 124 ] [ 138 ] Поскольку и естественные вознаграждения, и наркотики, вызывающие привыкание, вызывают экспрессию ΔFosB (т. е. заставляют мозг производить его в большем количестве), хроническое приобретение этих вознаграждений может привести к аналогичному патологическому состоянию зависимости. [ 125 ] [ 124 ] Следовательно, ΔFosB является наиболее значимым фактором, участвующим как в амфетаминовой зависимости, так и в сексуальной зависимости, вызванной амфетамином , которая представляет собой компульсивное сексуальное поведение, возникающее в результате чрезмерной сексуальной активности и употребления амфетамина. [ 125 ] [ 139 ] [ 140 ] Эти сексуальные пристрастия связаны с синдромом нарушения регуляции дофамина , который возникает у некоторых пациентов, принимающих дофаминергические препараты . [ 125 ] [ 138 ]
Эффекты амфетамина на регуляцию генов зависят как от дозы, так и от пути введения. [ 130 ] Большая часть исследований по регуляции генов и зависимости основана на исследованиях на животных с внутривенным введением амфетамина в очень высоких дозах. [ 130 ] Несколько исследований, в которых использовались эквивалентные (с поправкой на вес) терапевтические дозы для человека и пероральное введение, показывают, что эти изменения, если они и происходят, относительно незначительны. [ 130 ] Это говорит о том, что медицинское использование амфетамина не оказывает существенного влияния на регуляцию генов. [ 130 ]
Фармакологическое лечение
[ редактировать ]По состоянию на декабрь 2019 года [update] не существует . Эффективной фармакотерапии амфетаминовой зависимости [ 141 ] [ 142 ] [ 143 ] Обзоры 2015 и 2016 годов показали, что селективные агонисты TAAR1 обладают значительным терапевтическим потенциалом для лечения зависимости от психостимуляторов; [ 144 ] [ 145 ] однако по состоянию на февраль 2016 г. [update] Единственными соединениями, которые, как известно, действуют как селективные агонисты TAAR1, являются экспериментальные препараты . [ 144 ] [ 145 ] Зависимость от амфетамина в значительной степени опосредована повышенной активацией рецепторов дофамина и совместно локализованных рецепторов NMDA. [ примечание 9 ] в прилежащем ядре; [ 122 ] Ионы магния ингибируют рецепторы NMDA, блокируя кальциевый канал рецептора . [ 122 ] [ 146 ] В одном обзоре было высказано предположение, что на основании испытаний на животных патологическое (вызывающее зависимость) использование психостимуляторов значительно снижает уровень внутриклеточного магния по всему мозгу. [ 122 ] Дополнительный магний [ примечание 10 ] Было показано, что лечение снижает уровень самостоятельного приема амфетамина (т.е. доз, принимаемых самому себе) у людей, но оно не является эффективной монотерапией при амфетаминовой зависимости. [ 122 ]
Систематический обзор и метаанализ 2019 года оценили эффективность 17 различных фармакотерапевтических методов, использованных в рандомизированных контролируемых исследованиях (РКИ) при лечении зависимости от амфетамина и метамфетамина; [ 142 ] было обнаружено лишь слабые доказательства того, что метилфенидат может снизить уровень самостоятельного приема амфетамина или метамфетамина. [ 142 ] Имелись доказательства от низкой до умеренной степени отсутствия пользы для большинства других препаратов, использованных в РКИ, включая антидепрессанты (бупропион, миртазапин , сертралин ), нейролептики ( арипипразол ), противосудорожные средства ( топирамат , баклофен , габапентин ), налтрексон , варениклин . , цитиколин , ондансетрон , промета , рилузол , атомоксетин , декстроамфетамин и модафинил . [ 142 ]
Поведенческие методы лечения
[ редактировать ]Систематический обзор и сетевой метаанализ 50 исследований, проведенных в 2018 году с участием 12 различных психосоциальных вмешательств при амфетаминовой, метамфетаминовой или кокаиновой зависимости, показали, что комбинированная терапия, сочетающая как управление непредвиденными обстоятельствами , так и подход к укреплению сообщества, имела самую высокую эффективность (т. е. уровень воздержания) и приемлемость ( т. т.е. самый низкий процент отсева). [ 147 ] Другие методы лечения, рассмотренные в анализе, включали монотерапию с подходом управления непредвиденными обстоятельствами или подходом укрепления сообщества, когнитивно-поведенческую терапию , 12-шаговые программы , необусловленную терапию, основанную на вознаграждении, психодинамическую терапию и другие комбинированные методы лечения, включающие их. [ 147 ]
Кроме того, исследования нейробиологического воздействия физических упражнений показывают, что ежедневные аэробные упражнения, особенно упражнения на выносливость (например, марафонский бег ), предотвращают развитие наркозависимости и являются эффективной дополнительной терапией (т. е. дополнительным лечением) при амфетаминовой зависимости. [ источники 5 ] Физические упражнения приводят к лучшим результатам лечения, если их использовать в качестве вспомогательного лечения, особенно при зависимости от психостимуляторов. [ 126 ] [ 128 ] [ 148 ] В частности, аэробные упражнения уменьшают самостоятельное введение психостимуляторов, уменьшают вероятность возобновления (т.е. рецидива) поиска наркотиков и индуцируют увеличение плотности дофаминовых рецепторов D2 ( DRD2) в полосатом теле . [ 125 ] [ 148 ] Это противоположность использованию патологических стимуляторов, которое вызывает снижение плотности DRD2 в полосатом теле. [ 125 ] В одном обзоре отмечалось, что физические упражнения могут также предотвратить развитие наркозависимости путем изменения ΔFosB или c-Fos иммунореактивности в полосатом теле или других частях системы вознаграждения . [ 127 ]
Форма нейропластичности или поведенческая пластичность |
Тип подкрепления | Источники | |||||
---|---|---|---|---|---|---|---|
Опиаты | Психостимуляторы | Пища с высоким содержанием жира или сахара | Половой акт | Физические упражнения (аэробный) |
Относящийся к окружающей среде обогащение | ||
Экспрессия ΔFosB в прилежащее ядро D1-типа MSN |
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | [ 125 ] |
Поведенческая пластичность | |||||||
Увеличение потребления | Да | Да | Да | [ 125 ] | |||
Психостимуляторы перекрестная сенсибилизация |
Да | Непригодный | Да | Да | Ослабленный | Ослабленный | [ 125 ] |
Психостимуляторы самоуправление |
↑ | ↑ | ↓ | ↓ | ↓ | [ 125 ] | |
Психостимуляторы обусловленное предпочтение места |
↑ | ↑ | ↓ | ↑ | ↓ | ↑ | [ 125 ] |
Восстановление поведения, связанного с употреблением наркотиков | ↑ | ↑ | ↓ | ↓ | [ 125 ] | ||
Нейрохимическая пластичность | |||||||
CREB Tooltip Фосфорилирование в прилежащем ядре |
↓ | ↓ | ↓ | ↓ | ↓ | [ 125 ] | |
Сенсибилизированная дофаминовая реакция в прилежащем ядре |
Нет | Да | Нет | Да | [ 125 ] | ||
Измененная в полосатом теле передача сигналов дофамина | ↓ DRD2 , ↑ DRD3 | ↑ DRD1 , ↓ DRD2 , ↑ DRD3 | ↑ DRD1 , ↓ DRD2 , ↑ DRD3 | ↑ DRD2 | ↑ DRD2 | [ 125 ] | |
Измененная передача сигналов опиоидов в полосатом теле | Никаких изменений или ↑ мю-опиоидные рецепторы |
↑ мю-опиоидные рецепторы ↑ κ-опиоидные рецепторы |
↑ мю-опиоидные рецепторы | ↑ мю-опиоидные рецепторы | Без изменений | Без изменений | [ 125 ] |
Изменения в полосатых опиоидных пептидах | ↑ dynorphin Без изменений: энкефалин |
↑ dynorphin | ↓ enkephalin | ↑ dynorphin | ↑ dynorphin | [ 125 ] | |
Мезокортиколимбическая синаптическая пластичность | |||||||
Количество дендритов в прилежащем ядре | ↓ | ↑ | ↑ | [ 125 ] | |||
Плотность дендритных шипов в ядро прилежащее |
↓ | ↑ | ↑ | [ 125 ] |
Зависимость и абстиненция
[ редактировать ]Толерантность к наркотикам быстро развивается при злоупотреблении амфетамином (т.е. при рекреационном употреблении амфетамина), поэтому периоды длительного злоупотребления требуют все более высоких доз препарата для достижения того же эффекта. [ 149 ] [ 150 ] Согласно Кокрейновскому обзору синдрома отмены у людей, которые компульсивно употребляют амфетамин и метамфетамин, «когда хронические заядлые потребители внезапно прекращают употребление амфетамина, многие сообщают о ограниченном по времени синдроме отмены, который возникает в течение 24 часов после приема последней дозы». [ 151 ] В этом обзоре отмечается, что симптомы абстиненции у хронических потребителей высоких доз наблюдаются часто, встречаются примерно в 88% случаев и сохраняются в течение 3–4 недель, при этом в течение первой недели возникает выраженная фаза «кризиса». [ 151 ] Симптомы отмены амфетамина могут включать тревогу, тягу к наркотикам , депрессивное настроение , усталость , повышенный аппетит , увеличение или уменьшение двигательной активности , отсутствие мотивации, бессонницу или сонливость, а также осознанные сновидения . [ 151 ] Обзор показал, что тяжесть абстинентного синдрома положительно коррелирует с возрастом человека и степенью его зависимости. [ 151 ] Легких симптомов абстиненции при прекращении лечения амфетамином в терапевтических дозах можно избежать путем снижения дозы. [ 5 ]
Передозировка
[ редактировать ]Передозировка амфетамина может привести к множеству различных симптомов, но при соответствующем уходе редко приводит к летальному исходу. [ 5 ] [ 93 ] [ 152 ] Тяжесть симптомов передозировки увеличивается с увеличением дозы и уменьшается с увеличением толерантности к амфетамину. [ 75 ] [ 93 ] Известно, что толерантные люди принимают до 5 граммов амфетамина в день, что примерно в 100 раз превышает максимальную дневную терапевтическую дозу. [ 93 ] Симптомы умеренной и чрезвычайно большой передозировки перечислены ниже; Смертельное отравление амфетамином обычно сопровождается судорогами и комой . [ 83 ] [ 75 ] В 2013 году передозировка амфетамина, метамфетамина и других соединений, вызывающих « расстройство, связанное с употреблением амфетамина », привела, по оценкам, к 3788 смертельным случаям во всем мире ( 3425–4145 смертей, достоверность 95% ). [ примечание 11 ] [ 153 ]
Система | Незначительная или умеренная передозировка. [ 83 ] [ 75 ] [ 93 ] | Тяжелая передозировка [ источники 8 ] |
---|---|---|
Сердечно-сосудистая система |
| |
Центральная нервная система |
|
|
Опорно-двигательный аппарат |
| |
Дыхательная система |
|
|
Мочевой |
|
|
Другой |
|
|
Токсичность
[ редактировать ]У грызунов и приматов достаточно высокие дозы амфетамина вызывают дофаминергическую нейротоксичность или повреждение дофаминовых нейронов, которое характеризуется терминальной дегенерацией дофамина и снижением функции транспортера и рецептора. [ 156 ] [ 157 ] Нет никаких доказательств того, что амфетамин непосредственно нейротоксичен для человека. [ 158 ] [ 159 ] Однако большие дозы амфетамина могут косвенно вызывать дофаминергическую нейротоксичность в результате гиперпирексии , избыточного образования активных форм кислорода и повышенного аутоокисления дофамина. [ источники 9 ] Модели нейротоксичности на животных в результате воздействия высоких доз амфетамина показывают, что возникновение гиперпирексии (т.е. внутренняя температура тела ≥ 40 °C) необходимо для развития нейротоксичности, вызванной амфетамином. [ 157 ] Длительное повышение температуры мозга выше 40 °C, вероятно, способствует развитию нейротоксичности, вызванной амфетамином, у лабораторных животных, способствуя выработке активных форм кислорода, нарушая функцию клеточных белков и временно увеличивая проницаемость гематоэнцефалического барьера . [ 157 ]
Психоз
[ редактировать ]Передозировка амфетамина может привести к стимулирующему психозу, который может включать различные симптомы, такие как бред и паранойя. [ 105 ] [ 106 ] В Кокрейновском обзоре лечения психозов амфетамина, декстроамфетамина и метамфетамина говорится, что около 5–15% потребителей не могут полностью выздороветь. [ 105 ] [ 162 ] Согласно тому же обзору, существует по крайней мере одно исследование, которое показывает, что антипсихотические препараты эффективно устраняют симптомы острого амфетаминового психоза. [ 105 ] Психоз редко возникает в результате терапевтического применения. [ 83 ] [ 106 ] [ 107 ]
Взаимодействия
[ редактировать ]Известно, что многие типы веществ взаимодействуют с амфетамином, что приводит к изменению действия препарата или метаболизма амфетамина, взаимодействующего вещества или того и другого. [ 20 ] [ 163 ] [ 164 ] Ингибиторы ферментов, метаболизирующих амфетамин (например, CYP2D6 и FMO3 ), продлевают период полувыведения , а это означает, что его эффекты будут длиться дольше. [ 27 ] [ 163 ] [ 164 ] Амфетамин также взаимодействует с ИМАО , особенно с ингибиторами моноаминоксидазы А , поскольку и ИМАО, и амфетамин повышают уровень катехоламинов в плазме (т. е. норадреналина и дофамина); [ 163 ] [ 164 ] поэтому одновременное использование обоих опасно. [ 163 ] [ 164 ] Амфетамин модулирует действие большинства психоактивных веществ. В частности, амфетамин может снижать действие седативных и депрессантов и усиливать действие стимуляторов и антидепрессантов . [ 163 ] [ 164 ] Амфетамин также может снижать действие антигипертензивных и антипсихотических средств из-за его влияния на артериальное давление и дофамин соответственно. [ 163 ] [ 164 ] Добавки цинка могут снизить минимальную эффективную дозу амфетамина, когда он используется для лечения СДВГ. [ примечание 12 ] [ 168 ]
Фармакология
[ редактировать ]Фармакодинамика
[ редактировать ]Фармакодинамика амфетамина в дофаминовом нейроне
![]() |
Амфетамин и его энантиомеры были идентифицированы как мощные полные агонисты следового аминоассоциированного рецептора 1 (TAAR1), GPCR , открытого в 2001 году и важного для регуляции моноаминергических систем головного мозга. [ 174 ] [ 175 ] Активация TAAR1 увеличивает цАМФ выработку посредством активации аденилатциклазы и ингибирует функцию переносчика дофамина , переносчика норэпинефрина и переносчика серотонина , а также индуцирует высвобождение этих моноаминовых нейротрансмиттеров (эффлюксия). [ 30 ] [ 174 ] [ 176 ] Энантиомеры амфетамина также являются субстратами для специфического транспортера захвата синаптических везикул нейронов, называемого VMAT2 . [ 31 ] Когда амфетамин поглощается VMAT2 , везикула в обмен высвобождает (выводит) дофамин, норадреналин и серотонин, а также другие моноамины. [ 31 ]
Декстроамфетамин ( энантиомер имеют идентичную фармакодинамику , правовращающий энантиомер) и левовращающий но их аффинность связывания с биомолекулярными мишенями различается. [ 175 ] [ 177 ] Декстроамфетамин является более сильным агонистом TAAR1, чем левоамфетамин. [ 175 ] Следовательно, декстроамфетамин вызывает примерно в три-четыре раза большую стимуляцию центральной нервной системы (ЦНС), чем левоамфетамин; [ 175 ] [ 177 ] однако левоамфетамин оказывает несколько более сильное сердечно-сосудистое и периферическое действие. [ 177 ]
Родственные эндогенные соединения
[ редактировать ]Амфетамин имеет очень похожую структуру и функцию на эндогенные следовые амины, которые являются природными молекулами -нейромодуляторами, вырабатываемыми в организме и мозге человека. [ 30 ] [ 178 ] [ 179 ] Среди этой группы наиболее близкими соединениями являются фенэтиламин , исходное соединение амфетамина, и N -метилфенэтиламин , структурный изомер амфетамина (т.е. он имеет идентичную молекулярную формулу). [ 30 ] [ 178 ] [ 180 ] У людей фенэтиламин вырабатывается непосредственно из L-фенилаланина с помощью фермента декарбоксилазы ароматических аминокислот превращает L-ДОФА в дофамин. (AADC), который также [ 178 ] [ 180 ] В свою очередь, N -метилфенэтиламин метаболизируется из фенэтиламина с помощью фенилэтаноламин- N -метилтрансферазы , того же фермента, который метаболизирует норадреналин в адреналин. [ 178 ] [ 180 ] Как и амфетамин, и фенэтиламин, и N -метилфенэтиламин регулируют нейротрансмиссию моноаминов через TAAR1 ; [ 30 ] [ 179 ] [ 180 ] в отличие от амфетамина, оба этих вещества расщепляются моноаминоксидазой B и поэтому имеют более короткий период полураспада, чем амфетамин. [ 178 ] [ 180 ]
Фармакокинетика
[ редактировать ]Пероральная биодоступность амфетамина зависит от pH желудочно-кишечного тракта; [ 83 ] он хорошо всасывается из кишечника, а биодоступность обычно составляет 90%. [ 14 ] Амфетамин является слабым основанием с p K a 9,9; [ 20 ] следовательно, когда pH является основным, большая часть препарата находится в жирорастворимой форме свободного основания и большая часть абсорбируется через богатые липидами клеточные мембраны кишечника эпителия . [ 20 ] [ 83 ] И наоборот, кислый pH означает, что лекарство находится преимущественно в водорастворимой катионной (солевой) форме и всасывается меньше. [ 20 ] Примерно 20% амфетамина, циркулирующего в кровотоке, связано с белками плазмы . [ 15 ] После абсорбции амфетамин легко распределяется в большинстве тканей организма, при этом высокие концентрации наблюдаются в спинномозговой жидкости и головного мозга . тканях [ 22 ]
Период полураспада энантиомеров амфетамина различается и зависит от pH мочи. [ 20 ] При нормальном pH мочи период полувыведения декстроамфетамина и левоамфетамина составляет 9–11 часов и 11–14 часов соответственно. [ 20 ] Сильно кислая моча сокращает период полураспада энантиомеров до 7 часов; [ 22 ] сильнощелочная моча увеличит период полувыведения до 34 часов. [ 22 ] Варианты солей обоих изомеров с немедленным высвобождением и пролонгированным высвобождением достигают пиковых концентраций в плазме через 3 и 7 часов после приема дозы соответственно. [ 20 ] Амфетамин выводится через почки , при этом 30–40% препарата выводится в неизмененном виде при нормальном pH мочи. [ 20 ] Когда pH мочи основной, амфетамин находится в форме свободного основания, поэтому выводится меньше. [ 20 ] Когда pH мочи ненормальный, выделение амфетамина с мочой может варьироваться от 1% до 75%, в основном в зависимости от того, является ли моча слишком щелочной или кислой соответственно. [ 20 ] После перорального приема амфетамин появляется в моче в течение 3 часов. [ 22 ] Примерно 90% принятого амфетамина выводится через 3 дня после последней пероральной дозы. [ 22 ]
CYP2D6 , дофамин-β-гидроксилаза (DBH), флавинсодержащая монооксигеназа 3 (FMO3), бутират-КоА-лигаза (XM-лигаза) и глицин- N -ацилтрансфераза (GLYAT) являются ферментами, которые, как известно, метаболизируют амфетамин или его метаболиты у человека. [ источники 10 ] Амфетамин имеет множество выделяемых метаболических продуктов, включая 4-гидроксиамфетамин , 4-гидроксинорэфедрин , 4-гидроксифенилацетон , бензойную кислоту , гиппуровую кислоту , норэфедрин и фенилацетон . [ 20 ] [ 181 ] Среди этих метаболитов активными симпатомиметиками являются 4-гидроксиамфетамин , [ 182 ] 4-гидроксинорэфедрин , [ 183 ] и норэфедрин. [ 184 ] Основные пути метаболизма включают ароматическое парагидроксилирование, алифатическое альфа- и бета-гидроксилирование, N -окисление, N -дезалкилирование и дезаминирование. [ 20 ] [ 185 ] Известные метаболические пути, обнаруживаемые метаболиты и метаболизирующие ферменты у человека включают следующее:
Метаболические пути амфетамина у человека [ источники 10 ]
![]() |
История, общество и культура
[ редактировать ]Рацемический амфетамин был впервые синтезирован под химическим названием «фенилизопропиламин» в Берлине в 1887 году румынским химиком Лазаром Эделеану . Он не продавался широко до 1932 года, когда фармацевтическая компания Smith, Kline & French (теперь известная как GlaxoSmithKline ) представила его в форме ингалятора бензедрина для использования в качестве бронходилятатора . Примечательно, что амфетамин, содержащийся в ингаляторе с бензедрином, представлял собой жидкое свободное основание. [ примечание 14 ] не хлорид или сульфатная соль.
Три года спустя, в 1935 году, медицинскому сообществу стало известно о стимулирующих свойствах амфетамина, особенно изомера декстроамфетамина, и в 1937 году Смит, Клайн и Френч представили таблетки под торговой маркой «Декседрин». [ 194 ] В США декседрин был одобрен для лечения нарколепсии и нарушений внимания . [ 11 ] В Канаде показаниями когда-то были эпилепсия и паркинсонизм. [ 195 ] В последующие десятилетия декстроамфетамин продавался в различных других формах, в первую очередь Смитом, Клайном и Френчем, например, в виде нескольких комбинированных препаратов, включая смесь декстроамфетамина и амобарбитала ( барбитурата ), продаваемых под торговым названием Дексамил , а в 1950-х годах - расширенного капсула выпуска («Спансула»). [ 196 ] Препараты, содержащие декстроамфетамин, также использовались во время Второй мировой войны для лечения усталости. [ 197 ]
Быстро стало очевидно, что декстроамфетамин и другие амфетамины имеют высокий потенциал злоупотребления , хотя они не контролировались строго до 1970 года, когда Закон о комплексном предотвращении и контроле над злоупотреблением наркотиками Конгресс США принял . Декстроамфетамин, наряду с другими симпатомиметиками, в конечном итоге был отнесен к Списку II, самой строгой категории, возможной для препарата с санкционированным правительством и признанным медицинским применением. [ 198 ] На международном уровне он доступен под названиями AmfeDyn (Италия), Curban (США), Obetrol (Швейцария), Simpamina (Италия), Dexedrine/GSK (США и Канада), Dexedrine/UCB (Великобритания), Dextropa (Португалия). и Стилд (Испания). [ 199 ] Он стал популярен на мод- сцене в Англии в начале 1960-х и распространился на сцену Northern Soul на севере Англии до конца 1970-х.
In October 2010, GlaxoSmithKline sold the rights for Dexedrine Spansule to Amedra Pharmaceuticals (a subsidiary of CorePharma).[200]
The U.S. Air Force uses dextroamphetamine as one of its "go pills", given to pilots on long missions to help them remain focused and alert. Conversely, "no-go pills" are used after the mission is completed, to combat the effects of the mission and "go-pills".[201][202][203] The Tarnak Farm incident was linked by media reports to the use of this drug on long term fatigued pilots. The military did not accept this explanation, citing the lack of similar incidents. Newer stimulant medications or awakeness promoting agents with different side effect profiles, such as modafinil, are being investigated and sometimes issued for this reason.[202]
Formulations
[edit]Brand name |
United States Adopted Name |
(D:L) ratio | Dosage form |
Marketing start date |
Sources |
---|---|---|---|---|---|
Adderall | Mixed amphetamine salts | 3:1 (salts) | tablet | 1996 | [28][212] |
Adderall XR | Mixed amphetamine salts | 3:1 (salts) | capsule | 2001 | [28][212] |
Mydayis | Mixed amphetamine salts | 3:1 (salts) | capsule | 2017 | [213] |
Adzenys XR-ODT | amphetamine | 3:1 (base) | ODT | 2016 | [214][215] |
Dyanavel XR | amphetamine | 3.2:1 (base) | suspension | 2015 | [97][216] |
Evekeo | amphetamine sulfate | 1:1 (salts) | tablet | 2012 | [92] [217] |
Dexedrine | dextroamphetamine sulfate | 1:0 (salts) | capsule | 1976 | [28][212] |
Zenzedi | dextroamphetamine sulfate | 1:0 (salts) | tablet | 2013 | [212] |
Vyvanse | lisdexamfetamine dimesylate | 1:0 (prodrug) | capsule | 2007 | [28][218] |
tablet | |||||
Xelstrym | dextroamphetamine | 1:0 (base) | patch | 2022 | [12] |
Transdermal Dextroamphetamine Patches
[edit]Dextroamphetamine is available as a transdermal patch containing dextroamphetamine base under the brand name Xelstrym.[12]
Dextroamphetamine sulfate
[edit]In the United States, immediate release (IR) formulations of dextroamphetamine sulfate are available generically as 5 mg and 10 mg tablets, marketed by Barr (Teva Pharmaceutical Industries), Mallinckrodt Pharmaceuticals, Wilshire Pharmaceuticals, Aurobindo Pharmaceutical USA and CorePharma. Previous IR tablets sold under the brand names Dexedrine and Dextrostat have been discontinued but in 2015, IR tablets became available by the brand name Zenzedi, offered as 2.5 mg, 5 mg, 7.5 mg, 10 mg, 15 mg, 20 mg and 30 mg tablets.[219] Dextroamphetamine sulfate is also available as a controlled-release (CR) capsule preparation in strengths of 5 mg, 10 mg, and 15 mg under the brand name Dexedrine Spansule, with generic versions marketed by Barr and Mallinckrodt. A bubblegum flavored oral solution is available under the brand name ProCentra, manufactured by FSC Pediatrics, which is designed to be an easier method of administration in children who have difficulty swallowing tablets, each 5 mL contains 5 mg dextroamphetamine.[220] The conversion rate between dextroamphetamine sulfate to amphetamine free base is .728.[221]
In Australia, dexamfetamine is available in bottles of 100 instant release 5 mg tablets as a generic drug[222] or slow release dextroamphetamine preparations may be compounded by individual chemists.[223] In the United Kingdom, it is available in 5 mg instant release sulfate tablets under the generic name dexamfetamine sulfate as well as 10 mg and 20 mg strength tablets under the brand name Amfexa. It is also available in generic dexamfetamine sulfate 5 mg/ml oral sugar-free syrup.[224] The brand name Dexedrine was available in the United Kingdom prior to UCB Pharma disinvesting the product to another pharmaceutical company (Auden Mckenzie).[225]
Lisdexamfetamine
[edit]Dextroamphetamine is the active metabolite of the prodrug lisdexamfetamine (L-lysine-dextroamphetamine), available by the brand name Vyvanse (Elvanse in the European market) (Venvanse in the Brazil market) (lisdexamfetamine dimesylate). Dextroamphetamine is liberated from lisdexamfetamine enzymatically following contact with red blood cells. The conversion is rate-limited by the enzyme, which prevents high blood concentrations of dextroamphetamine and reduces lisdexamfetamine's drug liking and abuse potential at clinical doses.[226][227] Vyvanse is marketed as once-a-day dosing as it provides a slow release of dextroamphetamine into the body. Vyvanse is available as capsules, and chewable tablets, and in seven strengths; 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, and 70 mg. The conversion rate between lisdexamfetamine dimesylate (Vyvanse) to dextroamphetamine base is 29.5%.[228][229][230]
Adderall
[edit]
Another pharmaceutical that contains dextroamphetamine is commonly known by the brand name Adderall.[163][164] It is available as immediate release (IR) tablets and extended release (XR) capsules.[163][164] Adderall contains equal amounts of four amphetamine salts:[163][164]
- One-quarter racemic (d,l-)amphetamine aspartate monohydrate
- One-quarter dextroamphetamine saccharate
- One-quarter dextroamphetamine sulfate
- One-quarter racemic (d,l-)amphetamine sulfate
Adderall has a total amphetamine base equivalence of 63%.[163][164] While the enantiomer ratio by dextroamphetamine salts to levoamphetamine salts is 3:1, the amphetamine base content is 75.9% dextroamphetamine, 24.1% levoamphetamine. [note 16]
drug | formula | molar mass [note 17] |
amphetamine base [note 18] |
amphetamine base in equal doses |
doses with equal base content [note 19] | |||||
---|---|---|---|---|---|---|---|---|---|---|
(g/mol) | (percent) | (30 mg dose) | ||||||||
total | base | total | dextro- | levo- | dextro- | levo- | ||||
dextroamphetamine sulfate[232][233] | (C9H13N)2•H2SO4 | 368.49
|
270.41
|
73.38%
|
73.38%
|
—
|
22.0 mg
|
—
|
30.0 mg
| |
amphetamine sulfate[234] | (C9H13N)2•H2SO4 | 368.49
|
270.41
|
73.38%
|
36.69%
|
36.69%
|
11.0 mg
|
11.0 mg
|
30.0 mg
| |
Adderall | 62.57%
|
47.49%
|
15.08%
|
14.2 mg
|
4.5 mg
|
35.2 mg
| ||||
25% | dextroamphetamine sulfate[232][233] | (C9H13N)2•H2SO4 | 368.49
|
270.41
|
73.38%
|
73.38%
|
—
|
|||
25% | amphetamine sulfate[234] | (C9H13N)2•H2SO4 | 368.49
|
270.41
|
73.38%
|
36.69%
|
36.69%
|
|||
25% | dextroamphetamine saccharate[235] | (C9H13N)2•C6H10O8 | 480.55
|
270.41
|
56.27%
|
56.27%
|
—
|
|||
25% | amphetamine aspartate monohydrate[236] | (C9H13N)•C4H7NO4•H2O | 286.32
|
135.21
|
47.22%
|
23.61%
|
23.61%
|
|||
lisdexamfetamine dimesylate[218] | C15H25N3O•(CH4O3S)2 | 455.49
|
135.21
|
29.68%
|
29.68%
|
—
|
8.9 mg
|
—
|
74.2 mg
| |
amphetamine base suspension[97] | C9H13N | 135.21
|
135.21
|
100%
|
76.19%
|
23.81%
|
22.9 mg
|
7.1 mg
|
22.0 mg
|
Notes
[edit]- ^ Jump up to: a b Enantiomers are molecules that are mirror images of one another; they are structurally identical, but of the opposite orientation.[29]
- ^ The ADHD-related outcome domains with the greatest proportion of significantly improved outcomes from long-term continuous stimulant therapy include academics (≈55% of academic outcomes improved), driving (100% of driving outcomes improved), non-medical drug use (47% of addiction-related outcomes improved), obesity (≈65% of obesity-related outcomes improved), self-esteem (50% of self-esteem outcomes improved), and social function (67% of social function outcomes improved).[42]
The largest effect sizes for outcome improvements from long-term stimulant therapy occur in the domains involving academics (e.g., grade point average, achievement test scores, length of education, and education level), self-esteem (e.g., self-esteem questionnaire assessments, number of suicide attempts, and suicide rates), and social function (e.g., peer nomination scores, social skills, and quality of peer, family, and romantic relationships).[42]
Long-term combination therapy for ADHD (i.e., treatment with both a stimulant and behavioral therapy) produces even larger effect sizes for outcome improvements and improves a larger proportion of outcomes across each domain compared to long-term stimulant therapy alone.[42] - ^ Cochrane reviews are high quality meta-analytic systematic reviews of randomized controlled trials.[49]
- ^ The statements supported by the USFDA come from prescribing information, which is the copyrighted intellectual property of the manufacturer and approved by the USFDA. USFDA contraindications are not necessarily intended to limit medical practice but limit claims by pharmaceutical companies.[91]
- ^ According to one review, amphetamine can be prescribed to individuals with a history of abuse provided that appropriate medication controls are employed, such as requiring daily pick-ups of the medication from the prescribing physician.[28]
- ^ In individuals who experience sub-normal height and weight gains, a rebound to normal levels is expected to occur if stimulant therapy is briefly interrupted.[40][41][96] The average reduction in final adult height from 3 years of continuous stimulant therapy is 2 cm.[96]
- ^ Transcription factors are proteins that increase or decrease the expression of specific genes.[131]
- ^ In simpler terms, this necessary and sufficient relationship means that ΔFosB overexpression in the nucleus accumbens and addiction-related behavioral and neural adaptations always occur together and never occur alone.
- ^ NMDA receptors are voltage-dependent ligand-gated ion channels that requires simultaneous binding of glutamate and a co-agonist (D-serine or glycine) to open the ion channel.[146]
- ^ The review indicated that magnesium L-aspartate and magnesium chloride produce significant changes in addictive behavior;[122] other forms of magnesium were not mentioned.
- ^ The 95% confidence interval indicates that there is a 95% probability that the true number of deaths lies between 3,425 and 4,145.
- ^ The human dopamine transporter contains a high affinity extracellular zinc binding site which, upon zinc binding, inhibits dopamine reuptake and amplifies amphetamine-induced dopamine efflux in vitro.[165][166][167] The human serotonin transporter and norepinephrine transporter do not contain zinc binding sites.[167]
- ^ 4-Hydroxyamphetamine has been shown to be metabolized into 4-hydroxynorephedrine by dopamine beta-hydroxylase (DBH) in vitro and it is presumed to be metabolized similarly in vivo.[186][189] Evidence from studies that measured the effect of serum DBH concentrations on 4-hydroxyamphetamine metabolism in humans suggests that a different enzyme may mediate the conversion of 4-hydroxyamphetamine to 4-hydroxynorephedrine;[189][191] however, other evidence from animal studies suggests that this reaction is catalyzed by DBH in synaptic vesicles within noradrenergic neurons in the brain.[192][193]
- ^ Free-base form amphetamine is a volatile oil, hence the efficacy of the inhalers.
- ^ These represent the current brands in the United States, except Dexedrine instant release tablets. Dexedrine tablets, introduced in 1937, is discontinued but available as Zenzedi and generically;[204][205] Dexedrine listed here represents the extended release "Spansule" capsule which was approved in 1976.[206][207] Amphetamine sulfate tablets, now sold as Evekeo (brand), were originally sold as Benzedrine (brand) sulfate in 1935[208][209] and discontinued sometime after 1982.[210][211]
- ^ Calculated by dextroamphetamine base percent / total amphetamine base percent = 47.49/62.57 = 75.90% from table: Amphetamine base in marketed amphetamine medications. The remainder is levoamphetamine.
- ^ For uniformity, molar masses were calculated using the Lenntech Molecular Weight Calculator[231] and were within 0.01 g/mol of published pharmaceutical values.
- ^ Amphetamine base percentage = molecular massbase / molecular masstotal. Amphetamine base percentage for Adderall = sum of component percentages / 4.
- ^ dose = (1 / amphetamine base percentage) × scaling factor = (molecular masstotal / molecular massbase) × scaling factor. The values in this column were scaled to a 30 mg dose of dextroamphetamine sulfate. Due to pharmacological differences between these medications (e.g., differences in the release, absorption, conversion, concentration, differing effects of enantiomers, half-life, etc.), the listed values should not be considered equipotent doses.
- Image legend
- ^ (Text color) Transcription factors
Reference notes
[edit]References
[edit]- ^ Jump up to: a b Vitiello B (April 2008). "Understanding the risk of using medications for attention deficit hyperactivity disorder with respect to physical growth and cardiovascular function". Child and Adolescent Psychiatric Clinics of North America. 17 (2): 459–74, xi. doi:10.1016/j.chc.2007.11.010. PMC 2408826. PMID 18295156.
- ^ Jump up to: a b Graham J, Banaschewski T, Buitelaar J, Coghill D, Danckaerts M, Dittmann RW, et al. (January 2011). "European guidelines on managing adverse effects of medication for ADHD". European Child & Adolescent Psychiatry. 20 (1): 17–37. doi:10.1007/s00787-010-0140-6. eISSN 1435-165X. PMC 3012210. PMID 21042924.
- ^ Jump up to: a b Kociancic T, Reed MD, Findling RL (March 2004). "Evaluation of risks associated with short- and long-term psychostimulant therapy for treatment of ADHD in children". Expert Opinion on Drug Safety. 3 (2): 93–100. doi:10.1517/14740338.3.2.93. eISSN 1744-764X. PMID 15006715. S2CID 31114829.
- ^ Jump up to: a b Clemow DB, Walker DJ (September 2014). "The potential for misuse and abuse of medications in ADHD: a review". Postgraduate Medicine. 126 (5): 64–81. doi:10.3810/pgm.2014.09.2801. eISSN 1941-9260. PMID 25295651. S2CID 207580823.
- ^ Jump up to: a b c d e f g Stahl SM (March 2017). "Amphetamine (D,L)". Prescriber's Guide: Stahl's Essential Psychopharmacology (6th ed.). Cambridge, United Kingdom: Cambridge University Press. pp. 45–51. ISBN 9781108228749. Retrieved 5 August 2017.
- ^ "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA. Retrieved 22 October 2023.
- ^ "Therapeutic Goods (Poisons Standard—February 2023) Instrument 2022". Australian Government Federal Register of Legislation. 26 September 2022. Retrieved 9 January 2023.
- ^ Fuller K (20 February 2022). "ADHD Stimulant Prescribing Regulations & Authorities in Australia & New Zealand". AADPA. Retrieved 9 January 2023.
- ^ Anvisa (31 March 2023). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 4 April 2023). Archived from the original on 3 August 2023. Retrieved 16 August 2023.
- ^ "Product monograph brand safety updates". Health Canada. 6 June 2024. Retrieved 8 June 2024.
- ^ Jump up to: a b c d "Dexedrine spansule- dextroamphetamine sulfate capsule, extended release". DailyMed. 10 January 2022. Retrieved 28 March 2022.
- ^ Jump up to: a b c "Xelstrym- dextroamphetamine patch, extended release". DailyMed. 6 January 2023. Retrieved 21 January 2023.
- ^ "List of nationally authorised medicinal products : Active substance(s): dexamfetamine : Procedure No. PSUSA/00000986/202109" (PDF). Ema.europa.eu. Retrieved 5 June 2022.
- ^ Jump up to: a b Patel VB, Preedy VR, eds. (2022). Handbook of Substance Misuse and Addictions. Cham: Springer International Publishing. p. 2006. doi:10.1007/978-3-030-92392-1. ISBN 978-3-030-92391-4.
Amphetamine is usually consumed via inhalation or orally, either in the form of a racemic mixture (levoamphetamine and dextroamphetamine) or dextroamphetamine alone (Childress et al. 2019). In general, all amphetamines have high bioavailability when consumed orally, and in the specific case of amphetamine, 90% of the consumed dose is absorbed in the gastrointestinal tract, with no significant differences in the rate and extent of absorption between the two enantiomers (Carvalho et al. 2012; Childress et al. 2019). The onset of action occurs approximately 30 to 45 minutes after consumption, depending on the ingested dose and on the degree of purity or on the concomitant consumption of certain foods (European Monitoring Centre for Drugs and Drug Addiction 2021a; Steingard et al. 2019). It is described that those substances that promote acidification of the gastrointestinal tract cause a decrease in amphetamine absorption, while gastrointestinal alkalinization may be related to an increase in the compound's absorption (Markowitz and Patrick 2017).
- ^ Jump up to: a b Wishart DS, Djombou Feunang Y, Guo AC, Lo EJ, Marcu A, Grant JR, et al. "Amphetamine | DrugBank Online". DrugBank. 5.0.
- ^ Green-Hernandez C, Singleton JK, Aronzon DZ (1 January 2001). Primary Care Pediatrics. Lippincott Williams & Wilkins. p. 243. ISBN 978-0-7817-2008-3.|quote = Table 21.2 Medications for ADHD ... D-amphetamine ... Onset: 30 min.
- ^ "Dexedrine, ProCentra(dextroamphetamine) dosing, indications, interactions, adverse effects, and more". reference.medscape.com. Retrieved 4 October 2015.
Onset of action: 1–1.5 hr
- ^ Jump up to: a b c Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG (ed.). Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, USA: Springer. p. 112. ISBN 978-1-4419-1396-8.
Table 9.2 Dextroamphetamine formulations of stimulant medication
Dexedrine [Peak:2–3 h] [Duration:5–6 h] ...
Adderall [Peak:2–3 h] [Duration:5–7 h]
Dexedrine spansules [Peak:7–8 h] [Duration:12 h] ...
Adderall XR [Peak:7–8 h] [Duration:12 h]
Vyvanse [Peak:3–4 h] [Duration:12 h] - ^ Brams M, Mao AR, Doyle RL (September 2008). "Onset of efficacy of long-acting psychostimulants in pediatric attention-deficit/hyperactivity disorder". Postgrad. Med. 120 (3): 69–88. doi:10.3810/pgm.2008.09.1909. PMID 18824827. S2CID 31791162.
Onset of efficacy was earliest for d-MPH-ER at 0.5 hours, followed by d, l-MPH-LA at 1 to 2 hours, MCD at 1.5 hours, d, l-MPH-OR at 1 to 2 hours, MAS-XR at 1.5 to 2 hours, MTS at 2 hours, and LDX at approximately 2 hours. ... MAS-XR, and LDX have a long duration of action at 12 hours postdose
- ^ Jump up to: a b c d e f g h i j k l m n o p q "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. pp. 12–13. Retrieved 30 December 2013.
- ^ "Adderall- dextroamphetamine saccharate, amphetamine aspartate, dextroamphetamine sulfate, and amphetamine sulfate tablet". DailyMed. 27 February 2022. Retrieved 21 January 2023.
- ^ Jump up to: a b c d e f "Metabolism/Pharmacokinetics". Amphetamine. Hazardous Substances Data Bank. United States National Library of Medicine – Toxicology Data Network. Archived from the original on 2 October 2017. Retrieved 2 October 2017.
Duration of effect varies depending on agent and urine pH. Excretion is enhanced in more acidic urine. Half-life is 7 to 34 hours and is, in part, dependent on urine pH (half-life is longer with alkaline urine). ... Amphetamines are distributed into most body tissues with high concentrations occurring in the brain and CSF. Amphetamine appears in the urine within about 3 hours following oral administration. ... Three days after a dose of (+ or -)-amphetamine, human subjects had excreted 91% of the (14)C in the urine
- ^ Jump up to: a b Mignot EJ (October 2012). "A practical guide to the therapy of narcolepsy and hypersomnia syndromes". Neurotherapeutics. 9 (4): 739–752. doi:10.1007/s13311-012-0150-9. PMC 3480574. PMID 23065655.
- ^ Stahl SM (March 2017). "Amphetamine (D)". Prescriber's Guide: Stahl's Essential Psychopharmacology (6th ed.). Cambridge, United Kingdom: Cambridge University Press. pp. 39–44. ISBN 978-1-108-22874-9. Retrieved 8 August 2017.
- ^ "dextrostat (dextroamphetamine sulfate) tablet [Shire US Inc.]". DailyMed. Wayne, PA: Shire US Inc. August 2006. Retrieved 8 November 2013.
- ^ Lemke TL, Williams DA, Roche VF, Zito W (2013). Foye's Principles of Medicinal Chemistry (7th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 648. ISBN 978-1-60913-345-0.
Alternatively, direct oxidation of amphetamine by DA β-hydroxylase can afford norephedrine.
- ^ Jump up to: a b c Krueger SK, Williams DE (June 2005). "Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism". Pharmacology & Therapeutics. 106 (3): 357–387. doi:10.1016/j.pharmthera.2005.01.001. PMC 1828602. PMID 15922018.
Table 5: N-containing drugs and xenobiotics oxygenated by FMO - ^ Jump up to: a b c d e f g Heal DJ, Smith SL, Gosden J, Nutt DJ (June 2013). "Amphetamine, past and present – a pharmacological and clinical perspective". J. Psychopharmacol. 27 (6): 479–496. doi:10.1177/0269881113482532. PMC 3666194. PMID 23539642.
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "enantiomer". doi:10.1351/goldbook.E02069
- ^ Jump up to: a b c d e f g h i j Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". Journal of Neurochemistry. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
- ^ Jump up to: a b c d e Eiden LE, Weihe E (January 2011). "VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse". Annals of the New York Academy of Sciences. 1216 (1): 86–98. Bibcode:2011NYASA1216...86E. doi:10.1111/j.1749-6632.2010.05906.x. PMC 4183197. PMID 21272013.
- ^ "Dextroamphetamine Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Archived from the original on 3 February 2019. Retrieved 2 February 2019.
- ^ "The Top 300 of 2021". ClinCalc. Archived from the original on 15 January 2024. Retrieved 14 January 2024.
- ^ "Dextroamphetamine; Dextroamphetamine Saccharate; Amphetamine; Amphetamine Aspartate - Drug Usage Statistics". ClinCalc. Retrieved 14 January 2024.
- ^ Jump up to: a b Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, et al. (August 2012). "Toxicity of amphetamines: an update". Archives of Toxicology. 86 (8): 1167–1231. doi:10.1007/s00204-012-0815-5. PMID 22392347. S2CID 2873101.
- ^ Berman S, O'Neill J, Fears S, Bartzokis G, London ED (October 2008). "Abuse of amphetamines and structural abnormalities in the brain". Annals of the New York Academy of Sciences. 1141 (1): 195–220. doi:10.1196/annals.1441.031. PMC 2769923. PMID 18991959.
- ^ Jump up to: a b Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K (February 2013). "Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects". JAMA Psychiatry. 70 (2): 185–198. doi:10.1001/jamapsychiatry.2013.277. PMID 23247506.
- ^ Jump up to: a b Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, et al. (September 2013). "Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies". The Journal of Clinical Psychiatry. 74 (9): 902–917. doi:10.4088/JCP.12r08287. PMC 3801446. PMID 24107764.
- ^ Jump up to: a b Frodl T, Skokauskas N (February 2012). "Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects". Acta Psychiatrica Scandinavica. 125 (2): 114–126. doi:10.1111/j.1600-0447.2011.01786.x. PMID 22118249. S2CID 25954331.
Basal ganglia regions like the right globus pallidus, the right putamen, and the nucleus caudatus are structurally affected in children with ADHD. These changes and alterations in limbic regions like ACC and amygdala are more pronounced in non-treated populations and seem to diminish over time from child to adulthood. Treatment seems to have positive effects on brain structure.
- ^ Jump up to: a b c d e f Huang YS, Tsai MH (July 2011). "Long-term outcomes with medications for attention-deficit hyperactivity disorder: current status of knowledge". CNS Drugs. 25 (7): 539–554. doi:10.2165/11589380-000000000-00000. PMID 21699268. S2CID 3449435.
Several other studies,[97-101] including a meta-analytic review[98] and a retrospective study,[97] suggested that stimulant therapy in childhood is associated with a reduced risk of subsequent substance use, cigarette smoking and alcohol use disorders. ... Recent studies have demonstrated that stimulants, along with the non-stimulants atomoxetine and extended-release guanfacine, are continuously effective for more than 2-year treatment periods with few and tolerable adverse effects. The effectiveness of long-term therapy includes not only the core symptoms of ADHD, but also improved quality of life and academic achievements. The most concerning short-term adverse effects of stimulants, such as elevated blood pressure and heart rate, waned in long-term follow-up studies. ... The current data do not support the potential impact of stimulants on the worsening or development of tics or substance abuse into adulthood. In the longest follow-up study (of more than 10 years), lifetime stimulant treatment for ADHD was effective and protective against the development of adverse psychiatric disorders.
- ^ Jump up to: a b c d Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG (ed.). Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, US: Springer. pp. 121–123, 125–127. ISBN 9781441913968.
Ongoing research has provided answers to many of the parents' concerns, and has confirmed the effectiveness and safety of the long-term use of medication.
- ^ Jump up to: a b c d e Arnold LE, Hodgkins P, Caci H, Kahle J, Young S (February 2015). "Effect of treatment modality on long-term outcomes in attention-deficit/hyperactivity disorder: a systematic review". PLOS ONE. 10 (2): e0116407. doi:10.1371/journal.pone.0116407. PMC 4340791. PMID 25714373.
The highest proportion of improved outcomes was reported with combination treatment (83% of outcomes). Among significantly improved outcomes, the largest effect sizes were found for combination treatment. The greatest improvements were associated with academic, self-esteem, or social function outcomes.
Figure 3: Treatment benefit by treatment type and outcome group - ^ Jump up to: a b c Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, US: McGraw-Hill Medical. pp. 154–157. ISBN 9780071481274.
- ^ Jump up to: a b c d e f Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, US: McGraw-Hill Medical. pp. 318, 321. ISBN 9780071481274.
Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in normal subjects and those with ADHD. ... stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks ... through indirect stimulation of dopamine and norepinephrine receptors. ...
Beyond these general permissive effects, dopamine (acting via D1 receptors) and norepinephrine (acting at several receptors) can, at optimal levels, enhance working memory and aspects of attention. - ^ Bidwell LC, McClernon FJ, Kollins SH (August 2011). "Cognitive enhancers for the treatment of ADHD". Pharmacology Biochemistry and Behavior. 99 (2): 262–274. doi:10.1016/j.pbb.2011.05.002. PMC 3353150. PMID 21596055.
- ^ Parker J, Wales G, Chalhoub N, Harpin V (September 2013). "The long-term outcomes of interventions for the management of attention-deficit hyperactivity disorder in children and adolescents: a systematic review of randomized controlled trials". Psychology Research and Behavior Management. 6: 87–99. doi:10.2147/PRBM.S49114. PMC 3785407. PMID 24082796.
Only one paper53 examining outcomes beyond 36 months met the review criteria. ... There is high level evidence suggesting that pharmacological treatment can have a major beneficial effect on the core symptoms of ADHD (hyperactivity, inattention, and impulsivity) in approximately 80% of cases compared with placebo controls, in the short term.
- ^ Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG (ed.). Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, US: Springer. pp. 111–113. ISBN 9781441913968.
- ^ "Stimulants for Attention Deficit Hyperactivity Disorder". WebMD. Healthwise. 12 April 2010. Retrieved 12 November 2013.
- ^ Scholten RJ, Clarke M, Hetherington J (August 2005). "The Cochrane Collaboration". European Journal of Clinical Nutrition. 59 (Suppl 1): S147–S149, discussion S195–S196. doi:10.1038/sj.ejcn.1602188. PMID 16052183. S2CID 29410060.
- ^ Jump up to: a b Castells X, Blanco-Silvente L, Cunill R (August 2018). "Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults". Cochrane Database of Systematic Reviews. 2018 (8): CD007813. doi:10.1002/14651858.CD007813.pub3. PMC 6513464. PMID 30091808.
- ^ Punja S, Shamseer L, Hartling L, Urichuk L, Vandermeer B, Nikles J, et al. (February 2016). "Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents". Cochrane Database of Systematic Reviews. 2016 (2): CD009996. doi:10.1002/14651858.CD009996.pub2. PMC 10329868. PMID 26844979.
- ^ Osland ST, Steeves TD, Pringsheim T (June 2018). "Pharmacological treatment for attention deficit hyperactivity disorder (ADHD) in children with comorbid tic disorders". Cochrane Database of Systematic Reviews. 2018 (6): CD007990. doi:10.1002/14651858.CD007990.pub3. PMC 6513283. PMID 29944175.
- ^ Mahlios J, De la Herrán-Arita AK, Mignot E (October 2013). "The autoimmune basis of narcolepsy". Current Opinion in Neurobiology. 23 (5): 767–773. doi:10.1016/j.conb.2013.04.013. PMC 3848424. PMID 23725858.
- ^ Jump up to: a b c Barateau L, Pizza F, Plazzi G, Dauvilliers Y (August 2022). "Narcolepsy". Journal of Sleep Research. 31 (4): e13631. doi:10.1111/jsr.13631. PMID 35624073.
Narcolepsy type 1 was called "narcolepsy with cataplexy" before 2014 (AASM, 2005), but was renamed NT1 in the third and last international classification of sleep disorders (AASM, 2014). ... A low level of Hcrt-1 in the CSF is very sensitive and specific for the diagnosis of NT1. ...
All patients with low CSF Hcrt-1 levels are considered as NT1 patients, even if they report no cataplexy (in about 10–20% of cases), and all patients with normal CSF Hcrt-1 levels (or without cataplexy when the lumbar puncture is not performed) as NT2 patients (Baumann et al., 2014). ...
In patients with NT1, the absence of Hcrt leads to the inhibition of regions that suppress REM sleep, thus allowing the activation of descending pathways inhibiting motoneurons, leading to cataplexy. - ^ Jump up to: a b c d e f g h Mignot EJ (October 2012). "A practical guide to the therapy of narcolepsy and hypersomnia syndromes". Neurotherapeutics. 9 (4): 739–752. doi:10.1007/s13311-012-0150-9. PMC 3480574. PMID 23065655.
At the pathophysiological level, it is now clear that most narcolepsy cases with cataplexy, and a minority of cases (5–30 %) without cataplexy or with atypical cataplexy-like symptoms, are caused by a lack of hypocretin (orexin) of likely an autoimmune origin. In these cases, once the disease is established, the majority of the 70,000 hypocretin-producing cells have been destroyed, and the disorder is irreversible. ...
Amphetamines are exceptionally wake-promoting, and at high doses also reduce cataplexy in narcoleptic patients, an effect best explained by its action on adrenergic and serotoninergic synapses. ...
The D-isomer is more specific for DA transmission and is a better stimulant compound. Some effects on cataplexy (especially for the L-isomer), secondary to adrenergic effects, occur at higher doses. ...
Numerous studies have shown that increased dopamine release is the main property explaining wake-promotion, although norepinephrine effects also contribute. - ^ Jump up to: a b Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 10: Neural and Neuroendocrine Control of the Internal Milieu". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. pp. 456–457. ISBN 9780071827706.
More recently, the lateral hypothalamus was also found to play a central role in arousal. Neurons in this region contain cell bodies that produce the orexin (also called hypocretin) peptides (Chapter 6). These neurons project widely throughout the brain and are involved in sleep, arousal, feeding, reward,aspects of emotion, and learning. In fact, orexin is thought to promote feeding primarily by promoting arousal. Mutations in orexin receptors are responsible for narcolepsy in a canine model, knockout of the orexin gene produces narcolepsy in mice, and humans with narcolepsy have low or absent levels of orexin peptides in cerebrospinal fluid (Chapter 13). Lateral hypothalamus neurons have reciprocal connections with neurons that produce monoamine neurotransmitters (Chapter 6).
- ^ Jump up to: a b c Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "Chapter 13: Sleep and Arousal". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). McGraw-Hill Medical. p. 521. ISBN 9780071827706.
The ARAS consists of several different circuits including the four main monoaminergic pathways discussed in Chapter 6. The norepinephrine pathway originates from the LC and related brainstem nuclei; the serotonergic neurons originate from the RN within the brainstem as well; the dopaminergic neurons originate in the ventral tegmental area (VTA); and the histaminergic pathway originates from neurons in the tuberomammillary nucleus (TMN) of the posterior hypothalamus. As discussed in Chapter 6, these neurons project widely throughout the brain from restricted collections of cell bodies. Norepinephrine, serotonin,dopamine, and histamine have complex modulatory functions and, in general, promote wakefulness. The PT in the brainstem is also an important component of the ARAS. Activity of PT cholinergic neurons (REM-on cells) promotes REM sleep, as noted earlier. During waking, REM-on cells are inhibited by a subset of ARAS norepinephrine and serotonin neurons called REM-off cells.
- ^ Shneerson JM (2009). Sleep medicine a guide to sleep and its disorders (2nd ed.). John Wiley & Sons. p. 81. ISBN 9781405178518.
All the amphetamines enhance activity at dopamine, noradrenaline and 5HT synapses. They cause presynaptic release of preformed transmitters, and also inhibit the re-uptake of dopamine and noradrenaline. These actions are most prominent in the brainstem ascending reticular activating system and the cerebral cortex.
- ^ Jump up to: a b Schwartz JR, Roth T (2008). "Neurophysiology of sleep and wakefulness: basic science and clinical implications". Current Neuropharmacology. 6 (4): 367–378. doi:10.2174/157015908787386050. PMC 2701283. PMID 19587857.
Alertness and associated forebrain and cortical arousal are mediated by several ascending pathways with distinct neuronal components that project from the upper brain stem near the junction of the pons and the midbrain. ...
Key cell populations of the ascending arousal pathway include cholinergic, noradrenergic, serotoninergic, dopaminergic, and histaminergic neurons located in the pedunculopontine and laterodorsal tegmental nucleus (PPT/LDT), locus coeruleus, dorsal and median raphe nucleus, and tuberomammillary nucleus (TMN), respectively. ...
The mechanism of action of sympathomimetic alerting drugs (eg, dextro- and methamphetamine, methylphenidate) is direct or indirect stimulation of dopaminergic and noradrenergic nuclei, which in turn heightens the efficacy of the ventral periaqueductal grey area and locus coeruleus, both components of the secondary branch of the ascending arousal system. ...
Sympathomimetic drugs have long been used to treat narcolepsy - ^ Jump up to: a b c d e Maski K, Trotti LM, Kotagal S, Robert Auger R, Rowley JA, Hashmi SD, et al. (September 2021). "Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine clinical practice guideline". Journal of Clinical Sleep Medicine. 17 (9): 1881–1893. doi:10.5664/jcsm.9328. PMC 8636351. PMID 34743789.
The TF identified 1 double-blind RCT, 1 single-blind RCT, and 1 retrospective observational long-term self-reported case series assessing the efficacy of dextroamphetamine in patients with narcolepsy type 1 and narcolepsy type 2. These studies demonstrated clinically significant improvements in excessive daytime sleepiness and cataplexy.
- ^ Jump up to: a b c d e Barateau L, Lopez R, Dauvilliers Y (October 2016). "Management of Narcolepsy". Current Treatment Options in Neurology. 18 (10): 43. doi:10.1007/s11940-016-0429-y. PMID 27549768.
The usefulness of amphetamines is limited by a potential risk of abuse, and their cardiovascular adverse effects (Table 1). That is why, even though they are cheaper than other drugs, and efficient, they remain third-line therapy in narcolepsy. Three class II studies showed an improvement of EDS in that disease. ...
Despite the potential for drug abuse or tolerance using stimulants, patients with narcolepsy rarely exhibit addiction to their medication. ...
Some stimulants, such as mazindol, amphetamines, and pitolisant, may also have some anticataplectic effects. - ^ Dauvilliers Y, Barateau L (August 2017). "Narcolepsy and Other Central Hypersomnias". Continuum. 23 (4, Sleep Neurology): 989–1004. doi:10.1212/CON.0000000000000492. PMID 28777172.
Recent clinical trials and practice guidelines have confirmed that stimulants such as modafinil, armodafinil, or sodium oxybate (as first line); methylphenidate and pitolisant (as second line [pitolisant is currently only available in Europe]); and amphetamines (as third line) are appropriate medications for excessive daytime sleepiness.
- ^ Thorpy MJ, Bogan RK (April 2020). "Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications". Sleep Medicine. 68: 97–109. doi:10.1016/j.sleep.2019.09.001. PMID 32032921.
The first agents used to treat EDS (ie, amphetamines, methylphenidate) are now considered second- or third-line options because newer medications have been developed with improved tolerability and lower abuse potential (eg, modafinil/armodafinil, solriamfetol, pitolisant)
- ^ Jump up to: a b Spencer RC, Devilbiss DM, Berridge CW (June 2015). "The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex". Biological Psychiatry. 77 (11): 940–950. doi:10.1016/j.biopsych.2014.09.013. PMC 4377121. PMID 25499957.
The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. ... This differential modulation of PFC-dependent processes across dose appears to be associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). ... In particular, in both animals and humans, lower doses maximally improve performance in tests of working memory and response inhibition, whereas maximal suppression of overt behavior and facilitation of attentional processes occurs at higher doses.
- ^ Ilieva IP, Hook CJ, Farah MJ (June 2015). "Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis". Journal of Cognitive Neuroscience. 27 (6): 1069–1089. doi:10.1162/jocn_a_00776. PMID 25591060. S2CID 15788121.
Specifically, in a set of experiments limited to high-quality designs, we found significant enhancement of several cognitive abilities. ... The results of this meta-analysis ... do confirm the reality of cognitive enhancing effects for normal healthy adults in general, while also indicating that these effects are modest in size.
- ^ Bagot KS, Kaminer Y (April 2014). "Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review". Addiction. 109 (4): 547–557. doi:10.1111/add.12460. PMC 4471173. PMID 24749160.
Amphetamine has been shown to improve consolidation of information (0.02 ≥ P ≤ 0.05), leading to improved recall.
- ^ Devous MD, Trivedi MH, Rush AJ (April 2001). "Regional cerebral blood flow response to oral amphetamine challenge in healthy volunteers". Journal of Nuclear Medicine. 42 (4): 535–542. PMID 11337538.
- ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 10: Neural and Neuroendocrine Control of the Internal Milieu". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, US: McGraw-Hill Medical. p. 266. ISBN 9780071481274.
Dopamine acts in the nucleus accumbens to attach motivational significance to stimuli associated with reward.
- ^ Jump up to: a b c Wood S, Sage JR, Shuman T, Anagnostaras SG (January 2014). "Psychostimulants and cognition: a continuum of behavioral and cognitive activation". Pharmacological Reviews. 66 (1): 193–221. doi:10.1124/pr.112.007054. PMC 3880463. PMID 24344115.
- ^ Twohey M (26 March 2006). "Pills become an addictive study aid". JS Online. Archived from the original on 15 August 2007. Retrieved 2 December 2007.
- ^ Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (October 2006). "Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration". Pharmacotherapy. 26 (10): 1501–1510. doi:10.1592/phco.26.10.1501. PMC 1794223. PMID 16999660.
- ^ Weyandt LL, Oster DR, Marraccini ME, Gudmundsdottir BG, Munro BA, Zavras BM, et al. (September 2014). "Pharmacological interventions for adolescents and adults with ADHD: stimulant and nonstimulant medications and misuse of prescription stimulants". Psychology Research and Behavior Management. 7: 223–249. doi:10.2147/PRBM.S47013. PMC 4164338. PMID 25228824.
misuse of prescription stimulants has become a serious problem on college campuses across the US and has been recently documented in other countries as well. ... Indeed, large numbers of students claim to have engaged in the nonmedical use of prescription stimulants, which is reflected in lifetime prevalence rates of prescription stimulant misuse ranging from 5% to nearly 34% of students.
- ^ Clemow DB, Walker DJ (September 2014). "The potential for misuse and abuse of medications in ADHD: a review". Postgraduate Medicine. 126 (5): 64–81. doi:10.3810/pgm.2014.09.2801. PMID 25295651. S2CID 207580823.
Overall, the data suggest that ADHD medication misuse and diversion are common health care problems for stimulant medications, with the prevalence believed to be approximately 5% to 10% of high school students and 5% to 35% of college students, depending on the study.
- ^ Jump up to: a b c Liddle DG, Connor DJ (June 2013). "Nutritional supplements and ergogenic AIDS". Primary Care: Clinics in Office Practice. 40 (2): 487–505. doi:10.1016/j.pop.2013.02.009. PMID 23668655.
Amphetamines and caffeine are stimulants that increase alertness, improve focus, decrease reaction time, and delay fatigue, allowing for an increased intensity and duration of training ...
Physiologic and performance effects
• Amphetamines increase dopamine/norepinephrine release and inhibit their reuptake, leading to central nervous system (CNS) stimulation
• Amphetamines seem to enhance athletic performance in anaerobic conditions 39 40
• Improved reaction time
• Increased muscle strength and delayed muscle fatigue
• Increased acceleration
• Increased alertness and attention to task - ^ Jump up to: a b c d e f g h i j k l m n o p q r s Westfall DP, Westfall TC (2010). "Miscellaneous Sympathomimetic Agonists". In Brunton LL, Chabner BA, Knollmann BC (eds.). Goodman & Gilman's Pharmacological Basis of Therapeutics (12th ed.). New York, US: McGraw-Hill. ISBN 9780071624428.
- ^ Bracken NM (January 2012). "National Study of Substance Use Trends Among NCAA College Student-Athletes" (PDF). NCAA Publications. National Collegiate Athletic Association. Archived (PDF) from the original on 9 October 2022. Retrieved 8 October 2013.
- ^ Docherty JR (June 2008). "Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA)". British Journal of Pharmacology. 154 (3): 606–622. doi:10.1038/bjp.2008.124. PMC 2439527. PMID 18500382.
- ^ Jump up to: a b c d Parr JW (July 2011). "Attention-deficit hyperactivity disorder and the athlete: new advances and understanding". Clinics in Sports Medicine. 30 (3): 591–610. doi:10.1016/j.csm.2011.03.007. PMID 21658550.
In 1980, Chandler and Blair47 showed significant increases in knee extension strength, acceleration, anaerobic capacity, time to exhaustion during exercise, pre-exercise and maximum heart rates, and time to exhaustion during maximal oxygen consumption (VO2 max) testing after administration of 15 mg of dextroamphetamine versus placebo. Most of the information to answer this question has been obtained in the past decade through studies of fatigue rather than an attempt to systematically investigate the effect of ADHD drugs on exercise.
- ^ Jump up to: a b c Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R (May 2013). "Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing". Sports Medicine. 43 (5): 301–311. doi:10.1007/s40279-013-0030-4. PMID 23456493. S2CID 30392999.
In high-ambient temperatures, dopaminergic manipulations clearly improve performance. The distribution of the power output reveals that after dopamine reuptake inhibition, subjects are able to maintain a higher power output compared with placebo. ... Dopaminergic drugs appear to override a safety switch and allow athletes to use a reserve capacity that is 'off-limits' in a normal (placebo) situation.
- ^ Parker KL, Lamichhane D, Caetano MS, Narayanan NS (October 2013). "Executive dysfunction in Parkinson's disease and timing deficits". Frontiers in Integrative Neuroscience. 7: 75. doi:10.3389/fnint.2013.00075. PMC 3813949. PMID 24198770.
Manipulations of dopaminergic signaling profoundly influence interval timing, leading to the hypothesis that dopamine influences internal pacemaker, or "clock," activity. For instance, amphetamine, which increases concentrations of dopamine at the synaptic cleft advances the start of responding during interval timing, whereas antagonists of D2 type dopamine receptors typically slow timing;... Depletion of dopamine in healthy volunteers impairs timing, while amphetamine releases synaptic dopamine and speeds up timing.
- ^ Rattray B, Argus C, Martin K, Northey J, Driller M (March 2015). "Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?". Frontiers in Physiology. 6: 79. doi:10.3389/fphys.2015.00079. PMC 4362407. PMID 25852568.
Aside from accounting for the reduced performance of mentally fatigued participants, this model rationalizes the reduced RPE and hence improved cycling time trial performance of athletes using a glucose mouthwash (Chambers et al., 2009) and the greater power output during a RPE matched cycling time trial following amphetamine ingestion (Swart, 2009). ... Dopamine stimulating drugs are known to enhance aspects of exercise performance (Roelands et al., 2008)
- ^ Roelands B, De Pauw K, Meeusen R (June 2015). "Neurophysiological effects of exercise in the heat". Scandinavian Journal of Medicine & Science in Sports. 25 (Suppl 1): 65–78. doi:10.1111/sms.12350. PMID 25943657. S2CID 22782401.
This indicates that subjects did not feel they were producing more power and consequently more heat. The authors concluded that the "safety switch" or the mechanisms existing in the body to prevent harmful effects are overridden by the drug administration (Roelands et al., 2008b). Taken together, these data indicate strong ergogenic effects of an increased DA concentration in the brain, without any change in the perception of effort.
- ^ Jump up to: a b c d e f g h i j k l m n o p q r s t u v w "Adderall XR- dextroamphetamine sulfate, dextroamphetamine saccharate, amphetamine sulfate and amphetamine aspartate capsule, extended release". DailyMed. Shire US Inc. 17 July 2019. Retrieved 22 December 2019.
- ^ "Commonly Abused Prescription Drugs Chart". National Institute on Drug Abuse. Retrieved 7 May 2012.
- ^ "Stimulant ADHD Medications – Methylphenidate and Amphetamines". National Institute on Drug Abuse. Archived from the original on 2 May 2012. Retrieved 7 May 2012.
- ^ Jump up to: a b c d e "National Institute on Drug Abuse. 2009. Stimulant ADHD Medications – Methylphenidate and Amphetamines". National Institute on Drug Abuse. Retrieved 27 February 2013.
- ^ Schultz W (2015). "Neuronal reward and decision signals: from theories to data". Physiological Reviews. 95 (3): 853–951. doi:10.1152/physrev.00023.2014. PMC 4491543. PMID 26109341.
Rewards in operant conditioning are positive reinforcers. ... Operant behavior gives a good definition for rewards. Anything that makes an individual come back for more is a positive reinforcer and therefore a reward. Although it provides a good definition, positive reinforcement is only one of several reward functions. ... Rewards are attractive. They are motivating and make us exert an effort. ... Rewards induce approach behavior, also called appetitive or preparatory behavior, sexual behavior, and consummatory behavior. ... Thus any stimulus, object, event, activity, or situation that has the potential to make us approach and consume it is by definition a reward. ... Rewarding stimuli, objects, events, situations, and activities consist of several major components. First, rewards have basic sensory components (visual, auditory, somatosensory, gustatory, and olfactory) ... Second, rewards are salient and thus elicit attention, which are manifested as orienting responses. The salience of rewards derives from three principal factors, namely, their physical intensity and impact (physical salience), their novelty and surprise (novelty/surprise salience), and their general motivational impact shared with punishers (motivational salience). A separate form not included in this scheme, incentive salience, primarily addresses dopamine function in addiction and refers only to approach behavior (as opposed to learning) ... Third, rewards have a value component that determines the positively motivating effects of rewards and is not contained in, nor explained by, the sensory and attentional components. This component reflects behavioral preferences and thus is subjective and only partially determined by physical parameters. Only this component constitutes what we understand as a reward. It mediates the specific behavioral reinforcing, approach generating, and emotional effects of rewards that are crucial for the organism's survival and reproduction, whereas all other components are only supportive of these functions. ... Rewards can also be intrinsic to behavior. They contrast with extrinsic rewards that provide motivation for behavior and constitute the essence of operant behavior in laboratory tests. Intrinsic rewards are activities that are pleasurable on their own and are undertaken for their own sake, without being the means for getting extrinsic rewards. ... Intrinsic rewards are genuine rewards in their own right, as they induce learning, approach, and pleasure, like perfectioning, playing, and enjoying the piano. Although they can serve to condition higher order rewards, they are not conditioned, higher order rewards, as attaining their reward properties does not require pairing with an unconditioned reward. ... These emotions are also called liking (for pleasure) and wanting (for desire) in addiction research and strongly support the learning and approach generating functions of reward.
- ^ Canadian ADHD Practice Guidelines (PDF) (Fourth ed.). Canadian ADHD Resource Alliance. 2018. p. 67. Archived from the original (PDF) on 2 May 2023. Retrieved 2 May 2023.
- ^ Bright GM (May 2008). "Abuse of medications employed for the treatment of ADHD: results from a large-scale community survey". Medscape Journal of Medicine. 10 (5): 111. PMC 2438483. PMID 18596945.
- ^ Childs E, de Wit H (November 2013). "Contextual conditioning enhances the psychostimulant and incentive properties of d-amphetamine in humans". Addiction Biology. 18 (6): 985–992. doi:10.1111/j.1369-1600.2011.00416.x. PMC 4242554. PMID 22129527.
- ^ Kessler S (January 1996). "Drug therapy in attention-deficit hyperactivity disorder". Southern Medical Journal. 89 (1): 33–38. doi:10.1097/00007611-199601000-00005. PMID 8545689. S2CID 12798818.
statements on package inserts are not intended to limit medical practice. Rather they are intended to limit claims by pharmaceutical companies. ... the FDA asserts explicitly, and the courts have upheld that clinical decisions are to be made by physicians and patients in individual situations.
- ^ Jump up to: a b c d "Evekeo- amphetamine sulfate tablet". DailyMed. Arbor Pharmaceuticals, LLC. 14 August 2019. Retrieved 22 December 2019.
- ^ Jump up to: a b c d e f g h i j k Heedes G, Ailakis J. "Amphetamine (PIM 934)". INCHEM. International Programme on Chemical Safety. Retrieved 24 June 2014.
- ^ Feinberg SS (November 2004). "Combining stimulants with monoamine oxidase inhibitors: a review of uses and one possible additional indication". The Journal of Clinical Psychiatry. 65 (11): 1520–1524. doi:10.4088/jcp.v65n1113. PMID 15554766.
- ^ Stewart JW, Deliyannides DA, McGrath PJ (June 2014). "How treatable is refractory depression?". Journal of Affective Disorders. 167: 148–152. doi:10.1016/j.jad.2014.05.047. PMID 24972362.
- ^ Jump up to: a b c d Vitiello B (April 2008). "Understanding the risk of using medications for attention deficit hyperactivity disorder with respect to physical growth and cardiovascular function". Child and Adolescent Psychiatric Clinics of North America. 17 (2): 459–474. doi:10.1016/j.chc.2007.11.010. PMC 2408826. PMID 18295156.
- ^ Рэми Дж.Т., Бейлен Э., Локки РФ (2006). «Медикаментозный ринит» (PDF) . Журнал исследовательской аллергологии и клинической иммунологии . 16 (3): 148–155. ПМИД 16784007 . Проверено 29 апреля 2015 г.
Таблица 2. Противоотечные средства, вызывающие медикаментозный ринит
– Назальные деконгестанты:
– Симпатомиметики:
• Амфетамин - ^ Jump up to: а б «Сообщение FDA о безопасности лекарств: Обновление обзора безопасности лекарств, используемых для лечения синдрома дефицита внимания / гиперактивности (СДВГ) у детей и молодых людей» . Управление по контролю за продуктами и лекарствами США . 1 ноября 2011 г. Архивировано из оригинала 25 августа 2019 г. . Проверено 24 декабря 2019 г.
- ^ Купер В.О., Хабель Л.А., Сокс СМ, Чан К.А., Арбогаст П.Г., Читам Т.С. и др. (ноябрь 2011 г.). «Лекарства от СДВГ и серьезные сердечно-сосудистые заболевания у детей и молодых людей» . Медицинский журнал Новой Англии . 365 (20): 1896–1904. дои : 10.1056/NEJMoa1110212 . ПМЦ 4943074 . ПМИД 22043968 .
- ^ Jump up to: а б «Сообщение FDA о безопасности лекарств: Обновление обзора безопасности лекарств, используемых для лечения синдрома дефицита внимания / гиперактивности (СДВГ) у взрослых» . Управление по контролю за продуктами и лекарствами США . 12 декабря 2011 г. Архивировано из оригинала 14 декабря 2019 г. . Проверено 24 декабря 2013 г.
- ^ Хабель Л.А., Купер В.О., Сокс СМ, Чан К.А., Пожарный Б.Х., Арбогаст П.Г. и др. (декабрь 2011 г.). «Лекарства от СДВГ и риск серьезных сердечно-сосудистых событий у людей молодого и среднего возраста» . ДЖАМА . 306 (24): 2673–2683. дои : 10.1001/jama.2011.1830 . ПМК 3350308 . ПМИД 22161946 .
- ^ Монтгомери, К.А. (июнь 2008 г.). «Расстройства полового влечения» . Психиатрия . 5 (6): 50–55. ПМЦ 2695750 . ПМИД 19727285 .
- ^ О'Коннор П.Г. (февраль 2012 г.). «Амфетамины» . Руководство Merck для медицинских работников . Мерк . Проверено 8 мая 2012 г.
- ^ Jump up to: а б с д Шопто С.Дж., Као У, Линг В. (январь 2009 г.). Шоптоу С.Дж., Али Р. (ред.). «Лечение амфетаминового психоза» . Кокрейновская база данных систематических обзоров . 2009 (1): CD003026. дои : 10.1002/14651858.CD003026.pub3 . ПМК 7004251 . ПМИД 19160215 .
У меньшинства людей, употребляющих амфетамины, развивается полномасштабный психоз, требующий помощи в отделениях неотложной помощи или психиатрических больницах. В таких случаях симптомы амфетаминового психоза обычно включают параноидальный бред и бред преследования, а также слуховые и зрительные галлюцинации на фоне сильного возбуждения. Чаще всего (около 18%) частые потребители амфетаминов сообщают о психотических симптомах, которые носят субклинический характер и не требуют высокоинтенсивного вмешательства...
Около 5–15% потребителей, у которых развивается амфетаминовый психоз, не могут полностью выздороветь (Hofmann 1983).
Результаты одного исследования показывают, что использование антипсихотических препаратов эффективно устраняет симптомы острого амфетаминового психоза.
психотические симптомы у людей с амфетаминовым психозом могут быть обусловлены исключительно интенсивным употреблением наркотика, или интенсивное употребление наркотика может усугубить скрытую уязвимость к шизофрении. - ^ Jump up to: а б с д Брамнесс Дж.Г., Гундерсен О.Х., Гутерстам Дж., Рогнли Э.Б., Констениус М., Лёберг Э.М. и др. (декабрь 2012 г.). «Амфетамин-индуцированный психоз — отдельная диагностическая единица или первичный психоз, возникающий у уязвимых?» . БМК Психиатрия . 12 : 221. дои : 10.1186/1471-244X-12-221 . ПМЦ 3554477 . ПМИД 23216941 .
В этих исследованиях амфетамин назначался в последовательно более высоких дозах до тех пор, пока не развился психоз, часто после приема 100–300 мг амфетамина... Во-вторых, психоз рассматривался как нежелательное явление, хотя и редко, у детей с СДВГ, которых лечили амфетамином. амфетамин
- ^ Jump up to: а б Грейданус Д. «Злоупотребление стимуляторами: стратегии решения растущей проблемы» (PDF) . Американская ассоциация здравоохранения колледжей (обзорная статья). Программа профессионального развития ACHA. п. 20. Архивировано из оригинала (PDF) 3 ноября 2013 года . Проверено 2 ноября 2013 г.
- ^ Jump up to: а б Чайлдс Э, де Вит Х (май 2009 г.). «Предпочтение места у людей, вызванное амфетамином» . Биологическая психиатрия . 65 (10): 900–904. doi : 10.1016/j.biopsych.2008.11.016 . ПМК 2693956 . ПМИД 19111278 .
Это исследование показывает, что люди, как и нелюди, предпочитают места, связанные с приемом амфетамина. Эти данные подтверждают идею о том, что субъективные реакции на препарат способствуют его способности вызывать кондиционирование места.
- ^ Jump up to: а б Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 15: Подкрепление и аддиктивные расстройства». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк: McGraw-Hill Medical. стр. 364–375. ISBN 9780071481274 .
- ^ Jump up to: а б с д и Нестлер Э.Дж. (декабрь 2013 г.). «Клеточная основа памяти при наркомании» . Диалоги в клинической неврологии . 15 (4): 431–443. ПМЦ 3898681 . ПМИД 24459410 .
Несмотря на важность многочисленных психосоциальных факторов, по своей сути наркозависимость включает в себя биологический процесс: способность многократного воздействия злоупотребляемого наркотика вызывать изменения в уязвимом мозге, которые приводят к компульсивному поиску и приему наркотиков и потере контроля. над употреблением наркотиков, которые определяют состояние наркомании. ... Большой объем литературы продемонстрировал, что такая индукция ΔFosB в нейронах D1-типа [прилежащее ядро] увеличивает чувствительность животного к лекарственному средству, а также к естественным вознаграждениям и способствует самостоятельному приему лекарственного средства, предположительно посредством процесса положительного подкрепления.. Другой мишенью ΔFosB является cFos: поскольку ΔFosB накапливается при повторном воздействии препарата, он подавляет c-Fos и способствует молекулярному переключению, посредством которого ΔFosB действует избирательно. индуцированные в состоянии хронического лечения лекарствами. 41 . ... Более того, появляется все больше свидетельств того, что, несмотря на целый ряд генетических рисков развития зависимости среди населения, воздействие достаточно высоких доз наркотика в течение длительного периода времени может превратить человека с относительно низкой генетической нагрузкой в наркомана.
- ^ Волков Н.Д., Кооб Г.Ф., Маклеллан А.Т. (январь 2016 г.). «Нейробиологические достижения модели зависимости от заболеваний головного мозга» . Медицинский журнал Новой Англии . 374 (4): 363–371. дои : 10.1056/NEJMra1511480 . ПМК 6135257 . ПМИД 26816013 .
Расстройство, вызванное употреблением психоактивных веществ: диагностический термин в пятом издании «Диагностического и статистического руководства по психическим расстройствам» (DSM-5), относящийся к повторяющемуся употреблению алкоголя или других наркотиков, которое вызывает клинически и функционально значимые нарушения, такие как проблемы со здоровьем, инвалидность, и неспособность выполнять основные обязанности на работе, в школе или дома. В зависимости от степени тяжести это расстройство классифицируется как легкое, среднее или тяжелое.
Наркомания: термин, используемый для обозначения наиболее тяжелой, хронической стадии расстройства, связанного с употреблением психоактивных веществ, при которой происходит значительная потеря самоконтроля, о чем свидетельствует компульсивный прием наркотиков, несмотря на желание прекратить их прием. В DSM-5 термин «зависимость» является синонимом классификации тяжелого расстройства, связанного с употреблением психоактивных веществ. - ^ Jump up to: а б с Рентал В., Нестлер Э.Дж. (сентябрь 2009 г.). «Регуляция хроматина при наркомании и депрессии» . Диалоги в клинической неврологии . 11 (3): 257–268. doi : 10.31887/DCNS.2009.11.3/wrenthal . ПМЦ 2834246 . ПМИД 19877494 .
[Психостимуляторы] повышают уровень цАМФ в полосатом теле, что активирует протеинкиназу А (ПКА) и приводит к фосфорилированию ее мишеней. Сюда входит белок, связывающий элемент ответа цАМФ (CREB), фосфорилирование которого индуцирует его ассоциацию с ацетилтрансферазой гистонов, связывающий белок CREB (CBP) для ацетилирования гистонов и облегчения активации генов. Известно, что это происходит со многими генами, включая fosB и c-fos, в ответ на воздействие психостимуляторов. ΔFosB также активируется хроническим лечением психостимуляторами и, как известно, активирует определенные гены (например, cdk5) и подавляет другие (например, c-fos ), где он рекрутирует HDAC1 в качестве корепрессора. ... Хроническое воздействие психостимуляторов усиливает глутаматергическую [передачу сигналов] от префронтальной коры к NAc. Глутаматергическая передача сигналов повышает уровни Ca2+ в постсинаптических элементах NAc, где он активирует передачу сигналов CaMK (кальций/кальмодулиновые протеинкиназы), которые, помимо фосфорилирования CREB, также фосфорилируют HDAC5.
Рисунок 2: Сигнальные события, вызванные психостимуляторами - ^ Бруссар Дж.И. (январь 2012 г.). «Совместная передача дофамина и глутамата» . Журнал общей физиологии . 139 (1): 93–96. дои : 10.1085/jgp.201110659 . ПМК 3250102 . ПМИД 22200950 .
Совпадающие и конвергентные входные сигналы часто вызывают пластичность постсинаптического нейрона. NAc объединяет обработанную информацию об окружающей среде из базолатеральной миндалины, гиппокампа и префронтальной коры (ПФК), а также проекции дофаминовых нейронов среднего мозга. Предыдущие исследования продемонстрировали, как дофамин модулирует этот интегративный процесс. Например, высокочастотная стимуляция усиливает воздействие гиппокампа на NAc и одновременно угнетает синапсы PFC (Goto and Grace, 2005). Обратное также оказалось верным; стимуляция PFC потенцирует синапсы PFC-NAc, но угнетает синапсы гиппокамп-NAc. В свете новых функциональных доказательств совместной передачи дофамина и глутамата в средний мозг (ссылки выше) новые эксперименты с функцией NAc должны будут проверить, смещают ли глутаматергические входные сигналы среднего мозга или фильтруют лимбические или корковые входные сигналы для управления целенаправленным поведением.
- ^ Kanehisa Laboratories (10 октября 2014 г.). «Амфетамин – Homo sapiens (человек)» . Путь КЕГГ . Проверено 31 октября 2014 г.
Большинство наркотиков, вызывающих привыкание, повышают внеклеточную концентрацию дофамина (DA) в прилежащем ядре (NAc) и медиальной префронтальной коре (mPFC), проекционных областях мезокортиколимбических DA-нейронов и ключевых компонентах «цепи вознаграждения мозга». Амфетамин достигает такого повышения внеклеточных уровней DA, способствуя оттоку из синаптических окончаний. ... Хроническое воздействие амфетамина индуцирует уникальный фактор транскрипции дельта FosB, который играет важную роль в долгосрочных адаптивных изменениях в мозге.
- ^ Кадет Дж.Л., Браннок С., Джаянти С., Краснова И.Н. (2015). «Транкрипционные и эпигенетические субстраты зависимости и абстиненции от метамфетамина: данные модели самостоятельного введения с длительным доступом у крыс» . Молекулярная нейробиология . 51 (2): 696–717 ( рис. 1 ). дои : 10.1007/s12035-014-8776-8 . ПМЦ 4359351 . ПМИД 24939695 .
- ^ Jump up to: а б с Робисон А.Дж., Нестлер Э.Дж. (ноябрь 2011 г.). «Транскрипционные и эпигенетические механизмы зависимости» . Обзоры природы Неврология . 12 (11): 623–637. дои : 10.1038/nrn3111 . ПМЦ 3272277 . ПМИД 21989194 .
ΔFosB служит одним из главных контролирующих белков, управляющих этой структурной пластичностью. ... ΔFosB также подавляет экспрессию G9a, что приводит к снижению репрессивного метилирования гистонов в гене cdk5. Конечным результатом является активация генов и увеличение экспрессии CDK5. ... Напротив, ΔFosB связывается с геном c-fos и рекрутирует несколько ко-репрессоров, включая HDAC1 (деацетилаза гистонов 1) и SIRT 1 (сиртуин 1). ... Конечным результатом является репрессия гена c-fos .
Рисунок 4: Эпигенетические основы лекарственной регуляции экспрессии генов. - ^ Jump up to: а б с Нестлер Э.Дж. (декабрь 2012 г.). «Транскрипционные механизмы наркомании» . Клиническая психофармакология и неврология . 10 (3): 136–143. дои : 10.9758/cpn.2012.10.3.136 . ПМК 3569166 . ПМИД 23430970 .
Изоформы ΔFosB массой 35–37 кДа накапливаются при хроническом воздействии лекарств из-за их чрезвычайно длительного периода полураспада. ... Благодаря своей стабильности белок ΔFosB сохраняется в нейронах в течение как минимум нескольких недель после прекращения воздействия препарата. ... Сверхэкспрессия ΔFosB в прилежащем ядре индуцирует NFκB ... Напротив, способность ΔFosB подавлять ген c-Fos происходит одновременно с рекрутированием гистондеацетилазы и, предположительно, нескольких других репрессивных белков, таких как репрессивная гистон-метилтрансфераза.
- ^ Нестлер Э.Дж. (октябрь 2008 г.). «Транскрипционные механизмы зависимости: роль ΔFosB» . Философские труды Королевского общества B: Биологические науки . 363 (1507): 3245–3255. дои : 10.1098/rstb.2008.0067 . ПМК 2607320 . ПМИД 18640924 .
Недавние данные показали, что ΔFosB также репрессирует ген c-fos , который помогает создать молекулярный переключатель - от индукции нескольких короткоживущих белков семейства Fos после острого воздействия лекарства до преимущественного накопления ΔFosB после хронического воздействия лекарства.
- ^ Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 16: Подкрепление и аддиктивные расстройства». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). Нью-Йорк: McGraw-Hill Medical. ISBN 9780071827706 .
Такие агенты также имеют важное терапевтическое применение; кокаин, например, используется в качестве местного анестетика (глава 2), а амфетамины и метилфенидат используются в низких дозах для лечения синдрома дефицита внимания и гиперактивности и в более высоких дозах для лечения нарколепсии (глава 12). Несмотря на клиническое применение, эти препараты обладают сильным подкрепляющим действием, а их длительное применение в высоких дозах связано с потенциальной зависимостью, особенно при быстром введении или при назначении высокоэффективных форм.
- ^ Коллинз С.Х. (май 2008 г.). «Качественный обзор проблем, возникающих при использовании психостимулирующих препаратов у пациентов с СДВГ и сопутствующими расстройствами, связанными с употреблением психоактивных веществ». Текущие медицинские исследования и мнения . 24 (5): 1345–1357. дои : 10.1185/030079908X280707 . ПМИД 18384709 . S2CID 71267668 .
Когда пероральные формы психостимуляторов используются в рекомендуемых дозах и с частотой, они вряд ли дадут эффект, соответствующий потенциалу злоупотребления у пациентов с СДВГ.
- ^ Kanehisa Laboratories (10 октября 2014 г.). «Амфетамин – Homo sapiens (человек) » Путь КЕГГ . Получено 31 октября.
- ^ Jump up to: а б с д и ж Нечифор М (март 2008 г.). «Магний при наркотической зависимости» . Исследования магния . 21 (1): 5–15. doi : 10.1684/mrh.2008.0124 (неактивен 31 января 2024 г.). ПМИД 18557129 .
{{cite journal}}
: CS1 maint: DOI неактивен по состоянию на январь 2024 г. ( ссылка ) - ^ Jump up to: а б с д и Раффл Дж.К. (ноябрь 2014 г.). «Молекулярная нейробиология зависимости: о чем вообще (Δ)FosB?». Американский журнал о злоупотреблении наркотиками и алкоголем . 40 (6): 428–437. дои : 10.3109/00952990.2014.933840 . ПМИД 25083822 . S2CID 19157711 .
ΔFosB является важным фактором транскрипции, участвующим в молекулярных и поведенческих путях развития зависимости после неоднократного воздействия наркотиков.
- ^ Jump up to: а б с д и ж г час я дж к Робисон А.Дж., Нестлер Э.Дж. (ноябрь 2011 г.). «Транскрипционные и эпигенетические механизмы зависимости» . Обзоры природы Неврология . 12 (11): 623–637. дои : 10.1038/nrn3111 . ПМЦ 3272277 . ПМИД 21989194 .
ΔFosB напрямую связан с некоторыми видами поведения, связанными с зависимостью... Важно отметить, что генетическая или вирусная сверхэкспрессия ΔJunD, доминантно-негативного мутанта JunD, который противодействует ΔFosB- и другой AP-1-опосредованной транскрипционной активности, в NAc или OFC блокирует эту Ключевые последствия воздействия наркотиков 14,22–24 . Это указывает на то, что ΔFosB одновременно необходим и достаточен для многих изменений, вызываемых в мозге хроническим воздействием наркотиков. ΔFosB также индуцируется в NAc MSN D1-типа при хроническом потреблении нескольких натуральных вознаграждений, включая сахарозу, пищу с высоким содержанием жиров, секс, бег на колесах, где он способствует этому потреблению. 14,26–30 . Это предполагает участие ΔFosB в регуляции естественного вознаграждения в нормальных условиях и, возможно, во время патологических состояний, подобных аддиктивному. ... ΔFosB служит одним из главных контролирующих белков, управляющих этой структурной пластичностью.
- ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v Олсен CM (декабрь 2011 г.). «Естественные награды, нейропластичность и ненаркотическая зависимость» . Нейрофармакология . 61 (7): 1109–1122. doi : 10.1016/j.neuropharm.2011.03.010 . ПМК 3139704 . ПМИД 21459101 .
Исследования показали, что, как и в случае с обогащением окружающей среды, физические упражнения снижают риск самостоятельного приема наркотиков и рецидивов злоупотребления наркотиками (Cosgrove et al., 2002; Zlebnik et al., 2010). Есть также некоторые свидетельства того, что эти доклинические результаты применимы к человеческому населению, поскольку физические упражнения уменьшают симптомы абстиненции и рецидивы у воздерживающихся от курения (Daniel et al., 2006; Prochaska et al., 2008), а одна программа восстановления после наркозависимости добилась успеха у участников. которые тренируются и участвуют в марафоне в рамках программы (Батлер, 2005). ... У людей роль передачи сигналов дофамина в процессах стимулирующей сенсибилизации недавно была подчеркнута наблюдением синдрома нарушения регуляции дофамина у некоторых пациентов, принимающих дофаминергические препараты. Этот синдром характеризуется вызванным приемом лекарств увеличением (или компульсивным) вовлечением в ненаркотические вознаграждения, такие как азартные игры, покупки или секс (Evans et al., 2006; Aiken, 2007; Lader, 2008).
- ^ Jump up to: а б с д Линч В.Дж., Петерсон А.Б., Санчес В., Абель Дж., Смит М.А. (сентябрь 2013 г.). «Упражнения как новый метод лечения наркозависимости: нейробиологическая и стадийно-зависимая гипотеза» . Неврологические и биоповеденческие обзоры . 37 (8): 1622–1644. doi : 10.1016/j.neubiorev.2013.06.011 . ПМЦ 3788047 . ПМИД 23806439 .
Эти данные свидетельствуют о том, что физические упражнения могут в зависимости от «величины» предотвратить развитие фенотипа зависимости, возможно, путем блокирования/обращения вспять поведенческих и нейроадаптивных изменений, которые развиваются во время и после расширенного доступа к наркотику. ... Физические упражнения были предложены в качестве лечения наркозависимости, которое может уменьшить тягу к наркотикам и риск рецидива. Хотя мало клинических исследований изучали эффективность физических упражнений для предотвращения рецидивов, те немногие исследования, которые были проведены, обычно сообщают о снижении тяги к наркотикам и лучших результатах лечения. особенно при рецидиве приема психостимуляторов, может быть опосредовано ремоделированием хроматина и, возможно, привести к лучшим результатам лечения.
- ^ Jump up to: а б с Чжоу Ю, Чжао М, Чжоу С, Ли Р (июль 2015 г.). «Половые различия в наркозависимости и реакция на физические упражнения: от исследований на людях до животных» . Границы нейроэндокринологии . 40 : 24–41. doi : 10.1016/j.yfrne.2015.07.001 . ПМЦ 4712120 . ПМИД 26182835 .
В совокупности эти результаты показывают, что физические упражнения могут служить заменой или конкуренцией злоупотреблению наркотиками путем изменения иммунореактивности ΔFosB или cFos в системе вознаграждения для защиты от последующего или предыдущего употребления наркотиков. ... Постулат о том, что физические упражнения служат идеальным средством лечения наркозависимости, получил широкое признание и используется в реабилитации людей и животных.
- ^ Jump up to: а б с Линке С.Е., Ашер М. (январь 2015 г.). «Лечение расстройств, вызванных употреблением психоактивных веществ, с помощью упражнений: доказательства, теория и практика» . Американский журнал о злоупотреблении наркотиками и алкоголем . 41 (1): 7–15. дои : 10.3109/00952990.2014.976708 . ПМК 4831948 . ПМИД 25397661 .
Проведенные ограниченные исследования показывают, что физические упражнения могут быть эффективным дополнительным лечением SUD. В отличие от скудных на сегодняшний день интервенционных исследований, опубликовано сравнительно много литературы по теоретическим и практическим причинам, поддерживающим исследование этой темы. ... многочисленные теоретические и практические причины поддерживают лечение SUD на основе упражнений, включая психологические, поведенческие, нейробиологические, почти универсальный профиль безопасности и общее положительное воздействие на здоровье.
- ^ Хайман С.Е., Маленка Р.К., Нестлер Э.Дж. (июль 2006 г.). «Нейральные механизмы зависимости: роль обучения и памяти, связанных с вознаграждением» (PDF) . Ежегодный обзор неврологии . 29 : 565–598. дои : 10.1146/annurev.neuro.29.051605.113009 . ПМИД 16776597 . S2CID 15139406 . Архивировано из оригинала (PDF) 19 сентября 2018 года.
- ^ Jump up to: а б с д и Штайнер Х., Ван Ваес В. (январь 2013 г.). «Регуляция генов, связанных с зависимостью: риски воздействия усилителей когнитивных функций по сравнению с другими психостимуляторами» . Прогресс нейробиологии . 100 : 60–80. дои : 10.1016/j.pneurobio.2012.10.001 . ПМЦ 3525776 . ПМИД 23085425 .
- ^ Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 4: Передача сигналов в мозге». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. п. 94. ИСБН 9780071481274 .
- ^ Kanehisa Laboratories (29 октября 2014 г.). «Алкоголизм – Homo sapiens (человек)» . Путь КЕГГ . Проверено 31 октября 2014 г.
- ^ Ким Ю, Тейлан М.А., Барон М., Сэндс А., Нэрн А.С., Грингард П. (февраль 2009 г.). «Индуцированное метилфенидатом образование дендритных шипов и экспрессия DeltaFosB в прилежащем ядре» . Труды Национальной академии наук . 106 (8): 2915–2920. Бибкод : 2009PNAS..106.2915K . дои : 10.1073/pnas.0813179106 . ПМК 2650365 . ПМИД 19202072 .
- ^ Jump up to: а б Нестлер Э.Дж. (январь 2014 г.). «Эпигенетические механизмы наркомании» . Нейрофармакология . 76 (Часть Б): 259–268. doi : 10.1016/j.neuropharm.2013.04.004 . ПМЦ 3766384 . ПМИД 23643695 .
- ^ Jump up to: а б Билински П., Войтыла А., Капка-Скшипчак Л., Хведорович Р., Циранка М., Студзински Т. (2012). «Эпигенетическая регуляция при наркомании» . Анналы сельскохозяйственной и экологической медицины . 19 (3): 491–496. ПМИД 23020045 .
- ^ Кеннеди П.Дж., Фенг Дж., Робисон А.Дж., Мейз И., Бадимон А., Музон Э. и др. (апрель 2013 г.). «Ингибирование HDAC класса I блокирует пластичность, вызванную кокаином, путем целенаправленных изменений в метилировании гистонов» . Природная неврология . 16 (4): 434–440. дои : 10.1038/nn.3354 . ПМК 3609040 . ПМИД 23475113 .
- ^ Уолли К. (декабрь 2014 г.). «Психические расстройства: подвиг эпигенетической инженерии» . Обзоры природы. Нейронаука . 15 (12): 768–769. дои : 10.1038/nrn3869 . ПМИД 25409693 . S2CID 11513288 .
- ^ Jump up to: а б Блюм К., Вернер Т., Карнес С., Карнес П., Боуиррат А., Джордано Дж. и др. (март 2012 г.). «Секс, наркотики и рок-н-ролл: гипотеза об общей мезолимбической активации как функции полиморфизма гена вознаграждения» . Журнал психоактивных препаратов . 44 (1): 38–55. дои : 10.1080/02791072.2012.662112 . ПМК 4040958 . ПМИД 22641964 .
Было обнаружено, что ген deltaFosB в NAc имеет решающее значение для усиления эффекта сексуального вознаграждения. Питчерс и его коллеги (2010) сообщили, что сексуальный опыт вызывает накопление DeltaFosB в нескольких лимбических областях мозга, включая NAc, медиальную префронтальную кору, VTA, хвостатое ядро и скорлупу, но не в медиальном преоптическом ядре. ... эти результаты подтверждают критическую роль экспрессии DeltaFosB в NAc в усилении эффектов сексуального поведения и облегчении сексуальной деятельности, вызванном сексуальным опытом. ...как наркомания, так и сексуальная зависимость представляют собой патологические формы нейропластичности наряду с возникновением аберрантного поведения, включающего каскад нейрохимических изменений, главным образом в схемах вознаграждения мозга.
- ^ Питчерс К.К., Виалу В., Нестлер Э.Дж., Лавиолетт С.Р., Леман М.Н., Кулен Л.М. (февраль 2013 г.). «Естественные и лекарственные вознаграждения действуют на общие механизмы нейронной пластичности, при этом ΔFosB является ключевым медиатором» . Журнал неврологии . 33 (8): 3434–3442. doi : 10.1523/JNEUROSCI.4881-12.2013 . ПМЦ 3865508 . ПМИД 23426671 .
- ^ Белоате Л.Н., Уимс П.В., Кейси Г.Р., Уэбб И.К., Кулен Л.М. (февраль 2016 г.). «Активация рецептора NMDA прилежащего ядра регулирует перекрестную сенсибилизацию к амфетамину и экспрессию deltaFosB после сексуального опыта у самцов крыс». Нейрофармакология . 101 : 154–164. doi : 10.1016/j.neuropharm.2015.09.023 . ПМИД 26391065 . S2CID 25317397 .
- ^ Маленка Р.Ц., Нестлер Э.Дж., Хайман С.Е., Хольцман Д.М. (2015). «Глава 16: Подкрепление и аддиктивные расстройства». Молекулярная нейрофармакология: фонд клинической неврологии (3-е изд.). Нью-Йорк: McGraw-Hill Medical. ISBN 9780071827706 .
Фармакологическое лечение зависимости от психостимуляторов, как правило, неудовлетворительно. Как обсуждалось ранее, прекращение употребления кокаина и других психостимуляторов у зависимых лиц не вызывает физического абстинентного синдрома, но может вызвать дисфорию, ангедонию и сильное желание возобновить употребление наркотиков.
- ^ Jump up to: а б с д Чан Б., Фриман М., Кондо К., Айерс С., Монтгомери Дж., Пейнтер Р. и др. (декабрь 2019 г.). «Фармакотерапия расстройств, связанных с употреблением метамфетамина / амфетамина - систематический обзор и метаанализ». Зависимость . 114 (12): 2122–2136. дои : 10.1111/доп.14755 . PMID 31328345 . S2CID 198136436 .
- ^ Ступс WW, Rush CR (май 2014 г.). «Комбинированная фармакотерапия расстройств, вызванных употреблением стимуляторов: обзор клинических данных и рекомендации для будущих исследований» . Экспертное обозрение клинической фармакологии . 7 (3): 363–374. дои : 10.1586/17512433.2014.909283 . ПМК 4017926 . ПМИД 24716825 .
Несмотря на согласованные усилия по поиску фармакотерапии для лечения расстройств, связанных с употреблением стимуляторов, не было одобрено ни одного широко эффективного лекарства.
- ^ Jump up to: а б Гранди Д.К., Миллер ГМ, Ли Дж.С. (февраль 2016 г.). « TAARgeting наркомания» - Аламо является свидетелем еще одной революции: обзор пленарного симпозиума Конференции по поведению, биологии и химии 2015 года» . Наркотическая и алкогольная зависимость . 159 : 9–16. doi : 10.1016/j.drugalcdep.2015.11.014 . ПМЦ 4724540 . ПМИД 26644139 .
При рассмотрении вместе с быстро растущей литературой в этой области возникают убедительные аргументы в пользу разработки селективных агонистов TAAR1 в качестве лекарств для предотвращения рецидива злоупотребления психостимуляторами.
- ^ Jump up to: а б Цзин Л., Ли JX (август 2015 г.). «Рецептор 1, связанный с амином: многообещающая мишень для лечения зависимости от психостимуляторов» . Европейский журнал фармакологии . 761 : 345–352. дои : 10.1016/j.ejphar.2015.06.019 . ПМЦ 4532615 . ПМИД 26092759 .
Существующие данные предоставили надежные доклинические данные, подтверждающие разработку агонистов TAAR1 в качестве потенциального лечения злоупотребления психостимуляторами и зависимости.
- ^ Jump up to: а б Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 5: Возбуждающие и ингибирующие аминокислоты». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. стр. 124–125. ISBN 9780071481274 .
- ^ Jump up to: а б с Кэрролл М.Э., Сметеллс-младший (февраль 2016 г.). «Половые различия в поведенческом дисконтроле: роль в наркозависимости и новых методах лечения» . Границы в психиатрии . 6 : 175. doi : 10.3389/fpsyt.2015.00175 . ПМЦ 4745113 . ПМИД 26903885 .
Физические упражнения
Появляется все больше свидетельств того, что физические упражнения являются полезным средством профилактики и снижения наркотической зависимости... У некоторых людей упражнения имеют свои собственные полезные эффекты, и может возникнуть поведенческое экономическое взаимодействие, при котором физическое и социальное вознаграждение от физических упражнений может заменить собой полезные последствия злоупотребления наркотиками. ... Ценность этой формы лечения наркозависимости у лабораторных животных и людей заключается в том, что физические упражнения, если они могут заменить полезный эффект от наркотиков, могут поддерживаться самостоятельно в течение длительного периода времени. Исследования, проведенные на [лабораторных животных и людях] в отношении физических упражнений в качестве лечения наркозависимости, подтверждают эту гипотезу. ... Исследования на животных и людях по использованию физических упражнений в качестве лечения зависимости от стимуляторов показывают, что это один из самых многообещающих методов лечения на горизонте. - ^ Перес-Мана К, Кастельс Х, Торренс М, Капелла Д, Фарре М (сентябрь 2013 г.). «Эффективность психостимуляторов при злоупотреблении амфетамином или зависимости». Кокрейновская база данных систематических обзоров . 9 (9): CD009695. дои : 10.1002/14651858.CD009695.pub2 . ПМИД 23996457 .
- ^ «Амфетамины: употребление наркотиков и злоупотребление ими» . Руководство Merck, домашняя версия . Мерк. Февраль 2003 г. Архивировано из оригинала 17 февраля 2007 г. Проверено 28 февраля 2007 г.
- ^ Jump up to: а б с д Шопто С.Дж., Као У, Хейнзерлинг К., Линг В. (апрель 2009 г.). Шоптоу С.Дж. (ред.). «Лечение синдрома отмены амфетамина» . Кокрейновская база данных систематических обзоров . 2009 (2): CD003021. дои : 10.1002/14651858.CD003021.pub2 . ПМК 7138250 . ПМИД 19370579 .
Распространенность этого синдрома отмены чрезвычайно распространена (Cantwell 1998; Gossop 1982): 87,6% из 647 человек с амфетаминовой зависимостью сообщают о шести или более признаках отмены амфетамина, перечисленных в DSM, когда препарат недоступен (Schuckit 1999)... Тяжесть абстинентного синдрома выше у пожилых людей, страдающих зависимостью от амфетамина и имеющих более обширные расстройства, связанные с употреблением амфетаминов (McGregor 2005). Симптомы отмены обычно проявляются в течение 24 часов после последнего употребления амфетамина, при этом синдром отмены включает две основные фазы, которые могут длиться 3 недели и более. Первой фазой этого синдрома является начальный «крах», который проходит примерно через неделю (Gossop 1982; McGregor 2005).
- ^ Jump up to: а б Спиллер Х.А., Хейс Х.Л., Алегуас А. (июнь 2013 г.). «Передозировка лекарств при синдроме дефицита внимания с гиперактивностью: клиническая картина, механизмы токсичности и лечение» . Препараты ЦНС . 27 (7): 531–543. дои : 10.1007/s40263-013-0084-8 . ПМИД 23757186 . S2CID 40931380 .
Амфетамин, декстроамфетамин и метилфенидат действуют как субстраты для клеточного переносчика моноаминов, особенно переносчика дофамина (DAT) и в меньшей степени переносчика норадреналина (NET) и серотонина. Механизм токсичности в первую очередь связан с избытком внеклеточного дофамина, норадреналина и серотонина.
- ^ Соавторы (2015). «Глобальная, региональная и национальная смертность от всех причин и по конкретным причинам в разбивке по возрасту и по конкретным причинам по 240 причинам смерти, 1990–2013 гг.: систематический анализ для исследования глобального бремени болезней, 2013 г.» . Ланцет . 385 (9963): 117–171. дои : 10.1016/S0140-6736(14)61682-2 . hdl : 11655/15525 . ПМК 4340604 . ПМИД 25530442 .
Расстройства, связанные с употреблением амфетаминов ... 3788 (3425–4145)
- ^ Грин С.Л., Керр Ф., Брайтберг Г. (октябрь 2008 г.). «Обзорная статья: амфетамины и родственные им наркотики, вызывающие злоупотребление». Неотложная медицинская помощь в Австралии . 20 (5): 391–402. дои : 10.1111/j.1742-6723.2008.01114.x . ПМИД 18973636 . S2CID 20755466 .
- ^ Альбертсон Т.Е. (2011). «Амфетамины». В Олсон К.Р., Андерсон И.Б., Беновиц Н.Л., Блан П.Д., Кирни Т.Е., Ким-Кац С.Ю., Ву А.Х. (ред.). Отравление и передозировка наркотиков (6-е изд.). Нью-Йорк: McGraw-Hill Medical. стр. 77–79. ISBN 9780071668330 .
- ^ Адвокат С (июль 2007 г.). «Новая информация о нейротоксичности амфетамина и ее значимости для лечения СДВГ». Журнал расстройств внимания . 11 (1): 8–16. дои : 10.1177/1087054706295605 . ПМИД 17606768 . S2CID 7582744 .
- ^ Jump up to: а б с д Бойер Дж. Ф., Ханиг Дж. П. (ноябрь 2014 г.). «Гипертермия, вызванная амфетамином и метамфетамином: влияние эффектов, оказываемых на сосуды головного мозга и периферические органы, на нейротоксичность переднего мозга» . Температура . 1 (3): 172–182. дои : 10.4161/23328940.2014.982049 . ПМК 5008711 . ПМИД 27626044 .
Гипертермия сама по себе не вызывает нейротоксичности, подобной амфетамину, однако воздействие АМФ и МЕТН, не вызывающее гипертермию (≥40 °C), минимально нейротоксично. Гипертермия, вероятно, усиливает нейротоксичность АМФ и МЕТН непосредственно за счет нарушения функции белка, ионных каналов и усиления продукции АФК. ... Гипертермия и гипертония, вызванные высокими дозами амфетаминов, являются основной причиной временных нарушений гематоэнцефалического барьера (ГЭБ), приводящих к сопутствующей региональной нейродегенерации и нейровоспалению у лабораторных животных. ... На животных моделях, оценивающих нейротоксичность АМФ и МЕТА, совершенно ясно, что гипертермия является одним из важнейших компонентов, необходимых для возникновения гистологических признаков терминального повреждения дофамина и нейродегенерации в коре головного мозга, полосатом теле, таламусе и гиппокампе.
- ^ «Амфетамин» . Национальная медицинская библиотека США – Сеть токсикологических данных . Банк данных об опасных веществах. Архивировано из оригинала 2 октября 2017 года . Проверено 2 октября 2017 г.
Прямое токсическое повреждение сосудов представляется маловероятным из-за разведения, которое происходит до того, как препарат достигнет мозгового кровообращения.
- ^ Маленка Р.К., Нестлер Э.Дж., Хайман С.Е. (2009). «Глава 15: Подкрепление и аддиктивные расстройства». В Сидоре А., Брауне Р.Ю. (ред.). Молекулярная нейрофармакология: фонд клинической неврологии (2-е изд.). Нью-Йорк, США: McGraw-Hill Medical. п. 370. ИСБН 9780071481274 .
В отличие от кокаина и амфетамина, метамфетамин непосредственно токсичен для дофаминовых нейронов среднего мозга.
- ^ Зульцер Д., Зекка Л. (февраль 2000 г.). «Внутринейронный синтез дофамин-хинона: обзор». Исследования нейротоксичности . 1 (3): 181–195. дои : 10.1007/BF03033289 . ПМИД 12835101 . S2CID 21892355 .
- ^ Миядзаки I, Асанума М (июнь 2008 г.). «Окислительный стресс, специфичный для дофаминергических нейронов, вызванный самим дофамином» (PDF) . Акта Медика Окаяма . 62 (3): 141–150. дои : 10.18926/AMO/30942 . ПМИД 18596830 .
- ^ Хофманн Ф.Г. (1983). Справочник по злоупотреблению наркотиками и алкоголем: биомедицинские аспекты (2-е изд.). Нью-Йорк, США: Издательство Оксфордского университета. п. 329 . ISBN 9780195030570 .
- ^ Jump up to: а б с д и ж г час я дж «Аддералл — сахарат декстроамфетамина, аспартат амфетамина, сульфат декстроамфетамина и таблетка сульфата амфетамина» . ДейлиМед . 27 февраля 2022 г. Проверено 28 марта 2022 г.
- ^ Jump up to: а б с д и ж г час я дж «Аддералл XR - сульфат декстроамфетамина, сахарат декстроамфетамина, сульфат амфетамина и капсула аспартата амфетамина, пролонгированного действия» . ДейлиМед . 3 марта 2022 г. Проверено 28 марта 2022 г.
- ^ Краузе Дж. (апрель 2008 г.). «ОФЭКТ и ПЭТ переносчика дофамина при синдроме дефицита внимания и гиперактивности». Эксперт преподобный Нейротер . 8 (4): 611–625. дои : 10.1586/14737175.8.4.611 . ПМИД 18416663 . S2CID 24589993 .
Цинк связывается с... внеклеточными сайтами DAT [103], выступая в качестве ингибитора DAT. В этом контексте представляют интерес контролируемые двойные слепые исследования у детей, которые показали положительное влияние добавок цинка на симптомы СДВГ [105,106]. Следует отметить, что в настоящее время [добавки] цинка не включены ни в один алгоритм лечения СДВГ.
- ^ Зульцер Д. (февраль 2011 г.). «Как наркотики, вызывающие привыкание, нарушают пресинаптическую дофаминовую нейротрансмиссию» . Нейрон . 69 (4): 628–649. дои : 10.1016/j.neuron.2011.02.010 . ПМК 3065181 . ПМИД 21338876 .
Они не подтвердили предсказанную прямую связь между поглощением и высвобождением, а скорее то, что некоторые соединения, включая AMPH, были лучшими высвобождающими факторами, чем субстратами для поглощения. Более того, цинк стимулирует отток внутриклеточного [3H]DA, несмотря на сопутствующее ингибирование его захвата (Scholze et al., 2002).
- ^ Jump up to: а б Шольце П., Норрегаард Л., Сингер Э.А., Фрейссмут М., Гетер Ю., Ситте Х.Х. (июнь 2002 г.). «Роль ионов цинка в обратном транспорте, опосредованном переносчиками моноаминов» . Ж. Биол. Хим . 277 (24): 21505–21513. дои : 10.1074/jbc.M112265200 . ПМИД 11940571 .
- ^ Скасселлати С, Бонвичини С, Фараоне С.В., Дженнарелли М (октябрь 2012 г.). «Биомаркеры и синдром дефицита внимания/гиперактивности: систематический обзор и метаанализ». Дж. Ам. акад. Ребенок Подросток. Психиатрия . 51 (10): 1003–1019.e20. дои : 10.1016/j.jaac.2012.08.015 . ПМИД 23021477 .
- ^ Зульцер Д., Крэгг С.Дж., Райс М.Э. (август 2016 г.). «Нейротрансмиссия стриарного дофамина: регуляция высвобождения и поглощения» . Базальные ганглии . 6 (3): 123–148. дои : 10.1016/j.baga.2016.02.001 . ПМК 4850498 . ПМИД 27141430 .
Несмотря на трудности определения pH синаптических везикул, градиент протонов через мембрану везикул имеет фундаментальное значение для ее функции. Воздействие протонофоров на изолированные везикулы катехоламинов разрушает градиент pH и быстро перераспределяет медиатор изнутри пузырька наружу. ... Амфетамин и его производные, такие как метамфетамин, представляют собой слабоосновные соединения и являются единственным широко используемым классом наркотиков, которые, как известно, вызывают высвобождение медиатора по неэкзоцитическому механизму. В качестве субстратов как для DAT, так и для VMAT, амфетамины могут переноситься в цитозоль, а затем изолироваться в везикулах, где они действуют, разрушая везикулярный градиент pH.
- ^ Ледонн А., Берретта Н., Даволи А., Риццо Г.Р., Бернарди Дж., Меркури Н.Б. (июль 2011 г.). «Электрофизиологические эффекты следовых аминов на мезэнцефальные дофаминергические нейроны» . Передний. Сист. Нейроски . 5 : 56. дои : 10.3389/fnsys.2011.00056 . ПМК 3131148 . ПМИД 21772817 .
Недавно появились три важных новых аспекта действия ТА: (а) ингибирование возбуждения из-за повышенного высвобождения дофамина; (б) снижение тормозных реакций, опосредованных рецепторами D2 и GABAB (возбуждающие эффекты вследствие растормаживания); и (c) прямая активация GIRK-каналов, опосредованная рецептором TA1, которая вызывает гиперполяризацию клеточной мембраны.
- ^ «ТААР1» . ГенАтлас . Парижский университет. 28 января 2012 года . Проверено 29 мая 2014 г.
• тонически активирует внутренние выпрямляющие K(+) каналы, что снижает базальную частоту импульсов дофаминовых (DA) нейронов вентральной покрышки (VTA)
- ^ Андерхилл С.М., Уилер Д.С., Ли М., Уоттс С.Д., Ингрэм С.Л., Амара С.Г. (июль 2014 г.). «Амфетамин модулирует возбуждающую нейротрансмиссию посредством эндоцитоза транспортера глутамата EAAT3 в дофаминовых нейронах» . Нейрон . 83 (2): 404–416. дои : 10.1016/j.neuron.2014.05.043 . ПМК 4159050 . ПМИД 25033183 .
AMPH также увеличивает внутриклеточный кальций (Gnegy et al., 2004), что связано с активацией кальмодулина/CamKII (Wei et al., 2007), а также модуляцией и транспортировкой DAT (Fog et al., 2006; Sakrikar et al., 2012). ). ... Например, AMPH увеличивает внеклеточный глутамат в различных областях мозга, включая полосатое тело, VTA и NAc (Del Arco et al., 1999; Kim et al., 1981; Mora and Porras, 1993; Xue et al., 1996). , но не установлено, можно ли объяснить это изменение увеличением синаптического высвобождения или снижением клиренса глутамата. ... DHK-чувствительное поглощение EAAT2 не изменялось под действием AMPH (рис. 1А). Оставшийся транспорт глутамата в этих культурах среднего мозга, вероятно, опосредован EAAT3, и этот компонент был значительно уменьшен AMPH.
- ^ Воган Р.А., Фостер Дж.Д. (сентябрь 2013 г.). «Механизмы регуляции транспортера дофамина в норме и при заболеваниях» . Тренды Фармакол. Наука . 34 (9): 489–496. дои : 10.1016/j.tips.2013.07.005 . ПМЦ 3831354 . ПМИД 23968642 .
АМФ и МЕТН также стимулируют отток ДА, который считается решающим элементом их аддиктивных свойств [80], хотя механизмы, по-видимому, не идентичны для каждого препарата [81]. Эти процессы являются PKCβ- и CaMK-зависимыми [72, 82], а у мышей с нокаутом PKCβ наблюдается снижение индуцированного AMPH оттока, что коррелирует со снижением индуцированной AMPH локомоции [72].
- ^ Jump up to: а б Бунцов Дж.Р., Сондерс М.С., Арттамангкул С., Харрисон Л.М., Чжан Г., Куигли Д.И. и др. (декабрь 2001 г.). «Амфетамин, 3,4-метилендиоксиметамфетамин, диэтиламид лизергиновой кислоты и метаболиты нейротрансмиттеров катехоламинов являются агонистами аминных рецепторов крысы». Молекулярная фармакология . 60 (6): 1181–1188. дои : 10.1124/моль.60.6.1181 . ПМИД 11723224 . S2CID 14140873 .
- ^ Jump up to: а б с д Левин А.Х., Миллер ГМ, Гилмор Б. (декабрь 2011 г.). «Рецептор 1, связанный с следовым амином, представляет собой стереоселективный сайт связывания соединений класса амфетаминов» . Биоорг. Мед. Хим . 19 (23): 7044–7048. дои : 10.1016/j.bmc.2011.10.007 . ПМК 3236098 . ПМИД 22037049 .
- ^ Боровский Б., Адхам Н., Джонс К.А., Раддац Р., Артымишин Р., Огозалек К.Л. и др. (июль 2001 г.). «Следовые амины: идентификация семейства рецепторов млекопитающих, связанных с G-белком» . Труды Национальной академии наук Соединенных Штатов Америки . 98 (16): 8966–8971. Бибкод : 2001PNAS...98.8966B . дои : 10.1073/pnas.151105198 . ПМЦ 55357 . ПМИД 11459929 .
- ^ Jump up to: а б с Westfall DP, Westfall TC (2010). «Разные симпатомиметические агонисты» . В Брантоне Л.Л., Чабнере Б.А., Ноллманне Б.К. (ред.). Фармакологические основы терапии Гудмана и Гилмана (12-е изд.). Нью-Йорк: МакГроу-Хилл. ISBN 978-0-07-162442-8 .
- ^ Jump up to: а б с д и Бродли К.Дж. (март 2010 г.). «Сосудистые эффекты следовых аминов и амфетаминов». Фармакология и терапия . 125 (3): 363–375. doi : 10.1016/j.pharmthera.2009.11.005 . ПМИД 19948186 .
- ^ Jump up to: а б Хан М.З., Наваз В. (октябрь 2016 г.). «Новая роль следовых аминов человека и рецепторов, связанных с следовыми аминами человека (hTAAR), в центральной нервной системе». Биомедицина и фармакотерапия . 83 : 439–449. дои : 10.1016/j.biopha.2016.07.002 . ПМИД 27424325 .
- ^ Jump up to: а б с д и Линдеманн Л., Хонер MC (май 2005 г.). «Ренессанс следовых аминов, вдохновленный новым семейством GPCR». Тенденции в фармакологических науках . 26 (5): 274–281. дои : 10.1016/j.tips.2005.03.007 . ПМИД 15860375 .
- ^ Jump up to: а б с Сантагати Н.А., Феррара Г., Марраццо А., Ронсисвалле Г. (сентябрь 2002 г.). «Одновременное определение амфетамина и одного из его метаболитов методом ВЭЖХ с электрохимическим обнаружением». Журнал фармацевтического и биомедицинского анализа . 30 (2): 247–255. дои : 10.1016/S0731-7085(02)00330-8 . ПМИД 12191709 .
- ^ «Комплексное резюме» . п-Гидроксиамфетамин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Комплексное резюме» . п-Гидроксинорефедрин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Комплексное резюме» . Фенилпропаноламин. База данных соединений PubChem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 15 октября 2013 г.
- ^ «Фармакология и биохимия» . Амфетамин. База данных соединений Pubchem . Национальная медицинская библиотека США – Национальный центр биотехнологической информации . Проверено 12 октября 2013 г.
- ^ Jump up to: а б Гленнон Р.А. (2013). «Стимуляторы фенилизопропиламина: агенты, связанные с амфетамином» . В Лемке Т.Л., Уильямс Д.А., Рош В.Ф., Зито В. (ред.). Принципы медицинской химии Фоя (7-е изд.). Филадельфия, США: Wolters Kluwer Health/Lippincott Williams & Wilkins. стр. 646–648. ISBN 9781609133450 .
Простейший незамещенный фенилизопропиламин, 1-фенил-2-аминопропан или амфетамин, служит общей структурной матрицей для галлюциногенов и психостимуляторов. Амфетамин оказывает центральное стимулирующее, аноректическое и симпатомиметическое действие и является прототипом этого класса (39). ... Фаза 1 метаболизма аналогов амфетамина катализируется двумя системами: цитохромом P450 и флавинмонооксигеназой. ... Амфетамин также может подвергаться ароматическому гидроксилированию до п -гидроксиамфетамина. ... Последующее окисление в бензильном положении DA-β-гидроксилазой дает п- гидроксинорэфедрин. Альтернативно, прямое окисление амфетамина DA-β-гидроксилазой может дать норэфедрин.
- ^ Тейлор КБ (январь 1974 г.). «Дофамин-бета-гидроксилаза. Стереохимический ход реакции» (PDF) . Журнал биологической химии . 249 (2): 454–458. дои : 10.1016/S0021-9258(19)43051-2 . ПМИД 4809526 . Проверено 6 ноября 2014 г.
Дофамин-β-гидроксилаза катализирует удаление атома водорода про- R и образование 1-норэфедрина, (2S , 1R ) -2-амино-1-гидроксил-1-фенилпропана из d -амфетамина.
- ^ Кэшман-младший, Сюн Ю.Н., Сюй Л., Яновский А. (март 1999 г.). «N-оксигенация амфетамина и метамфетамина человеческой флавинсодержащей монооксигеназой (форма 3): роль в биоактивации и детоксикации». Журнал фармакологии и экспериментальной терапии . 288 (3): 1251–1260. ПМИД 10027866 .
- ^ Jump up to: а б с Сьердсма А., фон Штудниц В. (апрель 1963 г.). «Активность дофамин-бета-оксидазы у человека при использовании гидроксиамфетамина в качестве субстрата» . Британский журнал фармакологии и химиотерапии . 20 (2): 278–284. дои : 10.1111/j.1476-5381.1963.tb01467.x . ПМК 1703637 . ПМИД 13977820 .
Гидроксиамфетамин вводили перорально пяти людям... Поскольку превращение гидроксиамфетамина в гидроксинорэфедрин происходит in vitro под действием дофамин-β-оксидазы, предложен простой метод измерения активности этого фермента и действия его ингибиторов на человека. . ... Отсутствие эффекта от введения неомицина одному пациенту свидетельствует о том, что гидроксилирование происходит в тканях организма. ... основная часть β-гидроксилирования гидроксиамфетамина происходит в тканях, не относящихся к надпочечникам. К сожалению, в настоящее время нельзя быть полностью уверенным в том, что гидроксилирование гидроксиамфетамина in vivo осуществляется тем же ферментом, который превращает дофамин в норадреналин.
- ^ Jump up to: а б Баденхорст К.П., ван дер Слюс Р., Эразмус Э., ван Дейк А.А. (сентябрь 2013 г.). «Глициновая конъюгация: значение в метаболизме, роль глицин-N-ацилтрансферазы и факторы, влияющие на межиндивидуальные вариации». Экспертное заключение по метаболизму и токсикологии лекарственных средств . 9 (9): 1139–1153. дои : 10.1517/17425255.2013.796929 . ПМИД 23650932 . S2CID 23738007 .
Рисунок 1. Глициновая конъюгация бензойной кислоты. Путь конъюгации глицина состоит из двух этапов. Сначала бензоат лигируется с CoASH с образованием высокоэнергетического тиоэфира бензоил-КоА. Эта реакция катализируется лигазами средней цепи кислоты HXM-A и HXM-B:CoA и требует энергии в виде АТФ. ... Бензоил-КоА затем конъюгируется с глицином с помощью GLYAT с образованием гиппуровой кислоты, высвобождая CoASH. В дополнение к факторам, перечисленным в рамках, уровни АТФ, КоАСГ и глицина могут влиять на общую скорость пути конъюгации глицина.
- ^ Хорвиц Д., Александр Р.В., Ловенберг В., Кайзер Х.Р. (май 1973 г.). «Дофамин-β-гидроксилаза сыворотки человека. Связь с гипертонией и симпатической активностью». Исследование кровообращения . 32 (5): 594–599. дои : 10.1161/01.RES.32.5.594 . ПМИД 4713201 . S2CID 28641000 .
Биологическое значение различных уровней активности DβH в сыворотке изучали двумя способами. Во-первых, способность in vivo β-гидроксилировать синтетический субстрат гидроксиамфетамин сравнивали у двух субъектов с низкой активностью DβH в сыворотке и у двух субъектов со средней активностью. ... В одном исследовании гидроксиамфетамин (паредрин), синтетический субстрат DβH, вводили субъектам с низким или средним уровнем активности DβH в сыворотке. Процент препарата, гидроксилированного до гидроксинорэфедрина, был сопоставим у всех испытуемых (6,5–9,62) (табл. 3).
- ^ Фриман Джей Джей, Сульсер Ф (декабрь 1974 г.). «Образование п-гидроксинорэфедрина в головном мозге после внутрижелудочкового введения п-гидроксиамфетамина». Нейрофармакология . 13 (12): 1187–1190. дои : 10.1016/0028-3908(74)90069-0 . ПМИД 4457764 .
У видов, у которых основным путем метаболизма является ароматическое гидроксилирование амфетамина, п- гидроксиамфетамин (POH) и п- гидроксинорэфедрин (PHN) могут вносить вклад в фармакологический профиль исходного препарата. ... Расположение реакций p- гидроксилирования и β-гидроксилирования важно для видов, у которых ароматическое гидроксилирование амфетамина является преобладающим путем метаболизма. После системного введения амфетамина крысам ПОН был обнаружен в моче и плазме.
Наблюдаемое отсутствие значительного накопления PHN в головном мозге после внутрижелудочкового введения (+)-амфетамина и образование заметных количеств PHN из (+)-POH в ткани головного мозга in vivo подтверждает точку зрения, что ароматическое гидроксилирование амфетамина после его системное введение происходит преимущественно на периферии, и затем POH транспортируется через гематоэнцефалический барьер, поглощаясь норадренергическими нейронами головного мозга, где (+)-POH преобразуется в везикулах-хранилищах под действием дофамин-β-гидроксилазы в PHN. - ^ Мацуда Л.А., Хэнсон Г.Р., Гибб Дж.В. (декабрь 1989 г.). «Нейрохимические эффекты метаболитов амфетамина на центральные дофаминергические и серотонинергические системы». Журнал фармакологии и экспериментальной терапии . 251 (3): 901–908. ПМИД 2600821 .
Метаболизм p -OHA в p -OHNor хорошо известен, и дофамин-β-гидроксилаза, присутствующая в норадренергических нейронах, может легко превращать p -OHA в p -OHNor после внутрижелудочкового введения.
- ^ «Декседрин» . Медик8 . Архивировано из оригинала 19 декабря 2009 года . Проверено 27 ноября 2013 г.
- ^ «Декстроамфетамин [монография]» . Интернет-психическое здоровье . Архивировано из оригинала 27 апреля 2006 года . Проверено 6 сентября 2015 г.
- ^ «Информация о декседрине: краткий обзор | Weitz & Luxenberg» . Weitzlux.com. 31 августа 2013 года . Проверено 5 января 2017 г.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–96. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
- ^ Кинг Д.Г. (4 января 2017 г.). «Подделка рецептов» . Международная служба рукописного ввода . Архивировано из оригинала 5 июля 2008 года.
- ^ Ситтиг М (ред.). Энциклопедия фармацевтического производства . Том. 1 (2-е изд.). Публикации Нойеса. ISBN 978-0-8155-1144-1 .
- ^ «Часто задаваемые вопросы по декседрину» . Архивировано из оригинала 17 июня 2011 года.
- ^ Бонне Дж (9 января 2003 г.). « Таблетки Go»: война с наркотиками?» . Новости Эн-Би-Си . Проверено 5 января 2017 г.
- ^ Jump up to: а б Вудринг Дж.К. «Учёные ВВС борются с усталостью лётчиков» . Архивировано из оригинала 14 октября 2012 года . Проверено 5 января 2017 г.
- ^ Эмонсон Д.Л., Вандербек Р.Д. (1995). «Использование амфетаминов в тактических операциях ВВС США во время Щита пустыни и Бури». Авиационная, космическая и экологическая медицина . 66 (3): 260–3. ПМИД 7661838 .
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Смит, Клайн и Френч синтезировали оба изомера и в 1937 году начали продавать d-амфетамин, который был более активным из двух изомеров, под торговым названием декседрин.
- ^ «Лекарства@FDA: Декседрин» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 28 марта 2022 г.
- ^ «Лекарства@FDA: Декседрин» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 28 марта 2022 г.
- ^ «Drugs@FDA: Декседрин: история этикетки и одобрения» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Архивировано из оригинала 28 августа 2021 года . Проверено 30 декабря 2015 г.
02.08.1976... Утверждение
- ^ Член парламента Штроля (март 2011 г.). «Исследования бензедрина Брэдли на детях с поведенческими расстройствами» . Йельский журнал биологии и медицины . 84 (1): 27–33. ПМК 3064242 . ПМИД 21451781 .
Брэдли экспериментировал с сульфатом бензедрина, препаратом, который компания Smith, Kline & French (SKF) продавала врачам в период с 1935 по 1937 год.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Смит, Клайн и Френч представили бензедрин на рынке в 1935 году для лечения нарколепсии (для которой он используется до сих пор), легкой депрессии, постэнцефалитического паркинсонизма и множества других расстройств.
- ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (июнь 2013 г.). «Амфетамин, прошлое и настоящее – фармакологическая и клиническая перспектива» . Журнал психофармакологии . 27 (6): 479–496. дои : 10.1177/0269881113482532 . ПМК 3666194 . ПМИД 23539642 .
Использование бензедрина для лечения СДВГ резко сократилось после того, как Гросс (1976) сообщил, что рацемат был значительно менее клинически эффективен, чем декседрин. В настоящее время единственное применение l-амфетамина в лекарствах от СДВГ – это смешанные соли/смешанные энантиомеры амфетамина...
- ^ «Лекарственные препараты, одобренные FDA: история маркировки и одобрения (бензедрин)» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 11 марта 2016 г.
Дата принятия решения 11 мая 1982 г., номер дополнения 007, тип одобрения по химическому составу.
- ^ Jump up to: а б с д «Результаты поиска амфетамина по Национальному кодексу лекарств» . Национальный справочник кодов лекарственных средств . США Управление по контролю за продуктами и лекарствами (FDA). Архивировано из оригинала 16 декабря 2013 года . Проверено 16 декабря 2013 г.
- ^ «Mydayis-сульфат декстроамфетамина, сахарат декстроамфетамина, моногидрат аспартата амфетамина и капсула сульфата амфетамина пролонгированного действия» . ДейлиМед . 28 октября 2022 г. Проверено 21 января 2023 г.
- ^ «Adzenys XR-ODT-таблетка амфетамина, распадающаяся при пероральном приеме» . ДейлиМед . 10 марта 2022 г. Проверено 21 января 2023 г.
- ^ «Пакет одобрения лекарств: Adzenys XR-ODT (амфетамин)» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . 27 января 2016 года . Проверено 21 января 2023 г.
- ^ «Эвекео» . США Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) . Проверено 11 августа 2015 г.
- ^ Jump up to: а б «Информация о рецептах Vyvanse» (PDF) . Управление по контролю за продуктами и лекарствами США . Shire US Inc., май 2017 г., стр. 17–21 . Проверено 10 июля 2017 г.
- ^ «Зензеди (сульфат декстроамфетамина, USP)» . Zenzedi.com . Проверено 5 января 2017 г.
- ^ «ПроЦентра (сульфат декстроамфетамина 5 мг/5 мл раствор для перорального применения)» . Лаборатории ФСК . Архивировано из оригинала 5 октября 2010 года.
- ^ США 7655630 , Микл Т., Кришнан С., Бишоп Б., Лаудербек С., Монкриф Дж.С., Оберлендер Р., Пиккариелло Т., Пол Б.Дж., Вербицкий CD, «Пролекарства амфетамина, устойчивые к злоупотреблению», выпущены в 2010 г., переданы Takeda Pharmaceutical Co Ltd.
- ^ Хейзелл П. (1995). «Стимулирующее лечение синдрома дефицита внимания и гиперактивности». Австралийский врач . 18 (3): 60–63. дои : 10.18773/austprescr.1995.064 .
- ^ «Фармацевтические услуги» . .health.nsw.gov.au. Архивировано из оригинала 5 мая 2013 года . Проверено 5 января 2017 г.
- ^ «Дексамфетамина сульфат – Лекарственные формы» . Британский национальный формуляр . BMJ Group и Pharmaceutical Press (Королевское фармацевтическое общество) . Проверено 9 ноября 2019 г.
- ^ «Дексамфетамин – назначают генерически» (PDF) . Красные/Янтарные новости (22). Специализированные лекарства Interface Pharmacist Network (IPNSM): 2 ноября 2010 г. Архивировано из оригинала (PDF) 18 мая 2013 г. . Проверено 20 апреля 2012 г.
- ^ Хатсон П.Х., Пенник М., Секер Р. (декабрь 2014 г.). «Доклиническая фармакокинетика, фармакология и токсикология лиздексамфетамина: новое пролекарство d-амфетамина». Нейрофармакология . 87 : 41–50. doi : 10.1016/j.neuropharm.2014.02.014 . ПМИД 24594478 . S2CID 37893582 .
- ^ Элаян I (2006). «NRP-104 (димезилат лиздексамфетамина)» (PDF) . Фармакологический/токсикологический обзор и оценка . Управление по контролю за продуктами и лекарствами США. стр. 18–19.
- ^ Мохаммади М., Ахондзаде С. (сентябрь 2011 г.). «Достижения и соображения в области фармакотерапии синдрома дефицита внимания и гиперактивности» . Акта Медика Ираника . 49 (8): 487–498. ПМИД 22009816 . Проверено 12 марта 2014 г.
- ^ Heal DJ, Buckley NW, Gosden J, Slater N, France CP, Hackett D (октябрь 2013 г.). «Доклиническая оценка дискриминационных и усиливающих свойств лиздексамфетамина по сравнению с D-амфетамином, метилфенидатом и модафинилом». Нейрофармакология . 73 : 348–358. doi : 10.1016/j.neuropharm.2013.05.021 . ПМИД 23748096 . S2CID 25343254 .
- ^ Роули Х.Л., Кулкарни Р., Госден Дж., Браммер Р., Хакетт Д., Хил DJ (ноябрь 2012 г.). «Лисдексамфетамин и d-амфетамин немедленного высвобождения - различия в фармакокинетических/фармакодинамических отношениях, выявленные с помощью микродиализа полосатого тела у свободно передвигающихся крыс с одновременным определением концентрации препарата в плазме и двигательной активности». Нейрофармакология . 63 (6): 1064–1074. doi : 10.1016/j.neuropharm.2012.07.008 . ПМИД 22796358 . S2CID 29702399 .
- ^ «Калькулятор молекулярной массы» . Леннтех . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «Декстроамфетамина сульфат USP» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «D-амфетамина сульфат» . Токрис. 2015 . Проверено 19 августа 2015 г.
- ^ Jump up to: а б «Сульфат амфетамина USP» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ «Декстроамфетамина сахарат» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
- ^ «Амфетамина Аспартат» . Маллинкродт Фармасьютикалс. Март 2014 года . Проверено 19 августа 2015 г.
Внешние ссылки
[ редактировать ]
- «PIM 178: Сульфат дексамфетамина)». Информационная монография о ядах . Международная программа по химической безопасности (IPCS). Информация о химической безопасности от межправительственных организаций (INCHEM).
- Амфетамин
- Аноректики
- Афродизиаки
- Антигипотензивные средства
- Препараты, действующие на нервную систему
- Энантиочистые препараты
- Эргогенные средства
- Эйфорианты
- Ингибиторы обратного захвата возбуждающих аминокислот
- Усилители моноаминергической активности
- Ноотропы
- Агенты, высвобождающие норэпинефрин-дофамин
- Фенэтиламины
- Стимуляторы
- Замещенные амфетамины
- Агонисты TAAR1
- Лечение синдрома дефицита внимания с гиперактивностью
- Ингибиторы VMAT
- Запрещенные вещества Всемирного антидопингового агентства