История науки
Часть серии о |
Наука |
---|
Это подсерия по философии . Чтобы изучить соответствующие темы, посетите навигацию . |
История науки охватывает развитие науки с древнейших времен до современности . Она охватывает все три основные отрасли науки : естественную , социальную и формальную . [1] Протонаука , ранние науки и естественная философия, такая как алхимия и астрология, в эпоху бронзы , железного века , классической античности и средневековья пришли в упадок в ранний современный период после создания формальных научных дисциплин в эпоху Просвещения .
Самые ранние корни науки можно проследить в Древнем Египте и Месопотамии примерно с 3000 по 1200 год до нашей эры . [2] [3] Вклад этих цивилизаций в математику , астрономию и медицину повлиял на более позднюю греческую натурфилософию классической античности , в которой были предприняты формальные попытки дать объяснения событий в физическом мире, основанные на естественных причинах. [2] [3] После падения Западной Римской империи знание греческих концепций мира в латиноязычной в первые века ( Западной Европе 400–1000 гг. н. э.) Средневековья ухудшилось . [4] но продолжал процветать в Византийской грекоязычной империи . Благодаря переводам греческих текстов эллинистическое мировоззрение было сохранено и поглощено арабоязычным мусульманским во миром время Золотого века ислама . [5] Восстановление и ассимиляция греческих произведений и исламские исследования в Западной Европе с 10 по 13 века возродили изучение натурфилософии на Западе. [4] [6] Традиции ранней науки также развивались в древней Индии и отдельно в древнем Китае ; китайская модель оказала влияние на Вьетнам , Корею и Японию до освоения Западом . [7] Среди доколумбовых народов Мезоамерики цивилизация сапотеков установила свои первые известные традиции астрономии и математики для создания календарей , за которыми последовали другие цивилизации, такие как майя .
Натурфилософия претерпела изменения во время научной революции в Европе XVI–XVII веков. [8] [9] [10] поскольку новые идеи и открытия отходили от предыдущих греческих концепций и традиций. [11] [12] [13] [14] Появившаяся Новая Наука была более механистической по своему мировоззрению, более интегрированной с математикой, более надежной и открытой, поскольку ее знания основывались на недавно определенном научном методе . [12] [15] [16] Вскоре последовали новые «революции» в последующие столетия. методы и Например, химическая революция XVIII века представила в химии новые количественные измерения . [17] В 19 веке новые перспективы относительно сохранения энергии , возраста Земли и эволюции . в центре внимания оказались [18] [19] [20] [21] [22] [23] А в 20 веке новые открытия в генетике и физике заложили основы для новых дисциплин, таких как молекулярная биология и физика элементарных частиц . [24] [25] Более того, промышленные и военные проблемы, а также растущая сложность новых исследовательских проектов открыли эпоху « большой науки », особенно после Второй мировой войны . [24] [25] [26]
Подходы к истории науки
[ редактировать ]Природа истории науки является предметом дискуссий (как и, косвенно, определение самой науки). Историю науки часто рассматривают как линейную историю прогресса. [27] но историки стали рассматривать эту историю как более сложную. [28] [29] [30] Альфред Эдвард Тейлор охарактеризовал периоды скудного развития научных открытий как «периодические банкротства науки». [31]
Наука – это человеческая деятельность, и научный вклад внесли люди самого разного происхождения и культур. Историки науки все чаще рассматривают свою область науки как часть глобальной истории обмена, конфликтов и сотрудничества. [32]
Отношения между наукой и религией характеризуются по-разному, среди прочего, с точки зрения «конфликта», «гармонии», «сложности» и «взаимной независимости». События в Европе, такие как дело Галилея в начале 17 века, связанное с научной революцией и эпохой Просвещения , побудили таких ученых, как Джон Уильям Дрейпер, выдвинуть ( ок. 1874 г. ) тезис о конфликте , предполагая, что религия и наука На протяжении всей истории они находились в методологическом, фактическом и политическом конфликте. «Тезис о конфликте» с тех пор утратил популярность среди большинства современных ученых и историков науки. [33] [34] [35] Однако некоторые современные философы и ученые, такие как Ричард Докинз , [36] до сих пор подписываюсь на этот тезис.
Историки подчеркнули [ нужна ссылка ] это доверие необходимо для достижения согласия по вопросам природы. В этом свете создание в 1660 году Королевского общества и его кодекса экспериментов – заслуживающего доверия, поскольку засвидетельствовано его членами – стало важной главой в историографии науки. [37] Многие люди в современной истории (обычно женщины и цветные люди) были исключены из элитных научных сообществ и охарактеризованы научным истеблишментом как низшие . Историки в 1980-х и 1990-х годах описали структурные барьеры для участия и начали восстанавливать вклад упущенных из виду людей. [38] [39] Историки также исследовали повседневные научные практики, такие как полевые работы и сбор образцов. [40] переписка, [41] рисунок, [42] ведение учета, [43] и использование лабораторного и полевого оборудования. [44]
Доисторические времена
[ редактировать ]В доисторические времена знания и техника передавались из поколения в поколение в устной традиции . Например, одомашнивание кукурузы для сельского хозяйства было датировано примерно 9000 лет назад на юге Мексики , до появления письменности . [45] [46] [47] Точно так же археологические данные указывают на развитие астрономических знаний в дописьменных обществах. [48] [49]
Устная традиция дописьменных обществ имела несколько особенностей, первой из которых была ее изменчивость. [2] Новая информация постоянно усваивалась и адаптировалась к новым обстоятельствам или потребностям общества. Никаких архивов и отчетов не было. Эта изменчивость была тесно связана с практической необходимостью объяснить и обосновать нынешнее положение дел. [2] Другой особенностью была тенденция описывать Вселенную как небо и землю с потенциальным подземным миром . Они также были склонны отождествлять причины с истоками, тем самым обеспечивая объяснение историческому происхождению. Также существовало доверие к « знахарю » или « мудрой женщине » для исцеления, знания божественных или демонических причин болезней и, в более крайних случаях, для таких ритуалов, как изгнание нечистой силы , гадание , песни и заклинания . [2] Наконец, существовала склонность беспрекословно принимать объяснения, которые в более современные времена могли бы показаться неправдоподобными, и в то же время не осознавать, что такое доверчивое поведение могло создать проблемы. [2]
Развитие письменности позволило людям хранить и передавать знания из поколения в поколение с гораздо большей точностью. Его изобретение было предпосылкой развития философии, а затем и науки в древности . [2] Более того, степень процветания философии и науки в древние времена зависела от эффективности системы письма (например, использования алфавитов). [2]
Самые ранние корни на Древнем Ближнем Востоке
[ редактировать ]Самые ранние корни науки можно проследить на Древнем Ближнем Востоке , в частности в Древнем Египте и Месопотамии примерно с 3000 по 1200 год до нашей эры. [2]
Древний Египет
[ редактировать ]Система счисления и геометрия
[ редактировать ]Начиная примерно с 3000 г. до н. э., древние египтяне разработали десятичную систему счисления и ориентировали свои знания геометрии на решение практических задач, например, задач геодезистов и строителей. [2] Их развитие геометрии само по себе было необходимым развитием геодезии для сохранения планировки и владения сельскохозяйственными угодьями , которые ежегодно затоплялись рекой Нил . 3-4-5 Прямоугольный треугольник и другие правила геометрии использовались для построения прямолинейных структур, а также архитектуры столбов и перемычек Египта.
Болезнь и исцеление
[ редактировать ]Египет был также центром алхимических исследований на большей части Средиземноморья . Основываясь на медицинских папирусах, написанных в 2500–1200 годах до нашей эры, древние египтяне считали, что болезни в основном вызваны вторжением в тела злых сил или духов. [2] Таким образом, помимо использования лекарств , их методы лечения включали молитвы , заклинания и ритуалы. [2] Папирус Эберса , написанный примерно в 1600 году до нашей эры, содержит медицинские рецепты для лечения заболеваний глаз, рта, кожи, внутренних органов и конечностей, а также абсцессов, ран, ожогов, язв, опухших желез, опухолей, головных болей и даже неприятный запах изо рта. Папирус Эдвина Смита , написанный примерно в то же время, содержит хирургическое руководство по лечению ран, переломов и вывихов. Египтяне верили, что эффективность их лекарств зависит от их приготовления и применения в рамках соответствующих ритуалов. [2] Историки медицины полагают, что древнеегипетская фармакология, например, была в значительной степени неэффективна. [50] И в папирусах Эберса, и в папирусах Эдвина Смита для лечения болезней использовались следующие компоненты: обследование, диагностика, лечение и прогноз. [51] которые демонстрируют сильные параллели с основным эмпирическим методом науки и, по мнению Гера Ллойда, [52] сыграли значительную роль в разработке этой методологии.
Календарь
[ редактировать ]Древние египтяне даже разработали официальный календарь, включавший двенадцать месяцев по тридцать дней каждый и пять дней в конце года. [2] В отличие от вавилонского календаря или календаря, который использовался в то время в греческих городах-государствах, официальный египетский календарь был намного проще, поскольку он был фиксированным и не учитывал лунные и солнечные циклы. [2]
Месопотамия
[ редактировать ]Древние месопотамцы обладали обширными знаниями о химических свойствах глины, песка, металлической руды, битума , камня и других природных материалов и применяли эти знания для практического использования при производстве керамики , фаянса , стекла, мыла, металлов, известковой штукатурки и гидроизоляция. Металлургия требовала знаний о свойствах металлов. Тем не менее, месопотамцы, судя по всему, мало интересовались сбором информации о мире природы ради сбора информации и гораздо больше интересовались изучением того, каким образом боги управляли вселенной . О биологии нечеловеческих организмов обычно писали только в контексте основных академических дисциплин. Физиология животных широко изучалась с целью гадания ; анатомия печени , которая рассматривалась как важный орган в гаруспичности особенно интенсивно изучалась . Поведение животных также изучалось в гадательных целях. Большая часть информации о дрессировке и приручении животных, вероятно, передавалась устно, без записи, но сохранился один текст, посвященный дрессировке лошадей. [53]
Месопотамская медицина
[ редактировать ]Древние месопотамцы не делали различия между «рациональной наукой» и магией . [54] [55] [56] Когда человек заболевал, врачи прописывали ему магические формулы, а также медикаментозное лечение. [54] [55] [56] [53] Самые ранние медицинские рецепты появляются на шумерском языке во времена Третьей династии Ура ( ок. 2112 г. до н.э. – ок. 2004 г. до н.э.). [57] самым обширным вавилонским Однако медицинским текстом является «Диагностический справочник», написанный умману , или главным ученым, Эсагиль-кин-апли из Борсиппы . [58] во время правления вавилонского царя Адад-апла-иддина (1069–1046 гг. до н. э.). [59] В восточно-семитских культурах главным знахарем был своего рода экзорцист-целитель, известный как ашипу . [54] [55] [56] Профессия обычно передавалась от отца к сыну и пользовалась чрезвычайно большим уважением. [54] Менее часто обращался к другому виду целителя, известному как асу , который более похож на современного врача и лечил физические симптомы, используя в основном народные средства, состоящие из различных трав, продуктов животного происхождения и минералов, а также микстуры, клизмы и мази. или припарки . Эти врачи, которые могли быть как мужчинами, так и женщинами, также перевязывали раны, вправляли конечности и выполняли простые операции. Древние месопотамцы также практиковали профилактику и принимали меры для предотвращения распространения болезней. [53]
Астрономия и небесное гадание
[ редактировать ]В вавилонской астрономии записи движения звезд , планет и Луны оставляются на тысячах глиняных табличек, созданных писцами . Даже сегодня астрономические периоды, определенные месопотамскими протоучеными, по-прежнему широко используются в западных календарях, такие как солнечный год и лунный месяц . Используя эти данные, они разработали математические методы для расчета изменения продолжительности светового дня в течение года, предсказания появления и исчезновения Луны и планет, а также затмений Солнца и Луны. Известны лишь имена нескольких астрономов, например имя Кидинну , халдейского астронома и математика. Значение Киддину для солнечного года используется в сегодняшних календарях. Вавилонская астрономия была «первой и весьма успешной попыткой дать уточненное математическое описание астрономических явлений». По мнению историка А. Аабое, «все последующие разновидности научной астрономии в эллинистическом мире, в Индии, в исламе и на Западе — если не все последующие усилия в точных науках — зависят от вавилонской астрономии в решающей и фундаментальные пути». [60]
Для вавилонян и других ближневосточных культур послания богов или предзнаменования были сокрыты во всех природных явлениях, которые могли быть расшифрованы и истолкованы теми, кто сведущ в них. [2] Следовательно, считалось, что боги могли говорить через все земные объекты (например, внутренности животных, сны, уродливые дети или даже цвет собаки, мочущейся на человека) и небесные явления. [2] Более того, вавилонская астрология была неотделима от вавилонской астрономии.
Математика
[ редактировать ]Месопотамская клинописная табличка Плимптон 322 , датируемая восемнадцатым веком до нашей эры, записывает ряд пифагорейских троек (3,4,5) (5,12,13)..., [61] намекая на то, что древние месопотамцы могли знать о теореме Пифагора за тысячу лет до Пифагора. [62] [63] [64]
Древняя и средневековая Южная Азия и Восточная Азия
[ редактировать ]Математические достижения из Месопотамии оказали определенное влияние на развитие математики в Индии, и были подтверждены двусторонние передачи математических идей между Индией и Китаем. [65] Тем не менее математические и научные достижения в Индии и особенно в Китае происходили в основном независимо друг от друга. [66] от европейских, и подтвержденное раннее влияние, которое эти две цивилизации оказали на развитие науки в Европе в досовременную эпоху, было косвенным, при этом Месопотамия, а затем и исламский мир выступали в качестве посредников. [65] Появление современной науки, возникшей в результате научной революции региона , в Индии, Китае и в целом в азиатском регионе можно отнести к научной деятельности миссионеров-иезуитов, которые были заинтересованы в изучении флоры и фауны в 16-17 веках. век. [67]
Индия
[ редактировать ]Математика
[ редактировать ]Самые ранние следы математических знаний на Индийском субконтиненте появляются в эпоху цивилизации долины Инда (ок. 4-го тысячелетия до н.э. ~ ок. 3-го тысячелетия до н.э.). Люди этой цивилизации изготавливали кирпичи, размеры которых находились в пропорции 4:2:1, что благоприятно для устойчивости кирпичной конструкции. [68] Они также попытались стандартизировать измерение длины с высокой степенью точности. Они разработали линейку — линейку Мохенджо-Даро , единица длины которой (приблизительно 1,32 дюйма или 3,4 сантиметра) была разделена на десять равных частей. Кирпичи, изготовленные в древнем Мохенджо-Даро, часто имели размеры, кратные этой единице длины. [69]
Рукопись Бахшали содержит задачи, связанные с арифметикой , алгеброй и геометрией , включая измерение . Рассматриваемые темы включают дроби, квадратные корни, арифметические и геометрические прогрессии , решения простых уравнений, одновременных линейных уравнений , квадратных уравнений и неопределенных уравнений второй степени. [70] В III веке до нашей эры Пингала представляет Пингала-сутры, самый ранний известный трактат по санскритской просодии . [71] Он также представляет систему счисления, добавляя единицу к сумме значений разрядов . [72] Работа Пингалы также включает материал, связанный с числами Фибоначчи , называемый матрамеру . [73]
Индийский астроном и математик Арьябхата (476–550) в своей книге «Арьябхатия» (499) ввел функцию синуса в тригонометрии и число 0 [математика]. В 628 году нашей эры Брахмагупта предположил, что гравитация — это сила притяжения. [74] [75] Он также доходчиво объяснил использование нуля как заполнителя и десятичной цифры , а также индийско-арабскую систему счисления, которая сейчас используется повсеместно во всем мире. Арабские переводы текстов двух астрономов вскоре стали доступны в исламском мире , что привело к тому, что к 9 веку стало арабскими цифрами в исламском мире. [76] [77]
В течение 14–16 веков школа астрономии и математики Кералы добилась значительных успехов в астрономии и особенно математике, включая такие области, как тригонометрия и анализ. В частности, Мадхава Сангамаграма считается «основателем математического анализа ». [78] Парамешвара (1380–1460) представляет случай теоремы о среднем значении в своих комментариях к Говиндасвами и Бхаскаре II . [79] Юктибхаса в 1530 году была написана Джьештадевой . [80]
Астрономия
[ редактировать ]Первое текстовое упоминание астрономических понятий происходит из Вед , религиозной литературы Индии. [81] можно найти По словам Сармы (2008): «В Ригведе разумные рассуждения о возникновении Вселенной из несуществования, конфигурации Вселенной, сферической самоподдерживающейся Земле и году из 360 дней, разделенных на 12 равных частей по 30. дней, каждый с периодическим вставным месяцем.». [81]
Первые 12 глав Сиддханты Широмани , написанной Бхаскарой в 12 веке, охватывают такие темы, как: средние долготы планет; истинные долготы планет; три проблемы суточного вращения; сизигии; лунные затмения; солнечные затмения; широты планет; подъемы и настройки; полумесяц луны; соединения планет друг с другом; соединения планет с неподвижными звездами; и паты солнца и луны. 13 глав второй части посвящены природе сферы, а также важным астрономическим и тригонометрическим расчетам, основанным на ней.
В «Тантрасанграха трактате » Нилакантха Сомаяджи обновил модель Арьябхатаны для внутренних планет, Меркурия и Венеры, и уравнение, которое он определил для центров этих планет, было более точным, чем уравнения в европейской или исламской астрономии до времен Иоганна. Кеплер в 17 веке. [82] Джай Сингх II из Джайпура построил в общей сложности пять обсерваторий под названием Джантар Мантарс в Нью-Дели , Джайпуре , Удджайне , Матхуре и Варанаси ; они были завершены между 1724 и 1735 годами. [83]
Грамматика
[ редактировать ]Некоторые из самых ранних лингвистических действий можно найти в Индии железного века (1-е тысячелетие до нашей эры) с анализом санскрита с целью правильного чтения и интерпретации ведических текстов. Самым известным грамматистом санскрита был Панини (ок. 520–460 до н.э.), чья грамматика формулирует около 4000 правил санскрита. Его аналитическому подходу присущи понятия фонемы , морфемы и корня . Текст Толкаппиям , составленный в первые века нашей эры, [84] представляет собой всеобъемлющий текст по тамильской грамматике, который включает сутры по орфографии, фонологии, этимологии, морфологии, семантике, просодии, структуре предложений и значению контекста в языке.
Лекарство
[ редактировать ]Находки на неолитических кладбищах на территории современного Пакистана свидетельствуют о наличии прото-стоматологии среди ранней земледельческой культуры. [85] Древний текст Сушрутасамхита Сушруты , описывает процедуры различных форм хирургии, включая ринопластику , восстановление разорванных мочек ушей, литотомию промежности хирургию катаракты, а также несколько других иссечений и других хирургических процедур. [86] [87] Чарака самхита Чараки - описывает древние теории человеческого тела, этиологии , симптомологии и терапии широкого спектра заболеваний. [88] Он также включает разделы, посвященные важности диеты, гигиены, профилактики, медицинского образования и совместной работы врача, медсестры и пациента, необходимой для выздоровления. [89] [90] [91]
Политика и государство
[ редактировать ]Древнеиндийский трактат о государственном управлении , экономической политике и военной стратегии Каутильи. [92] и Вишнугупта , [93] которых традиционно отождествляют с Чанакьей (ок. 350–283 до н.э.). В этом трактате анализируются и документируются поведение и отношения людей, короля, государства, правительственных суперинтендантов, придворных, врагов, захватчиков и корпораций. Роджер Боше описывает « Артхашастру» как «книгу политического реализма, книгу, анализирующую, как работает политический мир, но не очень часто утверждающую, как он должен работать, книгу, которая часто раскрывает королю, какие расчетливые, а иногда и жестокие меры он должен применять». ради сохранения государства и общего блага». [94]
Китай
[ редактировать ]Китайская математика
[ редактировать ]С древнейших времен китайцы использовали позиционную десятичную систему на счетных досках для вычислений. Чтобы выразить число 10, во вторую коробку справа кладут один стержень. В разговорном языке используется та же система, что и в английском: например, четыре тысячи двести семь. Никакой символ не использовался для нуля. К I веку до нашей эры использовались отрицательные числа и десятичные дроби, а «Девять глав математического искусства» включали методы извлечения корней более высокого порядка с помощью метода Хорнера и решения линейных уравнений и теоремы Пифагора . Кубические уравнения были решены во времена династии Тан , а решения уравнений порядка выше 3 появились в печати в 1245 году Цинь Цзю-шао . Треугольник Паскаля для биномиальных коэффициентов был описан около 1100 года Цзя Сянем . [95]
Хотя первые попытки аксиоматизации геометрии появляются в мохистском каноне в 330 г. до н. э., Лю Хуэй разработал алгебраические методы в геометрии в III веке н. э., а также вычислил число Пи до 5 значащих цифр. В 480 году Цзу Чунчжи улучшил это положение, открыв соотношение которое оставалось наиболее точным значением в течение 1200 лет.
Астрономические наблюдения
[ редактировать ]Астрономические наблюдения из Китая представляют собой самую длинную непрерывную последовательность наблюдений среди всех цивилизаций и включают записи солнечных пятен (112 записей за 364 г. до н.э.), сверхновых (1054), лунных и солнечных затмений. К XII веку они могли достаточно точно предсказывать затмения, но знания об этом были утеряны во времена династии Мин, так что иезуит Маттео Риччи в 1601 году снискал большую благосклонность своими предсказаниями. [97] [ неполная короткая цитата ] К 635 году китайские астрономы заметили, что хвосты комет всегда направлены в сторону от Солнца.
С древности китайцы использовали экваториальную систему для описания неба, а звездная карта 940 года рисовалась с использованием цилиндрической ( Меркатора ) проекции. Использование армиллярной сферы зафиксировано с 4 века до нашей эры, а сферы, постоянно установленной на экваториальной оси, - с 52 года до нашей эры. В 125 году нашей эры Чжан Хэн использовал силу воды, чтобы вращать сферу в реальном времени. Сюда входили кольца меридиана и эклиптики. К 1270 году они включили в себя принципы арабского торрентума .
В Империи Сун (960–1279 гг.) Императорского Китая китайские ученые-чиновники раскапывали, изучали и каталогизировали древние артефакты.
Изобретения
[ редактировать ]Чтобы лучше подготовиться к бедствиям, Чжан Хэн в 132 году нашей эры изобрел сейсмометр , который мгновенно предупреждал власти столицы Лояна о том, что землетрясение произошло в месте, указанном по определенному кардинальному или порядковому направлению . [98] [99] Хотя в столице не ощущалось никаких толчков, когда Чжан сообщил суду, что землетрясение только что произошло на северо-западе, вскоре после этого пришло сообщение о том, что землетрясение действительно произошло в 400–500 км (250–310 миль) к северо-западу от Лояна (в то, что сейчас является современным Ганьсу ). [100] Чжан назвал свое устройство «инструментом для измерения сезонных ветров и движений Земли» (Хоуфэн дидун ии候风地动仪), названным так потому, что он и другие считали, что землетрясения, скорее всего, были вызваны огромным сжатием захваченного воздуха. [101]
На протяжении веков было много заметных вкладчиков в ранние китайские дисциплины, изобретения и практики. Одним из лучших примеров может служить средневековый китаец Сун Шэнь Го (1031–1095), эрудит и государственный деятель, который первым описал магнитный используемый компас, для навигации , открыл концепцию истинного севера , усовершенствовал конструкцию компаса. астрономический гномон , армиллярная сфера , смотровая труба и клепсидра , а также описал использование сухих доков для ремонта лодок. После наблюдения за естественным процессом затопления илом и находки морских окаменелостей в горах Тайхан (в сотнях миль от Тихого океана) Шэнь Го разработал теорию формирования суши, или геоморфологию . Он также принял теорию постепенного изменения климата в регионах с течением времени после наблюдения окаменевшего бамбука, найденного под землей в Яньань , Шэньси провинция . Если бы не письмо Шэнь Го, [102] архитектурные произведения Юй Хао как и изобретатель станка печатного были малоизвестны , Би Шэн (990–1051). Современник Шена Су Сун (1020–1101) также был блестящим эрудитом, астрономом, создавшим небесный атлас звездных карт, написавшим трактат по ботанике , зоологии , минералогии и металлургии , а также воздвигшему большую астрономическую башню с часами в Кайфэн городе . в 1088 году. Для управления венчающей армиллярной сферой его башня с часами имела спусковой механизм и старейшее известное в мире использование бесконечного цепного привода, передающего энергию . [103]
Иезуитские китайские миссии XVI и XVII веков «научились ценить научные достижения этой древней культуры и сделали их известными в Европе. Благодаря их переписке европейские ученые впервые узнали о китайской науке и культуре». [104] Западная академическая мысль по истории китайской технологии и науки была активизирована работами Джозефа Нидэма и Исследовательского института Нидхэма. По словам британского ученого Нидэма, среди технологических достижений Китая были с приводом от воды небесный глобус (Чжан Хэн), [105] сухие доки , суппорты двойного действия раздвижные, поршневой насос , [105] печь доменная , [106] многотрубная сеялка , тачка , [106] подвесной мост , [106] веялка , [105] порох , [106] рельефная карта , туалетная бумага, [106] эффективная подвеска, [105] наряду с вкладом в логику , астрономию , медицину и другие области.
Однако культурные факторы не позволили этим китайским достижениям перерасти в «современную науку». По мнению Нидэма, возможно, именно религиозные и философские рамки китайских интеллектуалов сделали их неспособными принять идеи законов природы:
Дело не в том, что для китайцев не существовало порядка в природе, а скорее в том, что это не был порядок, установленный разумным личным существом, и, следовательно, не было уверенности в том, что разумные личные существа смогут писать на своих менее земных языках. божественный свод законов, который он установил прежде. Даосы действительно презирали бы такую идею , считая ее слишком наивной для тонкости и сложности Вселенной, какой они ее интуитивно представляли. [107]
Доколумбовая Мезоамерика
[ редактировать ]В период среднего формирования (ок. 900 г. до н. э. – ок. 300 г. до н. э.) доколумбовой Мезоамерики цивилизация сапотеков , находившаяся под сильным влиянием цивилизации ольмеков , создала первую известную полную систему письменности региона (возможно, предшествовавшую ольмекам Каскахаля) . Блокировать ), [108] а также первый известный астрономический календарь в Мезоамерике . [109] [110] После периода первоначального городского развития в доклассический период классическая календарной цивилизация майя (ок. 250 г. н.э. – ок. 900 г. н.э.) основывалась на общем наследии ольмеков, развивая самые сложные системы , астрономии , письма науки и математика у мезоамериканских народов. [109] Майя разработали позиционную систему счисления с основанием 20 , которая включала использование нуля для построения своих календарей. [111] [112] Письменность майя, которая была развита к 200 г. до н. э., широко распространена к 100 г. до н. э. и уходит корнями в письменность ольмеков и сапотеков, содержит легко различимые календарные даты в виде логографов, представляющих числа, коэффициенты и календарные периоды, составляющие 20 дней и даже 20 лет для отслеживание социальных, религиозных, политических и экономических событий за 360 дней. [113]
Классическая античность и греко-римская наука
[ редактировать ]Вклад древних египтян и месопотамцев в области астрономии, математики и медицины вошёл и сформировал греческую натурфилософию классической древности , посредством чего были предприняты формальные попытки дать объяснения событий в физическом мире на основе естественных причин. [2] [3] Запросы также были направлены на такие практические цели, как создание надежного календаря или определение способов лечения различных болезней. Древние люди, считавшиеся первыми учёными, возможно, считали себя натурфилософами , практикующими квалифицированную профессию (например, врачами ) или последователями религиозной традиции (например, храмовыми целителями ).
Досократики
[ редактировать ]Первые греческие философы , известные как досократики , [114] дали конкурирующие ответы на вопрос, найденный в мифах своих соседей: «Как возник упорядоченный космос , в котором мы живем?» [115] Философ-досократик Фалес (640–546 до н.э.) из Милета , [116] идентифицированный более поздними авторами, такими как Аристотель, как первый из ионийских философов , [2] постулированные несверхъестественные объяснения природных явлений. Например, земля плавает на воде и что землетрясения вызваны волнением воды, по которой плавает земля, а не богом Посейдоном. [117] Ученик Фалеса Пифагор Самосский , которая исследовала математику ради самой математики, и был первым, кто постулировал , основал пифагорейскую школу что Земля имеет сферическую форму. [118] Левкипп (V век до н. э.) представил атомизм — теорию, согласно которой вся материя состоит из неделимых, нетленных единиц, называемых атомами . Это было значительно развито его учеником Демокритом , а затем Эпикуром .
Натуральная философия
[ редактировать ]Платон и Аристотель произвели первые систематические дискуссии по натуральной философии, которые во многом повлияли на последующие исследования природы. Их развитие дедуктивного рассуждения имело особое значение и полезность для последующих научных исследований. Платон основал Платоновскую Академию в 387 г. до н. э., девизом которой было «Пусть сюда не войдет никто, не разбирающийся в геометрии», а также выпустил множество выдающихся философов. Ученик Платона Аристотель представил эмпиризм и идею о том, что универсальные истины могут быть получены посредством наблюдения и индукции, тем самым заложив основы научного метода. [119] Аристотель также написал множество работ по биологии , которые носили эмпирический характер и фокусировались на биологической причинности и разнообразии жизни. Он провел бесчисленные наблюдения за природой, особенно за повадками и признаками растений и животных Лесбоса , классифицировал более 540 видов животных и препарировал не менее 50. [120] Сочинения Аристотеля оказали глубокое влияние на последующую исламскую и европейскую науку, хотя в конечном итоге их вытеснила Научная революция . [121] [122]
Аристотель также внес свой вклад в теории элементов и космоса. Он считал, что небесные тела (такие как планеты и Солнце) имеют нечто, называемое неподвижным двигателем , который приводит небесные тела в движение. Аристотель пытался объяснить все с помощью математики и физики, но иногда объяснял такие вещи, как движение небесных тел, с помощью высшей силы, такой как Бог. У Аристотеля не было технологических достижений, которые могли бы объяснить движение небесных тел. [123] Кроме того, у Аристотеля было много взглядов на стихии. Он считал, что все произошло из элементов земли, воды, воздуха, огня и, наконец, эфира . Эфир был небесным элементом и, следовательно, составлял материю небесных тел. [124] Элементы земли, воды, воздуха и огня произошли от комбинации двух характеристик: горячего, влажного, холодного и сухого, и все они имели свое неизбежное место и движение. Движение этих элементов начинается с того, что земля оказывается ближе всего к «Земле», затем вода, воздух, огонь и, наконец, эфир. Помимо строения всех вещей, Аристотель выдвинул теории о том, почему вещи не возвращаются в свое естественное движение. Он понял, что вода находится над землей, воздух над водой и огонь над воздухом в их естественном состоянии. Он объяснил, что, хотя все элементы должны вернуться в свое естественное состояние, человеческое тело и другие живые существа имеют ограничения на элементы, не позволяя элементам, составляющим того, кем они являются, вернуться в свое естественное состояние. [125]
Важное наследие этого периода включало существенные достижения в фактических знаниях, особенно в анатомии , зоологии , ботанике , минералогии , географии , математике и астрономии ; осознание важности некоторых научных проблем, особенно связанных с проблемой изменений и их причин; и признание методологической важности применения математики к природным явлениям и проведения эмпирических исследований. [126] [116] В эпоху эллинизма ученые в своих научных исследованиях часто использовали принципы, разработанные еще в ранней греческой мысли: применение математики и целенаправленные эмпирические исследования. [127] Таким образом, четкие непрерывные линии влияния ведут от древнегреческих и эллинистических философов к средневековым мусульманским философам и ученым , к европейскому Возрождению и Просвещению и к светским наукам современности.Ни разум, ни исследование не начались у древних греков, но метод Сократа вместе с идеей форм дал большие успехи в геометрии, логике и естественных науках. По словам Бенджамина Фаррингтона , бывшего профессора классической литературы в Университете Суонси :
- «Люди взвешивались на протяжении тысячелетий, прежде чем Архимед разработал законы равновесия; они должны были обладать практическим и интуитивным знанием задействованных принципов. знание как логически связная система».
и еще раз:
- «С изумлением мы оказываемся на пороге современной науки. Не следует также думать, что благодаря какой-то хитрости перевода выдержки получили вид современности. Это далеко не так. Словарный запас этих сочинений и их стиль взяты из из которого произошли наш собственный словарный запас и стиль». [128]
Греческая астрономия
[ редактировать ]Астроном Аристарх Самосский был первым известным человеком, предложившим гелиоцентрическую модель Солнечной системы , а географ Эратосфен точно рассчитал окружность Земли. Гиппарх (ок. 190 – ок. 120 до н. э.) составил первый систематический звездный каталог . Уровень достижений эллинистической астрономии и техники впечатляюще демонстрирует Антикитерский механизм (150–100 гг. до н. э.), аналоговый компьютер для расчета положения планет. Технологические артефакты подобной сложности не появлялись вновь до 14 века, когда механические астрономические часы . в Европе появились [129]
Эллинистическая медицина
[ редактировать ]Во времена Гиппократа не было определенной социальной структуры здравоохранения. [130] В то время общество не было организованным и знающим, поскольку люди все еще полагались на чисто религиозные рассуждения для объяснения болезней. [130] Гиппократ представил первую систему здравоохранения, основанную на науке и клинических протоколах. [131] Теории Гиппократа о физике и медицине помогли проложить путь к созданию организованной медицинской структуры общества. [131] В медицине Гиппократ (ок. 460 г. до н. э. – ок . 370 г. до н. э.) и его последователи первыми описали многие болезни и состояния здоровья и разработали клятву Гиппократа для врачей, которая актуальна и используется сегодня. Идеи Гиппократа выражены в «Корпусе Гиппократа» . В сборнике приводятся описания медицинских философий и того, как болезни и образ жизни отражаются на физическом теле. [131] Гиппократ повлиял на западные профессиональные отношения между врачом и пациентом. [132] Гиппократа также называют «отцом медицины». [131] Герофил (335–280 гг. до н. э.) был первым, кто основывал свои выводы на вскрытии человеческого тела и описал нервную систему . Гален (129 – ок. 200 г. н. э.) выполнил множество смелых операций, в том числе операций на мозге и глазах , которые больше не проводились в течение почти двух тысячелетий.
Греческая математика
[ редактировать ]В эллинистическом Египте математик Евклид заложил основы математической строгости и ввел концепции определения, аксиомы, теоремы и доказательства, которые до сих пор используются в своих «Началах» , которые считаются самым влиятельным учебником из когда-либо написанных. [134] Архимед , считающийся одним из величайших математиков всех времен, [135] ему приписывают использование метода истощения для вычисления площади под дугой параболы с суммированием бесконечного ряда , и он дал удивительно точное приближение числа Пи . [136] Он также известен в физике закладыванием основ гидростатики , статики и объяснением принципа действия рычага .
Другие разработки
[ редактировать ]Теофраст написал некоторые из самых ранних описаний растений и животных, установив первую систематику и рассматривая минералы с точки зрения их свойств, таких как твердость . Плиний Старший создал одну из крупнейших энциклопедий мира природы в 77 году нашей эры и был преемником Теофраста. Например, он точно описывает октаэдрическую форму алмаза и отмечает, что алмазная пыль используется граверами для огранки и полировки других драгоценных камней из-за ее большой твердости. Его признание важности формы кристаллов является предшественником современной кристаллографии , в то время как заметки о других минералах предвещают минералогию. Он признает, что другие минералы имеют характерную форму кристаллов, но в одном примере путает форму кристаллов с работой гранильщиков . Плиний был первым, кто доказал, что янтарь — это смола сосен, из-за того, что внутри него содержатся пойманные в ловушку насекомые. [137] [138]
Развитие археологии имеет свои корни в истории и среди тех, кто интересовался прошлым, таких как короли и королевы, которые хотели показать былую славу своих стран. V века до нашей эры Греческий историк Геродот был первым ученым, систематически изучавшим прошлое, и, возможно, первым, кто исследовал артефакты.
Греческая стипендия под римским правлением
[ редактировать ]Во время правления Рима известные историки, такие как Полибий , Ливий и Плутарх, документировали возникновение Римской республики , а также организацию и историю других наций, в то время как государственные деятели, такие как Юлий Цезарь , Цицерон и другие, приводили примеры политики республики. и Римская империя и войны. Изучение политики в эту эпоху было ориентировано на понимание истории, понимание методов управления и описание деятельности правительств.
Римское завоевание Греции не привело к уменьшению образования и культуры в греческих провинциях. [139] Напротив, признание высшим классом Рима греческих достижений в литературе, философии, политике и искусстве совпало с ростом процветания Римской империи . Греческие поселения существовали в Италии на протяжении веков, и способность читать и говорить по-гречески не была редкостью в итальянских городах, таких как Рим. [139] Более того, поселение греческих ученых в Риме, добровольно или в качестве рабов, открыло римлянам доступ к учителям греческой литературы и философии. И наоборот, молодые римские ученые также учились за границей в Греции и по возвращении в Рим смогли передать греческие достижения своему латинскому руководству. [139] И несмотря на перевод нескольких греческих текстов на латынь, римские ученые, стремившиеся к высочайшему уровню, делали это, используя греческий язык. Ярким примером был римский государственный деятель и философ Цицерон (106–43 гг. до н. э.). Он учился у греческих учителей в Риме, а затем в Афинах и на Родосе . Платона, Он овладел значительной частью греческой философии, написал латинские трактаты по нескольким темам и даже написал греческие комментарии к «Тимею» а также его латинский перевод, который не сохранился. [139]
Вначале поддержка исследований греческого языка почти полностью финансировалась римским высшим классом. [139] Существовали самые разные договоренности: от присоединения талантливого ученого к богатому дому до владения образованными рабами, говорящими по-гречески. [139] Взамен ученые, добившиеся успеха на самом высоком уровне, были обязаны давать советы или интеллектуальное общение своим римским благотворителям или даже заботиться об их библиотеках. Менее удачливые и опытные люди будут учить своих детей или выполнять черную работу. [139] Уровень детализации и сложности греческих знаний был адаптирован к интересам их римских покровителей. Это означало популяризацию греческих знаний путем предоставления информации, имеющей практическую ценность, например, для медицины или логики (для судов и политики), но исключающей тонкие детали греческой метафизики и эпистемологии. Помимо основ, римляне не ценили натурфилософию и считали ее развлечением для досуга. [139]
Комментарии и энциклопедии были средством популяризации греческих знаний среди римской аудитории. [139] Греческий ученый Посидоний (ок. 135–51 до н. э.), уроженец Сирии, много писал по истории, географии, моральной философии и натуральной философии. Он оказал большое влияние на латинских писателей, таких как Марк Теренций Варрон (116–27 гг. до н. э.), написавший энциклопедию « Девять книг дисциплин» , охватывающую девять искусств: грамматику, риторику, логику, арифметику, геометрию, астрономию, теорию музыки, медицину и архитектуру. . [139] « Дисциплины » стали образцом для последующих римских энциклопедий, а девять гуманитарных наук Варрона считались подходящим образованием для римского джентльмена. Первые семь из девяти искусств Варрона позже определили семь свободных искусств средневековых школ . [139] Вершиной популяризационного движения стал римский ученый Плиний Старший (23/24–79 н. э.), уроженец северной Италии, написавший несколько книг по истории Рима и грамматике. Его самой известной работой была его объемистая « Естественная история» . [139]
После смерти римского императора Марка Аврелия в 180 году нашей эры благоприятные условия для науки и обучения в Римской империи были нарушены политическими волнениями, гражданской войной, упадком городов и надвигающимся экономическим кризисом. [139] Примерно в 250 году нашей эры варвары начали атаковать и вторгаться на римские границы. Эти совокупные события привели к общему ухудшению политических и экономических условий. Уровень жизни римского высшего класса серьезно пострадал, а потеря досуга привела к уменьшению научных занятий. [139] Более того, в III и IV веках нашей эры Римская империя была административно разделена на две половины: греческий Восток и Латинский Запад . Эти административные разделения ослабили интеллектуальный контакт между двумя регионами. [139] В конце концов, обе половины разошлись, и греческий Восток стал Византийской империей . [139] Христианство в это время также неуклонно расширялось и вскоре стало главным покровителем образования на Латинском Западе. Первоначально христианская церковь переняла некоторые инструменты рассуждения греческой философии во 2-м и 3-м веках нашей эры, чтобы защитить свою веру от искушенных противников. [139] Тем не менее, греческая философия была встречена неоднозначно со стороны лидеров и приверженцев христианской веры. [139] Некоторые, такие как Тертуллиан (ок. 155–230 гг. н. э.), были яростными противниками философии, объявляя ее еретической . Другие, такие как Августин Гиппопотамский (354–430 гг. н.э.), были неоднозначны и защищали греческую философию и науку как лучший способ понять мир природы и поэтому относились к ней как к служанке (или слуге) религии. [139] Образование на Западе начало постепенно приходить в упадок, как и в остальной части Западной Римской империи , из-за вторжений германских племен, гражданских беспорядков и экономического коллапса. Контакт с классической традицией был потерян в определенных регионах, таких как Римская Британия и северная Галлия, но продолжал существовать в Риме, северной Италии, южной Галлии, Испании и Северной Африке . [139]
Средний возраст
[ редактировать ]В средние века классическое обучение продолжалось в трех основных языковых культурах и цивилизациях: греческой (Византийская империя), арабской (исламский мир) и латинской (Западная Европа).
Византийская империя
[ редактировать ]Сохранение греческого наследия
[ редактировать ]Падение Западной Римской империи привело к ухудшению классической традиции в западной части (или Латинском Западе ) Европы в V веке. Напротив, Византийская империя сопротивлялась нападениям варваров, сохраняя и улучшая обучение. [140]
В то время как в Византийской империи все еще существовали учебные центры, такие как Константинополь , Александрия и Антиохия, знания Западной Европы концентрировались в монастырях до появления средневековых университетов в XII веке. Учебная программа монастырских школ включала изучение немногих доступных древних текстов и новых работ по практическим предметам, таким как медицина. [141] и хронометраж. [142]
В шестом веке в Византийской империи Исидор Милетский собрал математические труды Архимеда в «Архимед Палимпсест» , где были собраны и изучены все математические достижения Архимеда.
Иоанн Филопон , другой византийский ученый, был первым, кто поставил под сомнение учение Аристотеля о физике, представив теорию импульса . [143] [144] Теория импульса была вспомогательной или вторичной теорией аристотелевской динамики, первоначально выдвинутой для объяснения движения снаряда против силы тяжести. Это интеллектуальный предшественник концепций инерции, импульса и ускорения в классической механике. [145] Работы Иоанна Филопона вдохновили Галилео Галилея десять столетий спустя. [146] [147]
Крах
[ редактировать ]Во время падения Константинополя в 1453 году ряд греческих ученых бежали в Северную Италию, где они положили начало эпохе, позже известной как « Ренессанс », поскольку они принесли с собой много классических знаний, включая понимание ботаники, медицины, и зоология. Византия также дала Западу важный вклад: критику Иоанном Филопоном аристотелевской физики и работы Диоскорида. [148]
Исламский мир
[ редактировать ]Это был период (8–14 века н.э.) Золотого века ислама , когда процветала торговля и появлялись новые идеи и технологии, такие как импорт производства бумаги из Китая, что сделало копирование рукописей недорогим.
Переводы и эллинизация
[ редактировать ]Передача греческого наследия на восток в Западную Азию была медленным и постепенным процессом, который длился более тысячи лет, начиная с азиатских завоеваний Александра Великого в 335 году до нашей эры до основания ислама в 7 веке нашей эры . [5] За рождением и распространением ислама в VII веке быстро последовала его эллинизация . Знания о греческих концепциях мира были сохранены и включены в исламское богословие, право, культуру и торговлю, чему способствовали переводы традиционных греческих текстов и некоторых сирийских промежуточных источников на арабский язык в течение 8-9 веков.
Образование и научные занятия
[ редактировать ]Медресе были центрами множества различных религиозных и научных исследований и являлись кульминацией различных учреждений, таких как мечети, основанные на религиоведении, жилье для иногородних посетителей и, наконец, образовательные учреждения, ориентированные на естественные науки. [149] В отличие от западных университетов, студенты медресе учились у одного конкретного учителя, который по завершении обучения выдавал сертификат, называемый иджаза . Иджаза отличается от западной университетской степени во многих отношениях: во-первых, она выдается одним человеком, а не учреждением, а во-вторых, это не индивидуальная степень, декларирующая достаточные знания по широким предметам, а, скорее, лицензия на преподавание и передать очень специфический набор текстов. [150] Женщинам также разрешалось посещать медресе как в качестве студенток, так и в качестве преподавателей, чего не наблюдалось в высшем западном образовании до 1800-х годов. [150] Медресе были не просто академическими центрами. Мечеть Сулеймание , например, была одним из самых ранних и самых известных медресе, построенным Сулейманом Великолепным в 16 веке. [151] Мечеть Сулеймание была домом для больницы и медицинского колледжа, кухни и детской школы, а также служила временным домом для путешественников. [151]
Высшее образование в медресе (или колледже) было ориентировано на исламское право и религиозные науки, а все остальное студенты должны были заниматься самообучением. [5] И, несмотря на периодическую теологическую реакцию, многие исламские учёные смогли вести свою работу в относительно толерантных городских центрах (например, Багдаде и Каире ) и находились под защитой влиятельных покровителей. [5] Они также могли свободно путешествовать и обмениваться идеями, поскольку внутри единого исламского государства не было политических барьеров. [5] Исламская наука в то время была в первую очередь сосредоточена на исправлении, расширении, формулировании и применении греческих идей к новым проблемам. [5]
Достижения в математике
[ редактировать ]Большинство достижений исламских ученых в этот период были связаны с математикой. [5] Арабская математика была прямым потомком греческой и индийской математики. [5] Например, то, что сейчас известно как арабские цифры, изначально пришло из Индии, но мусульманские математики внесли в систему счисления несколько ключевых усовершенствований, таких как введение десятичной точки . Такие математики, как Мухаммад ибн Муса аль-Хорезми (ок. 780–850), дали свое имя концепции алгоритма , а термин «алгебра» происходит от слова «аль-джабр» , начала названия одной из его публикаций. [152] Исламская тригонометрия продолжила работы « Альмагеста » Птолемея и «Индийской Сиддханты» , из которых были добавлены тригонометрические функции , составлены таблицы и применена тригнометрия к сферам и плоскостям. Многие из их инженеров, производителей приборов и геодезистов написали книги по прикладной математике. Именно в астрономию исламские математики внесли свой наибольший вклад. Аль-Баттани (ок. 858–929) усовершенствовал измерения Гиппарха , сохранившиеся в переводе Птолемея « Hè Megalè Syntaxis» ( «Великий трактат» ), переведенного как «Альмагест» . Аль-Баттани также улучшил точность измерения прецессии земной оси. Птолемея внесли Исправления в геоцентрическую модель аль-Баттани, Ибн аль-Хайсам , [153] Аверроэс и астрономы Мараги, такие как Насир ад-Дин ат-Туси , Муайяд ад-Дин аль-Урди и Ибн аль-Шатир . [154] [155]
Ученые с геометрическими навыками внесли значительные улучшения в ранние классические тексты Евклида, Аристотеля и Птолемея о свете и зрении. [5] Самые ранние сохранившиеся арабские трактаты были написаны в 9 веке Абу Исхаком аль-Кинди , Кустой ибн Лукой и (в фрагментарной форме) Ахмадом ибн Исой. Позже, в 11 веке, Ибн аль-Хайсам (известный на Западе как Альхазен), математик и астроном, синтезировал новую теорию зрения, основанную на работах своих предшественников. [5] Его новая теория включала полную систему геометрической оптики, которая была очень подробно изложена в его « Книге оптики» . [5] [156] Его книга была переведена на латынь и до 17 века считалась основным источником по оптической науке в Европе. [5]
Институционализация медицины
[ редактировать ]Медицинские науки широко развивались в исламском мире. [5] Работы греческих медицинских теорий, особенно работы Галена, были переведены на арабский язык, и исламские врачи выпустили множество медицинских текстов, направленных на организацию, разработку и распространение классических медицинских знаний. [5] Начали появляться медицинские специальности , например, связанные с лечением глазных заболеваний, таких как катаракта . Ибн Сина (известный как Авиценна , ок. 980–1037) был плодовитым персидским медицинским энциклопедистом. на Западе [157] много писал о медицине, [158] [159] двумя его наиболее известными работами в области медицины являются « Китаб аль-шифа» («Книга исцеления») и «Канон медицины» , которые использовались в качестве стандартных медицинских текстов как в мусульманском мире, так и в Европе вплоть до 17 века. Среди его многочисленных вкладов — открытие заразной природы инфекционных заболеваний. [158] и внедрение клинической фармакологии. [160] Институционализация медицины стала еще одним важным достижением исламского мира. Хотя больницы как учреждения для больных возникли в Византийской империи, модель институциональной медицины для всех социальных классов была широко распространена в Исламской империи и была разбросана повсюду. Помимо лечения пациентов, врачи могли обучать учеников врачей, а также писать и проводить исследования. Открытие Ибн ан-Нафисом легочного транзита крови в организме человека произошло в условиях больницы. [5]
Отклонить
[ редактировать ]Исламская наука начала приходить в упадок в XII–XIII веках, до эпохи Возрождения в Европе, отчасти из-за христианского завоевания Испании и монгольских завоеваний на Востоке в XI–XIII веках. Монголы разграбили Багдад , столицу халифата Аббасидов , в 1258 году, что положило конец империи Аббасидов . [5] [161] Тем не менее многие из завоевателей стали покровителями наук. Хулагу-хан , например, руководивший осадой Багдада, стал покровителем обсерватории Мараге . [5] Исламская астрономия продолжала процветать и в 16 веке. [5]
Западная Европа
[ редактировать ]К одиннадцатому веку большая часть Европы стала христианской; возникли более сильные монархии; границы были восстановлены; Были внесены технологические разработки и сельскохозяйственные инновации, что привело к увеличению запасов продовольствия и численности населения. Классические греческие тексты были переведены с арабского и греческого на латынь, что стимулировало научные дискуссии в Западной Европе. [162]
В классической античности греческие и римские табу означали, что вскрытие обычно было запрещено, но в средние века преподаватели-медики и студенты в Болонье начали вскрывать человеческие тела, а Мондино де Луцци ( ок. 1275–1326 ) выпустил первый известный учебник анатомии. на основе вскрытия человека. [163] [164]
В результате Pax Mongolica европейцы, такие как Марко Поло , начали продвигаться все дальше и дальше на восток. Письменные отчеты Поло и его спутников вдохновили других западноевропейских морских исследователей на поиски прямого морского пути в Азию, что в конечном итоге привело к эпохе Великих географических открытий . [165]
Были также достигнуты технологические достижения, такие как раннее бегство Эйлмера Малмсберийского (который изучал математику в Англии 11 века), [166] и металлургические достижения цистерцианской доменной печи в Ласкилле . [167] [168]
Средневековые университеты
[ редактировать ]Интеллектуальное возрождение Западной Европы началось с появлением средневековых университетов в XII веке. Эти городские учреждения выросли из неформальной научной деятельности ученых монахов , которые посещали монастыри , консультировались с библиотеками и беседовали с другими учеными. [169] Монах, ставший известным, привлекал последователей, создавая братство ученых (или коллегиум на латыни). Коллегия могла поехать в город или попросить монастырь принять их. Однако, если число ученых в коллегии станет слишком большим, они вместо этого предпочтут поселиться в городе. [169] По мере того, как число коллегий в городе росло, коллегии могли попросить короля предоставить им хартию , которая превратила бы их в университеты . [169] В этот период было основано множество университетов: первый в Болонье в 1088 году, затем в Париже в 1150 году, в Оксфорде в 1167 году и в Кембридже в 1231 году. [169] Предоставление хартии означало, что средневековые университеты были частично суверенными и независимыми от местных властей. [169] Их независимость позволяла им вести себя и судить своих членов на основе своих собственных правил. Более того, поскольку они изначально были религиозными учреждениями, их преподаватели и студенты были защищены от смертной казни (например, виселицы ). [169] Такая независимость была делом обычая, который в принципе мог быть отменен их правителями, если они чувствовали угрозу. Обсуждения различных тем или претензий в этих средневековых учреждениях, какими бы противоречивыми они ни были, проводились формализованным образом, чтобы объявить такие дискуссии находящимися в пределах университета и, следовательно, защищенными привилегиями суверенитета этого учреждения. [169] Утверждение можно охарактеризовать как ex cathedra (буквально «со стула», используется в контексте обучения) или ex hythesi (по гипотезе). Это означало, что дискуссии были представлены как чисто интеллектуальное упражнение, которое не требовало от участвующих сторон подтверждения истинности утверждения или обращения в свою веру. Современные академические концепции и практики, такие как академическая свобода или свобода исследования, являются остатками этих средневековых привилегий, к которым допускались в прошлом. [169]
Учебная программа этих средневековых учебных заведений была сосредоточена на семи гуманитарных науках , которые были направлены на то, чтобы дать начинающим студентам навыки рассуждения и научного языка. [169] Студенты начинали свое обучение, начиная с первых трех гуманитарных наук или тривиума (грамматика, риторика и логика), за которыми следовали следующие четыре гуманитарных науки или квадривиум (арифметика, геометрия, астрономия и музыка). [169] [139] Те, кто выполнил эти требования и получил степень бакалавра (или бакалавра гуманитарных наук ), имели возможность поступить на высший факультет (юриспруденция, медицина или теология), который давал бы степень доктора юридических наук для юриста, степень доктора медицины для врача или доктора философии для юриста. богослов. [169] Студенты, которые решили остаться на факультете нижнего уровня (искусства), могли получить степень магистра (или магистра ) и изучать три философии: метафизику, этику и натурфилософию. [169] Латинские переводы работ Аристотеля, таких как De Anima ( «О душе» ) и комментарии к ним, были обязательными для чтения. Со временем нижнему факультету было разрешено присуждать собственную докторскую степень, называемую PhD . [169] Многих Учителей привлекали энциклопедии, и они использовали их в качестве учебников. Но эти ученые жаждали полных оригинальных текстов древнегреческих философов, математиков и врачей, таких как Аристотель , Евклид и Гален , которые в то время были им недоступны. Эти древнегреческие тексты можно было найти в Византийской империи и исламском мире. [169]
Переводы греческих и арабских источников
[ редактировать ]Контакты с Византийской империей, [146] и с исламским миром во время Реконкисты и крестовых походов разрешил Латинской Европе доступ к научным греческим и арабским текстам, включая работы Аристотеля , Птолемея , Исидора Милетского , Иоанна Филопона , Джабира ибн Хайяна , аль-Хорезми , Альхазена , Авиценны , и Аверроэс . Европейские ученые имели доступ к программам перевода Раймона Толедского XII века , который спонсировал Толедскую школу переводчиков с арабского языка на латынь. Более поздние переводчики, такие как Майкл Скот, выучили арабский язык, чтобы напрямую изучать эти тексты. Европейские университеты оказали материальную помощь в переводе и распространении этих текстов и создали новую инфраструктуру, необходимую научным сообществам. Фактически, европейский университет поставил в центр своей учебной программы множество работ о мире природы и ее изучении. [170] в результате «средневековый университет уделял гораздо больше внимания науке, чем его современный аналог и потомок». [171]
В начале XIII века существовали достаточно точные латинские переводы основных произведений почти всех интеллектуально важных древних авторов, что позволяло надежно передавать научные идеи как через университеты, так и через монастыри. К тому времени натурфилософия в этих текстах начала расширяться такими схоластами, как Роберт Гроссетест , Роджер Бэкон , Альберт Великий и Дунс Скот . Предшественников современного научного метода, находящегося под влиянием более ранних достижений исламского мира, можно увидеть уже в акценте Гроссетеста на математике как способе познания природы, а также в эмпирическом подходе, которым восхищался Бэкон, особенно в его Opus Majus . Пьера Дюэма Тезис заключается в том, что Стефан Темпье - епископ Парижский - Осуждение 1277 года привело к изучению средневековой науки как серьезной дисциплины, «но никто в этой области больше не поддерживает его мнение о том, что современная наука зародилась в 1277 году». [172] Однако многие ученые согласны с мнением Дюэма о том, что в середине позднего средневековья произошли важные научные события. [173] [174] [175]
Средневековая наука
[ редактировать ]В первой половине XIV века было много важных научных работ, в основном в рамках схоластических комментариев к научным сочинениям Аристотеля. [176] Уильям Оккам подчеркивал принцип бережливости : натурфилософы не должны постулировать ненужные сущности, так что движение — это не отдельная вещь, а всего лишь движущийся объект. [177] и не нужен промежуточный «чувственный вид», чтобы передать глазу изображение предмета. [178] Такие ученые, как Жан Буридан и Николь Орем, начали по-новому интерпретировать элементы механики Аристотеля. В частности, Буридан разработал теорию о том, что причиной движения снарядов является импульс, что было первым шагом на пути к современной концепции инерции . [179] начали Оксфордские калькуляторы математически анализировать кинематику движения, проводя этот анализ без учета причин движения. [180]
В 1348 году Черная смерть и другие катастрофы положили внезапный конец философскому и научному развитию. Тем не менее, повторное открытие древних текстов было стимулировано падением Константинополя в 1453 году, когда многие византийские ученые искали убежища на Западе. Между тем введение книгопечатания должно было оказать большое влияние на европейское общество. Облегченное распространение печатного слова демократизировало обучение и позволило таким идеям, как алгебра, распространяться быстрее. Эти разработки проложили путь к научной революции , в ходе которой научные исследования, остановленные в начале «черной смерти», возобновились. [181] [182]
Ренессанс
[ редактировать ]Возрождение обучения
[ редактировать ]Обновление образования в Европе началось со схоластики XII века . Северное Возрождение продемонстрировало решительный сдвиг акцента с аристотелевской натурфилософии на химию и биологические науки (ботанику, анатомию и медицину). [183] Таким образом, современная наука в Европе возобновилась в период великих потрясений: протестантской Реформации и католической Контрреформации ; открытие Америки Христофором Колумбом ; падение Константинополя ; но также повторное открытие Аристотеля в схоластический период предвещало большие социальные и политические изменения. Таким образом, была создана подходящая среда, в которой стало возможным подвергать сомнению научную доктрину, почти так же, как Мартин Лютер и Жан Кальвин ставили под сомнение религиозную доктрину. Было обнаружено, что работы Птолемея (астрономия) и Галена (медицина) не всегда соответствуют повседневным наблюдениям. Работа Везалия над человеческими трупами выявила проблемы с взглядом Галена на анатомию. [184]
Открытие Кристалло также способствовало развитию науки в тот период, поскольку оно появилось в Венеции около 1450 года. Новое стекло позволило создать более качественные очки и, в конечном итоге, изобрести телескоп и микроскоп .
Теофраста Работа о камнях, Пери литон , оставалась авторитетной на протяжении тысячелетий: его интерпретация окаменелостей не была отменена до наступления Научной революции.
В эпоху Возрождения итальянского Никколо Макиавелли установил акцент современной политической науки на прямом эмпирическом наблюдении за политическими институтами и действующими лицами. Позднее расширение научной парадигмы в эпоху Просвещения еще больше вывело изучение политики за рамки нормативных определений. [185] В частности, изучение статистики , для изучения субъектов государства , применялось к опросам и голосованиям .
наблюдался подъем антикваров В археологии в 15 и 16 веках в Европе эпохи Возрождения , которые интересовались коллекционированием артефактов.
Научная революция и рождение новой науки
[ редактировать ]Ранний современный период рассматривается как расцвет европейского Возрождения. Была готовность подвергнуть сомнению ранее существовавшие истины и искать новые ответы. Это привело к периоду крупных научных достижений, ныне известному как Научная революция , которая привела к появлению Новой Науки, которая была более механистической по своему мировоззрению, более интегрированной с математикой, а также более надежной и открытой, поскольку ее знания были основаны на новый научный метод . [12] [15] [16] [186] Научная революция представляет собой удобную границу между античной мыслью и классической физикой. Традиционно считается, что она началась в 1543 году, когда были опубликованы книги «De humani corporis Fabrica» ( «О работе человеческого тела ») Андреаса Везалия , а также «De Revolutionibus » автора. астронома Николая Коперника , были впервые напечатаны. Кульминацией этого периода стала публикация «Philosophiæ Naturalis Principia Mathematica» в 1687 году Исааком Ньютоном , олицетворяющая беспрецедентный рост научных публикаций по всей Европе.
Другие значительные научные достижения были сделаны в это время Галилео Галилеем , Иоганном Кеплером , Эдмоном Галлеем , Уильямом Харви , Пьером Ферма , Робертом Гуком , Христианом Гюйгенсом , Тихо Браге , Марином Мерсенном , Готфридом Лейбницем , Исааком Ньютоном и Блезом Паскалем . [187] В философию большой вклад внесли Фрэнсис Бэкон , сэр Томас Браун , Рене Декарт , Барух Спиноза , Пьер Гассенди , Роберт Бойль и Томас Гоббс . [187] Христиан Гюйгенс вывел центростремительные и центробежные силы и был первым, кто применил математические исследования для описания ненаблюдаемых физических явлений. Уильям Гилберт провел некоторые из самых ранних экспериментов с электричеством и магнетизмом, установив, что Земля сама по себе магнитна.
гелиоцентризм
[ редактировать ]Гелиоцентрическая Коперником астрономическая модель Вселенной была уточнена Николаем . Коперник выдвинул идею, что Земля и все небесные сферы, содержащие планеты и другие объекты космоса, вращаются вокруг Солнца. [188] Его гелиоцентрическая модель также предполагала, что все звезды неподвижны, не вращаются вокруг оси и вообще не находятся в каком-либо движении. [189] Его теория предполагала годовое вращение Земли и других небесных сфер вокруг Солнца и позволяла рассчитывать расстояния до планет с помощью деферентов и эпициклов. Хотя эти расчеты не были полностью точными, Копернику удалось понять порядок расстояний каждой небесной сферы. Гелиоцентрическая система Коперника была возрождением гипотез Аристарха Самосского и Селевка Селевкийского . [190] Аристарх Самосский предположил, что Земля вращается вокруг Солнца, но ничего не упомянул о порядке, движении или вращении других небесных сфер. [191] Селевк Селевкийский также предположил вращение Земли вокруг Солнца, но ничего не упомянул о других небесных сферах. Кроме того, Селевк Селевкийский понял, что Луна вращается вокруг Земли и может быть использована для объяснения приливов и отливов океанов, тем самым еще раз доказав свое понимание гелиоцентрической идеи. [192]
.
Эпоха Просвещения
[ редактировать ]Продолжение научной революции
[ редактировать ]Научная революция продолжилась и в эпоху Просвещения , которая ускорила развитие современной науки.
Планеты и орбиты
[ редактировать ]За гелиоцентрической моделью, возрожденной Николаем Коперником, последовала модель движения планет, предложенная Иоганном Кеплером в начале 17 века, который предполагал, что планеты следуют по эллиптическим орбитам с Солнцем в одном из фокусов эллипса. В Astronomia Nova ( «Новая астрономия ») первые два закона движения планет были показаны посредством анализа орбиты Марса. Кеплер представил революционную концепцию планетарной орбиты. Благодаря его работам астрономические явления стали рассматриваться как подчиняющиеся физическим законам. [196]
Появление химии
[ редактировать ]выделил «химию» от алхимии в Решающий момент наступил, когда Роберт Бойль своей работе «Химик-скептик» в 1661 году ; хотя алхимическая традиция продолжалась еще некоторое время после его работы. Другие важные шаги включали гравиметрическую экспериментальную практику таких медицинских химиков, как Уильям Каллен , Джозеф Блэк , Торберн Бергман и Пьер Маккер, а также работы Антуана Лавуазье (« отца современной химии ») по кислороду и закону сохранения массы , которые опровергли теория флогистона . Современная химия возникла в шестнадцатом-восемнадцатом веках благодаря материальным практикам и теориям, продвигаемым алхимией, медициной, производством и горнодобывающей промышленностью. [197] [198] [199]
Исчисление и механика Ньютона
[ редактировать ]В 1687 году Исаак Ньютон опубликовал « Начала математики» , подробно описывающие две всеобъемлющие и успешные физические теории: законы движения Ньютона , которые привели к классической механике; и закон всемирного тяготения Ньютона , который описывает фундаментальную силу гравитации.
Система кровообращения
[ редактировать ]Уильям Гарви опубликовал De Motu Cordis в 1628 году, в котором были раскрыты его выводы, основанные на его обширных исследованиях позвоночных систем кровообращения . [187] Он определил центральную роль сердца , артерий и вен в обеспечении движения крови в контуре и не смог найти никакого подтверждения . ранее существовавшим представлениям Галена о функциях нагрева и охлаждения [200] История ранней современной биологии и медицины часто рассказывается через поиски места души. [201] Гален в описаниях своей основополагающей работы в медицине представляет различия между артериями, венами и нервами, используя словарь души. [202]
Научные общества и журналы
[ редактировать ]Критическим нововведением стало создание постоянных научных обществ и их научных журналов, что резко ускорило распространение новых идей. Типичным было основание Королевского общества в 1665 году в Лондоне в 1660 году и его журнала «Философские труды Королевского общества» , первого научного журнала на английском языке. [203] В 1665 году также появился первый журнал на французском языке — Journal des sçavans . Наука опираясь на произведения [204] Ньютона . , Декарта , Паскаля и Лейбница , наука шла по пути современной математики , физики и техники ко времени поколения Бенджамина Франклина (1706–1790), Леонарда Эйлера (1707–1783), Михаила Ломоносова (1711–1765) ) и Жан ле Рон д'Аламбер (1717–1783). Дени Дидро , Энциклопедия опубликованная между 1751 и 1772 годами, принесла это новое понимание более широкой аудитории. Влияние этого процесса не ограничивалось наукой и техникой, но затронуло философию ( Иммануил Кант , Дэвид Юм ), религию (все более значительное влияние науки на религию ), а также общество и политику в целом ( Адам Смит , Вольтер ).
События в геологии
[ редактировать ]Геология не претерпела систематической реструктуризации во время научной революции , а вместо этого существовала как облако изолированных, несвязанных идей о горных породах, минералах и формах рельефа задолго до того, как она стала последовательной наукой. Роберт Гук сформулировал теорию землетрясений, а Николас Стено разработал теорию суперпозиции и утверждал, что окаменелости представляют собой останки некогда живших существ. Начиная с Томаса Бернета » «Священной теории Земли в 1681 году, натурфилософы начали исследовать идею о том, что Земля изменилась с течением времени. Бернет и его современники интерпретировали прошлое Земли с точки зрения событий, описанных в Библии, но их работа заложила интеллектуальные основы для светских интерпретаций истории Земли.
Постнаучная революция
[ редактировать ]Биоэлектричество
[ редактировать ]В конце 18 века такие исследователи, как Хью Уильямсон [205] и Джон Уолш экспериментировали с воздействием электричества на человеческое тело. Дальнейшие исследования Луиджи Гальвани и Алессандро Вольты установили электрическую природу того, что Вольта назвал гальванизмом . [206] [207]
События в геологии
[ редактировать ]Современная геология, как и современная химия, постепенно развивалась в течение XVIII и начала XIX веков. Бенуа де Майе и граф де Бюффон видели Землю намного старше, чем 6000 лет, о которых предполагали библеисты. Жан-Этьен Геттар и Николя Демарест совершили поход по центральной Франции и записали свои наблюдения на одних из первых геологических карт. С помощью химических экспериментов натуралисты, такие как шотландец Джон Уокер , [208] Швед Торберн Бергман и немец Абрахам Вернер создали комплексные системы классификации горных пород и минералов — коллективное достижение, превратившее геологию в передовую область к концу восемнадцатого века. Эти ранние геологи также предложили обобщенную интерпретацию истории Земли, которая побудила Джеймса Хаттона , Жоржа Кювье и Александра Броньяра , следуя по стопам Стено , утверждать, что слои горных пород можно датировать по содержащимся в них окаменелостям: принцип, впервые примененный к геология Парижского бассейна. Использование индексных окаменелостей стало мощным инструментом для создания геологических карт, поскольку позволяло геологам сопоставлять породы в одном месте с камнями того же возраста в других, отдаленных местах.
Рождение современной экономики
[ редактировать ]Основу классической экономики составляет работа Адама Смита « Исследование о природе и причинах богатства народов» , опубликованная в 1776. Смит критиковал меркантилизм , защищая систему свободной торговли с разделением труда . Он постулировал существование « невидимой руки », которая регулирует экономические системы, состоящие из акторов, руководствующихся только личными интересами. «Невидимая рука», упомянутая на потерянной странице в середине главы « Богатства народов » 1776 года, выступает в качестве центрального послания Смита.
Социальные науки
[ редактировать ]Антропологию лучше всего можно понимать как продукт эпохи Просвещения. Именно в этот период европейцы попытались систематически изучать поведение человека. Традиции юриспруденции, истории, филологии и социологии развивались в это время и повлияли на развитие социальных наук, частью которых была антропология.
19 век
[ редактировать ]В XIX веке зародилась наука как профессия. Уильям Уэвелл ввёл термин «учёный» в 1833 году. [209] который вскоре заменил старый термин «натурфилософ» .
Развитие физики
[ редактировать ]В физике поведение электричества и магнетизма изучали Джованни Альдини , Алессандро Вольта , Майкл Фарадей , Георг Ом и другие. Эксперименты, теории и открытия Майкла Фарадея , Андре-Мари Ампера , Джеймса Клерка Максвелла и их современников привели к объединению двух явлений в единую теорию электромагнетизма , описываемую уравнениями Максвелла . Термодинамика привела к пониманию тепла и определению понятия энергии.
Открытие Нептуна
[ редактировать ]В астрономии была открыта планета Нептун. Достижения в астрономии и оптических системах в 19 веке привели к первому наблюдению астероида ( 1 Церера ) в 1801 году и открытию Нептуна в 1846 году.
Развитие математики
[ редактировать ]В математике понятие комплексных чисел наконец созрело и привело к последующей аналитической теории; они также начали использовать гиперкомплексные числа . Карл Вейерштрасс и др. осуществили арифметизацию анализа функций действительных и комплексных переменных . он также стал свидетелем нового прогресса в геометрии, После периода почти двух тысяч лет выходящего за рамки классических теорий Евклида. Математическая наука логика также совершила революционные прорывы после столь же длительного периода застоя. Но самым важным шагом в науке в это время были идеи, сформулированные создателями электротехники. Их работа изменила облик физики и сделала возможным появление новых технологий, таких как электроэнергия, электрический телеграф, телефон и радио.
События в области химии
[ редактировать ]В химии Дмитрий Менделеев , следуя атомной теории , Джона Дальтона создал первую периодическую элементов таблицу . Другие важные события включают открытия, раскрывающие природу атомной структуры и материи одновременно с химией, а также новые виды излучения. Теория о том, что вся материя состоит из атомов, которые являются мельчайшими составляющими материи, которые невозможно разрушить без потери основных химических и физических свойств этой материи, была предложена Джоном Дальтоном в 1803 году, хотя на решение этого вопроса ушло сто лет. решить как доказано. Дальтон также сформулировал закон массовых отношений. В 1869 году Дмитрий Менделеев составил свою периодическую таблицу элементов на основе открытий Дальтона. Синтез мочевины открыл Фридрихом Вёлером новую область исследований — органическую химию , и к концу XIX века учёные смогли синтезировать сотни органических соединений. Во второй половине XIX века началась эксплуатация нефтехимической продукции Земли после истощения запасов нефти из китобойный промысел . К 20 веку систематическое производство очищенных материалов обеспечило готовые поставки продуктов, которые давали не только энергию, но и синтетические материалы для одежды, лекарств и повседневных одноразовых ресурсов. Применение методов органической химии к живым организмам привело к созданию физиологической химии , предшественника биохимии . [210]
Возраст Земли
[ редактировать ]В первой половине XIX века такие геологи, как Чарльз Лайель , Адам Седжвик и Родерик Мерчисон, применили новую технику к горным породам по всей Европе и восточной части Северной Америки, подготовив почву для более детальных, финансируемых государством картографических проектов в последующие десятилетия. В середине XIX века фокус геологии сместился с описания и классификации на попытки понять, как изменилась поверхность Земли. В этот период были предложены первые комплексные теории горообразования, а также первые современные теории землетрясений и вулканов. Луи Агассис и другие установили реальность ледниковых периодов , охватывающих континенты , а «флювиалисты», такие как Эндрю Кромби Рамзи, утверждали, что речные долины на протяжении миллионов лет формировались реками, протекающими через них. После открытия радиоактивности , радиометрические методы датирования начиная с 20 века, начали разрабатываться Альфреда Вегенера о «континентальном дрейфе» была широко отвергнута, когда он предложил ее в 1910-х годах. . Теория [211] но новые данные, собранные в 1950-х и 1960-х годах, привели к созданию теории тектоники плит , которая предоставила правдоподобный механизм для нее. Тектоника плит также дала единое объяснение широкому спектру, казалось бы, не связанных друг с другом геологических явлений. С 1960-х годов он служит объединяющим принципом в геологии. [212]
Эволюция и наследование
[ редактировать ]Возможно, самой известной, противоречивой и далеко идущей теорией во всей науке была теория эволюции путем естественного отбора , которая была независимо сформулирована Чарльзом Дарвином и Альфредом Уоллесом . Подробно оно было описано в книге Дарвина «Происхождение видов» , вышедшей в 1859 году. В ней Дарвин предположил, что особенности всех живых существ, включая человека, формировались естественными процессами на протяжении длительных периодов времени. Теория эволюции в ее современном виде затрагивает практически все области биологии. [213] Последствия эволюции в областях, выходящих за рамки чистой науки, привели как к оппозиции, так и к поддержке со стороны различных частей общества и глубоко повлияли на популярное понимание «места человека во Вселенной». Отдельно Грегор Мендель в 1866 году сформулировал принципы наследственности, которые стали основой современной генетики .
Теория микробов
[ редактировать ]Другой важной вехой в медицине и биологии стали успешные попытки доказать микробную теорию болезней . Вслед за этим Луи Пастер сделал первую вакцину против бешенства , а также сделал множество открытий в области химии, в том числе асимметрии кристаллов . В 1847 году венгерский врач Игнац Фюлёп Земмельвейс резко снизил частоту послеродовой лихорадки , просто потребовав от врачей мыть руки перед оказанием помощи роженицам. Это открытие предшествовало микробной теории болезней . Однако открытия Земмельвейса не были оценены его современниками, и мытье рук вошло в употребление лишь с открытиями британского хирурга Джозефа Листера , который в 1865 году доказал принципы антисептики . Работа Листера основывалась на важных открытиях французского биолога Луи Пастера . Пастер смог связать микроорганизмы с болезнями, совершив революцию в медицине. Он также разработал один из наиболее важных методов профилактической медицины , когда в 1880 г. вакцина против бешенства . Пастер изобрел процесс пастеризации , чтобы предотвратить распространение болезней через молоко и другие продукты. [214]
Школы экономики
[ редактировать ]Карл Маркс разработал альтернативную экономическую теорию, названную марксистской экономикой . Марксистская экономика основана на трудовой теории стоимости и предполагает, что стоимость товара зависит от количества труда, необходимого для его производства. Согласно этой аксиоме, капитализм был основан на том, что работодатели не платили полную стоимость труда рабочих для получения прибыли. Австрийская школа отреагировала на марксистскую экономику, рассматривая предпринимательство как движущую силу экономического развития. Это заменило трудовую теорию стоимости системой спроса и предложения .
Основание психологии
[ редактировать ]Психология как научная деятельность, независимая от философии, возникла в 1879 году, когда Вильгельм Вундт основал первую лабораторию, посвященную исключительно психологическим исследованиям (в Лейпциге ). Другими важными ранними авторами в этой области являются Герман Эббингауз (пионер в области исследований памяти), Иван Павлов (открывший классическую обусловленность ), Уильям Джеймс и Зигмунд Фрейд . Влияние Фрейда было огромным, хотя он был скорее культурным символом, чем силой в научной психологии.
Современная социология
[ редактировать ]Современная социология возникла в начале XIX века как академический ответ на модернизацию мира. Среди многих ранних социологов (например, Эмиля Дюркгейма ) целью социологии был структурализм , понимание сплоченности социальных групп и разработка «противоядия» от социальной дезинтеграции. Макс Вебер был озабочен модернизацией общества посредством концепции рационализации , которая, по его мнению, заманила бы людей в «железную клетку» рационального мышления. Некоторые социологи, в том числе Георг Зиммель и Уэб Дюбуа , использовали больше микросоциологического , качественного анализа. Этот микроуровневый подход сыграл важную роль в американской социологии: теории Джорджа Герберта Мида и его ученика Герберта Блумера привели к созданию символического интеракционистского подхода к социологии. В частности, именно Огюст Конт проиллюстрировал своим произведением переход от теологической стадии к метафизической и, следовательно, к положительной стадии. Конт позаботился о классификации наук, а также о переходе человечества к ситуации прогресса, обусловленной переосмыслением природы в соответствии с утверждением «социальности» как основы научно истолкованного общества. [215]
Романтизм
[ редактировать ]Романтическое движение начала XIX века изменило науку, открыв новые направления, неожиданные для классических подходов Просвещения. Упадок романтизма произошел потому, что новое движение, позитивизм , начало овладевать идеалами интеллектуалов после 1840 года и продолжалось примерно до 1880 года. В то же время романтическая реакция на Просвещение породила таких мыслителей, как Иоганн Готфрид Гердер и позже. Вильгельм Дильтей, чьи работы легли в основу концепции культуры , занимающей центральное место в этой дисциплине. Традиционно большая часть истории этого предмета была основана на колониальных столкновениях между Западной Европой и остальным миром, а большая часть антропологии 18-го и 19-го веков теперь классифицируется как научный расизм . В конце XIX века за «изучение человека» происходили битвы между приверженцами «антропологических» убеждений (опирающихся на антропометрические методы) и сторонниками « этнологических » убеждений (смотрящих на культуры и традиции), и эти различия стали часть более позднего разделения между физическая антропология и культурная антропология , последняя из которых была введена учениками Франца Боаса .
20 век
[ редактировать ]В XX веке наука значительно продвинулась вперед. Произошли новые и радикальные разработки в области физических наук и наук о жизни , основанные на прогрессе XIX века. [216]
Теория относительности и квантовая механика
[ редактировать ]Начало XX века положило начало революции в физике. Было показано, что давние теории Ньютона верны не при всех обстоятельствах. Начиная с 1900 года Макс Планк , Альберт Эйнштейн , Нильс Бор и другие разработали квантовые теории для объяснения различных аномальных экспериментальных результатов путем введения дискретных уровней энергии. Не только квантовая механика показала, что законы движения не выполняются в малых масштабах, но и теория общей относительности , предложенная Эйнштейном в 1915 году, показала, что фиксированный фон пространства-времени , от которого зависят как ньютоновская механика , так и специальная теория относительности , может не существует. В 1925 году Вернер Гейзенберг и Эрвин Шредингер сформулировали квантовую механику , которая объяснила предыдущие квантовые теории. В настоящее время общая теория относительности и квантовая механика несовместимы друг с другом, и предпринимаются усилия по их объединению. [217]
Большой взрыв
[ редактировать ]Наблюдение Эдвина Хаббла в 1929 году о том, что скорость удаления галактик положительно коррелирует с их расстоянием, привело к пониманию того, что Вселенная расширяется, и к формулировке Большого взрыва теории Жоржем Леметром . Джордж Гамов , Ральф Альфер и Роберт Херман рассчитали, что должны быть доказательства Большого взрыва в фоновой температуре Вселенной. [218] В 1964 году Арно Пензиас и Роберт Уилсон. [219] обнаружили фоновое шипение силой 3 Кельвина в своем Bell Labs радиотелескопе ( Роговая антенна Холмдела ), что послужило доказательством этой гипотезы и легло в основу ряда результатов, которые помогли определить возраст Вселенной .
Большая наука
[ редактировать ]В 1938 году Отто Хан и Фриц Штрассман открыли деление ядра радиохимическими методами, а в 1939 году Лиза Мейтнер и Отто Роберт Фриш написали первую теоретическую интерпретацию процесса деления, которая позже была усовершенствована Нильсом Бором и Джоном А. Уилером . Дальнейшие разработки произошли во время Второй мировой войны, что привело к практическому применению радара , а также к разработке и использованию атомной бомбы . Примерно в это же время Чиен-Шиунг Ву был принят на работу в Манхэттенский проект для помощи в разработке процесса разделения металлического урана на изотопы U-235 и U-238 посредством газовой диффузии . [220] Она была экспертом-экспериментатором в области бета-распада и физики слабых взаимодействий. [221] [222] Ву разработал эксперимент (см. Эксперимент Ву ), который позволил физикам-теоретикам Цунг-Дао Ли и Чэнь-Нин Ян экспериментально опровергнуть закон четности, что принесло им Нобелевскую премию в 1957 году. [221]
Хотя этот процесс начался с изобретения циклотрона Эрнестом О. Лоуренсом в 1930-х годах, физика в послевоенный период вступила в фазу того, что историки назвали « большой наукой », требующей огромных машин, бюджетов и лабораторий для того, чтобы проверить свои теории и выйти на новые рубежи. Основным покровителем физики стали правительства штатов, которые признали, что поддержка «фундаментальных» исследований часто может привести к созданию технологий, полезных как для военного, так и для промышленного применения.
Достижения генетики
[ редактировать ]В начале 20 века изучение наследственности стало крупным исследованием после повторного открытия в 1900 году законов наследственности, разработанных Менделем . [223] В 20-м веке также произошла интеграция физики и химии, когда химические свойства объяснялись электронной структурой атома. Лайнуса Полинга В книге «Природа химической связи» принципы квантовой механики использовались для определения валентных углов во все более сложных молекулах. Кульминацией работы Полинга стало физическое моделирование ДНК , тайны жизни (по словам Фрэнсиса Крика , 1953). В том же году эксперимент Миллера-Юри , моделируя первичные процессы, продемонстрировал, что основные составляющие белков, простые аминокислоты , сами по себе могут быть построены из более простых молекул, положив начало десятилетиям исследований химического происхождения жизни . К 1953 году Джеймс Д. Уотсон и Фрэнсис Крик прояснили базовую структуру ДНК, генетического материала для выражения жизни во всех ее формах. [224] Опираясь на работы Мориса Уилкинса и Розалинды Франклин , предположил, что структура ДНК представляет собой двойную спираль. В своей знаменитой статье « Молекулярная структура нуклеиновых кислот ». [224] В конце 20-го века возможности генной инженерии впервые стали практическими, и в 1990 году начались масштабные международные усилия по составлению карты всего генома человека ( Проект «Геном человека» ). Дисциплина экологии обычно берет свое начало от синтеза дарвиновской эволюции и Гумбольдта биогеографии в конце 19-го и начале 20-го веков. [225] Однако не менее важную роль в развитии экологии сыграли микробиология и почвоведение , особенно концепция жизненного цикла , известная в работах Луи Пастера и Фердинанда Кона . [226] Слово «экология» было придумано Эрнстом Геккелем , чей особенно целостный взгляд на природу в целом (и теорию Дарвина в частности) сыграл важную роль в распространении экологического мышления. [227] Область экологии экосистем возникла в атомный век с использованием радиоизотопов для визуализации пищевых сетей, а к 1970-м годам экология экосистем глубоко повлияла на глобальное управление окружающей средой. [228]
Исследование космоса
[ редактировать ]В 1925 году Сесилия Пейн-Гапошкин определила, что звезды состоят в основном из водорода и гелия. [229] отговорил ее Астроном Генри Норрис Рассел публиковать это открытие в своей докторской диссертации из-за широко распространенного мнения, что звезды имеют тот же состав, что и Земля. [230] Однако четыре года спустя, в 1929 году, Генри Норрис Рассел пришел к такому же выводу, но с помощью других рассуждений, и открытие в конечном итоге было принято. [230]
В 1987 году сверхновая SN 1987A наблюдалась астрономами на Земле как визуально, так и, что стало триумфом нейтринной астрономии , с помощью детекторов солнечных нейтрино в Камиоканде . Но поток солнечных нейтрино был лишь частью его теоретически ожидаемого значения . Это несоответствие привело к изменению некоторых значений стандартной модели физики элементарных частиц .
Нейронаука как отдельная дисциплина
[ редактировать ]В течение 20 века понимание нейронов и нервной системы становилось все более точным и молекулярным. Например, в 1952 году Алан Ллойд Ходжкин и Эндрю Хаксли представили математическую модель передачи электрических сигналов в нейронах гигантского аксона кальмара, которую они назвали « потенциалами действия », и то, как они инициируются и распространяются, известную как «потенциалы действия». Модель Ходжкина–Хаксли . В 1961–1962 годах Ричард ФитцХью и Дж. Нагумо упростили Ходжкина–Хаксли в так называемой модели ФитцХью–Нагумо . В 1962 году Бернард Кац смоделировал нейротрансмиссию через пространство между нейронами, известное как синапсы . Начиная с 1966 года Эрик Кандел и его коллеги исследовали биохимические изменения в нейронах, связанные с обучением и хранением памяти у аплизий . В 1981 году Кэтрин Моррис и Гарольд Лекар объединили эти модели в модель Морриса-Лекара . Такая все более количественная работа привела к появлению многочисленных моделей биологических нейронов и моделей нейронных вычислений . Нейронаука стала признаваться как отдельная академическая дисциплина. Эрик Кандел и его коллеги назвали Дэвида Риоха , Фрэнсиса О. Шмитта и Стивена Каффлера , сыгравших решающую роль в создании этой области. [231]
Тектоника плит
[ редактировать ]Изучение геологами тектоники плит стало частью расширения области изучения горных пород и изучения Земли как планеты. Другие элементы этой трансформации включают: геофизические исследования недр Земли, объединение геологии с метеорологией и океанографией в одну из « наук о Земле », а также сравнение Земли и других скалистых планет Солнечной системы.
Приложения
[ редактировать ]Что касается приложений, в 20 веке было разработано огромное количество новых технологий. Такие технологии, как электричество , лампа накаливания , автомобиль и фонограф , впервые разработанные в конце 19-го века, были усовершенствованы и повсеместно распространены. Первый автомобиль был представлен Карлом Бенцем в 1885 году. [232] Первый полет самолета произошел в 1903 году, а к концу века авиалайнеры пролетали тысячи миль за считанные часы. Развитие радио , телевидения и компьютеров вызвало огромные изменения в распространении информации. Достижения в области биологии также привели к значительному увеличению производства продуктов питания, а также к ликвидации таких заболеваний, как полиомиелит доктором Джонасом Солком . Картирование генов и секвенирование генов, изобретенные докторами. Марк Скольник и Уолтер Гилберт соответственно — две технологии, которые сделали проект «Геном человека» осуществимым. Информатика, построенная на основе теоретической лингвистики , дискретной математики и электротехники , изучает природу и пределы вычислений. Подполя включают вычислимость , вычислительную сложность , проектирование баз данных , компьютерные сети , искусственный интеллект и проектирование компьютерного оборудования . Одной из областей, в которой достижения вычислительной техники способствовали более общему научному развитию, является содействие крупномасштабным архивирование научных данных . Современная информатика обычно отличается упором на математическую «теорию» в отличие от практического акцента разработки программного обеспечения . [233]
В статье Эйнштейна «К квантовой теории излучения» изложены принципы вынужденного излучения фотонов. Это привело к изобретению лазера ( усиление света за счет вынужденного излучения) и оптического усилителя, которые положили начало информационной эпохе . [234] Именно оптическое усиление позволяет оптоволоконным сетям передавать огромные мощности Интернета .
Благодаря беспроводной передаче электромагнитного излучения и глобальным сетям сотовой связи мобильный телефон стал основным средством доступа в Интернет. [235]
Развитие политологии и экономики
[ редактировать ]В политологии ХХ века изучение идеологии, бихевиоризма и международных отношений привело к появлению множества субдисциплин «политологии», включая теорию рационального выбора , теорию голосования , теорию игр (также используемую в экономике), псефологию , политическую географию . геополитика , политическая антропология / политическая психология / политическая социология , политическая экономия, анализ политики , государственное управление, сравнительный политический анализ и исследования мира /анализ конфликтов. В экономике Джон Мейнард Кейнс в 1920-х годах ввел разделение между микроэкономикой и макроэкономикой . В соответствии с кейнсианской экономикой макроэкономические тенденции могут подавлять экономический выбор, сделанный отдельными людьми. Правительства должны стимулировать совокупный спрос на товары как средство стимулирования экономического роста. После Второй мировой войны Милтон Фридман создал концепцию монетаризма . Монетаризм фокусируется на использовании спроса и предложения денег как метода контроля экономической деятельности. В 1970-е годы монетаризм адаптировался в экономика предложения , которая выступает за снижение налогов как средство увеличения количества денег, доступных для экономического роста. Другими современными школами экономической мысли являются новая классическая экономика и новая кейнсианская экономика . Новая классическая экономика была разработана в 1970-х годах, подчеркивая, что прочная микроэкономика является основой макроэкономического роста. Новая кейнсианская экономика была создана частично в ответ на новую классическую экономику. Он показывает, насколько несовершенна конкуренция и негибкость рынка, означает, что денежно-кредитная политика имеет реальные последствия, и позволяет анализировать различные политики. [236]
Развитие психологии, социологии и антропологии
[ редактировать ]Психология 20-го века увидела отказ от теорий Фрейда как слишком ненаучных и реакцию на атомистический подход Эдварда Титченера к разуму. Это привело к формулированию бихевиоризма Джоном Б. Уотсоном , который был популяризирован Б. Ф. Скиннером . Бихевиоризм предлагал эпистемологически ограничить психологические исследования явным поведением, поскольку его можно надежно измерить. Научное знание «разума» считалось слишком метафизическим и, следовательно, недостижимым. В последние десятилетия 20-го века наблюдался подъем когнитивной науки , которая снова рассматривает разум как объект исследования с использованием инструментов психологии, лингвистики , информатики , философии и нейробиологии . Новые методы визуализации активности мозга, такие как ПЭТ-сканирование и компьютерная томография , также начали оказывать свое влияние, что побудило некоторых исследователей исследовать разум, исследуя мозг, а не познание. Эти новые формы исследования предполагают, что широкое понимание человеческого разума возможно и что такое понимание может быть применено к другим областям исследований, таким как искусственный интеллект . Эволюционная теория была применена к поведению и введена в антропологию и психологию через работы культурного антрополога Наполеона Шаньона . Физическая антропология станет биологической антропологией , включив в себя элементы эволюционной биологии. [237]
В американской социологии 1940-х и 1950-х годов в основном доминировал Талкотт Парсонс , который утверждал, что те аспекты общества, которые способствовали структурной интеграции, поэтому были «функциональными». Этот подход структурного функционализма был поставлен под сомнение в 1960-х годах, когда социологи стали рассматривать этот подход просто как оправдание неравенства, присутствующего в статус-кво. В ответ была разработана теория конфликта , частично основанная на философии Карла Маркса. Теоретики конфликта рассматривали общество как арену, на которой различные группы конкурируют за контроль над ресурсами. Символический интеракционизм также стал считаться центральным элементом социологического мышления. Эрвинг Гоффман рассматривал социальные взаимодействия как сценическое представление, в котором люди готовятся «за кулисами» и пытаются контролировать свою аудиторию посредством управления впечатлением . [238] Хотя эти теории в настоящее время занимают видное место в социологической мысли, существуют и другие подходы, включая феминистскую теорию , постструктурализм , теорию рационального выбора и постмодернизм .
В середине 20 века большая часть методологий более ранних антропологических и этнографических исследований была переоценена с учетом исследовательской этики, в то время как в то же время объем исследований расширился далеко за пределы традиционного изучения «примитивных культур».
21 век
[ редактировать ]В начале XXI века были доказаны некоторые концепции, зародившиеся в физике XX века. 4 июля 2012 года физики, работающие в Большом адронном коллайдере ЦЕРН , объявили, что они открыли новую субатомную частицу, очень напоминающую бозон Хиггса . [239] подтверждено как таковое к марту следующего года. [240] Гравитационные волны были впервые обнаружены 14 сентября 2015 года. [241]
Проект «Геном человека» был объявлен завершенным в 2003 году. [242] Метод редактирования генов CRISPR, разработанный в 2012 году, позволил ученым точно и легко модифицировать ДНК и привел к разработке новой медицины. [243] В 2020 году были изобретены ксеноботы — новый класс живой робототехники; [244] репродуктивные возможности были представлены в следующем году. [245]
Позитивная психология — это раздел психологии, основанный в 1998 году Мартином Селигманом , который занимается изучением счастья, психического благополучия и позитивного функционирования человека и является реакцией на акцент психологии 20-го века на психических заболеваниях и дисфункциях. [246]
См. также
[ редактировать ]- 2020-е в науке и технологиях
- История и философия науки
- История измерений
- История астрономии
- История биологии
- История химии
- История науки о Земле
- История физики
- История социальных наук
- История технологии
- История стипендии
- История научной политики
- Список экспериментов
- Список лауреатов Нобелевской премии
- Список ученых
- Список лет в науке
- Материализм полемика
- Множественное открытие
- Научный туризм
- Социология истории науки
- Хронология науки
- Феномен Юаса – Миграция центра активности мировой науки
Ссылки
[ редактировать ]- ^ Коэн, Элиэль (2021). «Пограничная линза: теоретизирование академической деятельности». Университет и его границы (1-е изд.). Нью-Йорк, Нью-Йорк: Рутледж. стр. 14–41. ISBN 978-0367562984 . Архивировано из оригинала 5 мая 2021 года . Проверено 8 июня 2021 г.
- ^ Jump up to: Перейти обратно: а б с д и ж г час я дж к л м н тот п д р с Линдберг, Дэвид К. (2007). «Наука до греков». Начало западной науки (2-е изд.). Чикаго: Издательство Чикагского университета. стр. 1–20. ISBN 978-0-226-48205-7 .
- ^ Jump up to: Перейти обратно: а б с Грант, Эдвард (2007). «Древний Египет до Платона». История натуральной философии . Нью-Йорк: Издательство Кембриджского университета. стр. 1–26 . ISBN 978-052-1-68957-1 .
- ^ Jump up to: Перейти обратно: а б Линдберг, Дэвид К. (2007). «Возрождение обучения на Западе». Начало западной науки (2-е изд.). Чикаго: Издательство Чикагского университета. стр. 193–224. ISBN 978-0-226-48205-7 .
- ^ Jump up to: Перейти обратно: а б с д и ж г час я дж к л м н тот п д р Линдберг, Дэвид К. (2007). «Исламская наука». Начало западной науки (второе изд.). Чикаго: Издательство Чикагского университета. стр. 163–92. ISBN 978-0-226-48205-7 .
- ^ Линдберг, Дэвид К. (2007). «Возрождение и ассимиляция греческой и исламской науки». Начало западной науки (2-е изд.). Чикаго: Издательство Чикагского университета. стр. 225–253. ISBN 978-0-226-48205-7 .
- ^ Сигэру, Накаяма (1995). «История восточноазиатской науки: потребности и возможности» . Осирис . 10 : 80–94. дои : 10.1086/368744 . JSTOR 301914 . S2CID 224789083 . Проверено 10 февраля 2024 г.
- ^ Кюскю, Элиф Аслан (1 января 2022 г.). «Исследование научной революции в медицине на организме человека / Билимсел Деврим Тиббыни Инсан Бедени Узеринден Инселемек» . Легенды: Журнал исследований европейской истории . Архивировано из оригинала 12 января 2023 года . Проверено 28 сентября 2022 г.
- ^ Хендрикс, Скотт Э. (2011). «Натурфилософия или наука в досовременных эпистемических режимах? Случай астрологии Альберта Великого и Галилео Галилея» . Teorie Vědy Теория науки . 33 (1): 111–132. дои : 10.46938/tv.2011.72 . S2CID 258069710 . Архивировано из оригинала 18 ноября 2012 года . Проверено 20 февраля 2012 г.
- ^ Принсипи, Лоуренс М. (2011). "Введение". Научная революция: очень краткое введение . Нью-Йорк: Издательство Оксфордского университета. стр. 1–3. ISBN 978-0-199-56741-6 .
- ^ Линдберг, Дэвид К. (1990). «Концепции научной революции от Бейкера до Баттерфилда: предварительный набросок». В Линдберге, Дэвид К.; Вестман, Роберт С. (ред.). Переоценка научной революции (Первое изд.). Чикаго: Издательство Кембриджского университета. стр. 1–26. ISBN 978-0-521-34262-9 .
- ^ Jump up to: Перейти обратно: а б с Линдберг, Дэвид К. (2007). «Наследие античной и средневековой науки». Начало западной науки (2-е изд.). Чикаго: Издательство Чикагского университета. стр. 357–368. ISBN 978-0-226-48205-7 .
- ^ Дель Солдато, Ева (2016). Залта, Эдвард Н. (ред.). Стэнфордская энциклопедия философии (изд. осени 2016 г.). Лаборатория метафизических исследований Стэнфордского университета. Архивировано из оригинала 11 декабря 2019 года . Проверено 1 июня 2018 г.
- ^ Грант, Эдвард (2007). «Трансформация средневековой натурфилософии от раннего периода нового времени до конца девятнадцатого века». История натуральной философии . Нью-Йорк: Издательство Кембриджского университета. стр. 274–322 . ISBN 978-052-1-68957-1 .
- ^ Jump up to: Перейти обратно: а б Gal, Ofer (2021). "The New Science". The Origins of Modern Science. New York, New York: Cambridge University Press. pp. 308–349. ISBN 978-1316649701.
- ^ Jump up to: Jump up to: a b Bowler, Peter J.; Morus, Iwan Rhys (2020). "The scientific revolution". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 25–57. ISBN 978-0226365763.
- ^ Bowler, Peter J.; Morus, Iwan Rhys (2020). "The chemical revolution". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 58–82. ISBN 978-0226365763.
- ^ Bowler, Peter J.; Morus, Iwan Rhys (2020). "The conservation of energy". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 83–107. ISBN 978-0226365763.
- ^ Bowler, Peter J.; Morus, Iwan Rhys (2020). "The age of the earth". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 108–133. ISBN 978-0226365763.
- ^ Bowler, Peter J.; Morus, Iwan Rhys (2020). "The Darwinian revolution". Making Modern Science (2nd ed.). Chicago, Illinois: University of Chicago Press. pp. 134–171. ISBN 978-0226365763.
- ^ Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago: University of Chicago Press. ISBN 978-0-226-08928-7.
- ^ The Oxford English Dictionary dates the origin of the word "scientist" to 1834.
- ^ Lightman, Bernard (2011). "Science and the Public". In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature. Chicago: University of Chicago Press. p. 367. ISBN 978-0-226-31783-0.
- ^ Jump up to: Jump up to: a b Bowler, Peter J.; Morus, Iwan Rhys (2020). "Genetics". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 197–221. ISBN 978-0226365763.
- ^ Jump up to: Jump up to: a b Bowler, Peter J.; Morus, Iwan Rhys (2020). "Twentieth-century physics". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 262–285. ISBN 978-0226365763.
- ^ Bowler, Peter J.; Morus, Iwan Rhys (2020). "Introduction: Science, society, and history". Making Modern Science (2nd ed.). Chicago: University of Chicago Press. pp. 1–24. ISBN 978-0226365763.
- ^ von Wright, Georg Henrik (25 October 2012) [1997]. "Progress: Fact and Fiction". In Burgen, Arnold; McLaughlin, Peter; Mittelstraß, Jürgen (eds.). The Idea of Progress. Philosophie und Wissenschaft – Volume 13 (reprint ed.). Berlin: Walter de Gruyter. p. 14. ISBN 9783110820423. Retrieved 13 October 2023.
In historic reflections on art, cyclic schemas play a prominent role. This is a difference between art history and science history. The idea of linear progress simply does not apply in the esthetic domain.
- ^ Kragh, Helge (1987). An introduction to the historiography of science. Cambridge [Cambridgeshire]: Cambridge University Press. ISBN 0-521-33360-1. OCLC 14692886.
- ^ Bernard V. Lightman (2016). A companion to the history of science. Chichester (GB). ISBN 978-1-118-62077-9. OCLC 950521936.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Golinski, Jan (22 July 2008) [1998]. Making Natural Knowledge: Constructivism and the History of Science. Cambridge history of science (revised ed.). Chicago: University of Chicago Press. p. 188. ISBN 9780226302324. Retrieved 13 October 2023.
[...] historical writing [...] has largely abandoned the aim of telling a story of science's universal progress.
- ^ Thomas, Norman (1961). Great Dissenters. Norton. p. 25. Retrieved 13 October 2023.
[...] the brilliant Periclean Age, according to Dr. A. E. Taylor, witnessed one of the periodical bankruptcies of science [...].
- ^ Poskett, James (2022). Horizons : a global history of science. [London]. ISBN 978-0-241-39409-0. OCLC 1235416152.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Russel, C.A. (2002). Ferngren, G.B. (ed.). Science & Religion: A Historical Introduction. Johns Hopkins University Press. p. 7. ISBN 978-0-8018-7038-5.
The conflict thesis, at least in its simple form, is now widely perceived as a wholly inadequate intellectual framework within which to construct a sensible and realistic historiography of Western science.
- ^ Shapin, S. (1996). The Scientific Revolution. University of Chicago Press. p. 195. ISBN 978-0226750200.
In the late Victorian period it was common to write about the 'warfare between science and religion' and to presume that the two bodies of culture must always have been in conflict. However, it is a very long time since these attitudes have been held by historians of science.
- ^ Brooke, J. H. (1991). Science and Religion: Some Historical Perspectives. Cambridge University Press. p. 42.
In its traditional forms, the conflict thesis has been largely discredited.
- ^ Taliaferro, Charles (11 September 2014) [2009]. "Twentieth-century Philosophy of Religiion: An Introduction". In Oppy, Graham; Trakakis, N. N. (eds.). Twentieth-Century Philosophy of Religion. The History of Western Philosophy of Religion, Volume 5 (reprint ed.). Abingdon: Routledge. ISBN 9781317546382. Retrieved 13 October 2023.
At the close of the twentieth century, proponents of the conflict thesis are well represented by Richard Dawkins, E. O. Wilson and Daniel Dennett.
- ^ Shapin, Steven (2018). Leviathan and the air-pump : Hobbes, Boyle, and the experimental life. Princeton, N.J. ISBN 978-0-691-17816-5. OCLC 984327399.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Schiebinger, Londa L. (2013). Nature's body : gender in the making of modern science (5th pbk. print ed.). New Brunswick, N.J.: Rutgers University Press. ISBN 978-0-8135-3531-9. OCLC 1048657291.
- ^ Haraway, Donna Jeanne (1989). Primate visions : gender, race, and nature in the world of modern science. New York: Routledge. ISBN 978-1-136-60815-5. OCLC 555643149.
- ^ Kohler, Robert E. (December 2007). "Finders, Keepers: Collecting Sciences and Collecting Practice". History of Science. 45 (4): 428–454. doi:10.1177/007327530704500403. ISSN 0073-2753. S2CID 147175644.
- ^ Secord, Anne (December 1994). "Corresponding interests: artisans and gentlemen in nineteenth-century natural history". The British Journal for the History of Science. 27 (4): 383–408. doi:10.1017/S0007087400032416. ISSN 0007-0874. S2CID 144777485.
- ^ Nasim, Omar W. (2013). Observing by hand : sketching the nebulae in the nineteenth century. Chicago. ISBN 978-0-226-08440-4. OCLC 868276095.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Eddy, Matthew Daniel (2016). "The Interactive Notebook: How Students Learned to Keep Notes during the Scottish Enlightenment" (PDF). Book History. 19 (1): 86–131. doi:10.1353/bh.2016.0002. ISSN 1529-1499. S2CID 151427109. Archived (PDF) from the original on 15 June 2022. Retrieved 17 September 2022.
- ^ Schaffer, Simon (1 June 1992). "Late Victorian metrology and its instrumentation: A manufactory of Ohms". In Bud, Robert; Cozzens, Susan E. (eds.). Invisible Connections: Instruments, Institutions, and Science. SPIE Conference Series. Vol. 10309. p. 1030904. Bibcode:1992SPIE10309E..04S. doi:10.1117/12.2283709. S2CID 115323404.
- ^ Matsuoka, Yoshihiro; Vigouroux, Yves; Goodman, Major M.; Sanchez G., Jesus; Buckler, Edward; Doebley, John (30 April 2002). "A single domestication for maize shown by multilocus microsatellite genotyping". Proceedings of the National Academy of Sciences. 99 (9): 6080–6084. Bibcode:2002PNAS...99.6080M. doi:10.1073/pnas.052125199. PMC 122905. PMID 11983901.
- ^ Sean B. Carroll (24 May 2010),"Tracking the Ancestry of Corn Back 9,000 Years" New York Times Archived 30 August 2017 at the Wayback Machine.
- ^ Francesca Bray (1984), Science and Civilisation in China VI.2 Agriculture pp 299, 453 writes that teosinte, 'the father of corn', helps the success and vitality of corn when planted between the rows of its 'children', maize.
- ^ Hoskin, Michael (2001). Tombs, Temples and their Orientations: a New Perspective on Mediterranean Prehistory. Bognor Regis, UK: Ocarina Books. ISBN 978-0-9540867-1-8.
- ^ Ruggles, Clive (1999). Astronomy in Prehistoric Britain and Ireland. New Haven: Yale University Press. ISBN 978-0-300-07814-5.
- ^ Perkins, Michael D. (2001). "Pharmacological Practices of Ancient Egypt". In W. A. Whitelaw (ed.). Proceedings of the 10th Annual History of Medicine Days (PDF). Calgary: Faculty of Medicine, The University of Calgary. pp. 5–11. hdl:1880/51835. Archived from the original (PDF) on 7 April 2008. Retrieved 9 March 2010.
- ^ "Edwin Smith papyrus: Egyptian medical book". Encyclopædia Britannica. Archived from the original on 1 November 2014. Retrieved 21 December 2016.
- ^ Lloyd, G.E.R. "The development of empirical research", in his Magic, Reason and Experience: Studies in the Origin and Development of Greek Science.
- ^ Jump up to: Jump up to: a b c McIntosh, Jane R. (2005). Ancient Mesopotamia: New Perspectives. Santa Barbara, California, Denver, Colorado, and Oxford, England: ABC-CLIO. pp. 273–276. ISBN 978-1-57607-966-9. Archived from the original on 5 February 2021. Retrieved 3 October 2020.
- ^ Jump up to: Jump up to: a b c d Farber, Walter (1995). "Witchcraft, Magic, and Divination in Ancient Mesopotamia". Civilizations of the Ancient Near East. Vol. 3. New York City, New York: Charles Schribner's Sons, MacMillan Library Reference USA, Simon & Schuster MacMillan. pp. 1891–1908. ISBN 978-0-684-19279-6. Retrieved 12 May 2018.
- ^ Jump up to: Jump up to: a b c Abusch, Tzvi (2002). Mesopotamian Witchcraft: Towards a History and Understanding of Babylonian Witchcraft Beliefs and Literature. Leiden, The Netherlands: Brill. p. 56. ISBN 978-90-04-12387-8. Archived from the original on 3 August 2020. Retrieved 7 May 2020.
- ^ Jump up to: Jump up to: a b c Brown, Michael (1995). Israel's Divine Healer. Grand Rapids, Michigan: Zondervan. p. 42. ISBN 978-0-310-20029-1. Archived from the original on 3 August 2020. Retrieved 7 May 2020.
- ^ Biggs, R D. (2005). "Medicine, Surgery, and Public Health in Ancient Mesopotamia". Journal of Assyrian Academic Studies. 19 (1): 7–18.
- ^ Heeßel, N. P. (2004). "Diagnosis, Divination, and Disease: Towards an Understanding of the Rationale Behind the Babylonian Diagnostic Handbook". In Horstmanshoff, H.F.J.; Stol, Marten; Tilburg, Cornelis (eds.). Magic and Rationality in Ancient Near Eastern and Graeco-Roman Medicine. Studies in Ancient Medicine. Vol. 27. Leiden, The Netherlands: Brill. pp. 97–116. ISBN 978-90-04-13666-3. Archived from the original on 3 August 2020. Retrieved 12 May 2018.
- ^ Marten Stol (1993), Epilepsy in Babylonia, p. 55, Brill Publishers, ISBN 978-90-72371-63-8.
- ^ Aaboe, A. (2 May 1974). "Scientific Astronomy in Antiquity". Philosophical Transactions of the Royal Society. 276 (1257): 21–42. Bibcode:1974RSPTA.276...21A. doi:10.1098/rsta.1974.0007. JSTOR 74272. S2CID 122508567.
- ^ Paul Hoffman, The man who loved only numbers: the story of Paul Erdős and the search for mathematical truth, (New York: Hyperion), 1998, p. 187. ISBN 978-0-7868-6362-4
- ^ Burkert, Walter (1 June 1972). Lore and Science in Ancient Pythagoreanism. Cambridge, Massachusetts: Harvard University Press. pp. 429, 462. ISBN 978-0-674-53918-1. Archived from the original on 29 January 2018. Retrieved 3 October 2020.
- ^ Kahn, Charles H. (2001). Pythagoras and the Pythagoreans: A Brief History. Indianapolis, Indiana and Cambridge, England: Hackett Publishing Company. p. 32. ISBN 978-0-87220-575-8. Archived from the original on 31 March 2021. Retrieved 3 October 2020.
- ^ Ридвег, Кристоф (2005) [2002]. Пифагор: его жизнь, учение и влияние . Итака, Нью-Йорк: Издательство Корнельского университета. п. 27. ISBN 978-0-8014-7452-1 . Архивировано из оригинала 28 февраля 2022 года . Проверено 3 октября 2020 г. .
- ^ Jump up to: Перейти обратно: а б Джозеф, Джордж Г. (2011). «История математики: Альтернативные перспективы». Герб павлина: неевропейские корни математики (3-е изд.). Нью-Джерси: Издательство Принстонского университета. стр. 418–449. ISBN 978-0691135267 .
- ^ Сивин, Натан (1985). «Почему научная революция не произошла в Китае – или произошла?» . Эколог . 5 (1): 39–50. Бибкод : 1985ThEnv...5...39S . дои : 10.1007/BF02239866 . S2CID 45700796 . Архивировано из оригинала 8 июня 2021 года . Проверено 8 июня 2021 г.
- ^ Варфоломей, Джеймс Р. (2003). «Азия». В Хейлброне, Джон Л. (ред.). Оксфордский справочник по истории современной науки . Нью-Йорк: Издательство Оксфордского университета. стр. 51–55. ISBN 978-0195112290 .
- ^ «3: Ранняя индийская культура – цивилизация Инда» . st-and.ac.uk .
- ^ Бишт, Р.С. (1982). «Раскопки в Банавали: 1974–77». В Посселе, Грегори Л. (ред.). Хараппская цивилизация: современный взгляд . Оксфорд и IBH Publishing Co., стр. 113–124.
- ^ Плофкер, Ким (2009). Математика в Индии . Издательство Принстонского университета. п. 158. ИСБН 978-0-691-12067-6 .
- ^ Ваман Шиварам Апте (1970). Санскритская просодия и важные литературные и географические названия в древней истории Индии . Мотилал Банарсидасс. стр. 648–649. ISBN 978-81-208-0045-8 .
- ^ Б. ван Нутен, «Двоичные числа в индийской древности», Журнал индийских исследований, том 21, 1993, стр. 31–50.
- ^ Сузанта Гунатилаке (1998). На пути к глобальной науке . Издательство Университета Индианы. п. 126 . ISBN 978-0-253-33388-9 .
Вираханка Фибоначчи.
- ^ Пиковер, Клиффорд (2008). Архимед Хокингу: законы науки и великие умы, стоящие за ними . Издательство Оксфордского университета, США . п. 105. ИСБН 978-0-19-533611-5 . Архивировано из оригинала 18 января 2017 года . Проверено 7 мая 2020 г.
- ^ Майнак Кумар Бос, Поздняя классическая Индия , А. Мукерджи и компания, 1988, стр. 277.
- ^ Ифра, Жорж. 1999. Всеобщая история чисел: от предыстории до изобретения компьютера , Уайли. ISBN 978-0-471-37568-5 .
- ^ О'Коннор, Джей-Джей и Э. Ф. Робертсон. 2000. «Индийские цифры». Архивировано 29 сентября 2007 года в Wayback Machine , Архив истории математики MacTutor , Школа математики и статистики, Университет Сент-Эндрюс, Шотландия.
- ^ Джордж Г. Джозеф (1991). Хохол павлина . Лондон.
- ^ Джей Джей О'Коннор и Э. Ф. Робертсон (2000). Парамешвара , MacTutor Архив истории математики .
- ^ Сарма, КВ ; Рамасубраманиан, К.; Шринивас, доктор медицинских наук; Шрирам, М.С. (2008). Ганита-Юкти-Бхаса (Обоснование математической астрономии) Джьештхадевы . Источники и исследования по истории математики и физических наук. Том. I – II (1-е изд.). Спрингер (совместно с Книжным агентством «Хиндустан», Нью-Дели). стр. LXVIII, 1084. Бибкод : 2008rma..book.....S . ISBN 978-1-84882-072-2 . Проверено 17 декабря 2009 г.
- ^ Jump up to: Перейти обратно: а б Сарма, КВ (2008). «Астрономия в Индии». В Селин, Хелейн (ред.). Энциклопедия истории науки, техники и медицины в незападных культурах . Спрингер, Дордрехт. стр. 317–321. дои : 10.1007/978-1-4020-4425-0_9554 . ISBN 978-1-4020-4425-0 .
- ^ Джозеф, Джордж Г. (2011). «Проход в бесконечность: Эпизод Кералы». Герб павлина: неевропейские корни математики (3-е изд.). Нью-Джерси: Издательство Принстонского университета. стр. 418–449. ISBN 978-0691135267 .
- ^ «Обсерватории» . Проверено 29 января 2024 г.
- ^ Вайс, Ричард С. (2009). «Вторжение в утопию: искажение медицины Сиддхов Аюрведой». Рецепты бессмертия: исцеление, религия и община в Южной Индии . Нью-Йорк, Нью-Йорк: Издательство Оксфордского университета. стр. 79–106. ISBN 978-0195335231 .
- ^ Коппа, А.; и др. (6 апреля 2006 г.). «Раннеолитическая традиция стоматологии: кремневые насадки были удивительно эффективны для сверления зубной эмали у доисторического населения». Природа . 440 (7085): 755–756. Бибкод : 2006Natur.440..755C . дои : 10.1038/440755a . ПМИД 16598247 . S2CID 6787162 .
- ^ Э. Шультайс (1981), История физиологии, Pergamon Press, ISBN 978-0080273426 , страницы 60-61, Цитата: «(...) Чарака-самхита и Сушрута-самхита, обе являются редакциями двух древних традиций индуистской медицины».
- ^ Венди Донигер (2014), Об индуизме, Oxford University Press, ISBN 978-0199360079 , стр. 79;Сара Босло (2007), Энциклопедия эпидемиологии, Том 1, Публикации SAGE, ISBN 978-1412928168 , стр. 547, Цитата : «Индуистский текст, известный как Сушрута Самхита, возможно, является самой ранней попыткой классифицировать болезни и травмы».
- ^ Ариэль Глюклих (2008). Шаги Вишну: индуистская культура в исторической перспективе . Издательство Оксфордского университета, США. стр. 141–142 . ISBN 978-0-19-531405-2 .
- ^ Роберт Свобода (1992). Аюрведа: жизнь, здоровье и долголетие . Книги о пингвинах. стр. 189–190. ISBN 978-0140193220 .
- ^ MS Valiathan (2009), Аюрведический взгляд на жизнь, Современная наука, Том 96, Выпуск 9, страницы 1186-1192.
- ^ Ф.А. Хасслер, Чарака Самхита , Science, Vol. 22, № 545, стр. 17-18.
- ^ Маббетт, И.В. (1 апреля 1964 г.). «Дата Артхашастры». Журнал Американского восточного общества . 84 (2): 162–169. дои : 10.2307/597102 . JSTOR 597102 .
Траутманн, Томас Р. (1971). Каутилья и Артхашастра: статистическое исследование авторства и эволюции текста . Брилл. п. 10.Хотя в качестве автора артхашастры его обычно называют по имени готра , Каутилья .
- ^ Маббетт 1964
Траутманн 1971:5 «самый последний стих произведения... представляет собой уникальный пример личного имени Вишнугупта , а не готры имени Каутилья в Артхашастре . - ^ Боше, Роджер (2002). Первый великий политический реалист: Каутилья и его Артхашастра . Лексингтонские книги. п. 17. ISBN 978-0-7391-0401-9 .
- ^ Марцлофф, Жан-Клод (2006). История китайской математики (на английском, японском и китайском языках). Шпрингер Берлин Гейдельберг. п. 17. ISBN 9783540337836 .
- ^ Нидхэм (1986a) , с. 208.
- ^ Нидхэм, стр. 422
- ^ де Креспиньи, Рэйф . (2007). Биографический словарь от Поздней Хань до Трех Королевств (23–220 гг. Н.э.) . Лейден: Koninklijke Brill, стр. 1050. ISBN 90-04-15605-4 .
- ^ Мортон, В. Скотт и Чарльтон М. Льюис. (2005). Китай: его история и культура . Нью-Йорк: McGraw-Hill, Inc., с. 70. ISBN 0-07-141279-4 .
- ^ Минфорд и Лау (2002), 307; Балчин (2003), 26–27; Нидэм (1986а), 627; Нидэм (1986c), 484; Кребс (2003),
- ^ Нидхэм (1986a), 626.
- ^ Шен Куо 沈括 (1086, последнее дополнение датировано 1091 годом), Мэн Ци Пи Тан (夢溪筆談, Очерки бассейна снов ), цитируется в Needham, Robinson & Huang 2004 , p. 244
- ^ Нидхэм (1986c) , стр. 111, 165, 445, 448, 456–457, 469–471.
- ^ Агустин Удиас, В поисках небес и земли: история иезуитских обсерваторий . (Дордрехт, Нидерланды: Kluwer Academic Publishers, 2003). п. 53
- ^ Jump up to: Перейти обратно: а б с д Байчунь, Чжан; Мяо, Тянь (6 января 2019 г.). «Исследование Джозефа Нидхэма китайских машин в межкультурной истории науки и техники» . Технологии и культура . 60 (2): 616–624. дои : 10.1353/tech.2019.0041 . PMID 31204349 – через Project MUSE.
- ^ Jump up to: Перейти обратно: а б с д и Винчестер, Саймон (6 июля 2008 г.). «Человек, который открыл Китай» . Природа . 454 (7203): 409–411. дои : 10.1038/454409а . PMID 18650901 – через Nature.com.
- ^ Нидхэм и Ван (1954) , с. 581.
- ^ Палка, Джоэл В. (2010). «Развитие письменности майя». В Кристофере Вудсе (ред.). Видимый язык: изобретения письменности на Древнем Ближнем Востоке и за его пределами . Чикаго: Восточный институт университета Чикагского . п. 226. ИСБН 978-1-885923-76-9 .
- ^ Jump up to: Перейти обратно: а б Британника, Редакторы энциклопедии. «Мезоамериканская цивилизация». Британская энциклопедия , 3 февраля 2024 г., https://www.britannica.com/topic/Mesoamerican-civilization . По состоянию на 13 февраля 2024 г.
- ^ Прайс, Т. Дуглас; Гэри М. Фейнман (2005). Образы прошлого (Четвертое изд.). Нью-Йорк: МакГроу-Хилл. ISBN 0-07-286311-0 . п. 321
- ^ Смит, Дэвид Юджин и ЛеВек, Уильям Джадсон. «Числа и системы счисления». Британская энциклопедия , 17 декабря 2023 г., https://www.britannica.com/science/numeral . По состоянию на 13 февраля 2024 г.
- ^ Палка, Джоэл В. (2010). «Развитие письменности майя». В Кристофере Вудсе (ред.). Видимый язык: изобретения письменности на Древнем Ближнем Востоке и за его пределами . Чикаго: Восточный институт университета Чикагского . п. 227. ИСБН 978-1-885923-76-9 .
- ^ Палка, Джоэл В. (2010). «Развитие письменности майя». В Кристофере Вудсе (ред.). Видимый язык: изобретения письменности на Древнем Ближнем Востоке и за его пределами . Чикаго: Восточный институт университета Чикагского . стр. 226–227. ISBN 978-1-885923-76-9 .
- ^ Самбурский 1974 , стр. 3, 37 назвал досократиков переходом от мифа к логосу.
- ^ FM Корнфорд , Principium Sapientiae: Истоки греческой философской мысли , (Глостер, Массачусетс, Питер Смит, 1971), стр. 159.
- ^ Jump up to: Перейти обратно: а б Броуд, Уильям Дж. (6 апреля 2024 г.). «Затмение, которое положило конец войне и навсегда потрясло богов. Фалес, греческий философ, живший 2600 лет назад, прославился тем, что предсказал знаменитое солнечное затмение и основал то, что стало известно как наука» . Нью-Йорк Таймс . Архивировано из оригинала 6 апреля 2024 года.
- ^ Ариети, Джеймс А. Философия в древнем мире: введение. Архивировано 4 апреля 2023 г. в Wayback Machine , стр. 45. Роуман и Литтлфилд, 2005. 386 стр. ISBN 978-0-7425-3329-5 .
- ^ Дикс, ДР (1970). Ранняя греческая астрономия до Аристотеля . Издательство Корнельского университета. стр. 72–198 . ISBN 978-0-8014-0561-7 .
- ^ О'Лири, Де Лейси (1949). Как греческая наука перешла к арабам . Рутледж и Кеган Пол. ISBN 978-0-7100-1903-5 .
- ^ Леруа, Арман Мари (2015). Лагуна: как Аристотель изобрел науку . Блумсбери. п. 7–. ISBN 978-1-4088-3622-4 .
- ^ Залта, Эдвард Н. , изд. (2018). «Влияние Аристотеля» . Стэнфордская энциклопедия философии (изд. Весны 2018 г.).
- ^ Барнс, Джонатан (1982). Аристотель: Очень краткое введение . Издательство Оксфордского университета. п. 86. ИСБН 978-0-19-285408-7 .
- ^ Аристотель (7 января 2009 г.). «Де Каэло» [На небесах] . Перевод JL Stocks: Архив интернет-классики. стр. 279 а17-30.
- ^ Фреде, Доротея (1976). «Об элементах: ранняя космология Аристотеля» . Журнал истории философии . 14 (2): 227–229. дои : 10.1353/hph.2008.0115 . S2CID 144547689 – через Project MUSE.
- ^ Джонсон, Монте (2004). «Обзор природного порядка в физике Аристотеля: место и элементы, Хелен С. Лэнг» . Исида . 95 (4): 687–688. дои : 10.1086/432288 . ISSN 0021-1753 . JSTOR 10.1086/432288 . Архивировано из оригинала 4 декабря 2022 года . Проверено 4 декабря 2022 г.
- ^ ГЕР Ллойд , Ранняя греческая наука: от Фалеса до Аристотеля , (Нью-Йорк: WW Norton, 1970), стр. 144–146.
- ^ Ллойд, GER Греческая наука после Аристотеля . Нью-Йорк: WW Norton & Co, 1973. ISBN 0-393-00780-4 , с. 177.
- ^ Греческая наука , многие издания, такие как книга в мягкой обложке издательства Penguin Books. Авторские права в 1944, 1949, 1953, 1961, 1963 годах. Первая цитата выше взята из Части 1, Главы 1; второй, из части 2, главы 4.
- ^ Марчант, Джо (2006). «В поисках утраченного времени» . Природа . 444 (7119): 534–538. Бибкод : 2006Natur.444..534M . дои : 10.1038/444534a . ПМИД 17136067 .
- ^ Jump up to: Перейти обратно: а б Клейсиарис К.Ф., Сфакианакис К., Папатанасиу IV. Практика здравоохранения в Древней Греции: идеал Гиппократа. J Med Этика Hist Med. 2014, 15 марта; 7:6. ПМИД 25512827; PMCID: PMC4263393.
- ^ Jump up to: Перейти обратно: а б с д Клейсиарис, Христос Ф.; Сфакианакис, Хрисантос; Папатанасиу, Иоанна В. (15 марта 2014 г.). «Практика здравоохранения в Древней Греции: идеал Гиппократа» . Журнал медицинской этики и истории медицины . 7 :6. ISSN 2008-0387 . ПМЦ 4263393 . ПМИД 25512827 .
- ^ ДеХарт, Скотт М. (1999). «Медицина Гиппократа и греческий образ тела» . Перспективы науки . 7 (3): 349–382. дои : 10.1162/posc.1999.7.3.349 . ISSN 1063-6145 . S2CID 57571190 .
- ^ Кассельман, Билл . «Одна из древнейших дошедших до нас диаграмм Евклида» . Университет Британской Колумбии. Архивировано из оригинала 4 июня 2012 года . Проверено 26 сентября 2008 г.
- ^ Бойер (1991). «Евклид Александрийский» . История математики . Джон Уайли и сыновья. п. 119 . ISBN 978-0471543978 .
Евклида «Начала » были не только самым ранним крупным греческим математическим трудом, дошедшим до нас, но и самым влиятельным учебником всех времен. [...] Первые печатные версии «Элементов » появились в Венеции в 1482 году, это была одна из самых ранних математических книг, напечатанных; подсчитано, что с тех пор было опубликовано не менее тысячи изданий. Возможно, ни одна книга, кроме Библии, не может похвастаться таким количеством изданий, и, конечно же, ни одна математическая работа не имела такого влияния, как « Начала» Евклида .
- ^ Calinger, Ronald (1999). A Contextual History of Mathematics. Prentice-Hall. p. 150. ISBN 978-0-02-318285-3.
Shortly after Euclid, compiler of the definitive textbook, came Archimedes of Syracuse (c. 287–212 BC.), the most original and profound mathematician of antiquity.
- ^ O'Connor, J.J.; Robertson, E.F. (February 1996). "A history of calculus". University of St Andrews. Archived from the original on 15 July 2007. Retrieved 7 August 2007.
- ^ "Pliny the Elder, The Natural History, BOOK XXXVII. THE NATURAL HISTORY OF PRECIOUS STONES". perseus.tufts.edu.
- ^ King, Rachel (29 August 2022). Amber: From Antiquity to Eternity. Reaktion Books. p. 107. ISBN 9781789145922.
- ^ Jump up to: Jump up to: a b c d e f g h i j k l m n o p q r s t u Lindberg, David C. (2007). "Roman and early medieval science". The Beginnings of Western Science (2nd ed.). Chicago: University of Chicago Press. pp. 132–162. ISBN 978-0-226-48205-7.
- ^ Lindberg, David. (1992) The Beginnings of Western Science. University of Chicago Press. p. 363.
- ^ Linda E. Voigts, "Anglo-Saxon Plant Remedies and the Anglo-Saxons", Isis, 70 (1979): 250–268; reprinted in Michael H. Shank, The Scientific Enterprise in Antiquity and the Middle Ages, Chicago: Univ. of Chicago Pr., 2000, pp. 163–181. ISBN 978-0-226-74951-8.
- ^ Faith Wallis, Bede: The Reckoning of Time, Liverpool: Liverpool Univ. Pr., 2004, pp. xviii–xxxiv. ISBN 978-0-85323-693-1.
- ^ Craig, Edward, ed. (1998). "Philoponus, John". Routledge Encyclopedia of Philosophy, Volume 7, Nihilism-Quantum mechanics. Taylor & Francis. pp. 371–377, 373. ISBN 978-0-415-18712-1.
- ^ Lindberg, David C. (2007). The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to A.D. 1450 (2nd ed.). Chicago: University of Chicago Press. pp. 307–308. ISBN 978-0-226-48205-7. Link to p. 307 Archived 3 August 2020 at the Wayback Machine from Google's copy of 2008 reprint.
- ^ Duhem, Pierre (1913). "Physics, History of". In Herbermann, Charles G.; Pace, Edward A.; Pallen, Condé B.; Wynne, John J.; Shahan, Thomas J. (eds.). The Catholic Encyclopedia: An International Work of Reference on the Constitution, Doctrine, and History of the Catholic Church. Vol. 12. New York: Encyclopedia Press. p. 51. Archived from the original on 3 January 2014. Retrieved 19 April 2018.
- ^ Jump up to: Jump up to: a b Lindberg, David. (1992) The Beginnings of Western Science. University of Chicago Press. p. 162.
- ^ "John Philoponus". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018. Archived from the original on 22 April 2018. Retrieved 11 April 2018.
- ^ Lindberg, David. (1992). The Beginnings of Western Science. University of Chicago Press. p. 162.
- ^ Moosa, Ebrahim (6 April 2015). What Is a Madrasa?. UNC Press Books. ISBN 978-1-4696-2014-5. Archived from the original on 30 July 2022. Retrieved 25 November 2021.
- ^ Jump up to: Jump up to: a b Barker, Peter (15 December 2017). "The Social Structure of Islamicate Science". Journal of World Philosophies. 2 (2). ISSN 2474-1795. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- ^ Jump up to: Jump up to: a b "Süleymaniye Mosque, Turkey". architecturecourses.org. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- ^ Toomer, Gerald (1990). "Al-Khwārizmī, Abu Jaʿfar Muḥammad ibn Mūsā". In Gillispie, Charles Coulston. Dictionary of Scientific Biography. 7. New York: Charles Scribner's Sons. ISBN 978-0-684-16962-0.
- ^ Rosen, Edward (1985). "The Dissolution of the Solid Celestial Spheres". Journal of the History of Ideas. 46 (1): 19–21. doi:10.2307/2709773. JSTOR 2709773.
- ^ Rabin, Sheila (2004). "Nicolaus Copernicus". Stanford Encyclopedia of Philosophy. Archived from the original on 15 July 2012. Retrieved 24 June 2012.
- ^ Saliba, George (1994). A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam. New York University Press. pp. 254, 256–257. ISBN 978-0-8147-8023-7.
- ^ Sameen Ahmed Khan Archived 5 March 2016 at the Wayback Machine, Arab Origins of the Discovery of the Refraction of Light; Roshdi Hifni Rashed (Picture) Awarded the 2007 King Faisal International Prize, Optics & Photonics News (OPN, Logo), Vol. 18, No. 10, pp. 22–23 (October 2007).
- ^ Nasr, Seyyed Hossein (2007). "Avicenna". Encyclopædia Britannica. Archived from the original on 31 October 2007. Retrieved 3 June 2010.
- ^ Jump up to: Jump up to: a b Jacquart, Danielle (2008). "Islamic Pharmacology in the Middle Ages: Theories and Substances". European Review (Cambridge University Press) 16: 219–227.
- ^ David W. Tschanz, MSPH, PhD (August 2003). "Arab Roots of European Medicine", Heart Views 4 (2).
- ^ Brater, D. Craig; Daly, Walter J. (2000). "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century". Clinical Pharmacology & Therapeutics. 67 (5): 447–450 [448]. doi:10.1067/mcp.2000.106465. PMID 10824622. S2CID 45980791.
- ^ Erica Fraser. The Islamic World to 1600, University of Calgary.
- ^ Lindberg, David. (1992) The Beginnings of Western Science University of Chicago Press. p. 204.
- ^ Numbers, Ronald (2009). Galileo Goes to Jail and Other Myths about Science and Religion. Harvard University Press. p. 45. ISBN 978-0-674-03327-6. Archived from the original on 20 January 2021. Retrieved 12 April 2018.
- ^ "Debunking a myth". Harvard University. 7 April 2011. Archived from the original on 28 July 2019. Retrieved 12 April 2018.
- ^ Love, Ronald S. (2006). "Historical overview". Maritime Exploration in the Age of Discovery, 1415–1800. Westport, Connecticut: Greenwood. pp. 1–8. ISBN 978-0313320439.
- ^ William of Malmesbury, Gesta Regum Anglorum / The history of the English kings, ed. and trans. R.A.B. Mynors, R.M. Thomson, and M. Winterbottom, 2 vols., Oxford Medieval Texts (1998–99)
- ^ R.W. Vernon, G. McDonnell and A. Schmidt, 'An integrated geophysical and analytical appraisal of early iron-working: three case studies' Historical Metallurgy 31(2) (1998), 72–75 79.
- ^ David Derbyshire, Henry "Stamped Out Industrial Revolution", The Daily Telegraph (21 June 2002)
- ^ Jump up to: Jump up to: a b c d e f g h i j k l m n Gal, Ofer (2021). "Medieval learning". The Origins of Modern Science. New York, New York: Cambridge University Press. pp. 101–138. ISBN 978-1316649701.
- ^ Huff, Toby. Rise of early modern science 2nd ed. pp. 180–181
- ^ Grant, Edward. "Science in the Medieval University", in James M. Kittleson and Pamela J. Transue, ed., Rebirth, Reform and Resilience: Universities in Transition, 1300–1700, Ohio State University Press, 1984, p. 68
- ^ Thijssen, Hans (30 January 2003). "Condemnation of 1277". Stanford Encyclopedia of Philosophy. University of Stanford. Archived from the original on 11 March 2017. Retrieved 14 September 2009.
- ^ "Rediscovering the Science of the Middle Ages". BioLogos. Archived from the original on 1 March 2023. Retrieved 26 October 2014.
- ^ "023-A03: The Middle Ages and the Birth of Science – International Catholic University". International Catholic University. Archived from the original on 26 October 2014. Retrieved 26 October 2014.
- ^ McLeish, Tom C. B.; Bower, Richard G.; Tanner, Brian K.; Smithson, Hannah E.; Panti, Cecilia; Lewis, Neil; Gasper, Giles E.M. (2014). "History: A medieval multiverse" (PDF). Nature News & Comment. 507 (7491): 161–163. doi:10.1038/507161a. PMID 24627918. Archived (PDF) from the original on 23 July 2018. Retrieved 15 July 2019.
- ^ Edward Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts, (Cambridge Univ. Press, 1996), pp. 127–131.
- ^ Edward Grant, A Source Book in Medieval Science, (Harvard Univ. Press, 1974), p. 232
- ^ David C. Lindberg, Theories of Vision from al-Kindi to Kepler, (Chicago: Univ. of Chicago Pr., 1976), pp. 140–142.
- ^ Edward Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts, (Cambridge: Cambridge Univ. Press, 1996), pp. 95–97.
- ^ Edward Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts, (Cambridge Univ. Press, 1996), pp. 100–103.
- ^ Szalay, Jessie (29 June 2016). "The Renaissance: The 'Rebirth' of Science & Culture". Historical development. LiveScience.com. Archived from the original on 27 October 2018. Retrieved 19 July 2019.
- ^ Gottfried, Robert S. (1985). The Black Death: Natural & Human Disaster in Medieval Europe. Free Press. p. xiv. ISBN 978-0-02-912370-6. Archived from the original on 3 August 2020. Retrieved 19 July 2019.
- ^ Allen Debus, Man and Nature in the Renaissance, (Cambridge: Cambridge Univ. Pr., 1978).
- ^ Precise titles of these landmark books can be found in the collections of the Library of Congress. A list of these titles can be found in Bruno 1989
- ^ "What Is the Enlightenment and How Did It Transform Politics?". World101 from the Council on Foreign Relations. 17 February 2023.
- ^ See, for example, Heilbron 2003, pp. 741–744
- ^ Jump up to: Jump up to: a b c Schuster, John A. (1996) [1990]. "Scientific Revolution". In Cantor, Geoffrey; Olby, Robert; Christie, John; Hodge, Jonathon (eds.). Companion to the History of Modern Science. Abingdon, Oxfordshire: Routledge. pp. 217–242. ISBN 978-0415145787. Archived from the original on 27 September 2021. Retrieved 27 September 2021.
- ^ Principe, Lawrence M. (2011). The Scientific Revolution: A Very Short Introduction. New York, NY: Oxford University Press. p. 47. ISBN 978-0-19-956741-6.
- ^ Knox, Dilwyn (1999). "Ficino, Copernicus and Bruno on the Motion of the Earth". Bruniana & Campanelliana. 5 (2): 333–366. ISSN 1125-3819. JSTOR 24331708. Archived from the original on 4 December 2022. Retrieved 4 December 2022.
- ^ Gingerich, Owen (1973). "From Copernicus to Kepler: Heliocentrism as Model and as Reality". Proceedings of the American Philosophical Society. 117 (6): 513–522. ISSN 0003-049X. JSTOR 986462.
- ^ Neugebauer, O. (1945). "The History of Ancient Astronomy Problems and Methods". Journal of Near Eastern Studies. 4 (1): 20–23. doi:10.1086/370729. ISSN 0022-2968. JSTOR 542323. S2CID 39274542.
- ^ Carman, Christián C. (2018). "The first Copernican was Copernicus: the difference between Pre-Copernican and Copernican heliocentrism". Archive for History of Exact Sciences. 72 (1): 1–20. doi:10.1007/s00407-017-0198-3. ISSN 0003-9519. JSTOR 45211937. S2CID 253894214. Archived from the original on 4 December 2022. Retrieved 4 December 2022.
- ^ "DPMA | Johannes Kepler".
- ^ "Johannes Kepler: His Life, His Laws and Times | NASA". Archived from the original on 24 June 2021. Retrieved 1 September 2023.
- ^ "Molecular Expressions: Science, Optics and You – Timeline – Johannes Kepler".
- ^ Гольдштейн, Бернард; Достопочтенный, Гиора (2005). «Переход Кеплера от орбит к орбитам: документирование революционной научной концепции» . Перспективы науки . 13 : 74–111. дои : 10.1162/1063614053714126 . S2CID 57559843 .
- ^ Ньюман, Уильям Р.; Маускопф, Сеймур Х.; Эдди, Мэтью Дэниел (2014). Эдди, Мэтью Дэниел; Маускопф, Сеймур; Ньюман, Уильям Р. (ред.). «Химические знания в раннем современном мире» . Осирис . 29 : 1–15. дои : 10.1086/678110 . ПМИД 26103744 . S2CID 29035688 . Архивировано из оригинала 30 июля 2022 года . Проверено 19 сентября 2014 г.
- ^ Флорин Джордж Калиан. Алкимия действующая и Алкимия спекулятива. Некоторые современные споры по историографии алхимии .
- ^ Хрончек, Сьюзен (2017). «От египетской науки к викторианской магии: о происхождении химии в викторианской истории науки» . Викторианский обзор . 43 (2): 213–228. дои : 10.1353/vcr.2017.0032 . ISSN 1923-3280 . S2CID 166044943 . Архивировано из оригинала 12 мая 2021 года . Проверено 28 апреля 2022 г.
- ^ Пауэр, д'Арси. Жизнь Харви. Лонгманс, Грин и компания.
- ^ Стэнфорд (2003). «Древние теории души» . Платон. Стэнфорд . Архивировано из оригинала 7 августа 2019 года . Проверено 9 июля 2018 г.
- ^ Гален, Дэвид (1984). Гален о дыхании и артериях . Библиотека UCSC: Издательство Принстонского университета. п. 201.
- ^ Мейрик Х. Карре, «Формирование Королевского общества» History Today (август 1960 г.) 10 № 8, стр. 564–571.
- ^ Хейлброн (2003) , с. 741.
- ^ ВандерВир, Джозеф Б. (6 июля 2011 г.). «Хью Уильямсон: врач, патриот и отец-основатель». Журнал Американской медицинской ассоциации . 306 (1). дои : 10.1001/jama.2011.933 .
- ^ Эдвардс, Пол (10 ноября 2021 г.). «Поправка к отчету о ранних электрофизиологических исследованиях, посвященных 250-летию исторической экспедиции на Иль-де-Ре» . Архив открытого доступа HAL. hal-03423498. Архивировано из оригинала 6 мая 2022 года . Проверено 6 мая 2022 г.
- ^ Бресадола, Марко (15 июля 1998 г.). «Медицина и наука в жизни Луиджи Гальвани». Бюллетень исследований мозга . 46 (5): 367–380. дои : 10.1016/s0361-9230(98)00023-9 . ПМИД 9739000 . S2CID 13035403 .
- ^ Мэтью Дэниел Эдди (2008). Язык минералогии: Джон Уокер, химия и Эдинбургская медицинская школа, 1750–1800 гг . Эшгейт. Архивировано из оригинала 3 сентября 2015 года . Проверено 19 сентября 2014 г.
- ^ Снайдер, Лаура Дж. (23 декабря 2000 г.). «Уильям Уэвелл» . Стэнфордская энциклопедия философии . Лаборатория метафизических исследований Стэнфордского университета. Архивировано из оригинала 4 января 2010 года . Проверено 3 марта 2008 г.
- ^ Сингх, Пардуман; Батра, ХС; Наитани, Маниша (6 января 2004 г.). «История биохимии» . Бюллетень Индийского института истории медицины (Хайдарабад) . 34 (1): 75–86. PMID 17152615 – через PubMed.
- ^ Даструп, Р. Адам. «Глава 3. Планета Земля и тектоника плит» – через pressbooks.howardcc.edu.
- ^ «Тектоника плит» . Education.nationalgeographic.org .
- ^ Добжанский, Феодосий (1964). «Биология, молекулярная и организменная» (PDF) . Американский зоолог . 4 (4): 443–452. дои : 10.1093/icb/4.4.443 . ПМИД 14223586 . Архивировано из оригинала (PDF) 3 марта 2016 года . Проверено 5 февраля 2016 г.
- ^ Кэмпбелл, Нил А.; Уильямсон, Брэд; Хейден, Робин Дж. (2006). Биология: исследование жизни . Пирсон Прентис Холл. ISBN 978-0-13-250882-7 . OCLC 75299209 . Архивировано из оригинала 2 ноября 2014 года . Проверено 9 сентября 2008 г. [ нужна страница ]
- ^ Гульельмо, Ринзивилло (18 мая 2015 г.). Природа, культура и индукция в эпоху науки: факты и идеи научного движения во Франции и Англии . Рим. стр. 79–. ISBN 978-88-6812-497-7 . OCLC 913218837 .
{{cite book}}
: CS1 maint: отсутствует местоположение издателя ( ссылка ) - ^ Агар, Джон (2012). Наука в двадцатом веке и за его пределами . Кембридж: Политическая пресса. ISBN 978-0-7456-3469-2 .
- ^ Журнал, Смитсоновский институт; Грин, Брайан. «Почему теория струн все еще дает надежду на то, что мы сможем объединить физику» . Смитсоновский журнал .
- ^ Альфер, Ральф А.; Герман, Роберт (1948). «Эволюция Вселенной». Природа . 162 (4124): 774–775. Бибкод : 1948Natur.162..774A . дои : 10.1038/162774b0 . S2CID 4113488 .
Гамов, Г. (1948). «Эволюция Вселенной». Природа . 162 (4122): 680–682. Бибкод : 1948Natur.162..680G . дои : 10.1038/162680a0 . ПМИД 18893719 . S2CID 4793163 . - ^ «Нобелевская лекция Уилсона 1978 года» (PDF) . nobelprize.org . Архивировано (PDF) из оригинала 13 апреля 2005 г. Проверено 23 марта 2005 г.
- ^ Рональд К. Смелцер. «Чиен-Шиунг Ву». Фонд атомного наследия, https://www.atomicheritage.org/profile/chien-shiung-wu . Архивировано 15 сентября 2019 г. в Wayback Machine . По состоянию на 26 октября 2017 г.
- ^ Jump up to: Перейти обратно: а б Редакторы Biography.com. «Чиен-Шиунг Ву». Biography.com, 2 июня 2016 г., https://www.biography.com/people/chien-shiung-wu-053116. Архивировано 26 октября 2017 г. в Wayback Machine .
- ^ Гарвин, Ричард Л.; Ли, Цунг-Дао (1997). «Чиен-Шиунг Ву» . Физика сегодня . 50 (10): 120–122. дои : 10.1063/1.2806727 .
- ^ Хениг, Робин Маранц (2000). Монах в саду: потерянный и найденный гений Грегора Менделя, отца генетики . Хоутон Миффлин. ISBN 978-0-395-97765-1 . OCLC 43648512 .
- ^ Jump up to: Перейти обратно: а б Уотсон, доктор медицинских наук; Крик, FHC (1953). «Молекулярная структура нуклеиновых кислот: структура нуклеиновой кислоты дезоксирибозы» (PDF) . Природа . 171 (4356): 737–738. Бибкод : 1953Natur.171..737W . дои : 10.1038/171737a0 . ПМИД 13054692 . S2CID 4253007 . Архивировано из оригинала (PDF) 24 октября 2017 года.
- ^ Читтадино, Евгений (2002). Природа как лаборатория: дарвиновская экология растений в Германской империи, 1880-1900 гг . Кембридж: Издательство Кембриджского университета. ISBN 978-0-521-52486-5 .
- ^ Акерт, Ллойд Т. (1 марта 2007 г.). «Цикл жизни» в экологии: Почвенная микробиология Сергея Виноградского, 1885–1940» . Журнал истории биологии . 40 (1): 109–145. дои : 10.1007/s10739-006-9104-6 . ISSN 1573-0387 . S2CID 128410978 .
- ^ Эгертон, Фрэнк Н. (2012). Корни экологии: античность до Геккеля . Беркли: Издательство Калифорнийского университета. ISBN 978-0-520-27174-6 .
- ^ Мартин, Лаура Дж. (2022). Дикие по замыслу : подъем экологического восстановления . Кембридж, Массачусетс: Издательство Гарвардского университета. ISBN 978-0-674-97942-0 .
- ^ Эрик Грегерсен. «Сесилия Пейн-Гапошкин | Американский астроном». Британская энциклопедия, https://www.britannica.com/biography/Cecilia-Payne-Gaposchkin . Архивировано 8 октября 2018 года в Wayback Machine .
- ^ Jump up to: Перейти обратно: а б Рэйчел Пэдман. «Сесилия Пейн-Гапошкин (1900–1979)». Биографии колледжа Ньюнэм, 2004 г., http://www.newn.cam.ac.uk/about/history/biographys/. Архивировано 25 марта 2017 г. в Wayback Machine .
- ^ Коуэн, В.М.; Хартер, Д.Х.; Кандел, ER (2000). «Появление современной нейробиологии: некоторые последствия для неврологии и психиатрии». Ежегодный обзор неврологии . 23 : 345–346. дои : 10.1146/annurev.neuro.23.1.343 . ПМИД 10845068 .
- ^ Американское общество инженеров-механиков. Карл Бенц. Архивировано 28 ноября 2021 года в Wayback Machine .
- ^ «Информатика против разработки программного обеспечения [Руководство по сравнению]» .
- ^ Хехт, Джефф (10 августа 2016 г.). «Узкое место в пропускной способности, которое душит Интернет». Научный американец .
- ^ Хэндли, Люси. «К 2025 году почти три четверти населения мира будут использовать для доступа в Интернет только свои смартфоны» . CNBC . Архивировано из оригинала 28 сентября 2022 года . Проверено 28 сентября 2022 г.
- ^ Гали, Хорди (1 августа 2018 г.). «Состояние новой кейнсианской экономики: частичная оценка» . Журнал экономических перспектив . 32 (3): 87–112. дои : 10.1257/jep.32.3.87 . hdl : 10230/35942 – через CrossRef.
- ^ Фуэнтес, Агустин (6 января 2010 г.). «Новая биологическая антропология: внедрение новой физической антропологии Уошберна в 2010 год и далее - лекция за обедом AAPA 2008 года» . Американский журнал физической антропологии . 143 (С51): 2–12. дои : 10.1002/ajpa.21438 . PMID 21086524 – через CrossRef.
- ^ Литтл, Уильям (5 октября 2016 г.). «Глава 22: Социальное взаимодействие» .
- ^ До свидания, Деннис (4 июля 2012 г.). «Физики нашли частицу, которая могла бы быть бозоном Хиггса» . Нью-Йорк Таймс . Архивировано из оригинала 7 июня 2021 года . Проверено 7 июня 2021 г.
- ^ О'Луэнай, Сиан (14 марта 2013 г.). «Новые результаты указывают на то, что новая частица является бозоном Хиггса» . ЦЕРН (пресс-релиз). Архивировано из оригинала 20 октября 2015 года . Проверено 25 мая 2024 г.
- ^ Кастельвекки, Давиде; Витце, Александра (11 февраля 2016 г.). «Наконец-то найдены гравитационные волны Эйнштейна» . Новости природы . дои : 10.1038/nature.2016.19361 . S2CID 182916902 . Проверено 25 мая 2016 г. .
- ^ «Информационный бюллетень проекта генома человека» . genome.gov . Проверено 26 мая 2024 г.
- ^ Оуэнс, Ребекка (8 октября 2020 г.). «Нобелевская премия: кто останется в стороне?» . Разговор . Проверено 26 мая 2024 г.
- ^ Браун, Джошуа Э. (13 января 2020 г.). «Команда создает первых живых роботов» . Университет Вермонта . Проверено 26 мая 2024 г.
- ^ Браун, Джошуа (29 ноября 2021 г.). «Команда создает первых живых роботов, способных воспроизводить потомство» . Институт Висса . Проверено 26 мая 2024 г.
- ^ Гиббон, Питер. «Мартин Селигман и рост позитивной психологии» . Национальный фонд гуманитарных наук . Проверено 26 мая 2024 г.
Источники
[ редактировать ]- Бруно, Леонард К. (1989). Ориентиры науки . Факты в файле. ISBN 978-0-8160-2137-6 .
- Хейлброн, Джон Л., изд. (2003). Оксфордский справочник по истории современной науки . Издательство Оксфордского университета. ISBN 978-0-19-511229-0 .
- Нидэм, Джозеф ; Ван, Лин (1954). Вводные ориентиры . Наука и цивилизация в Китае . Том. 1. Издательство Кембриджского университета.
- Нидэм, Джозеф (1986a). Математика и науки о небе и земле . Наука и цивилизация в Китае . Том. 3. Тайбэй: Caves Books Ltd.
- Нидэм, Джозеф (1986c). Физика и физическая технология, Часть 2, Машиностроение . Наука и цивилизация в Китае . Том. 4. Тайбэй: Caves Books Ltd.
- Нидэм, Джозеф; Робинсон, Кеннет Г.; Хуан, Джен-Ю (2004). «Общие выводы и размышления». Наука и китайское общество . Наука и цивилизация в Китае . Том. 7. Издательство Кембриджского университета.
- Самбурский, Шмуэль (1974). Физическая мысль от досократиков до квантовых физиков: антология, выбранная, представленная и отредактированная Шмуэлем Самбурским . Пика Пресс. п. 584. ИСБН 978-0-87663-712-8 .
Дальнейшее чтение
[ редактировать ]- Агар, Джон (2012) Наука в двадцатом веке и за его пределами , Polity Press. ISBN 978-0-7456-3469-2 .
- Агасси, Джозеф (2007) Наука и ее история: переоценка историографии науки (Бостонские исследования в области философии науки, 253) Спрингер. ISBN 978-1-4020-5631-4 .
- Бурстин, Дэниел (1983). Первооткрыватели: история поиска человеком познания своего мира и самого себя . Случайный дом. ISBN 978-0-394-40229-1 . OCLC 9645583 .
- Боулер, Питер Дж. (1993) История наук об окружающей среде Нортона .
- Брок, WH (1993) История химии Нортона .
- Броновский, Дж. (1951) Здравый смысл науки Хайнеманн. ISBN 978-84-297-1380-0 . (Включает описание истории науки в Англии.)
- Байерс, Нина и Гэри Уильямс, изд. (2006) Из тени: вклад женщин двадцатого века в физику , издательство Кембриджского университета ISBN 978-0-521-82197-1
- Герценберг, Кэролайн Л. (1986). Женщины-ученые от древности до наших дней ISBN 978-0-933951-01-3
- Кун, Томас С. (1996). Структура научных революций (3-е изд.). Издательство Чикагского университета. ISBN 978-0-226-45807-6 .
- Кумар, Дипак (2006). Наука и владычество: исследование Британской Индии , 2-е издание. Издательство Оксфордского университета. ISBN 978-0-19-568003-4
- Лакатос, Имре (1978). История науки и ее рациональные реконструкции опубликованы в журнале «Методология программ научных исследований: философские статьи, том 1» . Издательство Кембриджского университета
- Левер, Тревор Харви. (2001) Преобразование материи: история химии от алхимии до бакибола
- Линдберг, Дэвид С .; Шанк, Майкл Х., ред. (2013). Средневековая наука . Кембриджская история науки. Том. 2. Издательство Кембриджского университета. дои : 10.1017/CHO9780511974007 . ISBN 978-0-521-59448-6 .
- Липпхардт, Вероника/Людвиг, Дэниел, Передача знаний и передача науки , EGO – European History Online , Майнц: Институт европейской истории , 2011 г., дата обращения: 8 марта 2020 г. ( pdf ).
- Марголис, Ховард (2002). Все началось с Коперника . МакГроу-Хилл . ISBN 978-0-07-138507-7
- Майр, Эрнст. (1985). Рост биологической мысли: разнообразие, эволюция и наследование .
- Норт, Джон. (1995). Нортонская история астрономии и космологии .
- Най, Мэри Джо, изд. (2002). Кембриджская история науки, том 5: Современные физико-математические науки
- Пак, Кэтрин и Лоррейн Дастон, ред. (2006) Кембриджская история науки, Том 3: Ранняя современная наука
- Портер, Рой, изд. (2003). Кембриджская история науки, том 4: Восемнадцатый век
- Руссо, Джордж и Рой Портер , ред. 1980). Фермент знания: исследования по историографии науки Издательство Кембриджского университета. ISBN 978-0-521-22599-1
- Слоттен, Хью Ричард, изд. (2014) Оксфордская энциклопедия истории американской науки, медицины и технологий .
Внешние ссылки
[ редактировать ]- «Что такое история науки», Британская академия.
- Британское общество истории науки
- «Научные изменения» . Интернет-энциклопедия философии .
- Исследовательский центр истории науки и технологий CNRS в Париже (Франция) (на французском языке)
- Генри Смит Уильямс , История науки , тома 1–4 , онлайн-текст
- Цифровые архивы Национального института стандартов и технологий (NIST)
- Цифровые факсимиле книг из коллекции истории науки. Архивировано 13 января 2020 года в Wayback Machine , цифровые коллекции библиотеки Линды Холл.
- Отдел истории науки и техники Международного союза истории и философии науки
- Гиганты науки (сайт Института национальной памяти)
- Цифровая коллекция истории науки: Университет штата Юта . Содержит первоисточники таких крупных деятелей в истории научных исследований, как Отто Брунфельс, Чарльз Дарвин, Эразм Дарвин, Карол Линней, Антоний ван Левенгук, Ян Сваммердам, Джеймс Соуэрби, Андреас Везалий и другие. .
- Общество истории науки («HSS»). Архивировано 15 сентября 2020 г. в Wayback Machine.
- Межведомственная комиссия по обучению (IDTC) Международного союза истории и философии науки (IUHPS). Архивировано 13 января 2020 года в Wayback Machine.
- Международная академия истории науки
- Международная группа преподавания истории, философии и естественных наук
- IsisCB Explore: Индекс истории науки Инструмент обнаружения с открытым доступом
- Museo Galileo – Институт и музей истории науки во Флоренции, Италия
- Архив Национального центра атмосферных исследований (NCAR)
- Официальный сайт Нобелевского фонда . Содержит биографии и информацию о нобелевских лауреатах.
- Королевское общество, новаторская наука с 1650 года по настоящее время. Архивировано 18 августа 2015 года в Wayback Machine.
- The Vega Science Trust Бесплатный просмотр видео с участием ученых, в том числе Фейнмана, Перуца, Ротблата, Борна и многих нобелевских лауреатов.